Lichari, Mariam (2023). "Energy efficiency and qos maximization in future green wireless hetnets with optimized base-station power supply on/off switching strategies. Thèse. Québec, Université du Québec, Institut national de la recherche scientifique, Doctorat en télécommunications, 142 p.
Prévisualisation |
PDF
Télécharger (13MB) | Prévisualisation |
Résumé
La prochaine génération de réseaux cellulaires promet des améliorations considérables en
termes de débits et de réduction de la latence, ouvrant la voie à une variété de nouveaux services.
Cependant, cette avancée s’accompagne d’un défi majeur lié à l’efficacité énergétique, car
le déploiement d’un grand nombre de stations de base (BS) devient indispensable pour assurer
une couverture étendue et une efficacité spectrale accrue. Bien que les petites stations de base
(SBS), telles que les picocellules, les microcellules et les femtocellules, soient conçues pour avoir
des échelles individuelles plus petites et une consommation d’énergie moindre, l’utilisation combinée
de ces stations suscite des préoccupations environnementales et économiques notables.
Face à la crise énergétique imminente, diverses méthodes sont proposées pour améliorer
l’efficacité énergétique des futurs réseaux cellulaires, telles que l’optimisation de la gestion des
ressources radio, les ajustements de la configuration des cellules, la mise en place de réseaux
hétérogènes et l’utilisation de technologies de radio cognitive. La stratégie de commutation des
stations de base (ON/OFF) émerge comme une solution pour accroître l’efficacité du réseau, mais
elle présente des défis, en particulier dans les systèmes 5G avec des techniques innovantes de
la couche physique et une architecture de réseau hétérogène. Les stratégies de commutation,
qu’elles soient hors ligne ou en ligne, exigent une attention particulière en raison de leur impact
sur la continuité du service et les opérations potentiellement coûteuses en énergie.
Malgré les progrès dans la conception des stratégies d’extinction des stations de base (BS),
il persiste un besoin constant d’explorer divers critères pour des performances réseau respectueuses
de l’environnement et efficaces.
Cette recherche se concentre sur les stratégies de commutation ON/OFF des stations de base
(BS) dans les réseaux hétérogènes (HetNet), mettant l’accent sur la nécessité d’estimations précises
des services futurs à partir d’analyses approfondies et d’outils d’estimation avancés. L’intégration
de techniques d’apprentissage automatique (ML), en particulier d’apprentissage multimodal
profond (DML), facilite la prédiction précise du trafic et la gestion adaptative des ressources du
réseau. Différentes approches sont développées et testées pour la commutation en ligne des stations
de base. L’algorithme de force brute (BF) établit une référence de performance pour l’activation
et la désactivation des stations de base, en incorporant une fonction d’utilité pour un équilibre
délicat entre la consommation d’énergie et les gains de débit. En conséquence, notre recherche
nous permet d’atteindre des niveaux d’efficacité énergétique comparables à ceux de l’algorithme
BF, tout en réduisant considérablement les coûts computationnels, à la fois en termes de temps
et de ressources. Un avantage notable de ce modèle est sa capacité à économiser du temps, alignant
ainsi les résultats d’optimisation avec les environnements réels et facilitant des ajustements
rapides des cellules mobiles en réponse aux changements dynamiques des utilisateurs.
The forthcoming mobile generation shows promise with its expected improvements in bit rates
and latency reduction, paving the way for a range of new services. Nevertheless, a significant issue
arises concerning energy efficiency, as deploying a substantial number of base stations (BSs)
becomes necessary for extended coverage and enhanced spectral efficiency. While small base
stations (SBSs) like picocells, microcells, and femtocells are projected to have individually smaller
scales and lower power consumption, the combined energy usage raises noteworthy environmental
and economic concerns.
To address the impending energy crisis, various methods propose enhancing the energy efficiency
of future mobile networks, including radio resource management optimization, cell configuration
adjustments, heterogeneous network setups, and cognitive radio technologies. Base Station
Switching (ON/OFF) emerges as a strategy for enhancing network efficiency but poses challenges,
especially in 5G systems with innovative physical layer techniques and a heterogeneous network
architecture. Switching strategies, offline or online, demand careful consideration due to their impact
on service continuity and potential energy-costly operations.
Despite progress in designing Base Station (BS) switch-off strategies, there’s a continuous
need to explore diverse criteria for environmentally friendly and efficient network performance. Addressing
the combinatorial optimization problem introduces complexities in network management
and optimization strategies.
This research focuses on HetNet switch-off strategies, emphasizing the need for accurate future
service estimations from comprehensive analyses and advanced estimation tools. The integration
of machine learning (ML), particularly deep multi-modal learning (DML), facilitates precise traffic
prediction and adaptive network resource management. Distinct approaches are developed and
tested for online switching of base stations. The brute force (BF) algorithm establishes a performance
baseline for base station activation and deactivation, incorporating a utility function for a
delicate balance between energy consumption and throughput gains. Deep multi-modal learning
(DML) trains two neural networks, predicting non-critical base stations and forecasting user-base
station associations. As a result, our research enables us to reach energy efficiency levels comparable
to those of the BF algorithm, while substantially cutting down on computational costs, both in
terms of time and resources. A notable advantage of this model is its capacity to save time, aligning
seamlessly with a key research objective : customizing optimization outcomes to real-world environments
and facilitating prompt adjustments of mobile cells in response to dynamic user changes.
Type de document: | Thèse Thèse |
---|---|
Directeur de mémoire/thèse: | Affes, Sofiène |
Mots-clés libres: | Réseau hétérogène ; efficacité énergétique ; commutation marche/arrêt ; apprentissage automatique ; apprentissage en profondeur ; algorithme Brute-Force ; Heterogeneous network ; energy efficiency ; On/Off switching ; power consumption ; machine learning ; deep learning ; Brute-Force |
Centre: | Centre Énergie Matériaux Télécommunications |
Date de dépôt: | 23 mai 2024 16:36 |
Dernière modification: | 07 juill. 2024 04:00 |
URI: | https://espace.inrs.ca/id/eprint/15676 |
Gestion Actions (Identification requise)
Modifier la notice |