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RÉSUMÉ

La prochaine génération de réseaux cellulaires promet des améliorations considérables en
termes de débits et de réduction de la latence, ouvrant la voie à une variété de nouveaux ser-
vices. Cependant, cette avancée s’accompagne d’un défi majeur lié à l’efficacité énergétique, car
le déploiement d’un grand nombre de stations de base (BS) devient indispensable pour assurer
une couverture étendue et une efficacité spectrale accrue. Bien que les petites stations de base
(SBS), telles que les picocellules, les microcellules et les femtocellules, soient conçues pour avoir
des échelles individuelles plus petites et une consommation d’énergie moindre, l’utilisation combi-
née de ces stations suscite des préoccupations environnementales et économiques notables.

Face à la crise énergétique imminente, diverses méthodes sont proposées pour améliorer
l’efficacité énergétique des futurs réseaux cellulaires, telles que l’optimisation de la gestion des
ressources radio, les ajustements de la configuration des cellules, la mise en place de réseaux
hétérogènes et l’utilisation de technologies de radio cognitive. La stratégie de commutation des
stations de base (ON/OFF) émerge comme une solution pour accroître l’efficacité du réseau, mais
elle présente des défis, en particulier dans les systèmes 5G avec des techniques innovantes de
la couche physique et une architecture de réseau hétérogène. Les stratégies de commutation,
qu’elles soient hors ligne ou en ligne, exigent une attention particulière en raison de leur impact
sur la continuité du service et les opérations potentiellement coûteuses en énergie.

Malgré les progrès dans la conception des stratégies d’extinction des stations de base (BS),
il persiste un besoin constant d’explorer divers critères pour des performances réseau respec-
tueuses de l’environnement et efficaces.

Cette recherche se concentre sur les stratégies de commutation ON/OFF des stations de base
(BS) dans les réseaux hétérogènes (HetNet), mettant l’accent sur la nécessité d’estimations pré-
cises des services futurs à partir d’analyses approfondies et d’outils d’estimation avancés. L’inté-
gration de techniques d’apprentissage automatique (ML), en particulier d’apprentissage multimo-
dal profond (DML), facilite la prédiction précise du trafic et la gestion adaptative des ressources du
réseau. Différentes approches sont développées et testées pour la commutation en ligne des sta-
tions de base. L’algorithme de force brute (BF) établit une référence de performance pour l’activa-
tion et la désactivation des stations de base, en incorporant une fonction d’utilité pour un équilibre
délicat entre la consommation d’énergie et les gains de débit. En conséquence, notre recherche
nous permet d’atteindre des niveaux d’efficacité énergétique comparables à ceux de l’algorithme
BF, tout en réduisant considérablement les coûts computationnels, à la fois en termes de temps
et de ressources. Un avantage notable de ce modèle est sa capacité à économiser du temps, ali-
gnant ainsi les résultats d’optimisation avec les environnements réels et facilitant des ajustements
rapides des cellules mobiles en réponse aux changements dynamiques des utilisateurs.

Mots-clés Réseau hétérogène, Efficacité énergétique, Commutation Marche/Arrêt, Consom-
mation d’énergie, Apprentissage automatique, Apprentissage en profondeur, Algorithme Brute-
Force
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ABSTRACT

The forthcoming mobile generation shows promise with its expected improvements in bit rates
and latency reduction, paving the way for a range of new services. Nevertheless, a significant is-
sue arises concerning energy efficiency, as deploying a substantial number of base stations (BSs)
becomes necessary for extended coverage and enhanced spectral efficiency. While small base
stations (SBSs) like picocells, microcells, and femtocells are projected to have individually smaller
scales and lower power consumption, the combined energy usage raises noteworthy environmen-
tal and economic concerns.

To address the impending energy crisis, various methods propose enhancing the energy effi-
ciency of future mobile networks, including radio resource management optimization, cell configu-
ration adjustments, heterogeneous network setups, and cognitive radio technologies. Base Station
Switching (ON/OFF) emerges as a strategy for enhancing network efficiency but poses challenges,
especially in 5G systems with innovative physical layer techniques and a heterogeneous network
architecture. Switching strategies, offline or online, demand careful consideration due to their im-
pact on service continuity and potential energy-costly operations.

Despite progress in designing Base Station (BS) switch-off strategies, there’s a continuous
need to explore diverse criteria for environmentally friendly and efficient network performance. Ad-
dressing the combinatorial optimization problem introduces complexities in network management
and optimization strategies.

This research focuses on HetNet switch-off strategies, emphasizing the need for accurate future
service estimations from comprehensive analyses and advanced estimation tools. The integration
of machine learning (ML), particularly deep multi-modal learning (DML), facilitates precise traffic
prediction and adaptive network resource management. Distinct approaches are developed and
tested for online switching of base stations. The brute force (BF) algorithm establishes a perfor-
mance baseline for base station activation and deactivation, incorporating a utility function for a
delicate balance between energy consumption and throughput gains. Deep multi-modal learning
(DML) trains two neural networks, predicting non-critical base stations and forecasting user-base
station associations. As a result, our research enables us to reach energy efficiency levels compa-
rable to those of the BF algorithm, while substantially cutting down on computational costs, both in
terms of time and resources. A notable advantage of this model is its capacity to save time, aligning
seamlessly with a key research objective : customizing optimization outcomes to real-world envi-
ronments and facilitating prompt adjustments of mobile cells in response to dynamic user changes.

Keywords Heterogeneous network,energy efficiency, On/Off switching, power consumption,
machine learning, deep learning, Brute-Force
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SOMMAIRE RÉCAPITULATIF

L’évolution des réseaux sans fil a été une aventure fascinante, et chaque nouvelle génération
de réseau a apporté des améliorations significatives. Revenons à l’époque de la 1G, qui a posé les
bases de la communication en utilisant une technologie analogique qui prend en charge unique-
ment la voix. Ensuite, la 2G est apparue et a fait un grand pas dans le monde de la communication
numérique, permettant l’introduction de nouveaux services tels que les SMS (service de messa-
gerie courte) et ’Roaming’. En 2000, l’UIT (Union internationale des télécommunications) a publié
les Télécommunications mobiles internationales (TMI)-2000, fournissant un cadre mondial unifié
pour la technologie 3G. Ce cadre englobait des aspects cruciaux tels que l’allocation du spectre de
fréquences et les critères de performance. Pendant cette période, l’introduction des smartphones
a révolutionné l’accessibilité à la navigation sur le web et aux services de messagerie électronique.
En offrant un accès à Internet et des capacités d’appel vocal, la 3G a changé la donne et a modifié
notre façon de rester connectés. À mesure que de nouveaux scénarios émergeaient, nécessitant
une utilisation accrue des données, la nécessité de technologies innovantes est devenue évidente.
L’arrivée de la 4G en 2010, sous la bannière de l’IMT-Advanced, a propulsé l’internet mobile vers
de nouveaux sommets en introduisant des idées révolutionnaires telles que l’adoption d’une struc-
ture "tout IP", permettant le streaming vidéo sans faille et offrant des vitesses de bande passante
mobile nettement plus rapides.

Actuellement, toute l’attention est portée sur la 5G, caractérisée par une vitesse et une réac-
tivité exceptionnelles. Elle offre une connectivité plus rapide, une fiabilité accrue et une densité
de connexion plus élevée, associées à une latence réduite, ouvrant la voie à des potentiels tels
que les appareils intelligents et les véhicules autonomes. Cependant, le voyage ne s’arrête pas
là. L’horizon du 6G se profile, apportant avec lui la promesse de vitesses encore plus étonnantes
et d’activités en ligne presque instantanées. Au-delà de cela, la convergence du 6G avec l’intelli-
gence artificielle (IA) est anticipée, une fusion qui pourrait révolutionner les industries et redéfinir
notre manière d’interagir avec la technologie dans notre vie quotidienne. Cette perspective est in-
croyablement excitante, car elle offre le potentiel de remodeler complètement notre relation avec
la connectivité.

Au cours des 50 dernières années, nous avons été témoins d’une évolution rapide des tech-
nologies sans fil, et elles deviennent une part de plus en plus importante de notre vie quotidienne
(11). On s’attend à ce que leur importance ne cesse de croître, conduisant à de nouveaux types
de services et de systèmes interconnectés. Alors que nous sommes en train de déployer la 5e
génération (5G) des réseaux mobiles, des chercheurs du monde entier ont également commencé
à examiner ce que les réseaux de la potentielle 6e génération (6G) pourraient offrir.

La révolution de la 5G se caractérise par son caractère distinctif. Il ne s’agit pas seulement
d’une augmentation de la vitesse de nos téléphones, il y a une toute nouvelle manière de voir les
choses. Un grand axe de recherche actuel porte sur l’efficacité énergétique, qui est devenue un
facteur majeur dans la conception de la prochaine génération de réseaux cellulaires. Contraire-
ment aux générations précédentes de réseaux, les réseaux 5G sont confrontés au défi de fournir
simultanément une multitude de services, chacun ayant des exigences diverses en matière de
qualité de service.
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FIGURE 1 : Améliorations clés de la 6G par rapport à la 5G.

Lorsque nous le comparons à la capacité actuelle de la 5G, la 6G est censée apporter des
débits de données plus élevés, une sécurité améliorée et une latence réduite. La vitesse projetée
pour la 6G est estimée entre 1 et 10 Tbps. Sa fréquence dépassera celle de toutes les généra-
tions précédentes. Les fréquences augmentent généralement avec l’avancée de la technologie, et
l’introduction de la fréquence térahertz (THz) indique des taux de transmission élevés. Avec la 6G,
la latence est estimée entre 10 et 100 millisecondes, tandis que la densité de connectivité devrait
être d’environ 10 appareils par kilomètre carré. La capacité de trafic devrait atteindre environ 1
Gb/s par mètre carré.

De plus, la 6G vise à améliorer certains indicateurs clés de performance (KPI), en poussant
le pourcentage de couverture à 99%, la fiabilité à 99,9999%, en affinant la précision de position-
nement du niveau du mètre à celui du centimètre, et en améliorant la sensibilité du récepteur à
mieux que -130 dBm (204). L’efficacité spectrale et énergétique connaîtra des améliorations expo-
nentielles par rapport à la 5G. L’un des aspects les plus excitants de la 6G est sa promesse de
fournir une connectivité sans limites. Elle est conçue comme un réseau de communication complet
intégrant divers systèmes, y compris la communication, la mesure, le stockage, l’informatique, le
contrôle, le GPS, le radar, l’imagerie et la navigation (99). Les caractéristiques fondamentales de
la 6G sont résumées dans la Figure 1 (23).

L’importance de l’efficacité énergétique dans le contexte des futurs réseaux sans fil ne peut
être surestimée. Au-delà des défis techniques, des considérations économiques, opérationnelles
et environnementales soulignent la nécessité de solutions durables et économes en énergie. La
montée en puissance du nombre de stations de base et d’appareils connectés accentue l’urgence
de passer d’une focalisation unique sur l’optimisation du débit à une approche globale qui privilégie
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l’efficacité énergétique.

D’un point de vue économique, les coûts opérationnels liés à la consommation d’énergie dans
les réseaux sans fil sont substantiels. Une utilisation efficiente de l’énergie impacte directement la
viabilité économique des opérateurs de réseau et des fournisseurs de services. Sur le plan opé-
rationnel, l’optimisation de la consommation d’énergie s’aligne sur l’objectif de créer des réseaux
sans fil résilients et durables capables de répondre aux demandes futures.

Prévenir la crise énergétique :

Avec la prochaine augmentation du trafic pour les systèmes cellulaires de nouvelle généra-
tion, il est urgent d’augmenter la capacité du réseau, nécessitant l’installation de plus de stations
de base (BS). Ainsi, la prolifération de petites cellules émerge comme une solution prometteuse
pour répondre aux exigences des systèmes sans fil 5G en termes de capacité réseau et de dé-
bit. L’intégration de petites cellules de différentes tailles aux côtés des stations de base macro
crée un réseau hétérogène (HetNet) qui offre des performances élevées et une qualité de service
pour gérer la hausse prévue du trafic. Cependant, l’augmentation du nombre de composants du
réseau entraîne une hausse significative de la consommation d’énergie. Malgré l’efficacité énergé-
tique inhérente des petites cellules, leur déploiement généralisé amplifie à la fois la consommation
d’énergie du réseau d’accès radio et son empreinte carbone.

La consommation élevée d’énergie de l’industrie des Technologies de l’Information et de la
Communication (TIC) entraîne environ 2% à 3% des émissions mondiales de dioxyde de carbone,
représentant environ 25% de toutes les émissions (66). Par conséquent, pour réduire de manière
significative les émissions mondiales actuelles de dioxyde de carbone dans les réseaux sans fil de
prochaine génération, l’objectif est que les réseaux sans fil 5G fonctionnent en tant que réseaux
respectueux de l’environnement avec des émissions de dioxyde de carbone notablement faibles.
Cependant, les conceptions des réseaux sans fil cellulaires conventionnels ont principalement pri-
vilégié un débit utilisateur élevé et une grande capacité, avec une considération minimale pour
l’efficacité énergétique ou la consommation d’énergie.

Par conséquent, des recherches approfondies sont menées pour minimiser les opérations des
stations de base (BS) et améliorer l’efficacité énergétique globale du réseau, sous l’impulsion de
considérations économiques, opérationnelles et environnementales (56), (128). En conséquence,
l’efficacité énergétique est devenue un facteur crucial pour les performances des futurs réseaux
5G. Avec la perspective de millions de stations de base supplémentaires et de milliards d’appareils
connectés, l’importance de la conception et de l’exploitation de systèmes économes en énergie a
considérablement augmenté. Elle représente désormais un aspect fondamental dans le dévelop-
pement des réseaux de communication, marquant un changement d’accent de l’optimisation du
débit vers la priorisation de l’optimisation de l’efficacité énergétique.

Pour faire face à l’imminente crise énergétique, la priorité donnée à l’efficacité énergétique est
devenue un axe central dans la conception et l’exploitation des futurs réseaux mobiles. Diverses
approches variées et complémentaires ont été suggérées pour accroître l’efficacité énergétique de
ces réseaux. Ces méthodes incluent l’optimisation de la gestion des ressources radio, l’adaptation
des configurations cellulaires, l’introduction de déploiements de réseaux hétérogènes et la mise
en œuvre de technologies de radio cognitive, entre autres.
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Motivations :

Les réseaux cellulaires ont eu un impact profond sur notre vie quotidienne, et la cinquième
génération (5G) de technologie radio s’apprête à apporter encore plus de changements transfor-
mateurs. Elle promet de permettre des niveaux inédits d’automatisation et d’innovation dans divers
secteurs en raison de sa capacité améliorée, de sa connectivité étendue et de communications à
faible latence incroyablement fiables. La 5G est un réseau complexe qui prend en charge une large
gamme de services grâce à plusieurs technologies clés. Celles-ci comprennent la virtualisation,
qui permet une gestion de réseau plus flexible et efficace, la softwarisation, qui rend les fonctions
réseau plus adaptables, de nouveaux Réseaux d’Accès Radio (RAN) pour une connectivité amé-
liorée, et des stratégies novatrices de transport des données pour un meilleur acheminement. Ces
technologies travaillent ensemble pour fournir une faible latence, un transfert de données à haute
vitesse et des connexions fiables.

Cependant, alors que nous aspirons à une plus grande capacité réseau, une couverture plus
étendue et une augmentation du trafic de données, nous sommes également confrontés au défi de
la hausse de la consommation d’énergie. Cela n’est pas durable, tant d’un point de vue environne-
mental que commercial. Reconnaissant cela, il y a un effort mondial pour rendre nos réseaux plus
économes en énergie, motivé par des préoccupations économiques et environnementales.

Les projections indiquent que le nombre d’appareils connectés pourrait potentiellement at-
teindre 100 milliards d’ici 2030(152), anticipant une augmentation significative du trafic de don-
nées, estimé à croître jusqu’à 1 000 fois plus qu’en 2018 pour la 4G(84). Cette augmentation sub-
stantielle de l’utilisation des smartphones, des dispositifs portables et des objets connectés (IoT)
représente un défi notable en termes de fourniture de vitesses de données rapides, d’une couver-
ture étendue et d’une latence minimale. De plus, avec chaque nouvelle génération de technologie
sans fil, nous avons observé une augmentation de la consommation d’énergie due à l’ajout de ma-
tériel pour prendre en charge les applications émergentes et les exigences évolutives. La tendance
suggère que la 5G continuera cette trajectoire, augmentant considérablement la consommation
d’énergie en comparaison avec sa version précédente, la 4G. La nécessité d’accommoder des dé-
bits de données élevés et une multitude d’appareils connectés rend ces réseaux plus gourmands
en énergie. En fait, on estime que la consommation d’énergie de la 5G pourrait être quatre fois
supérieure à celle de la 4G(77). Par conséquent, la recherche de l’efficacité énergétique émerge
comme une préoccupation cruciale dans le contexte de la 5G, la distinguant des générations pré-
cédentes.

Pour illustrer l’ampleur et la signification de l’impact de l’essor de la 5G, il est intéressant de
souligner que le rapport SMART 2020 de l’Union Internationale des Télécommunications (UIT)
(89) a estimé que les communications mobiles seules ont contribué à environ 2 135 millions de
tonnes d’émissions de CO2e en 2018. De plus, les prévisions de (87) indiquent que cet impact
devrait augmenter considérablement au cours de l’ère de la 5G. À la fin de l’année 2020, on pré-
voyait que l’effet cumulatif sur l’ensemble du secteur des Technologies de l’Information et de la
Communication (TIC) représenterait environ 15% des émissions mondiales totales de gaz à effet
de serre.

Face à cette problématique, le Projet Partenarial de Troisième Génération (3GPP) a introduit
la spécification New Radio (NR), qui dote la prochaine génération de réseaux d’outils pour réduire
significativement la consommation d’énergie et les émissions de gaz à effet de serre. Cela s’inscrit
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dans le cadre des objectifs plus larges de durabilité du secteur des Technologies de l’Information et
de la Communication (TIC), contribuant à un avenir plus responsable sur le plan environnemental
et plus efficient.

FIGURE 2 : Stratégies d’Optimisation Énergétique dans les Réseaux Mobiles Sans Fil

La réduction de la consommation d’énergie dans les réseaux cellulaires hétérogènes a récem-
ment suscité un intérêt croissant. La littérature a présenté plusieurs méthodes pour concevoir des
réseaux économes en énergie dans le contexte des opérations sans fil mobiles (comme indiqué
dans la figure 2). Bon nombre de ces méthodes se concentrent sur l’amélioration de l’efficacité
énergétique (EE) des stations de base (BS), car les unités BS sont responsables d’une part sub-
stantielle, allant de 60% à 80% (90), de la consommation totale d’énergie dans les réseaux mobiles
sans fil. Par conséquent, plusieurs études ont été menées pour améliorer l’efficacité énergétique
du réseau. Ainsi, les algorithmes d’activation/désactivation des BS figurent parmi les solutions
d’économie d’énergie les plus puissantes. Ces algorithmes éteignent les parties inutiles du ré-
seau (c’est-à-dire, les BS) et déplacent les utilisateurs vers les BS voisines pendant les périodes
creuses. Ils activent également le nombre approprié de BS selon les besoins. Par conséquent, les
algorithmes d’activation/désactivation des BS seraient particulièrement avantageux pour les futurs
réseaux de cinquième génération (5G) caractérisés par une densification extrême des BS, rendant
le défi de l’efficacité énergétique encore plus complexe.

La commutation des stations de base (activation/désactivation), qui représente l’une des stra-
tégies potentielles pour améliorer l’efficacité du réseau, offre des perspectives significatives mais
pose des défis d’implémentation notables. La complexité découle du fait que la désactivation des
stations de base entraîne l’arrêt complet des services dans une zone donnée, en particulier lors-
qu’on considère un modèle de couverture à un seul niveau. Cependant, cet obstacle peut être
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surmonté grâce à l’introduction des réseaux 5G, qui sont prévus pour étendre l’infrastructure de
l’interface radio selon diverses tailles et hiérarchies, formant des réseaux hétérogènes (HetNets).
On prévoit que ce paradigme HetNet créera des réseaux superposés comprenant de grandes sta-
tions de base macro (MBS) couvrant de plus petites stations de base (SBS) sous-jacentes.

Organiser les réseaux hétérogènes de cette manière équilibre le terrain de jeu pour les algo-
rithmes d’activation/désactivation des stations de base en augmentant les besoins énergétiques
globaux du réseau, rendant la technologie essentielle, tout en facilitant simultanément sa mise
en œuvre grâce à la couverture superposée. Avant ce changement de paradigme, pour qu’une
station de base soit éteinte, elle devait posséder un mécanisme pour surveiller efficacement les
demandes de service afin d’éviter les interruptions de couverture. En revanche, au sein des Het-
Nets, la désactivation d’une SBS inactive entraîne principalement une perte de capacité poten-
tielle, qui, lorsqu’elle est bien planifiée, peut contribuer à des économies d’énergie sans perturber
les opérations régulières du réseau. À mesure que les HetNets sont adoptés plus largement, le
défi persistant d’éviter des interruptions de service complètes dans une zone est résolu de ma-
nière efficace, permettant de supposer que la commutation des stations de base est réalisable
uniquement dans les régions avec une couverture superposée.

Plusieurs stratégies d’activation/désactivation des stations de base (BS) (76) ont été proposées
sous différentes perspectives de conception pour optimiser exclusivement les économies d’énergie
ou d’autres compromis de performance liés à l’énergie, tels que des stratégies aléatoires, basées
sur la charge ou la distance. De plus, des recherches ont été entreprises pour envisager une
conception commune de la stratégie d’activation/désactivation des BS et d’autres stratégies, telles
que l’association d’utilisateurs, les stratégies d’annulation des interférences en couche physique
et l’allocation des ressources.

Les stratégies d’activation/désactivation des BS peuvent être mises en œuvre en se concen-
trant soit sur les petites stations de base (SBS), soit sur les grandes stations de base macro
(MBS), soit sur les deux types de BS dans les HetNets. Cependant, la désactivation des MBS, qui
est dérivée en minimisant la consommation d’énergie des BS, peut avoir un impact négatif signifi-
catif sur la couverture du réseau. En revanche, la stratégie de désactivation aléatoire des SBS est
conçue en maximisant l’efficacité énergétique (EE) tout en respectant la contrainte de probabilité
de couverture. Beaucoup de travaux ont été réalisés pour concevoir une stratégie spécifique d’ac-
tivation/désactivation des BS dans les HetNets. Néanmoins, des améliorations et des défis restent
à explorer en exploitant de manière appropriée la combinaison de différents critères pour obtenir
des performances réseau plus écologiques et meilleures.

Il existe généralement deux approches pour activer-désactiver correctement un certain nombre
de stations de base (BS) (174), (144) : les approches hors ligne et en ligne. L’approche hors ligne,
relativement simple, permet la planification préalable des intervalles d’activation-désactivation. Ce-
pendant, elle présente un inconvénient majeur, à savoir qu’elle ne prend pas en compte la charge
instantanée actuelle et, par conséquent, n’est pas robuste face à des événements imprévisibles
(c’est-à-dire, des défaillances, des points chauds aléatoires, etc.), ce qui restreint son efficacité.
D’autre part, l’approche en ligne considère exclusivement la charge réelle (c’est-à-dire, instanta-
née) pour décider de la nécessité de désactiver une BS ou non. Ainsi, elle peut gérer des évé-
nements imprévisibles en activant la partie appropriée du réseau (c’est-à-dire, le nombre de BS)
pour faire face à une augmentation ou une diminution inattendue du trafic. Malgré son importance,
cette approche est complexe car la décision doit être prise et exécutée en temps réel. En outre,
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elle peut entraîner un grand nombre d’opérations d’activation-désactivation avec des coûts éner-
gétiques importants, ce qui peut non seulement augmenter considérablement le coût énergétique
global du réseau, mais aussi endommager le matériel.

Certaines études se concentrent sur l’utilisation de l’optimisation mathématique (57) pour gé-
rer l’activation et la désactivation des stations de base (BS) de manière à maintenir l’expérience
utilisateur tout en réduisant simultanément la consommation d’énergie. Ces algorithmes éteignent
les parties inutiles du réseau (c’est-à-dire, les BS) et déplacent les utilisateurs vers les BS voisines
pendant les périodes creuses. Ils activent également le nombre approprié de BS selon les besoins
(36). Par conséquent, les algorithmes d’activation/désactivation des BS seraient particulièrement
avantageux pour les futurs réseaux de cinquième génération (5G) caractérisés par une densifica-
tion extrême des BS, rendant le défi de l’efficacité énergétique encore plus complexe.

À cette fin, les recherche se sont focalisées sur les économies d’énergie pendant les périodes
de faible charge réseau, permettant ainsi la mise en veille des stations. La plupart de ces structures
tirent parti de la variation du trafic tout au long de la journée : lorsque la charge est réduite pen-
dant une période significative, notamment la nuit, certaines stations sont éteintes tandis que celles
restant opérationnelles prennent en charge leurs utilisateurs (27), (100). Diverses techniques ont
été mises en œuvre dans cette démarche afin de garantir le maintien d’un service satisfaisant.
Ces approches présentent des avantages notables en termes de consommation d’énergie et de
débit binaire. Toutefois, il est crucial de prendre en considération que l’environnement cellulaire
est dynamique, avec des utilisateurs changeant constamment de positions et de nombres. Ainsi,
le facteur temps revêt une importance primordiale, mais ces méthodologies requièrent un investis-
sement en temps et en ressources informatiques considérable.

De nos jours, les avancées en intelligence artificielle (IA) ont conduit à une adoption géné-
ralisée des techniques d’apprentissage automatique pour optimiser les communications sans fil.
Ces techniques ont été intégrées dans les réseaux auto-organisés (SON), dans le but de rendre
les tâches quotidiennes des opérateurs de réseau plus rationalisées et efficaces (141). En incor-
porant des outils basés sur l’IA, la progression du paradigme SON dans la 5G évolue vers une
méthodologie proactive. Cette méthodologie tire parti de la vaste quantité de données disponibles
et intègre des dimensions supplémentaires dérivées de la caractérisation de l’expérience et du
comportement des utilisateurs finaux (60).

À cet égard, divers schémas écoénergétiques utilisant l’apprentissage automatique ont été
développés. Ces approches présentent des avantages significatifs en termes de consommation
d’énergie et de débit binaire (58). Les principales stratégies pour optimiser l’efficacité énergétique
au niveau de la station de base incluent les modes de veille adaptatifs basés sur l’apprentissage
par renforcement (50), les stratégies d’extinction basées sur le trafic (73), et le contrôle efficace de
la puissance de transmission (180). Cependant, il est important de prendre en compte qu’une cel-
lule est un environnement dynamique où les utilisateurs changent constamment de positions et de
nombres. De plus, ces méthodes basées sur l’apprentissage automatique ne permettent pas d’ob-
tenir des économies d’énergie au même degré que l’approche mathématique, et elles impliquent
également un coût substantiel.

Optimiser la commutation des stations de base présente encore certains défis qui nécessitent
une attention particulière. En réponse à ces défis, il existe une richesse d’activités académiques
visant à explorer diverses mises en œuvre possibles. Beaucoup de ces mises en œuvre identifient
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divers facteurs contribuant à la complexité. Cependant, le problème principal lié à la commuta-
tion des stations de base réside dans le fait que les équipements actuels ne sont pas conçus
pour accommoder fréquemment les changements de mode opérationnel et exigent une attention
particulière pendant le processus de commutation. Cette limitation dissuade les fournisseurs de
services d’adopter fréquemment cette approche. L’incapacité à éteindre les stations de base à la
demande nécessite une estimation précise des besoins futurs en service pour une zone donnée,
un problème complexe qui repose sur une compréhension approfondie de l’historique des services
de la zone et l’utilisation d’outils d’estimation sophistiqués. De plus, le défi de résoudre le problème
d’optimisation combinatoire, qui détermine la combinaison la plus efficace de stations de base à
activer à un moment donné, devient plus complexe à mesure que le nombre de combinaisons
augmente.

Face à ces scénarios où les méthodes d’optimisation nécessitent un temps et des ressources
informatiques substantiels, et où les approches d’apprentissage automatique (ML) n’ont pas atteint
un équilibre satisfaisant entre coût et économies, nous avons reconnu le potentiel de combiner les
forces des deux domaines. Notre objectif est d’obtenir des améliorations significatives de l’efficacité
énergétique tout en réduisant simultanément le temps et les exigences en calcul. Cela nous a mo-
tivés à développer une approche d’apprentissage profond centrée sur la résolution de problèmes
d’optimisation dans les réseaux sans fil en tenant compte de différents critères et perspectives.
Cependant, une conception adaptable capable de répondre efficacement aux changements des
conditions du réseau entraînerait des économies d’énergie plus importantes et une amélioration
des performances du réseau.

En explorant les pistes pour rendre les réseaux hétérogènes mobiles sans fil plus écoéner-
gétiques, plusieurs angles ont été examinés, allant de l’optimisation du déploiement des stations
de base (BS) à l’amélioration des transmissions radio, en passant par la gestion des schémas
de veille des BS et l’utilisation de sources d’énergie renouvelable. Cependant, ces efforts ne sont
pas sans difficultés. Concevoir des HetNets écoénergétiques nécessite de prendre en compte di-
vers facteurs critiques, ce qui présente des défis pour notre recherche. Cela englobe la gestion
des petites stations de base (SBS) distribuées de manière aléatoire, la prise de décisions opti-
males concernant les associations d’équipements d’utilisateur (UE), l’allocation dynamique des
ressources adaptée à la fluctuation des motifs de trafic, tout en respectant l’équilibre entre l’effica-
cité énergétique et les normes de service de haute qualité (QoS).

Méthodologie de recherche :

Dans le cadre de cette recherche, nous avons élaboré et testé des approches distinctes pour
aborder la question de la commutation des stations de base dans le contexte des réseaux hété-
rogènes écoénergétiques. Dans une première étape, l’algorithme de brute force (BF) a été utilisé
dans le contexte de l’activation et de la désactivation des stations de base, tout en incorporant une
fonction d’utilité pour équilibrer la consommation d’énergie et les gains de débit en vue d’assurer
la qualité de service (QoS). En analysant de manière exhaustive diverses combinaisons d’états de
stations de base, la stratégie de brute force établit une référence de performance qui aide à évaluer
l’efficacité et offre la meilleure solution possible pour la commutation de cellules. L’introduction de
la fonction d’utilité, qui suggère l’équilibre délicat entre l’efficacité énergétique et les performances
du réseau, contribue au processus de prise de décision. Cette première étape valide non seule-
ment la capacité de gérer les stations de base pour une QoS optimale, mais offre également une
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compréhension réelle de l’interaction entre les considérations énergétiques et le débit de données.

La deuxième étape utilise l’apprentissage profond multi-modal (DML) pour entraîner deux ré-
seaux neuronaux (NN). Le premier réseau neuronal a la capacité d’assimiler une large gamme
de paramètres d’entrée (y compris des facteurs tels que le nombre d’utilisateurs, la puissance
reçue, la distance entre les stations de base ...) pour prédire les stations de base non critiques
qui peuvent passer en mode veille. Le deuxième réseau est dédié à la prévision des associa-
tions utilisateur-station de base en fonction des sorties d’état des stations de base générées par
le premier réseau neuronal. En intégrant ces prédictions, une solution globale est présentée pour
optimiser l’efficacité énergétique dans les réseaux sans fil. Dans cette approche, diverses implé-
mentations potentiellement utiles de réseaux neuronaux artificiels (ANN) sont testées, avec deux
principaux paradigmes étant les réseaux neuronaux récurrents (RNN) tels que LSTM ou GRU, et
les architectures de DML basées sur le modèle fusionné proposé. L’objectif est d’identifier le mo-
dèle optimal capable d’améliorer l’efficacité énergétique tout en préservant la qualité de service.

Commencer par une méthode de brute force (BF), également appelée algorithmes de re-
cherche exhaustive (RE), dans la résolution de problèmes offre une stratégie fondamentale qui
aide à comprendre les complexités d’un problème. En explorant méticuleusement toutes les confi-
gurations possibles, elle établit une référence claire pour évaluer les gains d’efficacité réalisables
grâce aux algorithmes optimisés ultérieurs. Cette méthode initiale sert de base pratique, démon-
trant la faisabilité du processus de commutation et mettant potentiellement en lumière des com-
plexités inattendues. De plus, elle facilite une compréhension claire du comportement du réseau
et assure une compréhension solide des subtilités du problème avant de se lancer dans des opti-
misations complexes.

Initier le processus avec une approche de brute force dans le contexte de l’activation et de
la désactivation des stations de base, tout en incorporant une fonction d’utilité pour équilibrer la
consommation d’énergie et les gains de débit pour garantir la qualité de service (QoS), constitue
une étape fondamentale vers une gestion efficace du réseau. En analysant de manière exhaustive
différentes combinaisons d’états de stations de base, la stratégie de brute force établit une réfé-
rence de performance qui aide à évaluer l’efficacité et offre la meilleure solution possible pour la
commutation de cellules. L’introduction de la fonction d’utilité, qui suggère l’équilibre délicat entre
l’efficacité énergétique et la performance du réseau, contribue au processus de prise de décision.
Cette étape initiale valide non seulement la capacité de gérer les stations de base pour une QoS
optimale, mais offre également une véritable compréhension de l’interaction entre les considéra-
tions énergétiques et le débit de données.

À cet égard, l’objectif est de trouver une partition qui regroupe les stations de base les plus
utilisées et minimise la somme de la consommation d’énergie tout en maintenant la qualité de
service. Notre métrique proposée (5.7) tient compte à la fois du coût énergétique (conventionnel
ou écologique) et de la qualité de service (QoS), où le compromis entre l’expérience perçue par
l’utilisateur (c’est-à-dire, la performance du réseau) et les coûts opérationnels (OPEX) encourus,
ajustés en fonction du trafic utilisateur.

Cependant, avec un nombre croissant de stations de base, la complexité computationnelle aug-
mente de manière exponentielle, rendant l’approche de brute force intensément computationnelle
et impraticable. Dans ce contexte, les algorithmes d’apprentissage automatique interviennent en
exploitant des données historiques et des modèles pour prédire des configurations optimales de
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stations de base. Ces algorithmes s’adaptent aux conditions évolutives du réseau, optimisant la
QoS tout en minimisant la consommation d’énergie. Grâce à l’analyse prédictive, ils peuvent pré-
voir les motifs de trafic et les besoins énergétiques, améliorant ainsi la QoS tout en tenant compte
des contraintes énergétiques. Ainsi, tandis qu’une approche de brute force clarifie les dynamiques
fondamentales, les algorithmes d’apprentissage automatique offrent une extensibilité et une adap-
tabilité pour gérer la nature dynamique et intensive en données.

Dans notre cas, avant d’adopter notre approche basée sur l’apprentissage automatique pour
la prédiction, nous avons initialement utilisé la méthode de la ’brute force’ comme référence, en
tenant compte de sa nature exhaustive et de sa capacité à fournir des solutions parfaites. La mé-
thode de la ’brute force’ est ainsi perçue comme un repère pratique, représentant la limite de la
précision de la prédiction dans un contexte où une solution exhaustive est connue.

Toutefois, pour établir une connexion entre notre approche d’apprentissage profond et les fon-
dements théoriques de l’estimation statistique, nous introduisons le concept de la borne inférieure
de Cramér-Rao (CRLB). La CRLB représente une limite théorique sur la précision atteignable
par tout estimateur non biaisé dans le domaine de l’estimation statistique. Alors que la méthode
de ’brute force’ agit en tant que repère pratique, la CRLB offre une perspective théorique sur la
meilleure précision théoriquement possible dans un cadre statistique.

Ainsi, en considérant la CRLB comme un lien conceptuel, notre choix d’utiliser la méthode de
la ’brute force’ en tant que repère pratique pour évaluer les performances de notre approche d’ap-
prentissage profond est justifié. Lorsque notre modèle de prédiction atteint une précision parfaite,
il se rapproche des performances de la méthode de la ’brute force’, renforçant la validité de notre
approche par rapport aux limites théoriques définies par la CRLB.

La synergie entre l’analyse initiale par BF et l’apprentissage automatique ultérieur confère une
prise de décision efficace et adaptable dans des environnements de télécommunications com-
plexes et dynamiques.

Malgré l’offre d’une solution convergente optimale, l’approche de l’algorithme BF nécessite des
ressources computationnelles et du temps excessifs. Par conséquent, nous croyons que l’utilisa-
tion de l’apprentissage profond (DL) représente une excellente résolution. Cela s’explique par le
fait qu’un réseau neuronal compétent, formé sur des données générées par l’algorithme précé-
dent, peut produire des résultats comparables. Néanmoins, on s’attend à ce que ce processus soit
moins gourmand en ressources et plus rapide en termes de calcul.

Entreprendre une initiative pionnière visant à améliorer l’efficacité énergétique des réseaux
sans fil, notre recherche s’efforce d’utiliser des techniques d’apprentissage profond pour entraîner
une paire de réseaux neuronaux.

Le premier réseau a la capacité d’incorporer une large gamme de paramètres d’entrée (y com-
pris des facteurs tels que le nombre d’utilisateurs, la puissance reçue, la distance par rapport
à la station de base, les stations de base voisines, la charge des dispositifs, la localisation de
l’émetteur, etc.) pour prédire les stations de base non critiques et générer par la suite des sorties
d’état des stations de base. Cet algorithme fournit des évaluations binaires pour chaque station de
base individuelle, catégorisant ainsi leur état opérationnel comme étant soit ’ACTIF’ soit ’INACTIF’.
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Le deuxième réseau utilise la sortie du premier réseau en tant que paramètre d’entrée pour
fournir les associations d’utilisateurs aux stations de base, offrant ainsi une résolution complète
pour améliorer l’efficacité énergétique au sein des réseaux HetNet. Cette approche harmonieuse
produit une solution globale qui contribue considérablement à l’amplification de l’efficacité énergé-
tique, aboutissant finalement à une réduction significative de la consommation d’énergie.

La représentation schématique de notre modèle d’apprentissage profond (DL) proposé est
illustrée dans la figure.3 suivante.

FIGURE 3 : Conception du Système

Pour faciliter l’entraînement de notre modèle, nous avons initialement généré un ensemble de
données qui intégrait divers paramètres, tels que le nombre d’utilisateurs, la puissance reçue, la
distance par rapport à la station de base, la station de base voisine, la puissance de l’émetteur,
etc. Cet ensemble de données a été créé en exécutant plusieurs fois du code MATLAB pour la
génération des paramètres. Par la suite, le réseau, tel que décrit précédemment, a été soumis à
un entraînement en utilisant cet ensemble de données. Ces paramètres générés ont ensuite été
catégorisés en combinaisons optimales de stations de base en utilisant différents modèles d’ap-
prentissage profond.

En ce qui concerne la configuration de notre approche d’apprentissage profond, nos tests ini-
tiaux ont impliqué la mise en place de réseaux neuronaux selon trois modèles différents (LSTM,
GRU et le modèle fusionné configuré). L’objectif était d’identifier le modèle optimal capable d’amé-
liorer l’efficacité énergétique tout en préservant la qualité du service.

Le choix des architectures de réseau neuronal récurrent (RNN) telles que le Long Short-Term
Memory (LSTM) et le Gated Recurrent Unit (GRU) pour prédire les stations hors service et amélio-
rer l’efficacité énergétique dans les réseaux sans fil est délibéré et les distingue d’autres modèles
d’apprentissage automatique. Conçus spécifiquement pour atténuer le problème du gradient qui
s’annule, les LSTMs et les GRUs excellent dans le traitement de tâches séquentielles telles que la
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prédiction de séries temporelles. Les LSTMs exploitent une structure de cellule mémoire complexe
pour capturer des dépendances prolongées, tandis que les GRUs utilisent une architecture plus
simple avec des mécanismes de portes, ce qui peut conduire à un entraînement plus rapide et à
de meilleures performances sur des tâches avec des dépendances plus courtes. La préférence
pour les LSTMs et les GRUs par rapport à d’autres modèles d’apprentissage automatique découle
de leur capacité innée à modéliser efficacement les dépendances temporelles, un facteur critique
pour aborder la nature dynamique des données des réseaux sans fil. Ce choix délibéré souligne
la décision stratégique d’utiliser des architectures RNN adaptées aux données séquentielles, les
distinguant comme des solutions plus appropriées pour les complexités liées à la prédiction des
stations hors service et à l’optimisation de l’efficacité énergétique dans les réseaux sans fil.

Pour améliorer les performances de notre système, un modèle multimodal d’apprentissage
profond (DML) a été construit en s’inspirant de la méthodologie présentée dans l’article "Deep
Multimodal Learning : Merging Sensory Data for Massive MIMO Channel Prediction" de Yang et
al.(188). Bien que nous ayons adopté sélectivement une partie de leur modèle, nous avons adopté
une approche distincte en formulant une architecture nouvelle. Ce modèle intègre une série de
modèles LSTM avec des couches denses, incorporant des fonctions d’activation LeakyReLU, pour
prédire efficacement l’état des stations de base. Notamment, notre approche exploite la puissance
reçue ou bien SINR comme paramètre d’entrée pour les séquences LSTM, tandis que l’associa-
tion d’utilisateurs sert d’entrée pour la couche Dense avec LeakyReLU. Cette fusion de flux de
données divers permet à notre modèle de capturer des motifs complexes et de fournir des prédic-
tions précises dans des scénarios réels complexes.

Composé de deux réseaux, le modèle fusionné intègre plusieurs couches LSTM (Long Short-
Term Memory) dans le premier réseau, conçu pour analyser des données de séries temporelles et
capturer des motifs temporels. Le deuxième réseau comprend plusieurs couches denses, chacune
utilisant la fonction LeakyReLU, à l’exception de la couche de sortie, qui sert de fonction d’activa-
tion. Le réseau concaténé combine les sorties des deux modèles, qui comprennent à leur tour des
couches denses avec la fonction LeakyReLU, intégrant efficacement ces modalités au niveau des
décisions.

La couche dense, également appelée couche entièrement connectée, représente un type fon-
damental de couche de réseau neuronal. Chaque neurone de cette couche est connecté à chaque
neurone des couches précédentes et suivantes. Cette couche se distingue par son utilisation de
poids et de biais pour apprendre des motifs complexes dans les données lors du processus d’en-
traînement. Elle est couramment utilisée dans divers modèles d’apprentissage profond pour des
tâches telles que la classification, la régression et l’apprentissage des caractéristiques.
Les couches LSTM sont spécifiquement conçues pour traiter des données de séries temporelles et
capturer des dépendances temporelles, tandis que les couches denses avec des fonctions d’ac-
tivation LeakyReLU sont des couches plus polyvalentes utilisées pour l’extraction de caractéris-
tiques et la cartographie non linéaire dans les réseaux neuronaux.

La fonction d’activation LeakyReLU est une variation de l’unité linéaire rectifiée (ReLU) cou-
ramment intégrée dans les réseaux neuronaux. Elle fonctionne en appliquant une transformation
non linéaire aux sorties des couches du réseau. Mathématiquement, la fonction LeakyReLU est
définie comme FLR(x) = max[x, 0.2x], où x représente l’entrée de la fonction. En introduisant une
pente légère (0.2) pour les valeurs négatives de x, elle permet à certaines informations de circuler
même lorsque l’entrée est négative. Cela évite l’apparition du phénomène de "ReLU morte", où
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les neurones peuvent devenir inactifs, entravant l’apprentissage. L’implémentation de la fonction
d’activation LeakyReLU, au lieu de la ReLU standard, vise à améliorer les performances et les
capacités d’apprentissage du réseau neuronal.

En résumé, le modèle fusionné utilisant des couches LSTM et Dense, avec des couches
denses suivies de la fonction LeakyReLU, sera utilisé pour prédire la combinaison des stations
de base activées et désactivées en utilisant la puissance reçue et les associations d’utilisateurs
en tant qu’entrées. Le modèle sera entraîné sur un ensemble de données comprenant la puis-
sance reçue ou bien SINR et les associations d’utilisateurs en tant que caractéristiques d’entrée
et les combinaisons de stations de base activées et désactivées en tant qu’étiquettes cibles. Les
couches LSTM du modèle peuvent capturer les dépendances temporelles dans les données d’en-
trée, tandis que les couches Dense avec des fonctions d’activation LeakyReLU peuvent introduire
une non-linéarité et apprendre des motifs complexes dans les données. En entraînant le modèle
sur un ensemble de données suffisamment grand et diversifié, il peut apprendre à prédire les com-
binaisons de stations de base activées et désactivées en fonction des entrées fournies.

FIGURE 4 : Structure du simulateur
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Pour évaluer les performances de nos algorithmes proposés, une plateforme de simulation a
été développée, définissant la structure de notre travail. Nous avons opté pour un simulateur basé
sur LTE, car notre intérêt se concentre principalement sur le signal de liaison descendante, et la
5G utilise le même signal que LTE. Comme notre réseau était hétérogène, nous avons déployé des
stations de base micro et macro pour améliorer l’expérience des utilisateurs en termes de qualité
de service. Ainsi, notre simulateur est conçu pour prendre en compte les deux environnements,
à savoir les cellules macro et picocellulaires. En vue de la mise en œuvre et du déploiement de
notre réseau, nous procéderons à une simulation à deux niveaux de notre HetNet local : une simu-
lation de niveau liaison (LLS), qui concernait le canal radio entre l’antenne émettrice et l’antenne
réceptrice où nous avons généré un modèle de canal couvrant la propagation des macrocellules
et microcellules urbaines, ainsi que des simulations de niveau système (SLS) qui représentaient
la fonctionnalité entre les stations de base et les utilisateurs finaux (BS et UE). À ce niveau, nous
avons décrit l’allocation des ressources et l’association des utilisateurs, nous fournissant suffisam-
ment de données (telles que le SINR et le débit) pour évaluer les performances de notre réseau.
Ainsi, notre simulateur nous a fourni des indicateurs clés de performance nécessaires à notre
approche centrée sur l’efficacité énergétique. La figure.4 illustre graphiquement la séquence de
création de notre simulateur programmé. L’évaluation de la qualité du canal entre les stations de
base environnantes et les utilisateurs nous guide dans la génération d’un canal à chaque TTI. (in-
tervalle de transmission).

Les résultats démontrent des niveaux d’efficacité énergétique comparables entre l’algorithme
de brute force et l’approche d’apprentissage multimodal profond. Cependant, cette dernière réduit
significativement les coûts computationnels, atteignant l’objectif principal de la recherche d’adapter
les résultats d’optimisation aux environnements réels. Cette réduction des coûts computationnels
est attribuée à l’efficacité de l’apprentissage multimodal profond dans la prédiction des stations de
base non critiques et des associations utilisateur-station. Les avantages et les inconvénients de
chaque approche sont minutieusement analysés, fournissant des perspectives sur leur applicabi-
lité dans différents scénarios de réseau. Les implications pratiques des résultats de la recherche
offrent des perspectives sur la manière dont ils peuvent être appliqués dans des environnements
réseau réels.

Conclusion

Les exigences croissantes en matière de trafic dans les réseaux cellulaires ont suscité la né-
cessité urgente de réévaluer l’impact environnemental de ces demandes en pleine expansion. La
montée exponentielle de la consommation de données pose non seulement une menace à l’effica-
cité opérationnelle des réseaux de communication sans fil, mais contribue également de manière
significative à l’émission de gaz à effet de serre, aggravant les défis environnementaux auxquels
nous sommes confrontés. C’est dans ce contexte que l’impératif d’améliorer l’efficacité énergé-
tique au sein de ces réseaux devient non seulement une nécessité financière, mais également
une étape cruciale pour atténuer les conséquences écologiques de la connectivité moderne.

Du point de vue d’un opérateur, la quête de réduction de la consommation d’énergie dans les
réseaux sans fil n’est pas uniquement motivée par des préoccupations environnementales. En
effet, une réduction de la consommation d’énergie se traduit directement par des dépenses opéra-
tionnelles (OPEX) plus faibles. Cette double impérative de réduire à la fois les coûts financiers et
environnementaux est un moteur clé pour les fournisseurs de services visant à créer des réseaux
durables et économiques. Le programme Green Radio émerge comme un phare d’espoir dans ce
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paysage, aspirant à réaliser une réduction remarquable de cent fois de la consommation d’énergie
par rapport aux conceptions actuelles des réseaux de communication sans fil.

Dans la poursuite de l’amélioration de l’efficacité énergétique, notre recherche marque une
étape significative. En introduisant le concept de Deep Multimodal Learning (DML) dans le do-
maine des communications sans fil, nous avons atteint des niveaux d’efficacité comparables à
l’algorithme bien établi de la Brute Force (BF). Ce qui distingue notre approche, cependant, est la
réduction substantielle des coûts computationnels, tant en termes de temps que de ressources.
Cette innovation ouvre de nouvelles perspectives pour trouver l’équilibre délicat entre l’efficacité
opérationnelle, la responsabilité environnementale et la prudence financière dans le paysage dy-
namique des réseaux de communication sans fil.

Les résultats des simulations ont prouvé la puissance des architectures basées sur le DML,
démontrant leur supériorité par rapport aux approches conventionnelles. La capacité à exploiter
des données multimodales a révélé de nouvelles dimensions dans l’optimisation des réseaux de
communication sans fil. Notamment, notre modèle proposé excelle dans le gain de temps, un
facteur crucial dans notre effort pour adapter rapidement les résultats d’optimisation à des envi-
ronnements réels. L’adaptabilité du modèle permet des ajustements rapides des cellules mobiles
face aux changements dynamiques des utilisateurs, répondant à un besoin urgent dans le pay-
sage en constante évolution des communications sans fil.

En regardant vers l’avenir, nos algorithmes proposés de commutation des stations de base
(BS) off/on présentent une promesse particulière, surtout à mesure que nous anticipons des ré-
seaux de prochaine génération caractérisés par une densification extrême des BSs. Le défi de
l’efficacité énergétique prend une nouvelle couche de complexité, et nos approches suggérées se
distinguent par leur flexibilité, leur adaptabilité, leur faible complexité et leur évolutivité. Importam-
ment, elles peuvent intégrer facilement des critères d’optimisation supplémentaires, tels que les
coûts d’investissement (CAPEX) et autres coûts opérationnels (OPEX), en ajustant simplement la
métrique proposée.

En conclusion, notre recherche aborde non seulement le besoin pressant de réseaux de com-
munication sans fil économes en énergie, mais jette également les bases de solutions innovantes
qui concilient les préoccupations environnementales avec les exigences croissantes des systèmes
de communication contemporains. Alors que nous naviguons dans les complexités d’un monde
connecté, la synergie entre la rentabilité, la durabilité écologique et l’innovation technologique de-
vient la boussole guidant l’évolution des communications sans fil vers un avenir plus durable.

xxxi





1 Challenges of 5G Evolution to Future 6G

The evolution of wireless networks has been a fascinating adventure, and each new generation
of network has brought significant improvements. Think back to the era of 1G, which established
the groundwork for communication, using analog technology that support voice only. Then 2G ap-
peared and took a big step into the world of digital communication enabling the introduction of new
services like SMS (short message service) and roaming. In 2000, the ITU (International Telecom-
munication Union) released the International Mobile Telecommunications (IMT)-2000, providing
a unified worldwide framework for 3G technology. This framework encompassed crucial aspects
like frequency spectrum allocation and performance benchmarks. During this time, the advent of
smartphones revolutionized the accessibility of web browsing and email services. By offering in-
ternet access and voice calling capabilities, 3G changed the game and changed the way we stay
connected. As new scenarios emerged, requiring higher data usage, the necessity for innovative
technologies became evident. The arrival of 4G in 2010, under the banner of IMT-Advanced, took
mobile internet to new heights by introducing revolutionary ideas like adopting an "all IP" structure,
enabling seamless video streaming and delivering notably faster mobile broadband speeds.
Currently, the spotlight is on 5G which is characterized by highest speed and responsiveness. It
offers quicker connectivity, enhanced reliability, and greater connection density, coupled with redu-
ced latency, paving the way for potentials such as smart devices and autonomous vehicles. Yet,
the journey doesn’t end here. The horizon of 6G is looming, bringing with it the promise of even
more astounding speeds and nearly instant online activities. Beyond this, the convergence of 6G
with artificial intelligence (AI) is anticipated, a fusion that could revolutionize industries and redefine
how we interact with technology in our daily lives. This prospect is incredibly exciting, as it holds
the potential to completely reshape our relationship with connectivity.

1.1 5G and 6G Systems Usage Scenarios

Over the last 50 years, we’ve witnessed a rapid evolution in wireless technologies, and they’re
becoming a bigger part of our daily lives (11). It’s expected that their importance will only continue
to grow, leading to new types of services and interconnected systems. As we’re in the midst of
rolling out the 5th Generation (5G) of mobile networks, researchers around the world have also
begun looking into what the potential 6th Generation (6G) networks could offer.

The 5G revolution is characterized by its distinctiveness. It’s not just about a speed boost for
our phones, there’s a whole new way of looking at things. One big focus now is on Energy Effi-
ciency that’s become a major factor in how we design the next generation of cell networks. Unlike
the previous generations of networks, 5G networks face the challenge of concurrently delivering
a multitude of services, each with diverse requirements for service quality. Currently, there is a
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FIGURE 1.1 : Usage scenarios and general aspects of IMT-2030

widely accepted framework that classifies these services, as established by the International Te-
lecommunication Union (ITU) and the International Mobile Telecommunications-2020 (IMT-2020).
These services are classified into three distinct categories (148) :

Enhanced mobile broadband (eMBB) : serves people’s needs for multimedia content, ser-
vices, and data access. As demand rises, enhanced Mobile Broadband emerges with new ap-
plications and better performance. This involves different situations like wide-area coverage and
hotspots, each with their own data capacity and user experience requirements.

Ultra-reliable low latency communication (URLLC) : This usage scenario will be highly si-
gnificant in future applications that require both very high responsiveness and extremely reliable
transmission.For instance, it might involve things like wirelessly controlling industrial manufacturing,
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performing medical surgeries remotely, handling the distribution of smart grids, ensuring safety in
transportation, and more.

Massive machine-type communications (mMTC) : Facilitate extremely rapid connections ca-
pable of handling a significant number of connected devices, often seen in Internet of Things (IoT)
scenarios.The automation of industrial processes through massive machine-type communications
are examples of use cases that will be possible in future 5G systems. This application scenario
requires a high quality of service in terms of energy efficiency, reliable connectivity, and strong
reliability.

It’s clear that the technical requirements for 6G applications can’t be fulfilled by the existing 5G
usage scenarios. So, researchers have started looking into how 6G could work by broadening the
scope of the current usage scenarios. They’re thinking about three new scenarios that could meet
the needs of 6G use cases. These scenarios involve aspects that are common to both 5G and 6G,
resulting in a comprehensive and holistic framework.

IMT-2030 (6G) encompasses six main usage scenarios, shown as a hexagon in Figure 1.1,
extending from the IMT-2020 triangle (148). Surrounding this hexagon, you’ll find a circle containing
four overarching aspects : sustainability, ubiquitous intelligence, security/privacy/resilience, and
connecting the unconnected, These serve as crucial design principles that are relevant to all usage
scenarios.

1.2 Different Requirements of 6G Versus 5G

Figure 1.2 presents a comprehensive view of IMT-2030’s capabilities, including nine enhanced
aspects (such as peak data rate, spectrum efficiency, user experienced data rate, area traffic ca-
pacity, mobility, connection density, reliability, latency, and privacy/resilience/security) and six new
dimensions (like coverage, sensing-related capabilities, positioning, AI-related capabilities, inter-
operability, and sustainability).

5G is on its way to widespread availability, setting the stage for the upcoming 6G. If we look at
the evolution of generations, it’s evident that internet speed and coverage gradually improve. The
primary goal of 6G is to establish global coverage.AI applications will set 6G apart from previous
generations.

When we compare it to the current capacity of 5G, 6G is expected to bring higher data rates,
improved security, and reduced latency. The projected speed for 6G is estimated to range from
1 to 10 Tbps. Its frequency will surpass that of all previous generations. Frequencies generally
increase as technology advances, and the introduction of Terahertz (THz) frequency indicates high
transmission rates. With 6G, latency is estimated to be between 10 and 100 milliseconds, while
the connectivity density is expected to be around 10 devices per square kilometer. Traffic capacity
should be around 1 Gb/s per square meter. Moreover, 6G aims to enhance certain key performance
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FIGURE 1.2 : Capabilities of IMT-2030

indicators (KPIs), pushing coverage percentage to 99%, reliability to 99.9999%, refining positioning
accuracy from meter-level to centimeter-level, and improving receiver sensitivity to better than -
130dBm (204). Spectrum and energy efficiency will see exponential improvements over 5G. One of
the most exciting aspects of 6G is its promise of delivering limitless wireless connectivity. It’s being
designed as a comprehensive communication network accommodating various systems including
communication, metering, storage, computing, control, GPS, radar, imaging, and navigation (99).
The core characteristics of 6G are summarized in Figure 1.3 (23).

The most prominent challenges that future generations of 2030s networks must confront and
lay the foundations for :
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FIGURE 1.3 : Key enhancements of 6G versus 5G.

— Connecting Intelligence :The upcoming network generation needs to combine enhanced
intelligence for more efficient data transfer while also providing the tools to use intelligent
processes on a bigger scale across society.

— Sustainability :With technology’s impact on the environment becomes more significant, the
development of future communication systems like 6G focuses on minimizing their environ-
mental footprint. 6G aims to make the most efficient use of resources across the network
and improve energy efficiency. Additionally, 6G networks are anticipated to play a pivotal
role in enhancing the sustainability of various sectors in the economy by providing the ne-
cessary digital tools to meet this objective.

— Network of Networks : 6G will have the task of accommodating various communication
and computing resources that collaborate and link within a worldwide digital ecosystem.
This ecosystem must bring together different scales, operating smoothly as a network of
intelligent networks.Despite its complexity, this setup should make it easy and affordable
to bring this technology to everyone, while providing energy and sustainability across all
sectors of society.

— Global Service Coverage : As 6G networks combine different types of network technolo-
gies into a network of networks, they also have the task of ensuring worldwide coverage.
The upcoming network generation must offer effective and reasonably priced digital access
to connect individuals in remote or under-served areas. Furthermore, they’re intended to
support businesses and transportation by offering coverage over vast geographical areas.
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— Extreme Experience :6G is predicted to bring several improvements, including faster speeds,
higher capacity, shorter delays, and more accurate location and sensing services, all of
which will outperform the capabilities of 5G networks.

— Trustworthiness : Given the growing significance of digital ecosystems in our daily lives,
it’s crucial for 6G networks to be robust and secure infrastructures. These networks must
ensure the confidentiality and privacy of data communications. Establishing a trustworthy
network is vital for enabling secure services within the democratic and sovereign societies.

1.3 AI and Machine Learning in the Optimization of 5G and 6G

To tackle the challenges that the next generation networks presents, we recognize the fun-
damental role of technologies like Artificial Intelligence (AI) and Machine Learning (ML). These
technologies are expected to make a significant impact. While certain AI components were al-
ready in use in parts of the 5G network, we anticipate their widespread adoption and integration
into the 6G networks. AI capabilities will gradually become an integral part of the entire 6G system,
which represents a significant advancement. In particular, while AI-based communication design
is expected to improve network performance, including improving data transmission efficiency, 6G
networks are also expected to actively support and improve reliable AI/ML technologies on a broa-
der level. This development will be advantageous for society, as it will provide interconnected,
sustainable, and trustworthy intelligence. Basically, AI-driven communication will enhance network
performance, and the 6G network itself will play a crucial role in making AI technologies more
accessible and beneficial for everyone.

Artificial intelligence : AI, the technological trend of today, provides several beneficial features
for 6G development. It’s important to highlight that many researchers and industries have already
embarked on the journey towards the next generation network, engaging in discussions about the
technologies that will pave the way for 6G following the deployment of 5G. The role of AI in shaping
the structure of 6G networks Holds great significance owing to its intelligent applications covering
various domains like architecture, computing, storage, and more. The incorporation of AI into the
6G network involves the application of intelligent analysis techniques. An exemplary approach is
descriptive analysis, which enhances our comprehension of historical data and network operations.
Predictive analytic leverages data collected to make informed future predictions, while diagnostic
analytic assumes a critical role in enhancing network security and enabling autonomous detection.
Prescriptive analytic takes these predictions and provides multiple actionable insights(149). Mo-
reover, AI facilitates the concept of closed-loop optimization within wireless 6G networks. In this
context, user actions are guided by feedback from their devices. By maintaining end-to-end opti-
mization at the system level, AI further elevates the efficiency of wireless communication systems.
This intelligent layer introduces an array of possibilities, including self-optimization, self-learning,
and comprehensive data collection (105). These examples provide just a glimpse of the exten-
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sive applications of AI technologies and the transformative innovations they hold for shaping the
structure of 6G networks.

Machine Learning : ML, in the context of self-learning and decision-making, stands out as a
technology of utmost importance. This AI-driven technology functions as a computational system
that builds mathematical models by discerning system behaviors and characteristics. This enables
machines to acquire knowledge without the need for explicit programming. ML algorithms draw
upon data collected from diverse sources, using this data to refine algorithms across different
levels, encompassing both the physical layer and higher layers (9). In the perspective of wireless
communication, energy efficiency can sometimes be a concern. ML provides a solution by allowing
devices to learn and enhance energy efficiency through adaptive decision-making and predictive
capabilities. This capability enables the device to improve its energy-saving measures by learning
from its decision-making processes and predictive functions.Deep learning, an application based
on the artificial neural network method, stands as a powerful tool for the physical layer of 6G. It
excels in swiftly resolving computational challenges with access to large information resources.
Its rapid iterative operations enable it to tackle maximization problems, minimize computational
delays, enhance power efficiency, and offer various other advantages (169).

The synergy between ML (Machine Learning) technology and AI (Artificial Intelligence) will
be the key to 6G technology. Building a self aware and adaptive communication network using
machine learning is a fundamental aspect of shaping the 6G network. This implementation serves
as an adaptable and responsive security layer within the network structure, contributing significantly
to its flexibility and dynamism. Furthermore, ML will also enable energy management of mobile
networks, leading to notable enhancements in power efficiency, operational efficiency, network
configuration, and overall network performance. In essence, ML will be a driving force behind the
optimization and functionality of 6G networks.

Research and development in the field of AI is firmly established within 3GPP, and it is anti-
cipated that studies and specifications in Release 18 will drive standards towards incorporating
processes that fully leverage the predictive capabilities of data.

The study TR 37.817 on improving data collection for NR (New Radio) and ENDC (E-UTRAN
New Radio – Dual Connectivity), with a specific emphasis on three primary AI/ML use cases :

1. Network Energy Saving : This involves activities such as traffic offloading, coverage modifi-
cation, and cell deactivation to enhance energy efficiency.

2. Load Balancing : The objective is to effectively distribute the network load among cells or
specific areas in a multi-frequency/multi-RAT deployment, thereby improving overall network
performance through load predictions.

3. Mobility Optimization : This focuses on maintaining satisfactory network performance during
mobility events while selecting optimal mobility targets based on predictions of how User
Equipments (UEs) may be served.
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1.4 Solutions to meet the 5G Expectations and beyoud

To achieve goals such as high data rates, energy consumption reduction, low latency, etc.,
a combination of various technologies will be necessary. In this context, three paradigms have
emerged :

1. Massive MIMO : Enhance multiplexing gain and spectral efficiency by implementing an ar-
ray of antennas at the base station’s side. The MIMO technology has attracted a lot of atten-
tion in research over the last decade. It was first incorporated into the 3G standard and later
into the 4G standard, introducing concepts like multi-user MIMO (MU-MIMO) for single-cell
scenarios, and CoMP (Coordinated MultiPoint transmission) for multi-cell scenarios (103).
The purpose of this technology is to enhance the benefits of conventional MIMO systems. It
refers to a scenario where specific technological components enable the cost-effective de-
ployment of cellular systems utilizing hundreds of antennas at base stations. This approach
is used to boost channel capacity and provide substantial gains in multiplexing and diver-
sity for both uplink and downlink directions. These performances will largely depend on the
number of antennas at the base station relative to the number of users.

2. Spectrum sharing : Transforms the way we allocate and utilize the radio frequency spec-
trum, aiming to maximize the efficiency of the limited radio frequency spectrum. It facili-
tates the coexistence of diverse wireless systems and technologies within shared frequency
bands, which is particularly fundamental given the escalating demand for high-speed data
and seamless connectivity. This approach encompasses a fusion of regulatory guidelines,
advanced technologies, and operational strategies meticulously designed to guarantee the
equitable and efficient utilization of available spectrum resources. Through dynamic fre-
quency allocation, the implementation of interference mitigation methods, and the coordi-
nation of spectrum access, spectrum sharing promotes the overall effectiveness of spec-
trum utilization, while minimizing the risks of interference. This strategy not only enhances
network capacity but also opens doors for novel services and applications, all the while
adhering to regulatory guidelines that ensure fair and secure spectrum sharing practices. It
helps to increase capacity by utilizing underutilized and unlicensed frequency bands, such
as millimeter-wave (mmWave) and unlicensed Long Term Evolution (LTE-U) spectrum.

3. Ultra Dense Networks :Increase Spectral Efficiency (SE) by minimizing the distance bet-
ween the transmitter and receiver while also optimizing frequency reuse. The promising
approach to bring this concept into reality is by leveraging Heterogeneous Networks (Het-
Nets) architecture. In HetNets, base stations (BSs) with varying transmission power levels
and technologies coexist harmoniously, all with the goal of increasing network capacity. In
such a deployment scenario, the traditional macro BS is enhanced by the integration of
multiple overlapping tiers of smaller cells, thereby significantly extending the capacity of the
system.
We mainly classify three types of Small Cells based on their transmission power and cove-
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rage area :
Femto-cells : These cell types are designed with a maximum emission power of 24dBm to
cover a maximum area of 100 meters. Femto-cells are primarily used to ensure coverage
for a small number of users within residential environments.
Pico-cells : In this type of cell, the transmission power varies between 24 and 30dBm, and
its coverage radius ranges from 200 to 300 meters. Pico-cells can be used to enhance co-
verage both indoors and outdoors in locations such as hotels, businesses, and more.
Micro-cells :Within this cell category, it’s possible to achieve a slightly larger coverage area,
extending up to a radius of two kilometers with a maximum transmission power of 40dBm.
Like the previous cell types, micro-cells can also be used to ensure indoor and/or outdoor
coverage with the potential for up to 2000 simultaneous users.
Table1.1 provides a summary of the various cell types based on their characteristics used
in radio communication systems.

TABLEAU 1.1 : Characteristics of the different cell types (10)

Cell type Power (W) Coverage radius (km) Number of users Area

Femtocell 0,001 à 0,25 0,01 à 0,1 1 à 30 Inside

Picocell 0,25 à 1 0,1 à 0, 2 30 à 100 Inside/Outside

Microcell 1 à 10 0,2 à 2 100 à 2000 Inside/Outside

Macrocell 10 à > 50 8 à 30 >2000 Outside

Standards organizations have reached a consensus that Ultra-Dense Networks (UDN)(97)
hold great promise in addressing the ever-growing demand of data traffic. UDN presents the
opportunity to provide widespread coverage with strong capacity by making efficient use of
available spectrum resources. Additionally, the integration of Small Cells with user devices
will significantly reduce latency to less than 1ms and improve energy efficiency due to the
shorter wave propagation distances(120). However, the massive deployment of these Small
Cells does bring some technical challenges. Firstly, there’s the issue of intra-cell interfe-
rence, and secondly, the proliferation of these small cells could result in increased energy
consumption for the network.

Experts have pointed out that such systems tend to be energy-intensive due to their substantial
capacity demands. Even though new innovative design approaches like Cloud-RAN (CRAN)(178),
Software Defined Networks (SDNs), Network Function Virtualization (NFV)(191), and Mobile Edge
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TABLEAU 1.2 : Contributions to Energy Efficiency : A Comparative Overview of CRAN, SDN, NFV, and MEC
Technologies

Term Definition Energy Efficiency
Contribution

Cloud-RAN
(CRAN)

The Cloud-RAN (C-RAN) paradigm is recognized
for its centralized processing, energy efficiency,
real-time computing, and improved spectral utiliza-
tion. It comprises the Baseband Unit (BBU), Re-
mote Radio Head (RRH), and Optical Transport
Network (OTN), enabling base-station functionali-
ties, radiofrequency signaling, and data transmis-
sion to the cloud network. Strategically deployed
RRHs under the C-RAN architecture enhance sca-
lability and network capacity

CRAN decreases
energy consumption
by consolidating re-
sources and minimizing
the necessity for multiple
distributed base station
sites, ultimately leading
to more centralized and
energy-efficient opera-
tions.

Software
Defined
Networks
(SDNs)

SDN stands as a pivotal component, facilitating
management capabilities for large-scale, high-
speed networks by splitting the data plane and
control plane. Within the realm of 5G networks,
SDN orchestrates and governs applications and
services comprehensively across the network, re-
sulting in highly efficient network management.

SDN allows dynamic
network administration,
enabling the efficient
allocation of resources,
thereby reducing energy
consumption through
the minimization of idle
resources.

Network
Function
Virtualiza-
tion (NFV)

NFV substitutes dedicated network hardware with
software-based virtual network functions (VNFs)
operating on standardized servers. This transition
boosts network flexibility and scalability, resulting
in savings of both resources and energy.

NFV enhances energy
efficiency by decreasing
the reliance on energy-
intensive hardware
appliances and optimi-
zing resource utilization
through dynamic sca-
ling, resulting in more
efficient operations.

Mobile Edge
Compu-
ting(MEC)

MEC also strives to enhance the Radio Access
Network (RAN). While CRAN emphasizes centra-
lization and cloud services, MEC takes a different
approach, aiming for decentralization by relocating
computation, processing, and storage closer to the
end user. This approach effectively reduces la-
tency and relieves network congestion in the back-
haul network. Initially proposed by ETSI (Euro-
pean Telecommunications Standards Institute) to
address network congestion problems, MEC leve-
rages a distributed computing approach.

MEC improves energy
efficiency by reducing
the need for long-
distance data transmis-
sion, thereby lowering
energy consumption
within data centers and
network infrastructure.
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Computing(MEC)(115) offer more flexibility, control, and network efficiency(as described in table
1.2), there’s still a substantial need to reduce their energy consumption. In fact, these design
changes aren’t primarily focused on making 5G networks more energy efficient. So, counting solely
on these approaches and designs to achieve our ambitious goal isn’t sustainable and could lead
to a serious energy problem.

1.5 Preventing the Energy Crunch

With the upcoming surge in traffic for next-generation cellular systems, there is a pressing need
to expand network capacity, requiring the installation of more base stations (BSs). Hence, the proli-
feration of small cells emerges as a promising solution to fulfill the demands of 5G wireless systems
in terms of network capacity and throughput. Integrating small cells of various sizes alongside ma-
cro base stations leads to a heterogeneous network (HetNet) that offers high performance and
service quality to manage the anticipated rise in traffic. However, the increased number of network
components leads to a significant rise in energy consumption. Despite the inherent energy effi-
ciency of small cells, their widespread deployment amplifies both the energy usage of the radio
access network and its carbon footprint.

The Information and Communications Technologies (ICT) industry’s high energy consumption
results in approximately 2% to 3% of global carbon dioxide emissions, accounting for approxima-
tely 25% of all emissions (66). Consequently, to significantly reduce current global carbon dioxide
emissions in the next-generation wireless networks, the aim is for 5G wireless networks to operate
as eco-friendly networks with notably low carbon dioxide emissions. Nevertheless, the designs of
conventional cellular wireless networks have primarily prioritized large user throughput and high
capacity, with minimal consideration for power or energy efficiency.

Consequently, extensive research is being conducted to minimize BS operations and enhance
the network’s overall energy efficiency, driven by economic, operational, and environmental consi-
derations (56), (128). As a result, energy efficiency has become a crucial factor for the perfor-
mance of future 5G networks. With the prospect of millions of additional base stations and billions
of connected devices, the importance of energy-efficient system design and operation has grown
substantially. It now represents a fundamental aspect in the development of communication net-
works, marking a shift from emphasizing throughput optimization to prioritizing energy efficiency
optimization.

To tackle the imminent energy crisis, prioritizing energy efficiency has become a central focus
in the design and operation of future mobile networks. A variety of diverse and complementary ap-
proaches have been proposed to improve the energy efficiency of these networks. These methods
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include optimizing radio resource management, adapting cell configurations, introducing heteroge-
neous network deployments, and implementing cognitive radio technologies, among others.

1.6 Thesis Outline

The rest of this report is structured as follows. In Section 2, we will provide an overview of
specific BS on/off switching strategies in HetNets. Section 3 will present a detailed examination
of the power model that forms the foundation for our study. Section 4 offers an extensive explora-
tion of machine learning categories, which underpin our research. In Section 5, we will begin by
introducing the proposed metric for optimizing the BS on/off switching strategy, followed by an ex-
tensive analysis of our deep learning-based switching control model designed to enhance energy
efficiency in 5G networks. Section 6 will describe the simulator designed for our study and ana-
lyze the numerical simulation-based system-level results. Finally, in Section 7, we offer concluding
remarks and discuss future work directions.
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2 Overview of Energy-Efficiency in Cellular Networks

2.1 Introduction

Cellular networks have had a profound impact on our daily lives, and the fifth-generation (5G)
of radio technology is set to bring even more transformative changes. It promises to enable unpre-
cedented levels of automation and innovation in various industries due to its enhanced capacity,
extensive connectivity, and incredibly reliable low-latency communications. 5G is a complex net-
work that supports a wide range of services, thanks to several key technologies. These include
virtualization, which allows for more flexible and efficient network management, softwarization,
which makes network functions more adaptable, new Radio Access Networks (RANs) for impro-
ved connectivity, and innovative backhaul strategies for better data transport. These technologies
work together to provide low latency, high-speed data transfer, and reliable connections. However,
as we strive for greater network capacity, broader coverage, and increased data traffic, we’re also
facing the challenge of rising energy consumption. This isn’t sustainable, both from an environ-
mental and a business perspective. Recognizing this, there’s a global effort to make our networks
more energy-efficient, driven by economic and environmental concerns.

Projections indicate that the number of connected devices could potentially reach 100 billion
by 2030(152), and anticipate a significant surge in data traffic, estimated to grow up to 1,000
times more than 4G did in 2018(84). This substantial increase in the usage of smartphones, wea-
rables, and IoT devices is presenting a notable challenge in terms of delivering fast data speeds,
extensive coverage, and minimal latency. Furthermore, with each new generation of wireless tech-
nology, we have observed a rise in energy consumption due to the addition of hardware to support
emerging applications and evolving requirements. The trend suggests that 5G will continue this
pattern, significantly increasing energy consumption compared to its predecessor, 4G. The need
to accommodate high data rates and a multitude of connected devices is making these networks
more energy-intensive. In fact, it is estimated that 5G’s energy consumption could be four times
that of 4G(77). Consequently, the pursuit of energy efficiency emerges as a critical concern in the
context of 5G, distinguishing it from earlier generations. To illustrate the scale and significance of
the 5G enabling impact, it’s worth highlighting that the International Telecommunication Union (ITU)
SMART 2020 report (89) estimated that mobile communications alone contributed approximately
2,135 million tons of CO2e emissions in 2018. Furthermore, predictions from (87) indicate that this
impact is expected to grow substantially during the 5G era. By the end of 2020, it was projected
that the cumulative enabling effect across the entire Information and Communication Technology
(ICT) sector would amount to approximately 15% of the world’s total greenhouse gas emissions.

In light of this issue, the Third Generation Partnership Project (3GPP) has introduced the New
Radio (NR) specification, which equips the next generation of networks with tools to significantly
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reduce energy usage and greenhouse gas emissions. This aligns with the broader sustainability
goals of the Information and Communication Technology (ICT) sector, contributing to a more envi-
ronmentally responsible and efficient future.

FIGURE 2.1 : 5G technologies designed to boost energy efficiency.

As well, in the development of 5G networks, several advanced technologies are being integra-
ted to support a wide range of services. These technologies encompass Software-Defined Net-
working (SDN), Ultra-Dense Networks (UDN), Network Function Virtualization (NFV), mobile edge
computing (MEC), and cloud computing. However, this integration of diverse technologies intro-
duces challenges related to energy efficiency. For instance, in the case of Ultra-Dense Networks
(UDN), while energy consumption benefits from reduced transmission power in less dense sce-
narios, the rise in computational demands leads to higher energy usage in denser environments
(Choras). This computational intensity is expected to grow steadily over time. Additionally, to meet
the increasing demand for connectivity, massive MIMO (Multiple Input, Multiple Output) technology
is employed to serve densely populated areas. However, achieving the right balance between li-
nearity and efficiency is crucial in massive MIMO systems. The performance of power amplifiers
has a direct impact on the energy efficiency of these systems. Striving for linearity in power am-
plifiers can lead to increased costs, while embracing non-linearity may have a detrimental impact
on energy efficiency. Given the high demands of future technologies, addressing these challenges
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requires the development of suitable hardware, the implementation of intelligent energy-efficient
decision-making techniques, and the formulation of innovative network designs to effectively ma-
nage energy consumption.

2.2 Techniques for Enhancing Energy Efficiency in 5G Networks

2.2.1 Algorithms and Strategies for Energy-aware Cellular Networks

FIGURE 2.2 : Framework with Stacked Layers for Energy-Efficient Strategies in Cellular Networks

As mobile cellular networks’ energy demands continue to rise, many researchers have directed
their efforts toward enhancing the energy efficiency of these systems. A significant early contri-
bution to understanding how existing cellular networks could operate with energy conservation in
mind can be found in the work of (40). In this study, the authors introduced a framework for asses-
sing the potential to save energy and maximize energy efficiency in three key areas of mobile radio
networks : components, links, and network levels. They emphasized that achieving higher energy
efficiency doesn’t rely on optimizing just one aspect or component but on optimizing all these
areas together. To improve our insight into how these diverse elements of mobile networks are
linked to the goal of reducing energy consumption, (155) introduced a model for energy-efficient
techniques. This model is structured like a stack of layers, where improvements in the lower layers
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result in more significant savings in the upper layers (as shown in Figure 2.2). These approaches
can be categorized into the following groups :

• Component baseline layer : This layer serves as the foundation for improving RAN (Ra-
dio Access Network) energy efficiency. Tasks carried out at this layer encompass adaptive power
amplification, energy-efficient hardware, and the use of adaptive radiation patterns through beam-
forming. Enhancements at this level result in reduced energy consumption of the Base Station’s
(BS) components, providing flexibility in design constraints and facilitating the operations of higher
layers. Nevertheless, focusing solely on component-level improvements is insufficient for achieving
significant energy savings due to resource under-utilization, highlighting the need to address the
upper layers.

• Environment learning and information exchange layer : In the subsequent layer, Cognitive
Radio (CR) is introduced to enhance spectral efficiency (SE) by adjusting the transmission para-
meters of radio devices according to external environmental conditions. The concept of Cognitive
Radio aims to intelligently identify unused spectrum bands and swiftly adapt to them by reconfigu-
ring transmission and reception parameters in accordance with the channel’s characteristics.

• Radio resource management (RRM) layer : This layer encompasses mechanisms like po-
wer control, Discontinuous Transmission (DTX), antenna adaptation, and radio resource allocation.
Techniques in this layer focus on regulating transmission power and optimizing the allocation of
transmission resources across time and bandwidth. Within this layer, researchers explore trade-
offs between spectrum/energy, bandwidth/power, and delay/power.

• Coverage extension layer : This layer extends to HetNets (Heterogeneous Networks) and
relay systems. In such networks, Radio Resource Management (RRM) proves highly beneficial
as it facilitates collaboration between various network tiers, leading to additional energy and cost
savings.

• CLA layer : Lastly, at the highest level of the hierarchy, the Cell-Layout Adaptation (CLA)
encompasses cell size adjustments, including techniques like cell breathing and switching-off. It’s
worth noting that this layer has the potential to yield greater energy savings compared to the lower
layers, as we will explore further.

Building upon the energy efficiency framework outlined above, there are various approaches
and techniques available for enhancing the energy efficiency of forthcoming 5G cellular networks.
Previous research (6) has categorized these approaches into five broad categories as follows :

1. Optimizing the energy efficiency of the radio transmission process

2. Hardware-based approach

3. Base station policies

4. Embracing the use of harvesting energy sources.

5. Network planning and deployment of heterogeneous networks.
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FIGURE 2.3 : Strategies for Energy Optimization in Wireless Mobile Networks

2.2.1.1 Optimizing the Energy Efficiency of the Radio Transmission Process

The first category prioritizes the optimization of the radio transmission process, encompassing
methods that target aspects at either the physical or MAC (Media Access Control) layer. Various
novel technologies, including cognitive radio transmission, Massive MIMO,channel coding, and
resource allocation , are being explored to optimize energy consumption in telecommunication
networks(75). The strategies, explored in the following, primarily focus on enhancing signal trans-
mission patterns, network coverage, and interference reduction through the optimization of radio
transmission parameters.

Beamforming : In the realm of MIMO HetNets, beamforming is an effective tool for improving
network efficiency by reducing interference (116). Interference can severely impact network energy
efficiency (EE)(142), making beamforming a key strategy to enhance EE. Beamforming relies on
RF precoding units, focusing on signal processing methods, including linear techniques like mini-
mum mean square error (MMSE) , zeroforcing (ZF), and maximum ratio combining or transmission
(MRC/MRTT), and non-linear methods like vector perturbation, and dirty paper coding ( DPC) (28).
Due to their simple implementation, linear methods are often preferred. Research in (168) explores
the use of DPC for energy-efficient designs and ZF, proposing centralized and decentralized co-
operative beamforming for multi-user MIMO and mMIMO systems. However, these studies lack
comparative analysis with other beamforming approaches. This limitation is addressed in (24),
which evaluates the energy effeciency performance of ZF,MMSE, and MRC in mMIMO systems,
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demonstrating ZF’s superiority due to their ability to reduce complexity while handling interference
suppression. While MRC is computationally efficient, it performs poorly in EE due to its inability to
handle interference and noise. In contrast, MMSE effectively deals with both but suffers from high
signaling overhead. These insights underscore the widespread adoption of ZF in energy-efficient
beamforming designs.

Effective resource allocation : is crucial for wireless network performance, particularly in
terms of energy efficiency (EE) (187). Unfair allocation can negatively impact users with weaker
channel conditions, diminishing EE. In scenarios with overlay spectrum access, insufficient band-
width allocation to small base stations (SBSs) can worsen the problem (161), with overlay and un-
derlay spectrum access concepts. Addressing this issue, "boundary allocation" groups users with
similar channel conditions to identify and compensate the worst-performing group. Furthermore,
An optimization problem(206) is presented to maximize energy efficiency within the absolute blank
subframe (ABS) scheme, with defined upper and lower bounds., ensuring a minimum quality of
service (QoS) for the worst-served users.

An alternative method for improving EE resource allocation in HetNets involves the implemen-
tation of soft frequency reuse(SFR), which reduces inter-cell interference at cell edges to improve
the user’s signal-to-interference-plus-noise ratio (SINR). SFR divides each cell into cell center and
cell edge regions, with exclusive bandwidth portions and varying transmit power levels to meet
data rate requirements. It guarantees orthogonal sub-bands for the cell edge region to avoid inter-
ference. SFR’s energy-saving potential lies in BSs reducing transmission power through optimal
power allocation and interference reduction at cell edges (207). The investigation of energy-efficient
network design through the implementation of SFR is addressed in (85). An issue with SFR is li-
mited spectrum reuse, leading to the development of "multi-layer frequency reuse" (MSFR), which
divides cells into more than two regions. This improves SINR for users in intermediate regions
while maintaining favorable conditions for edge users (69).

This study emphasizes transmission power allocation, a key factor in base station (BS) po-
wer consumption. Optimizing transmission power assigns more power to channels with high gain
and less to channels with poor reception, resulting in varying quality of service (QoS). Several
works on power allocation strategies exist under orthogonal multiple access (OMA)(161)(21) and
non-orthogonal multiple access (NOMA)(52)(62). NOMA gains attention for serving multiple users
simultaneously, and becomes notably pertinent in the context of network design prioritizing energy
efficiency. It multiplexes users based on different power levels, allowing users to be multiplexed
by power levels and mitigating inter-user interference using successive interference cancellation
(SIC).

Various approaches have been proposed to effectively utilize resources in time, frequency, and
spatial domains to achieve energy savings. Importantly, these approaches are cost-effective and
often do not necessitate hardware replacements. However, it’s worth noting that trade-offs between
energy efficiency and other network performance metrics are likely to arise. Additionally, challenges
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related to measuring errors, stemming from complex uncertainties like noise and interference, have
yet to be fully addressed.

2.2.1.2 Hardware-based Approach

The second category focuses on enhancing hardware components, such as power amplifiers,
with greater energy efficiency, as seen in references (38). Many components used in today’s
cellular network architecture are suboptimal in terms of energy efficiency. To reduce the power
consumption of both base stations (BSs) and user equipment (UEs), it’s essential to simplify their
hardware designs. (86) outlines the complete analysis of 5G application-oriented hardware design
for UE. However, the primary concern in wireless mobile networks is conserving energy at the BSs.

Research in this field has been directed for designing RF hardware and developing networks
using cloud technology. Within RF hardware design, diverse arrangements of RF chains and an-
tenna units have been suggested, particularly in the context of mMIMO utilization. Another critical
aspect is the power efficiency of components like power amplifiers (PAs). For instance, in a typical
cellular BS, where more than 80% of input energy dissipates as heat, the PA stands out as the
largest energy consumer. Generally, the useful output power accounts for only about 5% to 20%
of the input power. Studies suggest that the power efficiency of PAs, represented by the ratio of
output power to input power, could potentially reach as high as 70% (176). This implies substantial
energy savings if more energy-efficient components are adopted in the network.

However, it’s essential to consider the implementation cost of these approaches, which can be
quite high. For example, a power amplifier module with 35% power efficiency, designed for small
cell WCDMA or LTE BSs (covering a radius of up to 2 km), can cost around $75. The cost would
be even greater for larger coverage areas or higher power efficiency requirements. Consequently,
network operators must carefully weigh operational and economic factors before deciding on hard-
ware replacements. The cloud-enabled strategy, commonly referred to as Cloud Radio Access
Network (CRAN), offers a way to simplify the hardware of base stations (BSs) by offloading many
computational tasks from the BS to a centralized remote location(140). In CRAN, The processing
of the baseband signal and the management of the RF unit are divided into two distinct compo-
nents : the Baseband Unit (BBU) and the Remote Radio Head (RRH)(111). The Baseband Units
(BBUs) are integrated within the cloud network and linked to the Base Stations (BSs) via back-
haul connections in distant coverage regions. Regarding Heterogeneous Networks (HetNets), the
RAN (radio access Network) that has evolved from this methodology is recognized as H-CRAN
(Heterogeneous Cloud Radio Access Networks).

Efforts to enhance the energy efficiency (EE) of CRAN are evident in studies like(8). In the
context of CRAN’s downlink, (41)investigate energy efficiency by comparing strategies involving
data sharing and data compression for transmission. Data sharing involves distributing the mes-
sage for a specific user across multiple base stations (BSs) in the network, employing collaborative
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beamforming techniques to transmit it to the targeted user. These methodologies aim to minimize
transmission power while meeting user target rates. The results demonstrate that the data sharing
strategy exhibits superior performance at lower user target rates, mainly because of the decrea-
sed power consumption in the backhaul. However, at higher data rates, the condensed method is
favored as it lowers backhaul power usage.

The suggestion put forward by (8) is to incorporate software-defined networking within CRAN,
referred to as SD-CRAN. The power model is constructed through the assessment of the energy
consumption of each specific SD-CRAN component. The findings reveal that SD-CRAN consumes
more power than traditional CRAN. Nevertheless, the network scalability advantages of SD-CRAN
make it a fitting choice for deployment in ultra-dense networks..

With the growth of networks, the computational intricacy of both SD-CRAN and CRAN is pre-
dicted to rise. Moreover, the challenge lies in addressing throughput latency, primarily caused by
the distance between BSs and the core network. Mobile Edge Computing (MEC) technology has
been effective in mitigating latency issues. However, Given the possible benefits and limitations of
these cloud technologies concerning network scalability, the power used for computation, and the
delay in data service, it is crucial to examine these elements before determining the most suitable
deployment, whether it involves SD-CRAN, CRAN, or MEC.

2.2.1.3 Base Station Policies

The third category involves strategies focused on Base Stations (BSs) during periods of low
traffic, as BSs are the most significant energy consumers in cellular networks. A commonly em-
ployed method for enhancing coverage and capacity in mobile networks is the implementation of
a hierarchical cell structure (HCS). This HCS employs a structure comprising Macrocells, Micro-
cells, and Picocells, as depicted in Figure 2.4. While the HCS strategy effectively extends network
coverage and capacity, it can also lead to increased energy consumption. The fundamental cell
structure is designed to accommodate peak traffic loads, often resulting in over-dimensioning du-
ring non-peak hours.

Traffic Variation : From an energy optimization perspective, a well-explored approach involves
deactivating or putting cells to sleep when their capacity is underutilized. (26) employs user equip-
ment (UE) traffic patterns to generate traffic forecasts within their respective cell areas. This paper
demonstrates that energy savings can be achieved through forecasting methods, and these sa-
vings are closely tied to the density of base stations. However, these methods rely solely on traffic
forecasts when reactivating base stations, which is a static and inefficient approach. This can lead
to network congestion, and both solutions are highly sensitive to changes in coverage area, making
scalability and real-world implementation challenging due to varying attenuation conditions.
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FIGURE 2.4 : HEC structure

In contrast, (113) introduces a performance metric known as the area spectral efficiency (ASE)
to assess area utilization. They utilize the Signal-to-Interference-plus-Noise Ratio (SINR) from
connected UEs to estimate ASE, and a simplified version based on Signal-to-Noise Ratio (SNR)
measurements is also proposed. When the number of active UEs falls below a certain threshold,
base stations are deactivated. Conversely, when the ASE in the area decreases, indicating more
active UEs, base stations are reactivated. Simulations show that this approach can reduce the
energy consumption of their test network by 60-70%. However, this solution lacks the capability for
UE handovers in cells scheduled for deactivation, potentially affecting Quality of Experience (QoE).
Moreover, there is no clear indication of the solution’s scalability.

Modeling the traffic patterns of User Equipment (UE) allows for the prediction of optimal periods
to deactivate Base Stations (BSs) during specific hours. However, relying solely on periodic on/off
triggers may not be ideal, especially during peak periods when BS outages can occur suddenly.
Therefore, integrating a dynamic traffic strategy that factors in different UE activities, including UE
velocity, becomes increasingly feasible for network planning. Dynamic traffic models have been
applied in energy-efficient design scenarios, as showcased in (70? ), where queuing theoretic
models are employed, (133), which utilizes Markov decision processes, and (51), which is formed
on the basis of genetic algorithms’ principles.

Cell zooming : within extremely dense HetNets, employing dynamic traffic profiles for BS deac-
tivation might elevate energy usage in the network because of heightened interference levels cau-
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sed by the excessive allocation from nearby base stations.(109).However, with the cell zooming
technique, a base station (BS) in HetNet can dynamically modify its transmission power and, thus,
alter its cell size in response to changes in traffic(203).To achieve efficient UE association, the
transmission power can be amplified based on the design goal, enabling the shutdown of lightly
utilized cells while upholding coverage. (184). Conversely, to mitigate interference levels within
the network, transmission power can be reduced. An alternative scenario involves reducing trans-
mission power aligned with how UEs move to minimize energy usage(150).Figure 2.5 provides
illustrations of cell zooming through coverage reduction and cell sleep-mode.

FIGURE 2.5 : Cell zooming [1] : Normal cells deployed A-E. [2] : Cell E in sleep mode, cells A and C increasing
their coverage to compensate, and B and D reducing their coverage.

The cell zooming algorithm, as introduced in (127), operates through a defined zooming period
encompassing three stages. First, there’s a coordination phase in which base stations within a
specific area gather cell-related data. Next, a transition phase follows, during which base stations
make adjustments based on the coordination findings. Finally, a serving phase ensues, where base
stations function within the new configuration. A comparison was made between a centralized
and a distributed version of this algorithm, revealing that the centralized approach outperforms
the distributed one in terms of energy consumption relative to outage blocking probability. In the
centralized model, a cell zooming server is employed for collecting and coordinating base station
settings, although this may raise scalability concerns.

The challenges linked to cell zooming are explained in (127). Foremost among these challenges
is the impact of user equipment (UE) movements, which can induce traffic fluctuations leading
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to compensation loops. A second challenge lies in compatibility, as implementing cell zooming
necessitates a substantial base station upgrade to support functions like tilt adjustment and new
management channels. The last challenge pertains to unintended network behavior, exemplified
by inter-cell interference (as depicted in Figure 2.5, [1]) or gaps in coverage (as exemplified in
Figure 2.5, [2]).

Some of these challenges are addressed in (173), where it is proposed that the introduction
of more base stations can enhance energy savings. In this scenario, additional base stations can
be put in sleep mode during off-peak hours, but the viability of this approach heavily hinges on
the specific traffic patterns within the area. It’s worth noting that the energy consumption increases
with the number of active base stations, and the cell zooming approach primarily relies on transmit
power adjustment as its sole method, assuming a uniform distribution of traffic and interference,
which may not hold true in real-world implementations.

User Association : Efficiently associating user equipment (UE) with specific base stations
(BSs) plays a crucial role in optimizing the BS sleep mode technique within a Heterogeneous
Network (HetNet). Effective UE-BS association allows for the identification and deactivation of
lightly loaded BSs. UE will link to the BS with the highest RSRP (Reference Signal Received
Power). One of the commonly used techniques to achieve efficient user equipment (UE) connection
in HetNet is the cell range expansion (CRE) feature of SBSs, referred to as biasing (190).

Moreover, investigations into CRE within ultra-dense HetNets have revealed its potential to
reduce unwarranted handovers for users on the move, thereby enhancing the UE connection
procedure(163). Nonetheless, UEs prioritize connections to Macro Base Stations (MBS) due to
their greater transmission power in the absence of coordination in the CRE process. To tackle this
issue, various solutions have been proposed. These include allocating a sub-frame of Absolute
Blank Subframe (ABS) scheme for Small Base Station (SBS) operation (162) and restricting the
transmission power of MBS on a sub-frame to reduce interference (45).

Recent contributions in this area have taken into account additional factors such as the random
distribution of BSs and UEs (202), Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) propagation
effects (187), traffic awareness (106), UE mobility and handovers (63), data transfer delay (46),
and equitable resource distribution(102).

Cell Load Considerations : Before deactivating a base station (BS), it’s crucial to assess the
load status of neighboring cells. Failing to do so may lead to a degradation in Quality of Service
(QoS) for user equipment (UE) transferred from a sleeping cell to active neighboring cells, poten-
tially resulting in dropped connections. Relevant research on this matter is outlined in (32).

In (16), an algorithm is introduced to identify candidate cells for deactivation, employing a model
based on packet traffic for estimating the load. Following the identification phase, the algorithm
estimates the effect on neighboring cells and selects the BS with the least impact as the preferred
candidate for deactivation. In contrast, the algorithm presented in (166)is designed to deactivate
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small cells (SBS) experiencing the highest interference levels while avoiding the deactivation of
cells serving the highest number of users. Additionally, (32) contributes to this area by employing
a discrete-time Markov process to create an effective traffic diversion plan aimed at minimizing
energy usage.

Base Station (BS) ON/OFF Strategies : Strategies for turning base stations ON and OFF
can be categorized into two main types : partial ON/OFF, where a fraction of radio resources is
activated or deactivated, and complete ON/OFF, where the BS is either fully operational or com-
pletely powered down (210). However, practical implementation of ON/OFF switching strategies
requires careful consideration of their impact on service latency and energy usage. The effect of
service delay on user equipment (UE) associated with BSs in sleep mode, along with the asso-
ciated energy efficiency trade-offs, is explored in (126). These studies introduce various Wake-up
techniques utilizing the vacation queue model.

Recent research has delved into the effects of switching on energy consumption, with notable
studies including those by [(83)–(61) ]. (83), who propose an enhanced Markov process for traffic
prediction to reduce frequent switching in areas with fluctuating traffic patterns. (42) introduce a
central controller based on fuzzy logic to coordinate small cell base stations (SBSs), preventing
simultaneous activation of SBSs with DTX (discontinuous transmission) features and mitigating
sudden increases in interference levels. In contrast, (14) present a distributed scheme utilizing
a non-cooperative regret-based satisfaction game technique, eliminating the need for a central
controller. Moreover, (61) investigate the collective impacts of initial energy consumption costs
arising from frequent SBS switching, formulating an optimization problem for energy reduction that
considers factors such as BS density, UE mobility patterns, and the transmission power of UEs.

We will talk and explore in more detail in the following section about on-off strategies for base
stations, since this category has the potential to achieve greater energy savings compared to other
categories.

2.2.1.4 Embracing the Use of Harvesting Energy Sources.

The pursuit of reducing CO2 emissions and minimizing the need for frequent UE recharging
has given rise to an innovative energy-efficient technique known as energy harvesting and trans-
fer. This represents the fourth category of energy-efficient approaches, which harness renewable
energy sources. In contrast to conventional energy sources like hydrocarbons, which contribute to
greenhouse gas emissions, renewable resources such as hydro, wind, and solar power are no-
table for their sustainability and environmentally friendly nature (35). Telecom manufacturers have
devised plans to supply cellular base stations (BSs) powered by solar energy in underdeveloped
regions. These areas often lack well-maintained roads and reliable access to traditional energy
sources like diesel, making off-grid BSs a challenge to power.
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Energy harvesting techniques involve harnessing the available energy from renewable re-
sources to supplement existing electric-powered infrastructure. This approach holds promise as
a long-term environmental solution for the mobile cellular network industry, particularly in areas
without well-established network infrastructure. In contrast, for developed countries with mature in-
frastructure, similar concerns arise regarding the embodied and replacement costs, much like the
component-based approaches. Transitioning services from outdated electric-powered BSs to new
energy harvesting BSs presents technical challenges in maintaining fault tolerance and data secu-
rity without service interruptions. Research on this energy-efficient technique can be categorized
into two groups : energy harvesting from the natural environment and energy harvesting from the
radio environment.

Energy Harvesting from the Natural Environment : Recent studies have emphasized the
economic and ecological performance of renewable energy sources in wireless cellular networks(67),
(170). However, sustainability can be a challenge due to varying climate conditions. Integration with
conventional grid energy sources using smart grid technology has been proposed to address this.
Analyzing CO2 emission reduction from the perspective of minimizing energy procurement costs,
researchers have investigated the performance of genetic algorithms (GA) and particle swarm op-
timization (PSO)(67) in deactivating redundant base stations. Results suggest that while the PSO
approach outperformed GA, purchasing energy from renewable sources reduced profits and in-
creased CO2 levels(170).

The concept of base station cooperation(181)has also been introduced to minimize energy
procurement costs, with schemes such as energy, communication, and hybrid cooperation. The
hybrid scheme displayed superior performance in energy cost savings. Strategies integrating radio
optimization techniques, such as transmission power and sub-carrier allocation optimization (170),
and joint coordinated multipoint techniques (90)for interference avoidance, have also been explored
to reduce energy consumption rates from renewable sources.

Energy Harvesting from Radio Frequency : Efforts in wireless cellular networks are direc-
ted towards achieving high data rates (197) while mitigating the increased power consumption of
mobile devices. The concept of Simultaneous Wireless Information and Power Transfer (SWIPT) is
proposed (138)to serve as a continuous energy source for mobile terminals. Tractable models are
developed to evaluate performance in both the uplink and downlink of SWIPT HetNets, accounting
for energy harvested(5).

Studies propose mixed beamforming techniques (151) to enhance energy harvesting, yet the
integration of information decoding and energy harvesting within a single device remains a chal-
lenge (160). A power-splitting Zero Forcing (ZF) receiver is introduced (53) to concurrently receive
information and harvest energy, eliminating the need for separate devices. However, the study does
not address the system’s EH and ID efficiency.

In the design of SWIPT networks(93), the power consumption model and computational com-
plexity of solution algorithms are crucial. A distributed beamforming approach is introduced to
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reduce signaling overhead, demonstrating convergence with minimal iterations. The use of linear
and non-linear power consumption models is also explored, indicating limitations and non-linear
characteristics of power amplifiers at high frequencies.

2.2.1.5 Network Planning and Deployment of Heterogeneous Networks

The last category addresses the issue by incorporating small cells into the cellular network,
including micro, pico, and femto cells. These compact cells are designed to serve small areas with
dense traffic, employing low-power cellular base stations (49) that are both cost-effective and often
support plug-and-play functionality. In contrast to the conventional deployment of homogeneous
macro cells, this heterogeneous deployment strategy reduces energy consumption in the network
by reducing the propagation distance between network nodes and utilizing higher frequency bands
to support increased data rates.

However, there are significant challenges associated with these approaches. The introduction
of additional small cells can result in increased radio interference compared to conventional ho-
mogeneous macro cell networks, potentially affecting the quality of the user experience negatively.
Furthermore, if an excessive number of micro, pico, or femto cells are deployed, the energy-saving
trend may be reversed due to the additional embodied energy consumed by the newly deployed
cells and the overhead introduced in transmission. Therefore, careful planning is required to de-
termine the optimal number and locations of these smaller cells in order to achieve a reduction
in total energy consumption. Furthermore, the combination of heterogeneous network deployment
with sleep mode strategies has demonstrated the potential to yield significant energy savings, as
indicated by previous studies in (154).

The efficient planning and deployment of cellular networks can be examined by considering
various aspects, such as base station deployment strategies and established techniques commonly
used in Heterogeneous Networks (HetNets). These approaches can be categorized and discussed
as follows :

Optimizing base station (BS) density : is a crucial aspect of planning mobile cellular net-
works, involving the delineation of the network coverage area of interest (164). Once the coverage
area is defined, estimating the number of BSs needed to ensure a specific level of Quality of Ser-
vice (QoS) becomes possible (13). In dense Heterogeneous Networks (HetNets), where small cell
BS (SBS) deployment may be unplanned and irregular (71), devising simplified and practical frame-
works for optimal BS density planning is essential. Various solution methods have been explored
to address this challenge, including metaheuristic approaches (68), greedy algorithms (154), and
stochastic geometry (209), which have proven to be valuable.

In the study presented in (68), a metaheuristic approach involving particle swarm optimization
(PSO) and grey wolf optimization (GWO) methods is used. These methods integrate data rate and
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coverage constraints into the algorithms to optimize the global population and deactivate redundant
base stations (BSs). However, it may not be suitable for Ultra-Dense HetNets (UD-HetNets) due to
its uniform distribution of small base stations (SBSs).

The greedy-based algorithm proposed in (154) gradually adds SBSs until the average spectral
efficiency reaches a defined condition, deactivating redundant BSs during off-peak traffic periods.
While it extends the BS distribution topology to a random one suitable for UD-HetNets, it lacks
explicit analytical foundations for the chosen topology.

To address these limitations and provide practical analyses of ad hoc BS planning and deploy-
ment, stochastic geometry is utilized. Zhou et al. (209) employ a Poisson distribution process to
model User Equipment (UE) distribution and generate diverse traffic patterns. A heuristic algorithm
then evaluates the state of BSs and associated UEs, estimating the optimal number of BSs to de-
ploy. However, the use of a centralized processing scheme (154) may impact scalability due to
increased signaling overhead.

In another related design by Alkan (44), SBS deployment planning is based on the reported
signal strength of Main UE (MUE) pilot channels. However, this approach does not thoroughly
address pilot channel information processing, which is critical due to potential challenges with
false information arising from pilot contamination.

In summary, for an effective BS optimization approach in planning energy-efficient UD-HetNets,
certain critical considerations must be taken into account. These include ensuring a minimum
required QoS, employing suitable analytical models for various topologies, accounting for traffic
dynamics, and implementing efficient algorithms.

Heterogeneous Network (HetNet) Deployment : In HetNets, the reduced transmission dis-
tance between Small Base Stations (SBSs) and User Equipment (UEs) contributes to a notable
enhancement in network Energy Efficiency (EE). This improvement is further supported by the
inherent characteristics of millimeter Waves (mmWaves), facilitating spatial densification of SBSs
and spectrum densification via massive Multiple Input, Multiple Output (mMIMO) technology (110).
Moreover, the adoption of edge computing, which involves offloading signal processing and content
delivery from the cloud to edge devices, minimizes the separation between the core network and
edge devices, leading to significant energy savings (182). These strategies will be discussed in
detail in the subsequent sections.

a) Ultra-Dense (UD) Base Stations (BSs) : Studies on Ultra-Dense Heterogeneous Networks
(UD-HetNets) suggest that Energy Efficiency (EE) and Spectrum Efficiency (SE) are expected
to increase up to a certain threshold. However, further increasing the Base Station (BS) density
beyond this threshold can lead to the degradation of both EE and SE (185). This raises questions
regarding the optimal level of network densification to enhance EE without compromising SE, and
how to jointly optimize EE and SE. Analytical tools such as the Poisson Point Process (PPP) have
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been utilized to establish parameters for developing frameworks that characterize network EE and
SE (104), focusing on coverage and association probabilities.

While some studies, such as (201), have focused on estimating traffic loads for each network
tier, they primarily provide a closed-form expression for a global EE model without comprehensive
insights into SE. Other works, including (104), examine both EE and SE, emphasizing the impact
of SBS density on EE and measuring SE against Signal-to-Interference-and-Noise Ratio (SINR),
although this approach doesn’t fully elucidate the effect of SBS density on SE. Research such as
(33) proposes joint optimization of SE and EE but doesn’t evaluate them based on SBS density.

To address these limitations, recent studies, including (113),(185), employ heuristic procedures
and cooperative game approaches to jointly optimize area SE and EE, revealing that beyond a
certain SBS density, EE starts to decline due to cumulative circuit power consumption, while SE
continues to rise until a point when interference causes it to decrease. The Poisson Cluster Process
(PCP) is suggested as a more suitable approach than PPP for modeling BS distributions in UD-
HetNets (2). However, the application of PCP in energy-efficient network design requires further
exploration. Recent research, as in (96), introduces a variant of PCP, the Matern cluster process,
to formulate expressions for spectrum efficiency and power consumption minimization problems,
highlighting the impact of the received interference by UEs in a cluster.

Overall, these studies emphasize the intricate relationship between EE and SE in HetNets,
underscoring the need to control SE within acceptable limits when pursuing EE objectives in dense
networks.

b) Massive MIMO Deployment : Although Energy Efficiency (EE) achieved through BS den-
sification encounters limitations due to interference from nearby BSs, the potential for exceeding
this limit is evident through massive Multiple-Input, Multiple-Output (mMIMO) deployment (25). By
leveraging mMIMO, power levels for both BSs and User Equipment (UEs) can be reduced without
compromising Quality of Service (QoS) (1). This makes mMIMO a promising solution for enhancing
both EE and Spectrum Efficiency (SE) in wireless communication systems.

Practical design considerations for energy-efficient mMIMO systems encompass power consump-
tion in the Radio Frequency (RF) unit and computational power, both of which scale with the in-
creasing number of antennas (65). To address these challenges, hybrid precoders have emerged
as an alternative to digital and analog precoders, aiming to reduce energy consumption in the RF
unit, address hardware complexities, and improve beamforming accuracy (159).

Among hybrid precoders, partially-connected structures are favored for energy-efficient desi-
gns, with low-complexity algorithms like successive interference cancellation (SIC) and partial sin-
gular value decomposition (SVD) using Givens transformations providing optimal precoding vectors
(64), (112). While these schemes enhance EE, the SE of fully-connected hybrid precoders remains
higher due to increased beamforming gain (112).
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Novel solutions like replacing phase shifters in the analog unit with phase over-samplers (POS)
and switches have demonstrated improved EE performance in hybrid precoders (108). Additionally,
adaptive operations of hybrid precoders through optimal configuration of precoding components
have shown potential for further enhancing EE, especially in high Signal-to-Noise Ratio (SNR)
regions (208). Overall, these studies underscore the critical role of hardware complexity and confi-
guration in determining the EE and SE of mMIMO systems.

c) Mobile Edge Computing (MEC) : Mobile Edge Computing (MEC) technology brings cloud
computing closer to User Equipment (UEs) and Base Stations (BSs), reducing latency and com-
putational complexity (4; 158). While conventional MEC focuses on computation offloading, recent
studies highlight the benefits of caching in enhancing Energy Efficiency (EE) (107). Various strate-
gies such as multi-user computation offloading games and energy-efficient offloading techniques
emphasize the preference for local computation under high interference, resulting in lower energy
consumption and shorter processing times (31; 201). Addressing the quantification of EE, (156)
formulates a joint optimization problem for energy-efficient computation offloading, showing the ef-
fectiveness of local computation for small data sizes and offloading for larger data sizes. Moreover,
investigations into the impact of caching on energy-efficient MEC architecture (94; 78) reveal the
potential of joint cooperative and coded caching to minimize energy consumption and improve the
performance of virtual reality applications. These findings emphasize the significance of caching
for optimizing energy-efficient MEC systems.

2.2.2 Review of HetNet’s BS On/Off Switching Approaches

Reducing power consumption in cellular heterogeneous networks by dynamically turning off
base stations has recently gained increasing attention. The literature has introduced several me-
thods for designing energy-efficient networks in the context of wireless mobile operations. Many of
these methods concentrate on enhancing the energy efficiency (EE) of base stations (BS), as BS
units are responsible for a substantial portion, ranging from 60% to 80% (90), of the total energy
consumption in wireless mobile networks. Consequently, several studies have been established to
improve the energy efficiency of the network. As such, BS on/off switching algorithms are among
the most powerful energy-saving solutions. These algorithms switch off unnecessary parts of the
network (i.e., BS) and offload users to neighboring BSs during off-peak periods. They also activate
the appropriate number of BSs as required. Therefore, BS on/off switching algorithms would be
particularly advantageous for future fifth generation (5G) networks characterized by extreme BSs
densification, making the energy efficiency challenge even more complex.

Base Station Switching (ON/OFF), which represents one of the potential strategies for enhan-
cing network efficiency, holds significant promise but poses notable implementation challenges.
The complexity arises from the fact that deactivating base stations results in a complete cessation
of services within a given area, particularly when considering a single-tier coverage model. Howe-

29



ver, this obstacle can be overcome through the introduction of 5G networks, which are anticipated
to expand the radio interface infrastructure in various sizes and hierarchies, forming heterogeneous
networks (HetNets). This HetNet paradigm is expected to create overlapping networks comprising
larger Macro Base Stations (MBSs) covering smaller underlying Small Base Stations (SBSs).

Organizing heterogeneous networks in this manner levels the playing field for base station
switching algorithms by increasing the overall network power requirements, making the technology
essential, while simultaneously facilitating its implementation through the overlapping coverage.
Before this paradigm shift, for a base station to be powered off, it had to possess a mechanism to
monitor service requests effectively to prevent coverage gaps. In contrast, within HetNets, deacti-
vating an idle SBS primarily results in a loss of potential capacity, which, when well-planned, can
contribute to energy savings without disrupting the network’s regular operations. As HetNets be-
come more widely adopted, the persistent challenge of avoiding complete service outages in an
area is effectively resolved, allowing for the assumption that BS switching is feasible only in regions
with overlapping coverage.

Several BS switch-on/off strategies (76) have been proposed from different design perspec-
tives to only optimize energy savings or other energy- related performance trade-offs, such as
random, load-aware, and distance-aware, strategies. Besides, some research has been under-
taken to consider a common design of the BS switch-off strategy and other strategies, such as
user association, physical-layer interference cancellation strategies, and resource allocation. BS
switch-off strategies could be achieved by focusing either on small base stations (SBS) or macro
base stations (MBS) or on both types of BS in HetNets. However, deactivation of MBS which is
derived based on minimizing BS power consumption can have a significant negative impact on
network coverage. In contrast, the random deactivation strategy of SBS is designed based on the
maximization of energy efficiency (EE) with the constraint for coverage probability. A lot of work has
been done to design a specific BS switch-off strategy in HetNets. Nevertheless, improvements and
challenges remain to be explored by appropriately exploiting the combination of different criteria
to get greener and better network performance. There are generally two approaches to properly
switch on/off a given number of BSs (174),(144) : offline and online approaches. The relatively
simple offline approach allows the preplanning in advance of the on/off switching intervals. Howe-
ver, it has a major drawback, namely that it does not take into account the current instantaneous
load and, hence, is not robust to unpredictable events (i.e., failure, random hotspot, etc.), which
therefore restricting its efficiency. On the other hand, the online approach exclusively considers the
actual load (i.e., instantaneous) to decide whether to switch off a BS or not. Thus, it can handle
unpredictable events by activating the appropriate part of the network (i.e., the number of BSs)
to cope with an unexpected traffic increase or decrease. Despite its importance, this approach is
complex since the decision must be made and executed in real-time. Besides that, it may incur
a large number of on/off switching operations with important energy costs which may not only
considerably increase the overall network energy cost, but also damage hardware equipment.
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Certain studies concentrate on the utilization of mathematical optimization (57) to manage the
activation and deactivation of Base Stations (BS) in a manner that maintains the user experience
while simultaneously decreasing energy usage. These algorithms switch off unnecessary parts of
the network (i.e., BS) and offload users to neighboring BSs during off-peak periods. They also
activate the appropriate number of BSs as required (36). Therefore, BS on/off switching algorithms
would be particularly advantageous for future fifth generation (5G) networks characterized by ex-
treme BSs densification, making the energy efficiency challenge even more complex.

To this end, investigations have focused on energy savings when the network is lightly loaded,
and the stations can be put on sleep mode. Most of these structures exploit the evolution of traffic
during the day : when the load is low for a sufficient period (especially at night), some stations are
switched off and their users are taken care of by those who remain in service (27),(100). Different
techniques are implemented in this direction to ensure that the service is nevertheless satisfactory.
These approaches demonstrate significant advantages in terms of both energy consumption and
bit rate. However, it’s important to consider that a cell is a dynamic environment where users
constantly change their positions and numbers. Therefore, time holds paramount importance, yet
these methodologies consume excessive time and computational resources.

Nowadays, the advancements in Artificial Intelligence (AI) have led to widespread adoption
of machine learning techniques for optimizing wireless communications. These techniques have
been integrated into self-organizing networks (SON), With the objective of making daily tasks for
network operators more streamlined and efficient (141). By incorporating AI-based tools, the pro-
gression of the SON paradigm in 5G shifts towards a proactive methodology. This methodology
capitalizes on the vast amount of available data and incorporates additional dimensions derived
from characterizing end-user experience and behavior (60).

In this regard, various energy-efficient schemes utilizing machine learning have been develo-
ped. These approaches demonstrate significant advantages in terms of both energy consumption
and bit rate (58). The main strategies for optimizing energy efficiency at the base station level
include adaptive sleep modes based on reinforcement learning (50), traffic-based switch-off strate-
gies (73), and efficient transmission power control(180). However, it’s important to consider that a
cell is a dynamic environment where users constantly change their positions and numbers. In addi-
tion, these ML-based methods do not yield energy savings to the same degree as the mathematical
approach, and they also involve a substantial cost.

Optimizing base station switching still presents certain challenges that require further attention.
In response to these challenges, there is a wealth of scholarly activity aimed at exploring various
possible implementations. Many of these implementations identify various factors contributing to
complexity. However, the primary issue with switching base stations lies in the fact that current
equipment is not designed to frequently accommodate changes in operational mode and demands
special consideration during the switching process. This limitation discourages service providers
from employing the approach frequently. The inability to switch off BSs on-demand necessitates
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precise estimation of future service requirements for a given area, a complex problem that relies on
a deep understanding of the area’s service history and the use of sophisticated estimation tools.
Additionally, the challenge of solving the combinatorial optimization problem, which determines the
most efficient combination of BSs to activate at a given time, becomes more complicated as the
number of combinations grows.

Given these scenarios, where optimization methods require substantial time and computational
resources, and Machine Learning (ML) approaches haven’t achieved a satisfactory balance bet-
ween cost and savings, we recognized the potential of combining the strengths of both fields. Our
objective is to achieve significant enhancements in energy efficiency while simultaneously decrea-
sing the time and computation demands. This motivated us to develop a deep learning approach
centered around solving optimization problems in wireless networks taking into account different
criteria and perspectives. However, an adaptable design that can respond effectively to changes in
network conditions would result in greater energy savings and improved network performance.

2.2.3 When EE meets AI

Beyond transmitting data with enhanced energy efficiency, the next generation of wireless net-
works faces the formidable challenge of accommodating a wide array of use cases, each with
distinct service level requirements, all within an exceedingly dynamic environment. Meeting these
demands is no small feat, given the increasing complexity, heterogeneity, and constant evolution
of the network landscape. This necessitates the development of innovative smart wireless radio
technologies, sophisticated spectrum management techniques, and adaptive decision-making me-
chanisms to effectively cater to these diverse requirements.

Furthermore, the sheer volume of reconfigurable parameters within future networks is stagge-
ring. To illustrate, consider the progression from 2G to 4G networks, where the number of such
parameters surged from 500 in 2G to 1000 in 3G and 1500 in 4G, as reported in (88). This figure
is projected to soar even higher in 5G networks, exceeding 2000. Consequently, enhancing the
intelligence of these networks becomes imperative to realize the Self-Organized Network (SON)
paradigm, characterized by self-configuration, self-optimization, and self-healing capabilities.

Figure 2.6 shows the development of an intelligent radio system with the ability to learn from
past experiences or observations. This system aims to improve its overall performance by establi-
shing a utility function for each action taken, relying on many reputable sources such as (95), (134)
and (198). To realize this vision, it is imperative to seamlessly integrate fundamental concepts from
the fields of artificial intelligence (AI) and machine learning (ML) into wireless infrastructure and
end-user devices.

AI represents a computational framework that imparts intelligence to machines, allowing them
to learn, operate, and respond in a manner akin to human behavior. The roots of this paradigm trace
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FIGURE 2.6 : The concept of intelligent radio learning(95)

back 75 years, when threshold logic was employed to formulate a computational model for neural
networks, as highlighted in (139). However, it wasn’t until the late 1980s that neural networks began
to pique interest, albeit with gradual progress due to computational power limitations. Today, thanks
to significant advancements in Graphics Processing Units (GPUs), AI has garnered unprecedented
attention and is making inroads into a multitude of computer science domains.

Within the expansive AI landscape, Machine Learning (ML) has emerged as a particularly pro-
mising technique for absorbing knowledge from data and making informed decisions, predictions,
and recommendations. This is achieved without the need for explicit programming, as underscored
by (95) and (198).

Artificial intelligence (AI) has evolved to encompass various discipline techniques, including ma-
chine learning, optimization theory, game theory, and meta-heuristics [168]. Among these, machine
learning has emerged as a pivotal subfield of AI. In the context of future 5G networks, machine lear-
ning holds significant potential for orchestrating and managing network resources. The integration
of intelligence can offer more efficient solutions to technical challenges in next-generation systems,
such as device-to-device (D2D) communication, large-scale massive MIMO, and the management
of heterogeneous networks with diverse technologies and architectures.

Dynamic radio cell operation stands as a pivotal technology in the pursuit of Energy Efficiency
(EE). An essential goal within this domain is the optimization of radio resource allocation through
actions like cell activation/deactivation or cell zooming, all of which respond to the ever-changing
traffic demands. The key to making this optimization a reality lies in acquiring an in-depth unders-
tanding of dynamic user traffic patterns and mobility behaviors over time. Moreover, it entails the
ability to predict future traffic demands and mobility patterns by learning from historical data. Mo-
bile network functions inherently hold a wealth of user context information, encompassing mobility
histories, state transitions, traffic patterns, and more. This wealth of data serves as a valuable
resource for uncovering underlying rules and optimizing the EE of mobile networks.

The actual environment-related information concerning energy availability, coupled with practi-
cal user behaviors, is far from purely random. By leveraging diverse sets of information encompas-
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sing energy availability processes, user mobility, link quality, traffic characteristics, and Quality of
Service (QoS) requirements, we have the potential to proactively tailor network resource allocation
to meet user demands effectively.

2.3 Conclusion

In reviewing the pursuit of energy-efficient wireless mobile HetNets, various angles have been
explored, ranging from optimizing Base Station (BS) deployment and improving radio transmis-
sions to managing BS sleep patterns and utilizing renewable energy sources. However, these
efforts have not been without challenges. Designing energy-efficient HetNets involves addressing
various critical factors that present our research challenges. These encompass managing ran-
domly distributed Small Base Stations (SBS), making optimal decisions on UE (User Equipment)
associations, dynamically allocating resources adapted to the fluctuation of traffic patterns, and
respecting the trade-off between energy efficiency and the high-quality service (Qos) standards.
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3 Machine Learning Overview

The journey of crafting intelligent programs, also known as artificial intelligence (AI), commen-
ced in the 1950s. Machine learning, a subset of AI that doesn’t require explicit rule-based program-
ming to acquire knowledge, began its evolution in the mid-1980s and steadily progressed over the
years. While developers initially focused on crafting algorithms to solve specific problems, the em-
phasis gradually shifted towards the creation of learning algorithms capable of autonomously sol-
ving unsolved problems through data-driven methods. These algorithms are commonly known as
Machine Learning (ML) algorithms. ML algorithms typically aim to optimize the performance me-
trics of a parametric model on given datasets to acquire the ability to tackle complex problems. It’s
essential to highlight that ML algorithms fundamentally differ from the functional models they seek
to parameterize effectively. Among the various AI models, Artificial Neural Networks (ANNs), often
referred to simply as NNs, have gained substantial popularity. These mathematical frameworks
draw loose inspiration from biological neurons. NNs are constructed by combining numerous local
elementary operations, known as neurons, to represent highly complex global functions. These
models, sometimes called connectionist models, offer efficient hardware implementations and are
exceptionally well-suited for applying ML techniques. This versatility has led to their successful
deployment across a wide array of domains and a growing interest from various research fields,
including their potential applications in future generations of cellular networks. This hierarchy of
concepts is illustrated in Figure 3.1.

FIGURE 3.1 : A brief hierarchy of artificial intelligence concepts.
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Machine learning, also known as automated learning, is a subfield of artificial intelligence that
has brought about a profound transformation in our ability to extract insights and make informed
decisions from data. At its core, this discipline relies on computers’ ability to learn from experience,
discern patterns, and progressively enhance their performance without the need for explicit, hand-
crafted instructions. In essence, machine learning empowers machines to adapt and evolve based
on the data they encounter.

The significance and practical applications of machine learning span a wide array of domains.
Whether it is deployed in medicine, finance, industry, logistics, advertising, or even our day-to-day
interactions with technology, machine learning assumes a pivotal role. It facilitates more informed
decision-making, automates complex tasks, optimizes processes, and fosters the development of
smarter, more personalized products and services. In summary, machine learning holds immense
promise for enhancing efficiency, accuracy, and innovation across numerous sectors.

Machine learning has evolved significantly from its fundamentals to become a sophisticated dis-
cipline capable of handling complex tasks. This development can be attributed to rapid advances in
computing power, which allows the training of more complex models, and to the wealth of available
data, which serves as raw material for these algorithms. Additionally, machine learning has un-
dergone a transition from traditional statistical methods to deep learning, characterized by neural
networks with many layers that excel at processing unstructured data such as text, images, and
data. audio. As the field continues to advance, ethical considerations and responsible use of AI are
gaining importance, paving the way for a new era of discussions regarding fairness, transparency,
and accountability in learning applications automatic.

Accordingly, machine learning algorithms have gained significant attention recently for addres-
sing various challenges across multiple domains, including resource management, power alloca-
tion, cell sleeping, and precoding. In this section, we will explore the diverse range of machine
learning algorithms employed to enhance energy efficiency in wireless networks. Additionally, we
will provide a concise overview of the benefits of utilizing machine learning approaches over tradi-
tional methods to enhance energy efficiency in 5G and future-generation networks."

3.1 Basics of Machine Learning

3.1.1 Categories of Learning

Machine learning is categorized into three primary branches : supervised learning(SL), un-
supervised learning(USL), and reinforcement learning(RL). Deep Learning, a subset of machine
learning that emerged around 2010, also encompasses these three categories supervised, un-
supervised, and reinforcement learning. Machine learning classification techniques and learning
algorithms (as indicated in the figure 3.2) are a prevalent choice in the context of both 5G enabling
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technologies and addressing some concerns like energy efficiency.

FIGURE 3.2 : Types of ML algorithms.

Supervised learning involves providing the agent with a dataset consisting of labeled input
examples and their corresponding desired outputs, which are supplied by an external supervisor
with knowledge in the field. Each example in this dataset comprises a specific situation and the cor-
rect action associated with it. The primary goal of supervised learning is to establish the connection
between variables in order to deduce a general rule that can map inputs to outputs through extrapo-
lation and regression. Supervised learning is particularly well-suited for channel-related problems
such as channel estimation, detection, and learning behavior for future predictions. This is because
supervised learning leverages past data to generate outputs, relying on previous experiences as a
foundation.

Unsupervised learning,in contrast to supervised learning, focuses on identifying concealed
structures within sets of unlabeled data. In this category, the agent is tasked with recognizing pat-
terns in its input data without the guidance of labeled examples. Unsupervised learning plays a
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significant role in cellular networks, where it is commonly employed. Well-known unsupervised
techniques like Principal Component Analysis (PCA) and Independent Component Analysis (ICA)
are utilized to unveil correlations and hidden structures among variables. For instance, the PCA
method is employed to reduce the complexity of massive MIMO systems by decreasing their re-
ception matrices. Furthermore, clustering techniques, which fall under the category of unsupervi-
sed methods, demonstrate their usefulness in the detection of anomalies within the network. Also,
unsupervised learning differs from supervised learning in its suitability for wireless network clus-
tering and spectrum sensing challenges. It autonomously learns the network and tackles complex
issues independently, making it a valuable choice for solving intricate problems beyond the scope
of supervised learning.

Reinforcement learning, differs significantly in its approach to training an agent. Instead of
relying on pre-annotated datasets, reinforcement learning operates through interaction with a dy-
namic environment. Without any prior knowledge of system information, the reinforcement learning
process aims to maximize a numerical reward signal by making decisions at each time step. This
involves mapping states to actions that yield the highest possible reward. Reinforcement lear-
ning finds extensive application in decision-making scenarios, including radio resource manage-
ment and user selection within cellular networks. Within this category, Q-learning stands out as a
commonly used technique to address such problems. Reinforcement learning, on the other hand,
excels in scenarios where the problems are not well-defined, such as resource allocation and ma-
nagement in networks. It has the capability to adapt its approach to achieve desired outcomes,
systematically learning from results and refining its decisions.

3.1.2 Types of Data used in Machine Learning

In the domain of machine learning, the careful selection and meticulous preparation of data
stand as pivotal factors in determining the success of predictive models and analytical tasks. These
data types primarily fall into two categories : structured and unstructured data. A profound compre-
hension of these data types and their distinctive characteristics holds immense importance when
it comes to making informed decisions while designing machine learning algorithms and models.

3.1.2.1 Structured Data

Structured data encompasses information that follows a systematic and predictable order. This
category of data is commonly presented within tabular or relational databases, where each data
element resides in a well-defined field or column. The inherent organization of structured data
lends itself effectively to traditional statistical analysis and the utilization of machine learning algo-
rithms.Illustrative instances of structured data encompass :
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Numerical Data : This category includes integers and floating-point numbers, rendering it sui-
table for mathematical operations. Instances include stock prices, temperature measurements, or
individuals’ ages...

Categorical Data : Categorical data represents distinct categories and is frequently employed
for object or concept classification. Models include product categories (e.g., electronics, apparel)
or customer segments (e.g., platinum, gold, silver).

Date and Time Data : Date and time values serve the purpose of tracking events and trends
across time, making them crucial for time series analysis. Illustrative examples include timestamps
of online purchases, sensor data, or social media posts.

Structured data’s well-organized nature makes it highly compatible with traditional machine
learning algorithms, such as linear regression and decision trees.

3.1.2.2 Unstructured Data

Conversely, unstructured data refers to information that does not have a distinct, pre-defined
structure. Its distinctive features lie in its versatility and unpredictability with regard to both form and
content. Unstructured data can appear in various forms, including text, images, audio, video, and
other formats. It presents considerable challenges for conventional data analysis methods due to
its complexity, but is gaining growing significance in the realm of machine learning. Illustrations of
unstructured data comprise :

Text Data : This category includes documents, articles, emails, and social media posts. To
extract valuable insights from text data, Natural Language Processing (NLP) techniques come into
play, enabling applications like sentiment analysis, chatbots, and language translation.

Visual Data : Images and videos are repositories of rich information but necessitate the appli-
cation of computer vision techniques for interpretation. These techniques find applications ranging
from facial recognition to the analysis of medical images.

Audio Data : Audio files, consisting of sound waves, serve as valuable sources for speech
recognition, voice assistants, and music recommendation systems.

Sensor Data : In the realm of IoT (Internet of Things) applications, unstructured sensor data
is prevalent and can encompass information from various sensors, including temperature sensors,
GPS, and accelerometers.

Leveraging unstructured data often entails the utilization of deep learning methods, such as
convolutional neural networks (CNNs) for images and recurrent neural networks (RNNs) for text
and speech analysis.
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To conclude, structured and unstructured data serve as the foundational pillars of machine lear-
ning applications. Gaining a comprehensive grasp of their distinct characteristics and disparities
is imperative when it comes to selecting suitable preprocessing methods, feature engineering ap-
proaches, and machine learning algorithms. Proficiency in managing both structured and unstruc-
tured data is indispensable for researchers and practitioners, enabling them to effectively address
a broad spectrum of real-world challenges. In practice, many datasets consist of a combination of
both types, necessitating a diverse tools and approaches to extract valuable insights and patterns.

3.1.3 The Main Stages of the Machine Learning Process

The machine learning workflow generally comprises several key phases, which may exhibit
minor variations depending on the particular problem and methodology. As stated by Ashmore et
al. in their work (17), the process of creating a machine learning-based solution in an industrial
context can be grouped into four primary phases (132) :

Data Management : This stage revolves around the preparation of the data required for construc-
ting a machine learning model. Data is a fundamental part of every machine learning solution. The
success of the solution relies on both the algorithm and the quality of the training and testing data.
Therefore, creating high-quality datasets usually marks the initial phase of any operational machine
learning pipeline. There are three key steps to data management : data collection, data preproces-
sing, and data exploration.

— Data Collection : Data collection is the first step. It’s about finding and understanding the
data available and figuring out where to store it conveniently. The data can be collected from
various sources like databases, files, APIs, or sensors.

— Data Preprocessing : encompasses several essential tasks aimed at refining and struc-
turing raw data for machine learning. These activities involve identifying a data schema,
handling missing values through imputation, simplifying and ordering the data, and conver-
ting it from its raw form into a more convenient format. Additionally, data preprocessing may
entail encoding categorical variables and other essential operations to ensure the data is
prepared adequately for machine learning tasks.

— Data Exploration : often referred to as EDA or Exploratory Data Analysis, entails the prac-
tice of visually examining and analyzing data to acquire insights and enhance comprehen-
sion of its inherent attributes. During this phase, patterns, correlations, outliers, and other
significant information within the data can be identified, leading to a deeper understanding
of the dataset.
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Model Learning : Here, the selection and training of the machine learning model occur.

— Model Selection in machine learning constitutes a pivotal undertaking that revolves around
the identification of the most appropriate algorithm or model structure for a given task. This
process involves a nuanced equilibrium between the intricacy of the model and its perfor-
mance characteristics. the process of model selection typically involves a profound unders-
tanding of the problem domain and the available dataset. Researchers and practitioners
must meticulously consider a multitude of factors, encompassing the dataset’s scale, the
dimensionality of the feature space, computational resources. A diverse array of algorithms,
ranging from straightforward linear regression to intricate deep neural networks, are at one’s
disposal, each bearing its own strengths and limitations. Ultimately, the model choice must
harmonize with the precise objectives and constraints inherent to the machine learning pro-
ject, ensuring the delivery of dependable and meaningful outcomes.

— Training : During the training phase, a machine learning algorithm or model is employed to
discern patterns and connections within the data. This model is exposed to a subset of the
dataset known as the training set, enabling it to acquire the ability to make predictions or
classifications based on input features.

Model Evaluation : The primary objective of this phase is to ensure that the model meets
specific functional and performance criteria.

— Evaluation : Following the training phase, it becomes imperative to evaluate the model’s
performance. Typically, this is achieved by utilizing a distinct section of the dataset (known
as the validation or test set) that the model has not been exposed to during training. The se-
lection of evaluation metrics depends on the nature of the problem and commonly includes
accuracy, precision, recall, among others.

— Refinement : Subsequent to the evaluation findings, there may arise a need to add Hyper-
parameters that include parameters such as (the depth of a decision tree, the number of
hidden layers within a neural network, or the quantity of neighbors in a k-Nearest Neighbors
classifier,...) or to make adjustments to enhance its performance. This is an iterative process
that could involve experimenting with diverse algorithms, conducting feature engineering, or
implementing regularization techniques.

Model Deployment : This stage involves integrating the trained model into the necessary soft-
ware infrastructure to facilitate its execution. Additionally, it encompasses considerations regarding
model maintenance and updates.

— Deployment : After achieving a level of satisfaction with the model’s performance, it can
be rolled out to a production environment, allowing it to provide predictions for new, unob-
served data. The rollout process may encompass the integration of the model into various
platforms, including web applications, mobile apps, or other software systems.
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— Monitoring and Maintenance : Following deployment, it is crucial to continuously monitor
the model’s performance in real-world scenarios. This involves tasks like evaluating its accu-
racy, identifying instances of concept drift (shifts in data distribution), and making necessary
model updates to uphold its continued effectiveness.

— Updating : Over time, as fresh data becomes available, it is often essential to retrain the
model to keep it current and preserve its accuracy. This can be carried out at regular inter-
vals to incorporate the most recent information.

In summary, the machine learning process functions as a repetitive cycle, dependent on conti-
nuous feedback and refinement. This recurring methodology is vital for enhancing the model’s
performance and ensuring its alignment with evolving data and shifting requirements.

3.2 Artificial Neural Networks Strategies for Energy Efficiency

The emerging wireless technology paradigm demands high data rates and supports a wide
array of applications, challenging traditional technology in terms of learning and decision-making
processes. Here are some of the advantages of machine learning over conventional approaches :

— Machine learning significantly enhances learning speed, especially for large-scale problems,
as it can adapt and learn from its data, whereas older techniques are typically hardcoded.

— Machine learning has the ability to acquire knowledge from data, while traditional techniques
are predominantly based on fixed, predefined rules.

— Machine learning possesses autonomous decision-making capabilities, whereas traditional
systems require new sets of instructions for each new function.

— The development of software for new applications is often a costly and time-consuming
endeavor.

However, alongside these advantages, there are also disadvantages to consider when it comes to
machine learning, particularly in the context of training, large-scale processing, security, and the
implementation of research theories at the application level.

Due to the unpredictability in mobile environments regarding information accuracy and the full
understanding of how the environment will evolve, researchers have turned to the model of rein-
forcement learning framework. This approach is employed to tackle stochastic optimization chal-
lenges within wireless networks. Specifically, in scenarios involving sequential decision-making,
reinforcement learning is employed to discover the best strategy by actively engaging with the
uncertain environment through interaction.

Within wireless cellular networks, traditional decision-making problems encompass resource
allocation, user scheduling, and sleep schemes. These tasks carry substantial computational com-
plexity and are of utmost significance due to the dynamic variations in the environment, such as
shifting traffic patterns, interference levels, energy availability, and electricity prices. Finding ways
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to efficiently utilize resources represents a newly emerging challenge. In addition to conventional
methodologies and tools, considerable attention has recently been directed towards Q-learning
solutions (136)(3). For instance, distributed Q-learning-based algorithms have been proposed in
the context of HetNets, where cells learn when to enter a sleep state through interactions with the
environment. The primary objective of these agents, represented by BSs, is to minimize energy
consumption while simultaneously upholding system performance. In studies like (118),(183), the
network is conceptualized as a Multi-Agent Reinforcement Learning (MARL) system, where each
small cell employs a distributed Q-learning algorithm to determine an optimal policy independently,
without reliance on other cells. Nevertheless, due to the absence of coordination among the base
stations (BSs) employing distributed Q-learning, further work was conducted as an extension in
(136). In addition to reinforcement learning, the authors introduced an additional centralized layer
based on neural networks. This layer is responsible for augmenting the distributed Q-learning wi-
thin each small cell by providing supplementary information that influences the local actions to
be taken. These algorithms belong to a category known as Heuristically-Accelerated Multiagent
Reinforcement Learning (HAMRL)(119).

Conventional reinforcement learning encounters a scalability challenge. In simple models cha-
racterized by a limited number of states and actions, reinforcement learning techniques demons-
trate efficiency in discovering optimal policies. However, when dealing with more intricate environ-
ments and tasks, classical reinforcement learning methods fall short. Recently, Deep Q-Learning
(DQL), leveraging deep neural networks, has proven to be a successful approach in augmenting
the learning capability of reinforcement learning for complex tasks (189).

In the research outlined in (122), the authors illustrated the effectiveness of Deep Q-Learning
(DQL) in the context of dynamic power allocation within wireless networks. Their primary objective
was to optimize the weighted-sum rate utility function. To achieve this, they introduced a distri-
buted dynamic power allocation scheme based on DQL, designed to be scalable for extensive
networks. This approach stands out from existing solutions that typically deal with complex optimi-
zation problems. Instead, the authors emphasized how DQL has the potential to effectively address
large-scale network challenges that conventional optimization tools struggle to tackle.

3.2.1 AI/ML Algorithms Designed for Load Prediction

Given the diverse set of features involved in loading prediction, such as current and historical
load data, as well as neighboring cells’ load information, various techniques are being explored
to tailor the prediction model to the specific characteristics of each feature. The research in the
literature focused on predicting network traffic can be categorized into two distinct groups based
on the methods employed : statistical-based approaches and machine learning-based approaches.
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3.2.1.1 Statistical-based Approaches

Statistical-based approaches involve the analysis of network traffic statistics. One commonly
used statistical method for predicting network traffic is the Autoregressive Integrated Moving Ave-
rage (ARIMA) model(20). ARIMA combines the autoregressive and moving average models to
make predictions by considering past time-series values while accounting for non-stationarity. Ho-
wever, ARIMA has limitations, particularly in capturing the seasonality (repeating cycles) of network
traffic. To address this limitation, an extension called Seasonal Autoregressive Integrated Moving
Average (SARIMA) has been introduced(186). Despite their utility, statistical methods like ARIMA
and SARIMA struggle with capturing rapid traffic fluctuations since they primarily rely on historical
data mean values. Furthermore, these methods tend to be linear and may not provide high accu-
racy when dealing with the complex and dynamic traffic patterns often observed in real network
scenarios.

3.2.1.2 Machine Learning-based Approaches

ML-based techniques have emerged as an alternative to statistical methods for network traffic
prediction. These data-driven approaches have garnered attention due to their ability to effectively
model non-linear relationships and leverage the wealth of data collected by base stations (BSs).

However, traditional ML algorithms like k-nearest neighbors (KNN)(117) and support vector
regression (SVR)(175)present certain challenges. They necessitate meticulous parameter tuning
to attain precise predictions. Moreover, these methods are characterized by a limited memory span,
attributed to their constrained parameter sets and computationally intensive nature, which can limit
their potential to enhance prediction precision.

Subsequent research has shifted towards the utilization of recurrent neural networks (RNNs)
to effectively model complex nonlinear sequential patterns. This approach has yielded promising
outcomes across diverse domains, including speech recognition, image captioning, and natural
language processing. Notably, the introduction of the Long Short-Term Memory (LSTM) cell has ad-
dressed the issue of vanishing gradients encountered in traditional RNNs (192). A variant of LSTM,
known as Convolutional LSTM (ConvLSTM), was introduced to enhances spatio-temporal data pro-
cessing by incorporating convolutional neural networks (CNNs)(199), replacing dense connections.
Effective for traffic prediction, it treats data as images but relies on grid-based partitions, limiting
applicability.

Long Short-Term Memory (LSTM) : is a type of artificial recurrent neural network (RNN) used
in deep learning. Unlike standard convolutional neural networks, LSTM can process both individual
data points and sequences of data, making it suitable for tasks such as video or speech analysis.
With its multiple memory cells, LSTM can retain information over lengthy sequences, making it
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ideal for time series data, natural language processing, and speech recognition. Its strength lies in
preserving context over extended periods, making it well-suited for various complex tasks.

The LSTM structure facilitates the understanding of long-term relationships within input time
series data. A distinctive feature of an LSTM unit is its three gates : the input gate, forget gate,
and output gate. These gates control the unit’s functions, considering inputs such as the current
input vector, memory from the previous time-step, and the output from the previous time-step. Non-
linearity is managed through a blend of sigmoid and hyperbolic tangent units, implementing their
respective functions. For instance, in Figure 3.3, a neural network structure consisting of stacked
LSTM units is illustrated.

FIGURE 3.3 : The structure of LSTM’s memory unit.

The Long Short-Term Memory (LSTM) neural network comprises several essential elements :

1. Input Layer : This initial layer receives sequential data as input, which can include time
series data or textual information.

2. LSTM Cells : The LSTM network consists of multiple LSTM cells, each featuring three
crucial gates :

Input Gate : Responsible for regulating the flow of new information into the cell.
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Forget Gate : Manages the decision to retain or discard information from the cell’s
memory.

Output Gate : Dictates which information should be propagated to the subsequent time
step or output.

3. Cell State : This component serves as the memory of the LSTM cell and extends across
time, enabling the network to selectively retain or discard information as required.

4. Hidden State : The LSTM cell’s output, often used for making predictions or relayed to
subsequent LSTM cells in a recurrent manner.

5. Output Layer : In various applications, an output layer is introduced to facilitate predictions
or data classification, leveraging the insights gleaned from the LSTM cells.

6. Activation Functions : Sigmoid and hyperbolic tangent (tanh) activation functions are fre-
quently employed within LSTM cells to govern the behavior of the gates and cell state.

At the core of the unit lies a memory cell, represented by the gray circle, while the known data
serves as the input and the projected outcome Ot as the output. The memory unit consists of three
gates, denoted by green circles : the input gate, the forget gate, and the output gate. Furthermore,
the cell’s status is indicated by St, with the preprocessed data Xt and the previous state of the
memory cell St−1 serving as inputs to each gate.

The confluence points denoted by blue dots in Figure 3.3 represent multiplications, while the
dashed lines symbolize the influence of the previous state. Observing the information flow within
the memory unit’s architecture, we can summarize the state update and output of the memory unit
as follows (205) :

it = σ
(
W (i)Xt + U (i)St−1

)
ft = σ

(
W (f)Xt + U (f)St−1

)
ot = σ

(
W (o)Xt + U (o)St−1

)
S̃t = tanh

(
W (c)Xt + U (c)St−1

)
St = ft ◦ St−1 + it ◦ S̃t

Ot = ot ◦ tanh (St)

Here, ’ ◦ ’ indicates the Hadamard product, with it, ft, and ot representing the outputs of dif-
ferent gates. The new state of the memory cell is denoted by S̃t, St signifies the final state of
the memory cell, and Ot represents the ultimate output of the memory unit. The coefficient ma-
trices, W (i), W (f), W (o), W (c), U (i), U (f), U (o), and U (c), identified in Figure 3.3, play a crucial
role. Through the operations of the distinct gates, LSTM memory units can effectively capture intri-
cate correlation features within time series, both in the short and long term, showcasing a notable
advancement compared to traditional RNNs.
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The gating mechanisms within each LSTM cell empower it to make informed decisions regar-
ding which information is pertinent to retain or forget at each time step. This makes LSTM well-
suited for tasks such as time series forecasting, natural language processing, speech recognition,
and various other applications requiring sequence analysis. Additionally, LSTM networks can be
stacked, incorporating multiple LSTM layers interconnected with one another. This stacking ap-
proach enables the capture of hierarchical features and dependencies within the data, enhancing
the network’s capacity and its performance on intricate tasks.

LSTM became renowned for its capacity to effectively retain long-term dependencies. None-
theless, the intricate architecture of LSTM neural networks often translates to prolonged solution
times. In 2014, GRU emerged as a quicker training alternative, customized for machine translation
due to its simpler design and easy implementation (37).

FIGURE 3.4 : GRU Cells Structure.

GRUs, or Gated Recurrent Units, present an alternative form of recurrent network that im-
plements gating techniques to regulate information flow between cells within the neural network.
GRUs share similarities with LSTMs but with a reduced parameter count. While featuring a reset
gate and an update gate, GRUs lack the output gate. Consequently, the primary distinction between
GRUs and LSTMs lies in the former’s possession of two gates (reset and update gates) compa-
red to the latter’s three gates (input, output, and forget gates). This streamlined structure allows
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GRUs to capture dependencies from extensive data sequences adaptively, preserving information
from earlier segments of the sequence. As a result, GRUs are generally faster to compute, offering
comparable performance (72). While GRUs have demonstrated superior performance on specific
smaller and less frequent datasets, both variants of RNN have proven their efficacy in delivering
the desired results. The standard configuration of GRU cells is displayed in Fig.3.4

In a standard GRU cell, there exist two gates : the reset gate (r) and the update gate (z). Much
like the LSTM cell, the calculation of the hidden state output at time t involves the prior hidden state
and the input time series value at time t, denoted in the equation.3.1 .

ht = f(ht−1, Xt) (3.1)

The role of reset gates in GRUs resembles that of forget gates in LSTMs. Given the numerous
similarities between GRU and LSTM neural networks, we won’t delve extensively into the intricate
formulas. Those interested in exploring this further can refer to (72) for more detailed information.

To address CNN limitations, Graph Neural Networks (GNNs) were introduced. They model
network traffic using a graph representation, achieving a 16% lower MAE(Mean Absolute Error)
compared to LSTM(172). GNNs factor in mobility when predicting events by removing low-weight
edges. Traffic prediction models often require re-training for new or changed scenarios. An auto-
encoder-based model learns compact BS representations from raw data, reducing computational
costs and enhancing generalization(171). The model includes an encoder, spatial adder, and de-
coder, enabling it to infer representations that consider spatial relations with neighboring BSs.
Numerical results demonstrate that this approach allows temporal models to achieve performance
similar to spatio-temporal models, with a minor training time increase.

Transformer : The Transformer architecture represents a revolutionary neural network frame-
work introduced in the paper titled "Attention Is All You Need" by Vaswani et al. In contrast to
LSTM, which relies on sequential processing, Transformers pivot on the concept of self-attention
mechanisms. This innovative approach allows Transformers to concurrently analyze all elements
of an input sequence, endowing them with exceptional parallel processing capabilities suitable for
sequences of varying lengths (short or long). Transformers have played a pivotal role in the suc-
cess of numerous natural language processing tasks, including machine translation and language
modeling.

The Transformer architecture is characterized by its encoder-decoder structure, making it es-
pecially suitable for sequence-to-sequence tasks.

1. Encoder :

Input : Receives an input sequence, such as a sentence in a language.

48



FIGURE 3.5 : The Transformer architecture’s encoder-decoder structure, as presented in the paper "Attention Is
All You Need".
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Processing : The input goes through multiple layers, each comprising two key compo-
nents :
— Self-Attention Mechanism : Aids in understanding the connections between words in

the input sequence.
— Feed-Forward Network : Further processes the data.

Output : Produces an encoded representation of the input sequence.

2. Decoder (for generation tasks) :

Input : Utilizes the encoded representation of the input sequence.

Processing : Similar to the encoder but with some distinctions, including :

— Masked Self-Attention Mechanism : Ensures the decoder only considers preceding
positions during decoding.

— Encoder-Decoder Attention Mechanism : Assists the decoder in concentrating on per-
tinent portions of the input sequence.

Output : Generates an output sequence.

The encoder handles input processing, and the decoder produces the corresponding output, de-
monstrating exceptional effectiveness in sequence-to-sequence applications as demonstrated in
figure 3.5.

3.3 Conclusion

Within the context of future generation networks, machine learning has become an integral
component of AI. Its integration is instrumental in effectively organizing and regulating network
resources, providing efficient solutions for a range of technical complexities in the next-generation
systems. This encompasses the management of device-to-device (D2D) communication, facili-
tation of large-scale massive MIMO, and the efficient administration of heterogeneous networks
equipped with diverse technologies and architectures. In the pursuit of Energy Efficiency (EE) wi-
thin modern networks, dynamic radio cell operation serves a pivotal role. This involves optimizing
radio resource allocation through adaptable measures such as cell activation/deactivation and cell
zooming to cater to fluctuating traffic demands. A comprehensive understanding of evolving user
traffic patterns and mobility behaviors over time is critical for effective implementation. To further en-
hance predictive capabilities, the integration of advanced techniques such as deep Reinforcement
Learning, including LSTM and GRU models, enables more accurate and efficient traffic predictions.
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4 Power Model

4.1 Introduction

Studies have indicated that over 80% of the total power consumption in cellular networks is
attributed to the radio access equipment, particularly Base Stations (BSs) (114). Certainly, a base
station consumes a specific amount of energy to sustain its regular operation, encompassing
energy usage for its circuits, cooling system, and other aspects. The objective of this research
is to minimize the energy consumption of the Heterogeneous network. In this case, by modeling
the electrical consumption of the entire network, we gain a better understanding of which compo-
nents consume more energy than others, which unit is most affected by resources, and what the
impact on the network is in terms of energy efficiency. Therefore, within this chapter, we assess the
power model for each individual component and better control the activation/deactivation strategy.

4.2 BS Power Consumption

All BSs exhibit both dynamic and constant electrical energy usage patterns. The dynamic po-
wer is allocated to signal transmission, while the constant portion supports various operational
functions such as signal processing, cooling, power supply, and backup battery charging (15). It’s
worth noting that the constant and dynamic power of a BS are interdependent. The dynamic power
of a BS significantly impacts the power requirements of components like power amplifiers and co-
oling systems. For instance, research by Fehske (55) demonstrated that reducing a BS’s transmit
power from 20W to 10W results in a reduction in the BS’s electrical power consumption from 766W
to 532W. Figure 4.1 (40) illustrates the power consumption profiles of different sections within BSs.

To discern the right radio architectures that allow such a reduction in power consumption, stu-
dies have indicated that The average power usage of various components within today’s wireless
networks is significantly less compared to the power consumption of the base station component(48),
which clearly shows that reducing the power consumption of the base station has to be an impor-
tant element of our concern. The base station’s overall efficiency, concerning the power it takes
from its suppliers relative to its radio frequency (RF) power output, is controlled by the power
consumption of its diverse components, including the core radio equipment. Fig.4.2 describes a
block diagram of a complete base station with three sectors that can be generalized to all BS
types, including macro, micro, pico and femto BSs. The antennas necessitate four transmit chains,
resulting in a requirement of 12 power amplifiers (PA) per base station.To simplify the illustration,
only one of these 12 transmit chains is depicted in Fig.4.2(75).
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FIGURE 4.1 : Power Consumption Across Different Base Station Components.

The base station consists of the radio part (RF) whose power consumption corresponds to
the amplification components (these devices amplify the transmit signals from the transceiver to
a high enough power level for transmission, typically around 5–10 W), and radio transceiver (the
equipment for generating transmit signals to and decoding signals from mobile terminals). Indeed,
the component that consumes the most is the amplification (161) which depends on the output
power, and itself depends on the needs of the UE-BS distance and the data rate of this user.
It is relevant to note that the power amplifier efficiency for the macro-cell has been assumed to
be 45%, which is in accordance with recently reported efficiencies (35% to 65%) for Doherty PA
architectures, with advanced signal conditioning algorithms, performing at peak load (40), (179).

Considering the HetNet architecture, the modeling of both the macro cell (MBS) and small
cell will be the same. In (7), the author describes the network’s electrical consumption using a
parameterized model that takes into account various factors such as bandwidth, the number of
antennas, macro-BS sectors, and variable RRHs. However, regardless of the granularity of their
model, this makes the on/off switching scheme much more complex. Additionally, they did not
consider the reality of the network being heterogeneous, as we deploy both MBS and SBS base
stations. Therefore, we provide a model that exclusively addresses this architecture.
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FIGURE 4.2 : Base station architecture configured for a three-sector system with four transmit antennas per
sector, enabling MIMO functionality.

The BS is responsible for generating digital signals at the baseband (BB) level and then trans-
mitting them to users through the RF transceiver. With the scaling factor technology, we can cal-
culate the number of operations performed by the BS at the BB level per second per watt, or in
operations per unit (GOPS)/watt, as shown in (4.1). In fact, (43) describes a generic power model
that adapts to the base station hardware (BS type, number of antennas, maximum bandwidth, etc.)
as well as its configuration (traffic load, energy-saving strategies, number of activated antennas,
etc.). They explain how the scaling factor is used in the model. In essence, the power consumed by
the components is derived from a reference power value defined by the supplier and combined with
a set of scaling rules. This allows us to accurately measure the actual energy consumption when
modifying a parameter such as bandwidth or the number of antennas. The document provides se-
veral tables of reference power consumption values and scaling factors. According to (43), there
are six parameters that influence the energy consumption of any base station : bandwidth, spectral
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efficiency (which essentially includes coding rate and constellation order), number of antennas,
frequency domain, and quantization.

PBB =
∑
i∈I

P ref
(i,BB) ×

∏
x∈X

(
xac

xref

)si,x

(4.1)

Here, I represents the set of sub-components of the base station, and X is the set of para-
meters x discussed previously. P ref

(i,BB) is the power consumption of the components in baseband
function load, while xac is the current value of power consumed by the parameters x. xref re-
presents the reference power value, and si,x is the scaling vector set to either 0 or 1. The latter
indicates whether the power consumption of sub-component i is dependent on parameter x or not.

Furthermore, the base station requires an adequate continuous power supply to sustain its
typical operation. Therefore, we should take into account the electrical consumption of the DC-DC
conversion, which is formulated as follows :

PDC,DC =
∑
b∈M

l (ηDC,DC) PBB (4.2)

where l (ηDC , DC) is the loss function for DC-to-DC conversion efficiency, demonstrating that the
converter’s energy consumption is linearly proportional to the power consumption of the BS compo-
nents, and M denotes the set of active BSs in the network. Furthermore, this DC voltage originates
from an AC power source. Therefore, we must account for the energy consumption of AC-to-DC
converters, which is expressed as :

PAC,DC =
∑
b∈M

l (ηAC,DC) × (PDC,DC + PBB) (4.3)

When all these components heat up, it becomes necessary to set up an active cooling unit for
the BS hardware, the AC-DC converter, and the AC-AC converter. The latter is typically the unit
that consumes the most energy, and it is proportional to the energy consumption of all the other
components :

Pcool =
∑
b∈M

lcool × (PAC,DC + PDC,DC + PBB) (4.4)

Therefore, the parameters of the base stations are already defined, and the hardware’s energy
consumption remains constant. Throughout the remainder of the thesis, we will consider it as such
and assign it as Pstatic .

Furthermore, the base station also consists of the radio ( RF ) part, where the power consump-
tion corresponds to the amplification components PA PP A and RF radio PRF . Indeed, the com-
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ponent that consumes the most is the amplification, which depends on the output power, itself is
influenced by the requirements related to the distance between the UE and the BS as well as the
data rate of the user, as indicated in reference (161).

In summary, we define the power consumption of a BS as follows :

P = PRF × Nantennas + PP A + Pstatic (4.5)

However, the amplification power (which is the power consumed by an amplifier), denoted as
PP A for base station bi, depends on the base station’s load and the amplification coefficient ηP A,
according to the following equation :

PP A = Ptx × ρbi

ηP A
(4.6)

where Ptx represents the transmission power per resource unit, and ρbi
is the number of resource

units required to achieve the user’s data rate. Let’s assume that each UE k is served by b1. The
user requires a data rate λk. And let’s suppose that dbi,k is the distance between the UE and BS,
β is the path loss factor, and hbi,k represents the fading effect. Therefore, the received data rate is
calculated as follows :

rbi,k = B × log2

1 +
Ptx × dβ

bi,k
× hbi,k

N0 × B + I

 (4.7)

Given that N0 is the thermal noise, I represents the interference, and B is the bandwidth. In
order to guarantee good QoS by the base station, the following constraint must be ensured :

rbi,k ≥ λk (4.8)

To minimize the system’s energy consumption, we require an optimal resource allocation at
the BS level to avoid resource wastage. Document (129) introduced an algorithm for calculating
the utilization rate and determining the optimal threshold at which activation/deactivation should
be applied. In our case, we propose to apply a brute force search to find the optimal combination.
According to the EARTH model, the electrical consumption of a BS in idle mode does not decrease
because all the BS components remain powered on. Therefore, since we intend to power down the
BS, it is only necessary to include the BS wakeup power. Some studies (130) and (43) consider
wakeup power to be dynamic, proportional to the BS sleep period, which can range from a few
microseconds to a few seconds. In fact, the longer the sleep time, the more components are deac-
tivated, resulting in an increased need for wakeup power. Based on this, the total consumption of
a BS bi during a given period t is :
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Pbi,t = abi,t × Pbi
+ |abi,t − abi,t−1| × Psleep (4.9)

where

abi,t =

1, if base station bi was active during the period t

0, if base station bi was inactive during the period t
(4.10)

Based on the above, Power consumption at BS in LTE can be categorized as static and dynamic
power consumption :

— Static Power Consumption : Static power represents a fixed power consumption that is
purely hardware-based and is required by the base station to support essential operations
(and remains nearly constant). P0 is the power consumption resulting from both site cooling
and signal processing and occurred regardless of whether the BS is transmitting or not.
Energy-efficient hardware designs and smart deployment strategies can mitigate this static
power consumption.

— Dynamic Power Consumption : The dynamic power consumption (also known as commu-
nicational power) relies on the resource utilization of base stations and is directly influenced
by their transmission operations. If the BS is transmitting, the transmit power Ptx is added
to the total power consumption (98).

Therefore, we utilize the EARTH power model (18) in our simulator to estimate the power
consumption of LTE system base stations. The relationship between radio frequency (RF) out-
put power and base station power consumption exhibits almost a linear correlation, enabling a
linear approximation. This power model is described by (4.11) (19) where Ntr stands for the total
number of transceivers, Ptx is the relative RF output power, and δ is the sleep factor (Represents
the cell DTX (Discontinuous Transmission) capacity in LTE networks, with 0 < δ < 1). The power
consumed in the inactive state (sleep state) is constant and equal to δP0, and P0 Refers to power
consumption when there is no load on the RF output power, where P0 ≥ δP0. ∆P Denotes the
slope parameter in the linear model for load-dependent power consumption (corresponds to how
many RBs are transmitted). The ∆P slope is depicted in Figure 4.3 (165).

P = Ntr ×


Ptx + P0, if transmission

P0, if no data transmission

δP0, if sleep mode

(4.11)

As expected, The power consumption differs depending on the type of subframe in an active
subframe. In pinned subframes, there is some power consumption, even if no Resource Blocks
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FIGURE 4.3 : PowerModel

(RBs) are allocated, for transmitting control channels like broadcast, paging, and synchronization.
However, these channels do not need to be transmitted in free subframes. As a result, the baseline
power P0 will be greater for pinned subframes compared to free subframes. It’s also evident that
the maximum power consumed in an active frame (when N RBs are allocated) is independent of
the presence of control channels and remains constant at Pmax. Nonetheless, in the idle mode of
base stations (when they have no active users within the cell and are not transmitting data), only
mandatory reference signals are sent. During this phase, there is a total absence of user plane
traffic, indicating that user data transmission is not taking place. In the case of LTE, all subframes
transmit the CRSs (Cell-Specific Reference Signals).

We can conclude that the power consumption of the BS_ON (in transmission mode) is calcula-
ted as follows :

P = P0 + Ptx (4.12)

where the transmit power Ptx is calculated by the following equation :

Ptx = Prb × nrb (4.13)
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nrb denotes the number of RBs used. Prb represents the power consumed by each RB (Resource
Block) and calculated as follows :

Prb = Ptx/Nrb (4.14)

Nrb represents the total number of RBs.

4.3 Power Model in Sleep Modes

The power consumed during the sleep period corresponds to the power consumed by active
components during that time. In fact, for the BS to be activated, it should not be completely turned
off; it can still consume a certain amount of energy, such as detection power. In (130), they model
the activation/deactivation and energy consumption during wake-up for all types of base stations
based on the depth of sleep 1 (actual deactivation period) in which they define sleep modes in four
states corresponding to the depth of deactivation : 71 ηs, 1 ms, 10 ms et 1 s. Their goal was to find
the optimal deactivation duration corresponding to the traffic profile; this implies that deactivation
and state changes should not exceed the period during which the base station is in sleep mode,
while achieving energy reduction. This could be translated into constraints (4.17) and (4.18).

Let’s assume that we have prior knowledge of the average daily traffic. Therefore, the traffic
arrival process is a Poisson process with an arrival rate of λ and a service time of hB. Additionally,
the active time of the BS corresponds to the distribution of arrival times. Let’s also assume that τ

is the depth of deactivation in seconds, eq.(4.19). According to the document, the average energy
consumption of the base station corresponds to :

E[P ] =
E [Lactive ] Pactive + E [Ldeac ] Pdeac + E

[
Lsleep

]
Psleep + E [Lawake ] Pawake

Lactive + Ldeac + Lsleep + Lawake
(4.15)

where Lactif , Ldésac , Ldésactivation , Lawake correspond respectively to the active service duration,
deactivation, deactivation time, and effective wake-up time. And according to the work (130), the
power consumed during sleep is modeled as follows :

Psleep (τ) = Pm exp
((

−ω1 log10

(
τ ∗ 106

)) 1
ω2

)
+ constant (4.16)

Psleep converges to the constant, which represents the power consumed at a certain sleep
level. ω1, and ω2 are parameters that have values corresponding to different BS types.

In practical terms, the deactivation time should ideally be longer than the transition latency
(4.17). Moreover, for optimal performance, the power consumed during the transition latency and
sleep period should not surpass the power consumption in sleep mode (4.20).
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θ = Lawake

Lawake + Ldeac
> 1, (4.17)

η = Lawake

Ldeac
> 1, (4.18)

τ = Lawake + Ldeac + Lsleep , (4.19)

Pdeac + Psleep + Pwakeup < Pidle (4.20)

.

The numerical results indicate that if increased, they reduce the average energy consump-
tion since they spend more time in sleep mode, resulting in only a marginal impact. However,
if we increase the wake-up time relative to deactivation or sleep, the average power consump-
tion increases. This suggests that we should exercise caution when selecting components to acti-
vate/deactivate when the sleep time falls within the configuration time range (τ and η).

GreenTouch has classified Sleep Modes (SMs) into four distinct levels, based on the grouping
of sub-components with similar transition latency during activation and deactivation. The provided
model allows for the quantification of power consumption in Base Stations (BSs) for each of these
four SMs :

SM 1 : This level considers the shortest time unit, equivalent to one OFDM symbol (approxi-
mately 71µs), encompassing both deactivation and reactivation periods. In SM 1, only the power
amplifier and a few processing components are deactivated.

SM 2 : SM 2 corresponds to a sub-frame or Transmission Time Interval (TTI) duration, which is
around 1 ms. In this mode, a greater number of components enter the sleep state.

SM 3 : SM 3 aligns with the frame unit, spanning 10 ms. During this mode, most components
are deactivated, resulting in reduced power consumption.

SM 4 : The deepest sleep level, SM 4, is characterized by units corresponding to the entire
radio frame, which spans 1 second. This represents the standby mode where the BS is temporarily
out of operation but retains the ability to wake up when needed.

Greater energy conservation can be attained by transitioning Base Stations (BSs) to deeper
Sleep Modes (SMs) because a larger number of components are deactivated. Nevertheless, this
shift comes at the cost of extended transition latency, which could potentially affect the Quality
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of Service (QoS) within the network. Table 4.1 provides an overview of the characteristics of the
different SM levels.

TABLEAU 4.1 : BS sleep mode levels (43)

Sleep level Deactivation duration Minimum sleep duration Activation duration

SM1 35.5 µs 71 µs 35.5 µs

SM2 0.5 ms 1 ms 0.5 ms

SM3 5 ms 10 ms 5 ms

SM4 0.5 s 1 s 0.5 s

However, in reality, and based on a cellular network traffic profile, the collected traffic data is
averaged on an hourly basis. Thus, in our case, an idle period or a period of low traffic extends over
hours. Consequently, in accordance with (4.15), the energy consumption variations during sleep
mode can be considered negligible.

4.4 Energy Efficiency Metrics

Energy efficiency,in its conventional definition, is determined by the ratio of the total transmitted
information to the total power consumption, denoted as Bit-per-Joule. This straightforward metric
has been widely utilized in academic research, as indicated by references [(147),(83),(54),(74),(13),
(25),(146),(202),(106),(101)], owing to its simplicity. However, with the rise of 5G technologies, se-
veral alternative metrics have come to the forefront. We distinguish between two types of communi-
cation scenarios : single-link and network-link. In the case of single-link communication, the energy
efficiency metric is calculated as the ratio between the energy cost incurred and the benefits obtai-
ned after incurring this cost, as illustrated in (4.21). The academic community has explored various
benefit functions, including system capacity (achievable rate), throughput, and outage capacity,
among others.

EE = benefit
energy consumption

[bits/Joule] (4.21)

Metrics for measuring energy consumption and performance trade-offs in energy-efficient de-
sign are classified into three primary categories : component-level metrics, equipment or node-level
metrics, and system or network-level metrics (114). Component-level metrics assess the perfor-
mance of individual wireless communication elements such as power supplies, power amplifiers,
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antennas, and others (12). On the other hand, equipment-level metrics measure the performance
of network access nodes like User Equipment (UEs) and Base Stations (BSs). Network-level me-
trics evaluate the performance of network access nodes with regard to coverage area and expected
Quality of Service (QoS) (131). Table 4.2 outlines commonly utilized metrics in this context.

TABLEAU 4.2 : Sets of energy efficiency measures

Measurement Level EE Metrics References

Component, Node, Network bit/Joule [(147),(83),(54),(74),(13),

(25),(146),(202),(106),(101)]

Node Energy Consumption Index (ECI) [(121),(153),(91),(92)]

Network Global Energy Efficiency (GEE) [(123),(81),(34),(79),(124),

(167),(193)]

Component, Node, Network bit/Joule/Hertz [(177),(125),(200),(30),(196),

(195)]

Node Weighted Product Energy Efficiency (WPEE) [(167),(29)]

Network,Node Area Power Consumption(APC) W/m2 [(121),(145),(143),(137)]

Node Weighted Sum Energy Efficiency (WSEE) [(167),(80)]

Component, Node, Network Energy Consumption Gain (ECG) [(22),(157)]

Node Weighted Minimum Energy Efficiency (WMEE) [(194),(47)]

Node Energy Reduction Gain (ERG) [(91)]

Network Area Green Efficiency (AGE) [(22),(157)]

Component, Node, Network Absolute Energy Efficiency (AEE) [(135)]
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4.5 Conclusion

In this chapter, we have defined and presented the prerequisites necessary for the continuation
of our study. In the following chapter, we introduce the brute force algorithm that inspired our
strategy for activation/deactivation of base stations (BSs) with new proposed metric. In addition,
we present a detailed analysis of our deep learning-driven switching control model, specifically
designed to enhance energy efficiency within 5G networks.
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5 Contributions

An in-depth examination of energy consumption in mobile cellular networks reveals that ap-
proximately 80% of the total energy is consumed by base stations (BS)(82). To address the fore-
seen surge in mobile traffic, 5G networks are taking steps towards extensive densification, placing
a strong emphasis on the deployment of micro and pico base stations (BSs). However, the prolifera-
tion of BSs and the potential addition of antennas at each BS (ultra-massive MIMO) will significantly
elevate network energy consumption, making the on/off switching of BSs a pivotal aspect of 5G.

However, the decision of when and which BS to deactivate is a crucial one, as it must ensure
a certain level of quality of service (QoS) for end-users. In our approach, we propose leveraging
an exhaustive search strategy to optimize the activation and deactivation of BSs. This strategy
seeks to reduce energy consumption while considering the trade-off between power cost and QoS,
adapting to varying user traffic patterns, thus enhancing overall system performance.

This section begins with an overview of the cellular HetNet utilized in our system model. We
then delve into the proposed strategy, including inter-state transition costs and how to exploit it
for formulating the optimal BS on/off switching strategy. Additionally, we provide an extensive ana-
lysis of our deep learning-based switching control model, meticulously designed to boost energy
efficiency in 5G networks.

5.1 System Model

5.1.1 HetNet Architecture

5G network aims to establish full connectivity. And to meet this exponential growth demand in
terms of capacity and throughput, the network has to upgrade its infrastructure. As a result, a dense
deployment of several base stations with different coverage radius has proven to be effective.

To provide a brief overview of the system architecture. Figure 5.1 illustrates a cellular HetNet,
served by M Macro BSs (MBSs) and N Small BSs (SBSs). The macro extends the network co-
verage to this area while SBSs (encompasses Femto, Pico, and Micro cells,) ensure additional
localized capacity at the area edge and in hotspots. We also consider K non-uniformly distributed
user-equipments (UE) changing their positions each TTI.

To calculate the received power, denoted as Pr[dBm], the model that follows has been em-
ployed :
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FIGURE 5.1 : HetNet Architecture.

Pr[dBm] = Ptx[dBm] + PLoss[dB] (5.1)

The received power Pr expressed in dBm is determined by considering the transmitted power
Ptx also in dBm, along with the overall signal losses PLoss. These losses are contingent on the
given propagation area and are calculated as follows :

PLoss[dB] = GA + PA (5.2)

GA represent the overall gain of both antennas, and PA is the spatial transmission losses,
which are computed in the following manner :

PA =
(

λ

2 × π × d

)η

(5.3)

Here d represents the distance to the BS, while η stands for the exponent loss,varying randomly
within the range of [2, 4]. The signal to interference plus noise ratio (SINR) for UE k, is calculated
as :

SINRk =
Prx,i,k̄[W ]∑M+N

i=1 Prx,i,k[W ] − Prx,i,k̄[W ] + Pn[W ]
(5.4)
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Prx,i,k and Prx,i,k̄ denote, respectively, the total power of BS i and its useful payload-carrying frac-
tion (i.e., power portion of the transmit data destined solely to UE k), both received by UE k from
BS i. The summation encompasses the total power received by UE k from all the BSs over the
same frequency, and Pn signifies the noise power calculated in the subsequent manner :

Pn = −174 + 10 log10(BW ) (5.5)

where BW is the bandwidth of BS.

We define b = [b1, b2, . . . , bM+N ] as the vector that characterizes the functioning states of the
BSs, where

bi =

0 if the i-th BS is OFF

1 if the i-th BS is ON
(5.6)

5.1.2 Proposed BS On/Off Switching Strategy

To figure out our multidimensional optimization problem. We need to address some challenges :
The first is to develop a new metric that accounts for both the network energy cost and UEs’ QoS.
Our BS on/off switching strategy will rely on such a metric to make the appropriate choices. If the
latter accounts only for the energy cost, it will result optimally in an all-BSs-Off configuration which
would generate both a bit rate and a total utility null and, hence, a maximum of an optimization
impossible to obtain. On the other hand, if the metric accounts only for QoS, it will result in an
all-BSs-On configuration which is the most expensive in terms of energy. These extreme cases
highlight the incontestable need for a metric that includes both the network’s QoS and the energy
cost.
The second challenge pertains to the fact that our BS switching strategy must exploit both ins-
tantaneous and predicted loads information. The instantaneous load is very useful to cope with
the current network situation while predictions are keys to avoiding the bad impact of the current
decision on the future network condition. To this end, we propose to start with exhaustive research
which aims to optimize the numbers of activated and deactivated BS in a heterogeneous network.
After building the approach to follow, let’s now turn our attention to the cost of transitioning between
states and how to exploit it to implement the optimal BS on/off switching strategy.

5.1.3 Inter-state Transitions Cost : Proposed Metric

As mentioned above, our metric UT must account for both power cost (UP ) and QoS (UQ)
to ensure a trade-off between the user-perceived experience (i.e., network performance) and the
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incurred OPEX cost. Since we are operating an approach reflecting the network conditions at a
different time (i.e. from present to near or even far future), this metric must also be dynamic (i.e.
varying over time). Also, it must integrate any change in constraints and/or parameters as they
evolve or appear over time. In this context, we have designed the following inter-state transition
cost or metric :

UT = (UP )w × (UQ)1−w (5.7)

UT denotes the utility function to be maximized. w is the power cost weight. Note that w in (5.7)
governs the QoS/cost trade-off to meet the operator policies. w = 1 or w = 0 emphasizes the
power or QoS gain, respectively. In such a case, the decisions are made regardless of the QoS or
the power cost. This means that the framework resulting from w = 1 or w = 0 is either all-BSs-off
or all-BSs- on frameworks. The activation/deactivation decision takes into account both the traf-
fic load of a BS and the quality of service of the UE, and generates the re-association of users,
the recalculation of interference and finally the calculation of total consumption. Besides, to ensure
energy efficiency and network throughput, we must simultaneously limit interference between cells.

The power gain UP is measured by the following equation:

UP = PT (b0) − PT (b)
PT (b0) (5.8)

b0 = [1, 1, ..., 1] is the M + N dimensional vector defined in (5.6) (i.e., bi = 1 for i = 1, ...,
M + N ) characterizing the initial functioning states of the BSs when they are all ON i.e., bi = 1 in
(5.6) for i = 1, ..., M + N . PT is the total power consumed by the group of active BSs given by :

PT (b) = N1
tr

M∑
l=1

(
bl

(
P 1

0 + P 1
tx

)
+ (1 − bl) P 1

sleep

)
+

N2
tr

M+N∑
l=M+1

(
bl

(
P 2

0 + P 2
tx

)
+ (1 − bl) P 2

sleep

) (5.9)

where P j
0 and P j

tx stand for the operation and transmission powers costs relative to the l-th BS in
state i, respectively, N j

tr is the number of tranceivers, P j
sleep is the power associated to deactivate

BS for j ∈ {1, 2} (i.e., j = 1 for MBSs and j = 2 for SBSs), and bl is a binary variable that takes the
values 1 or 0 when the l-th BS is "on" or "off", respectively.
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The QoS gain UQ is calculated as:

UQ = Γ(b)
Γ(b0) (5.10)

Γ(b) and Γ(b0) are the average user throughput provided by active stations during a combina-
tion (the composition of on/off BSs) and the maximum throughput (the initial average throughput
provided by the network when all BS are in ON state), respectively,

Highlighting the inherent flexibility and adaptability of our metric(5.7), we can further amplify its
efficacy by introducing supplementary parameters, such as the total number of users served (who
are benefiting from the network). This makes our metric even more impressive and versatile, as
it can handle a wide range of different situations by seamlessly integrating additional factors. This
adaptability means that we can easily adjust when to turn on or off the BS units based on what
the network operator specifically wants. Whether the goal is to save power, increase data (in terms
of throughput gain), or give the users the best experience by considering how many of them are
being served –our strategy remains super flexible, able to meet the different goals of managing the
network. So, our metric goes beyond just being a calculation; it grows into a tool that captures the
impressive ability to adapt and handle the complexities of today’s communication systems.

To improve the quality of experience (QoE) in our approach of BS switched on/off, we have
chosen to introduce a new constraint in the calculation of the metric(5.7) which is represented by
the number of served users :

UT = (UP )w1 × (UQ)w2 × (UC)w3 (5.11)

where UC is the ratio of served UEs. w1, w2, w3 are the power cost weight where w1 + w2 + w3 = 1.
Note that w1, w2, w3 can be modified according to the operator policies (i.e., favoring either the
power, throughput gain (based on link quality), or user experience (based on number of users ser-
ved)) for giving more weight to the Cost, QoS or user experience.

Accordingly, the optimal on/off states can also correspond to the case that equalities hold for
the constraints proposed in the metric calculated using equation(5.11).

5.2 Brute Force (BF) Algorithm

Starting with a brute force (BF), also referred as exhaustive Search (ES) algorithms, in problem-
solving offers a foundational strategy that aids in comprehending the intricacies of a problem. By
meticulously exploring all possible configurations, it establishes a clear benchmark for evaluating
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the efficiency gains achievable through the subsequent optimized algorithms. This initial method
serves as a practical groundwork, demonstrating the feasibility of the switching process and po-
tentially uncovering unexpected complexities. Moreover, it facilitates a clear comprehension of the
network’s behavior and ensures a solid understanding of the problem’s nuances before embarking
on complex optimizations.

Initiating the process with a brute force approach in the context of base station activation and
deactivation, while incorporating a utility function to balance energy consumption and through-
put gains for Quality of Service (QoS) assurance, serves as a foundational step towards effective
network management. By exhaustively analyzing various combinations of base station states, the
brute force strategy establishes a performance baseline that aids in evaluating the effectiveness
and offers the best possible solution for cell switching. Introducing the utility function, which sug-
gests the delicate balance between energy efficiency and network performance, helps into the
decision-making process. This initial stage not only validates the capability of managing base sta-
tions for optimal QoS but also provides a real understanding of the interplay between energy consi-
derations and data throughput.

In this regard, the purpose is to find a partition that groups together the most well-used base
stations and minimizes the sum of energy consumption while maintaining the quality of service.
Our metric (5.7) accounts for both power cost (conventional or green) and QoS where the trade-off
between the user-perceived experience (i.e., network performance) and the incurred OPEX cost is
factored according to the user traffic.

Nonetheless, with a growing number of base stations, the computational complexity escalates
exponentially, the brute force approach becomes computationally intensive and impractical. Here,
machine learning algorithms step in, leveraging historical data and patterns to predict optimal
base station configurations. These algorithms adapt to evolving network conditions, optimizing
QoS while minimizing energy consumption. Through predictive analytics, it can forecast traffic pat-
terns and energy requirements, ultimately enhancing QoS while accounting for energy constraints.
Thus, while a brute force approach clarifies fundamental dynamics, machine learning algorithms
offer scalability and adaptability to handle the dynamic and data-intensive nature.

In our case, before adopting our machine learning-based approach for prediction, we initially
used the ’brute force’ method as a reference, considering its exhaustive nature and its ability to
provide perfect solutions. The ’brute force’ method is thus perceived as a practical benchmark,
representing the limit of prediction accuracy in a context where an exhaustive solution is known.

However, to establish a connection between our deep learning approach and the theoretical
foundations of statistical estimation, we introduce the concept of the Cramér-Rao Lower Bound
(CRLB). The CRLB represents a theoretical limit on the accuracy achievable by any unbiased esti-
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mator in the field of statistical estimation. While our ’brute force’ method acts as a practical bench-
mark, the CRLB provides a theoretical perspective on the best theoretically possible accuracy in a
statistical framework.

Thus, considering the CRLB as a conceptual link, our choice to use the ’brute force’ method as
a practical benchmark to assess the performance of our deep learning approach is justified. When
our prediction model achieves perfect accuracy, it approaches the performance of the ’brute force’
method, reinforcing the validity of our approach in relation to the theoretical limits defined by the
CRLB.

The synergy between initial brute force analysis and subsequent machine learning empowers
efficient, adaptable decision-making in complex, dynamic telecommunications environments.

5.3 Deep Learning Switching Control

Despite offering an optimal converging solution, the brute force approach detailed in previous
section necessitates excessive computational resources and time. Hence, we believe that em-
ploying deep learning (DL) represents an excellent resolution. This is because an adept neural
network, trained on data generated through the previous algorithm, can yield comparable out-
comes. Nevertheless, this process is expected to be less resource-intensive and faster in terms of
computation.

5.3.1 Core Framework

In the realm of deep learning, an algorithm processes a dataset comprising input information
and the corresponding anticipated output values. Through this process, it aims to comprehend the
underlying patterns, allowing it to apply this understanding to new and unseen inputs. To uncover
these patterns, deep learning utilizes Artificial Neural Networks (ANNs), which are constructed with
interconnected nodes organized into layers including input, output, and hidden layers. These layers
contain neurons responsible for producing output based on input values (x), weights (w), and bias
(b). It can be mathematically described as z(i) = w∗x(i)+b. Notably, the model refines these latter
components during training. Usually, the Gradient Descent (GD) technique is employed, which
involves updating the weights and bias through hundreds or thousands of iterations(73). In each
iteration, these elements are updated in proportion to a learning rate, a parameter that governs the
speed at which the algorithm learns, ultimately moving towards the desired outcome.

To determine the adequacy of the weights, the neural network forwards its inputs through to
its outputs and assesses the predictions by comparing them to the expected values. This evalua-
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tion can involve utilizing a loss function such as "Mean Squared Error" or even more convoluted
functions like the one provided below :

L(ŷ, y) = −y × log(ŷ) − (1 − y) × log(1 − ŷ) (5.12)

Here, ŷ represents the prediction and y signifies the expected value. The objective is to reduce
this function’s value by modifying the neural network’s weights.

Epoch and Batch size : epochs are defined as complete passes through the training dataset,
while the batch size determines the number of samples processed simultaneously through the
network before the model is updated. An increase in the number of epochs can aid in reducing
losses.

5.3.2 Strategic Design of Learning Framework

Undertaking a pioneering initiative to enhance energy efficiency in wireless networks, our re-
search endeavors to employ deep learning techniques to train a pair of neural networks.

FIGURE 5.2 : System design.

The first neural possesses the capacity to incorporate a wide range of input parameters (inclu-
ding factors such as Number of users, Received Power, Distance from BS, Neighbouring BS, load
en devices, Transmitter location...) to predict non-critical base stations and subsequently generate
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base station status outputs. This algorithm provides binary assessments for each individual base
station, thereby categorizing their operational state as either ’ON’ or ’OFF’.

The second neural uses the output of the first neural as input parameter to provide the user
associations to the base stations offering a comprehensive resolution for enhancing energy ef-
ficiency within HetNet networks. This harmonious approach yields an all-encompassing solution
that greatly contributes to the amplification of energy efficiency, ultimately resulting in a significant
reduction in power consumption.

To construct our model, we employed the MATLAB programming software, utilizing our pro-
grammed 5G simulator. The schematic representation of our proposed model is depicted in Figure
5.2. The parameter values (mentioned in green color) chosen for constructing our first Neural Net-
work as a first step. However, other parameters mentioned in blue will be tested in our future work
for better performance

To facilitate the training of our model, we initially generated a dataset that incorporated diverse
parameters, such as the number of users, received power, distance from BS, Neighbouring BS,
transmitter power, etc. This dataset was created by running MATLAB code for parameter genera-
tion multiple times. Subsequently, the network, as described earlier, experienced training using this
dataset. These generated parameters were then categorized into the optimal BS combination by
using DL.

As we previously introduced the idea of incorporating a second neural network into our system,
the initial neural network’s results can provide a solid input parameter to the second neural network.
The first neural helps identify which Base Stations (BS) remain active/inactive. Additionally, these
results can further refine the accuracy of this second neural network. With this approach, our
objective is to rely solely on deep learning to comprehensively configure the network. In essence,
the output of this neural network will determine the associations between users and Base Stations
(BS).

Regarding the configuration of our deep learning approach, our initial testing involved setting
up the neural networks across three different models (LSTM, GRU, and the configured Fused
model). The objective was to identify the optimal model that could enhance energy efficiency while
preserving service quality.

The selection of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) as re-
current neural network (RNN) architectures for predicting off-base stations and enhancing energy
efficiency in wireless networks is deliberate and distinguishes them from other machine learning
models. Specifically designed to mitigate the vanishing gradient problem, LSTMs and GRUs excel
in handling sequential tasks like time series prediction. LSTMs leverage a complex memory cell
structure for capturing prolonged dependencies, while GRUs employ a simpler architecture with
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gating mechanisms, potentially leading to quicker training and improved performance on tasks
with shorter dependencies. The preference for LSTM and GRU over other machine learning mo-
dels stems from their innate ability to effectively model temporal dependencies, a critical factor in
addressing the dynamic nature of wireless network data. This deliberate choice underscores the
strategic decision to employ RNN architectures tailored for sequential data, setting them apart as
more apt solutions for the intricacies involved in predicting off-base stations and optimizing energy
efficiency in wireless networks.

The LSTM and GRU models were described in Chapter 3/Section 2 (for more comprehensive
details, please refer to (59)), while the fused model will be elaborated on in the following section.

5.3.3 Fused Model Description : A Deep Multimodal Learning

FIGURE 5.3 : Fused Model Structure.

To improve our system’s performance, a deep learning multimodal model (DML) was construc-
ted with inspiration drawn from the methodology presented in the article "Deep Multimodal Lear-
ning : Merging Sensory Data for Massive MIMO Channel Prediction" by Yang et al.(188). While we
selectively adopted a segment of their model, we took a distinct approach in formulating a novel
architecture. Illustrated in Figure 5.3, our model integrates a series of LSTM models with Dense
layers, incorporating LeakyReLU activation functions, to effectively forecast the state of base sta-
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tions. Notably, our approach leverages the received power as the input for the LSTM sequences,
while the user association serves as the input for the Dense layer with LeakyReLU. This fusion of
diverse data streams enables our model to capture intricate patterns and deliver accurate predic-
tions in complex, real-world scenarios.

Comprising two networks, the fused model incorporates multiple LSTM (Long Short-Term Me-
mory) layers in the first network, designed for analyzing time series data and capturing temporal
patterns. The second network includes several dense layers, each employing the LeakyReLU func-
tion, with the exception of the output layer, which serves as the activation function. As shown in
Fig.5.3, the concatenated network combines the outputs of the two models, which in turn consist of
dense layers with the LeakyReLU function, effectively integrating these modalities at the decision
levels.

The dense layer, also referred to as a fully connected layer, represents a fundamental type
of neural network layer. It involves each neuron within the layer being connected to every neuron
in both the previous and subsequent layers. This layer is characterized by its use of weights and
biases to learn intricate patterns within the data during the training process. It is commonly used
in various deep learning models for tasks such as classification, regression, and feature learning.

FIGURE 5.4 : Dense Layer Structure.
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The mathematical representation of the dense layer is given by FDen (x) = wdx + bd, where
wd represents the weight and bd denotes the bias associated with the dense layer.

In general, LSTM layers are specifically designed for handling time series data and capturing
temporal dependencies, while dense layers with LeakyReLU activation functions are more general-
purpose layers used for feature extraction and non-linear mapping in neural networks.

The LeakyReLU activation function is a variation of the rectified linear unit (ReLU) commonly
integrated into neural networks. It operates by applying a non-linear transformation to the outputs
of network layers. Mathematically, the LeakyReLU function is defined as FLR(x) = max[x, 0.2x],
where x represents the function’s input. By introducing a slight slope (0.2) for negative values of x,
it allows some information to flow even when the input is negative. This prevents the occurrence of
the "dead ReLU" phenomenon, where neurons can become inactive, impeding learning. The im-
plementation of the LeakyReLU activation function, instead of the standard ReLU, aims to enhance
the neural network’s performance and learning capabilities.

In summary, the fused model (FM) using LSTM and Dense layers, with dense layers followed
by the LeakyReLU function, will be utilized to predict the combination of on-off base stations using
power received and user associations as inputs by training the model on a dataset that includes the
power received and user associations as input features and the on/off base station combinations
as the target labels. The LSTM layers in the model can capture the temporal dependencies in the
input data, while the Dense layers with LeakyReLU activation functions can introduce non-linearity
and learn complex patterns in the data. By training the model on a sufficiently large and diverse
dataset, it can learn to predict the on-off base station combinations based on the given inputs.

5.4 Conclusion

The results from the simulations demonstrate that architectures based on DML (Deep Multi-
modal Learning) offer notable advantages over those based on a single modality in most scena-
rios. These findings underscore the effectiveness of the proposed framework in improving energy
efficiency by efficiently managing the ON/OFF switching of base stations in response to traffic
fluctuations, thereby providing valuable support to current wireless communication systems.
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6 Performance Analysis and Simulation Results

To evaluate the performance of our proposed algorithms, a simulation platform is developed,
which defines the structure of our work, we will explain the established channel models, the plan-
ning of the association of users in our simulator as well as the parameters used for our simulations.
Finally, we present the results and analyze the performance of our approach.

6.1 Simulator Description

FIGURE 6.1 : Simulator Structure.

For our simulator, we opted for a simulator based on LTE as our concern is mainly based on the
downlink signal and the fact that 5G uses the same signal as LTE. Our signal frame would be an
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OFDM with 7 symbols and 1 ms TS (Time slot). In addition, as our network being heterogeneous,
we are deploying micro and macro base stations to improve the quality of service for users. Thus,
our simulator should take into account both environments.

To implement and deploy our network, we will simulate our local HetNet on two levels : Link level
simulation (LLS) which concerns the radio channel between the transmitter antenna and the recei-
ver antenna where we generate a channel model that covers the propagation of urban macro and
micro-cells as well as system-level simulations (SLS) that represent the functionality between BS
and UE. In this layer, we describe resource allocation, and user association which would provide
us with enough data (such as SINR and throughput) to assess the performance of our network.
Thus, our simulator will provide us with key performance indicators that we need for our energy
efficiency approach.

Fig. 6.1 represents a graph describing the sequence of the construction process of our simu-
lator. The measurement of the quality of the channel between the surrounding base stations and
the users leads us to generate a channel at each TTI. To this end, we will calculate the quality of
the channel for different TTI scenarios for more than one hour and average these results to have a
statistical channel average.

Channel Model :

The channel model definition comprises two types of fading : large-scale fading (LSF) and
small-scale fading (SSF). LSF occurs when an obstacle comes between the receiver and the
transmitter. However, the signal power experiences significant fluctuations due to two components
of LSF : path loss and shadowing. As for small-scale fading, the received signal undergoes rapid
fluctuations over short durations and distances.

Our path loss model is based on the COST Hata propagation model, which is well-established
for urban propagation scenarios in systems operating within frequency ranges up to 2GHz. Both
path loss and shadowing effects depend on the user equipment’s changing position over time. In
contrast, small-scale fading is a time-dependent model.

In our simulator version, we will rely on the Rayleigh channel model for a two-antenna trans-
mission mode, generating channel coefficients for each UE-BS connection. Nevertheless, the com-
plexity of generating these coefficients for a single scenario grows exponentially with the total num-
ber of links between a user and all antennas. To mitigate this computational complexity, we will
pre-generate channel coefficients solely for the N closest base station antennas to a user and
create links as required.

To achieve a more detailed understanding of small-scale fading effects quickly and with redu-
ced complexity, we can pre-generate channel coefficients for different delay and angle of arrival
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scenarios offline. This approach allows us to obtain a statistically realistic measurement of the
channel’s state during an entire hour by averaging these realizations.

TABLEAU 6.1 : Simulation Parameters

Parameters Macro BS Pico BS
Carrier frequency 2 GHz 2 GHz
Bandwidth 20 MHz 20 MHz
Maximum number of RBs Nrb 100 100
Transmission power 46 dBm 22 dBm
Coverage radius 1 Km 100 m
Pbase 260 W 6.8 W
Psleep 218.4 W 4.3 W
Number of antennas 2 2
Antenna height 30 m 6 m
Mobile user height 1.5 m 1.5 m
TTI 0.001 s 0.001 s

Tab. 6.1 summarizes all the parameters used in the simulation of network deployment. As des-
cribed, we used an LTE simulator to generate macro-cells positioned according to a hexagonal
architecture, then it randomly distributes Pico sites and users within each macro coverage region.
During the simulation, each user can be attached to the cell providing the best RSRP (Reference
signal Receive Power), but since the user moves at each TTI, we find ourselves in the case where
the user requests a transfer periodically. To avoid this, however, we averaged the condition of the
channel for one hour.

6.2 Simulation Results

6.2.1 Brute Force Algorithm Results

For the sole sake of simplicity, we started with a network of hexagonal architecture that deploys
3 MBSs and 2 SBSs, and 50 stationary UEs per MBS (i.e., 511 maximum number of combinations
equals to all possible switching). The MBS is placed in the center of the hexagon, whereas the
SBSs are randomly positioned as shown in the Fig. 6.2.

By analogy with our work, our approach aims to find the transformation (on/off) which would
maximize the cost expressed by equation (5.7).

Fig. 6.3-a shows the cost function (5.7) for different values of the power weight w. This metric
explains both the reduction in power and the gain in QoS. Indeed, a high value of w means that
the power reduction prevails over quality of service. In this regard, we have launched the search
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FIGURE 6.2 : Distribution of users in the cellular network

for each of the values of w = 0.1, w = 0.5, w = 0.7, and w = 0.9 in order to analyze the behavior of
the search when power or QoS takes priority.

For the given values of i_max = [50 : 50 : 511], Figs. 6.3-a and 6.3-b represent the uti-
lity function UT as a function of w. Iopt indicates the optimal number of iterations in the interval
I = [1,i_max] where we obtain the maximum value V-max of the utility function.

In Fig. 6.3-a, the maximum value of UT (when w = 0.1) is recorded with only 2 MBS in the
ON state, while for w = 0.5/w = 0.7 the maximal value is recorded with 3 SBSs at on state ,
and for w = 0.9 with the combination of 2 SBSs in on state. Equally in Fig. 6.3-b, the maximum
value of UT (when w = 0.1)is recorded with only 2 MBSs and 1 SBS in the on state, while for
w = 0.5/w = 0.7 the maximal value is recorded with 4 SBSs at ON-state, and for w = 0.9 with
the combination of 3 SBSs in ON-state. Therefore, it can be concluded that the number of BS in
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(a) Utility function (5.7),for several values of w. (b) Utility function (5.7), for several values of w.

(c) Non served UEs. (d) Non served UEs.

FIGURE 6.3 : (a), (c) are the results of the network deployment with 3 macro-cells, 2 pico / cell for 50 UEs/cell,
and (b), (d) for 100 UEs/cell

ON-state increases with the increase in the number of users.

From Figs. 6.3-c and 6.3-d, we note that the number of unserved users increases at the level
of combinations where the number of base stations in the off state is high, which explains that the
association of users is carried out according to the availability of RBs. The high value of w (w ≥ 0.5)
means that the reduction in power is factored than quality of service, which prove the increase in
the number of unserved users with the increase of w value. Moreover, For the deployment of 50
UE / cell (Figs. 6.3 (c)), we infer that the number of unserved users is lower than that recorded in
the deployment of 100 UE cell (Figs. 6.3 (d)).
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(a) UQ vs. w. (b) UQ vs. w.

(c) UP vs. w. (d) UP vs. w.

FIGURE 6.4 : (a), (c) are the results of the network deployment with 3 macro-cells, 2 pico / cell for 50 UEs/cell,
and (b), (d) for100 UEs/cell

Figs. 6.4-a, 6.4-b, 6.4-c, and 6.4-d indicate the results, with respect to the gain in QoS and po-
wer, for two different configurations of users’ number used. However, each combination amounts
to a possible switching solution for different values of w.

We realize that the solutions depend on different values of w. However, according to Figs. 6.5
(a), (c), we notice that the solutions retained, when w ≤ 0.5, guarantee the QoS and even find an
optimal solution which improves the throughput by 5 to 20%. Indeed, the algorithm leans towards
the switching of underused base stations which induces the reduction of interference on the rest
of the active base stations increasing the total QoS of the network. At the same time, the power
gain is no better than that guaranteed by w > 0.5 since the algorithm tends to turn off more base
stations, including non-used BSs, which decreases QoS.
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(a) UP as a function of several values of w. (b) UP as a function of several values of w.

(c) UQ as a function of several values of w. (d) UQ as a function of several values of w.

FIGURE 6.5 : (a), (c)are the results of the network deployment with 3 macro-cells, 2 pico / cell for 50 UEs/cell,
and (b), (d)for100 UEs/cell

Let us consider a network that deploys 7 MBSs and 1 pico-BS (i.e., 16383 the total number of
combinations which is equivalent to all possible commutations) as illustrated in Fig. 6.6.

For the given values of imax = [1000 : 1000 : 16383], Fig. 6.7-a and Fig. 6.7-b represent the
utility function UT as a function of w. I-opt indicates the optimal number of iterations in the interval
I = [1,i_max] where we obtain the maximum value V-max of the utility function.

We draw the same conclusions in the case of a deployment of 7 Macro-BS and 1 pico-BS. In
Fig. 6.7 (a), the maximum value of UT (when w = 0.1) is recorded with only 4 MBS in the on state,
while for w = 0.5and for w = 0.7 the maximal values are recorded with 7 SBS, 6 SBS at on state,
respectively, and for w = 0.9 with the combination of 4SBS in on state. Equally in Fig. 6.6 (b), the
maximum value of UT (when w = 0.1) is recorded with only 6MBS and 1 SBS in the on state, while
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FIGURE 6.6 : Distribution of users in the cellular network with hexagonal architecture

for w = 0.5, w = 0.7, and w = 0.9 the maximal value is recorded with 7 SBS at ON-state. Thus, it
can be concluded that the number of BS in ON-state increases with the increase in the number of
users.

In order to simplify our exhaustive research, we have observed that the curves of the QoS gains
(as indicated in Figs. 6.8 (a), (b)) have a cyclical shape. A study of the highest values of UQ (As
shown below) was made to figure out if they have any common characteristics.

This study confirmed that all high values of UQ are recorded when all Macro base stations are
in the on state. With this analysis, we can reduce our search process by keeping all macro BSs
(MBS) in ON-state and activating the process of switching through the pico BSs (SBS).
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(a) Utility function(5.7), for several values of w. (b) Utility function(5.7), for several values of w.

(c) Non served UEs. (d) Non served UEs.

FIGURE 6.7 : (a), (c) are the results of the network deployment with 7 macro-cells, 1 pico / cell for 50 UEs/cell
and (b), (d), for100 UEs/cell.

keeping all MBS active, will maintain a general coverage to the network. Therefore, it will bring
better performance and ensure good quality of service.

Brute force method involves exhaustive computation and evaluation of every possible solution,
which becomes impractical as the problem’s complexity increases, particularly in scenarios like
optimizing base station configurations where the number of variables multiplies exponentially. In
contrast, the proposed DL algorithm introduce a data-driven approach. By using historical data
and patterns, it can learn to recognize underlying relationships and make predictions based on this
acquired knowledge. In the context of base station switching optimization, the deep learning (DL)
algorithm uses a dataset that incorporates various parameters and environmental factors to intel-
ligently predict optimal configurations, greatly reducing the computational burden while achieving

83



(a) UQ with 7 MBS / 1SBS.. (b) UQ with 3 MBS / 2SBS.

FIGURE 6.8 : UQ per combination for the network.

better results.

6.2.2 Deep Learning Approaches Results

6.2.2.1 Related Work

Inspired by the novel solution proposed in the related work (73), which aims to enhance the
energy efficiency of wireless networks through machine learning, our research undertakes a si-
milar exploration. The authors of the benchmarked work have trained neural networks to forecast
which base stations can enter a sleeping mode and predict user-base station associations. The
primary objective of this approach is to reduce energy consumption. In the first neural network, the
input is the normalized bit rate between the users and the base stations (BS). This information is
exchanged between the mobile phone and the BS before pairing. For the second neural network,
the input comprises two parts. The first part is the normalized bit rate between the users and the
BS. The second part is the output of the first neural network, which provides information about
which BS should be turned on and which ones should be turned off. However, The limitations of
this work used as a benchmark include potential constraints in addressing real-world scenarios,
variations in network conditions, and scalability concerns. Additionally, the generalization of the
proposed solution to diverse network architectures and configurations may be limited.

The limitations of the related work include :
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Accuracy : The proposed learning framework combines two neural networks to estimate the
base station (BS) state and predict user-BS associations. While this approach provides speed, It
doesn’t achieve a high accuracy level when compared to a centralized algorithm.

Number of Users : The algorithm is designed to optimize performance when the number of
users is between 100 and 200. When there are fewer than 100 users, only the main BS is turned
on, and when there are more than 200 users, all BSs are turned on. This means that the algorithm
may not be suitable for scenarios with fewer than 100 or more than 200 users.

Fixed Array Size : The input array used for training the neural networks has a fixed size, which
may not accurately represent the varying number of users in real-time. However, in real-world
scenarios, the number of users and base stations may vary dynamically, which could impact the
performance of the model. If there are fewer users at a given moment, their input values will be set
to 0, potentially affecting the accuracy of the predictions.

The same power for the macro BS and small BS have been used in their model, both the macro
base station (MBS) and the small base stations (SBS) had a power usage of 40dBm. The power
consumption of the base stations is stable, regardless of the fluctuation in data traffic. So, this leads
to a waste of energy in the network access.

The limited scale of the network deployment (1 MBS 10 SBS) may restrict the generalization
of the findings and the applicability of the proposed model to larger, more complex network confi-
gurations. Real-world wireless networks often comprise a more extensive array of base stations,
covering diverse geographical areas and accommodating varying user densities and traffic pat-
terns.

Acknowledging the limitations inherent in the benchmarked work, our research embarks on the
development of new strategies aimed at addressing these constraints. Recognizing the challenges
posed by real-world scenarios in wireless networks, we conduct a thorough exploration employing
various deep learning (DL) models. This comprehensive testing of diverse DL architectures is un-
dertaken with the specific goal of achieving enhanced performance in practical, real-world wireless
network environments. By adapting different models, our research seeks to overcome the identi-
fied limitations and provide novel insights that contribute to the advancement of more robust and
adaptable solutions for optimizing the energy efficiency of wireless networks.

Concerning the configuration of our deep learning approach, we initiated our testing by confi-
guring the initial neural network across three different models (LSTM, GRU, and the Fused LSTM
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and dense layers). Our objective is to identify the optimal combination of base station statuses that
enhance energy efficiency while preserving service quality. To analyse the performance, different
scenarios will be compared.

In our analysis of the LSTM and GRU models, we conducted tests using the received power
or Signal-to-Interference-plus-Noise Ratio (SINR) as input parameters. Notably, we observed that
both parameters yielded the same results. However, in the case of the fused LSTM model, we
opted for a combination of input parameters. Specifically, we utilized both the received power and
the associations of User Equipment (UEs) to the corresponding Base Stations (BS) as inputs. This
decision was motivated by the need to capture a more holistic view of the network dynamics, en-
abling the model to glean insights from multiple dimensions simultaneously and thus potentially
enhancing its predictive capabilities.

The first scenario comprises 1 MBS, 2 SBS, and N users distributed randomly. The results of
this part are briefly summarized in Tab. 6.2, Tab. 6.3, and Tab. 6.4. The results are categorized
into two groups in Tab. 6.2 : In the first group, the number of users remains constant at 100 users
per macro base station. In contrast, in the second group, the number of users varies randomly
within the range of [1, 300]. The Tab. II presents the performance evaluation of three distinct mo-
dels (LSTM, GRU, and fused LSTM) tested on a dataset comprising 10,000 samples. The table
displays the training and testing accuracy values for various settings of the parameter "w" (is the
power cost weight indicated in equation (5.7)). Notably, the results indicate a higher accuracy for
the UE (User Equipment) variable compared to the UE fixe (Fixed User Equipment=100 UEs), si-
gnifying that the models effectively learn with variable user data. Furthermore, it is evident that the
fused LSTM model consistently outperforms both the LSTM and GRU models across all values of
w showcasing its superior learning capabilities.

We note that the results for w = 0.5 and w = 0.9 exhibit inferior performance compared to
w = 0.1 when considering the throughput gain. This finding suggests that a lower value of w

optimizes the throughput gain, emphasizing the importance of parameter selection in achieving
desirable performance metrics.

The comparative Tab. 6.3 presents the results obtained of the three models, considering da-
tasets of both 10,000 and 50,000 samples, with a focus on the parameter ”w = 0.1” for the UE
variable. The results underscore the substantial impact of increased data volume, with all three
models displaying enhanced performance metrics when trained on the larger dataset. Specifically,
the LSTM model achieves an accuracy of 94.24%, while the GRU model attains 94.95%, and the
fused model remarkably outperforms both, yielding an impressive accuracy of 99.10%.
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TABLEAU 6.2 : Training and testing accuracy, 10.000 samples, 800 epochs

LSTM Model
UEs per cell 100 Variable
w Train Test Train Test
0.1 95.81% 92.43 % 92.85% 86.90%
0.5 80.29% 66.85% 91.19% 85.68%
0.9 80.20% 66.45% 90.39% 84.53%

GRU Model
UEs per cell 100 Variable
w Train Test Train Test
0.1 96.75% 91.76% 93.71% 85.70%
0.5 81.54% 67.11% 92% 85.78%
0.9 82.88% 66.08% 91.30% 84.38%

Fused Model
UEs per cell 100 Variable
w Train Test Train Test
0.1 100% 93.43% 98.99% 88.52%
0.5 100% 68.83% 98.99% 87.38%
0.9 100% 68.53% 99.19% 87.22%

Tab. 6.4 compares the performance of the three models, trained on datasets comprising 10,000
and 50,000 samples. Notably, the focus is on the ”w = 0.5” parameter for the UE fixe=100UEs.
The consistent trend within the results showcases an evident performance improvement with lar-
ger datasets. Specifically, the LSTM model achieves an accuracy of 91.32% when trained on the
50,000-sample dataset. GRU model’s results closely resemble those of the LSTM model, while the
fused LSTM model outperform both LSTM and GRU model and reach approximately 100%.

These findings underscore the significant impact of larger datasets on the overall performance
of the models, indicating that a higher volume of data facilitates a more comprehensive learning
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TABLEAU 6.3 : Training and testing accuracies

w = 0.1
Samples 10000 50000
Model Train Test Train Test
LSTM Model 92.85% 86.90% 94.24% 94.24%
GRU Model 93.71% 85.70% 94.95% 94.95%
Fused Model 98.99% 88.52% 99.10% 99.10%

TABLEAU 6.4 : Training and testing accuracies

w = 0.5, 100 UEs

Samples 10000 50000
Model Train Test Train Test
LSTM Model 80.29% 66.85% 91.32% 91.32%
GRU Model 81.54% 67.11% 93.92% 93.92%
Fused Model 100% 68.83% 100% 100%

process, leading to improved predictive accuracy and reliability.

In the second scenario, we adopt the same configuration (1MBS and 10 SBS with a fixed
number of 150 UEs) as used in reference (73) to demonstrate the performance of our results
based on various criteria.

TABLEAU 6.5 : Accuracy with 1000 samples

w = 0.1, 150 UEs

Epochs LSTM/GRU Model Fused model
10 81.63% 100%
800 100% 100%

Tab. 6.5 presents the accuracy results for 1000 samples across the three distinct ML models,
highlighting the impact of different epoch values on performance. In the context of ML, epochs re-

88



present the number of times a learning algorithm undergoes training on the entire dataset. Notably,
the findings reveal that while the LSTM and GRU models achieve a perfect 100% accuracy with a
higher epoch value of 800, they only reach a modest 81.63% accuracy with 10 epochs. In contrast,
the proposed fused model notably outperforms the model described in (73), which achieved only
93% accuracy, swiftly attaining 100% accuracy with just 10 epochs.

TABLEAU 6.6 : Accuracy with 10.000 samples

w = 0.1, 150 UEs

LSTM/GRU (50 epochs) Fused Model (4 epochs)
100% 100%

Moreover, Tab. 6.6 confirms that with a larger dataset (10000 samples), both the LSTM and
GRU models can achieve 100% accuracy with just 50 epochs, compared to 800 epochs as shown
in Tab. V with a smaller dataset. In contrast, the fused model can achieve 100% accuracy with only
4 epochs.

These results underscore the superior learning capability of the fused model, highlighting its
potential to achieve optimal performance in the given context. Moreover, the reduced number of
epochs not only ensures superior accuracy but also effectively reduces the model’s complexity,
emphasizing the efficiency and practicality of the proposed fused model.

The limited scale of the network deployment may restrict the general applicability of the pro-
posed model to larger, more complex network configurations. Real-world wireless networks often
comprise a more extensive array of base stations, covering diverse geographical areas and ac-
commodating varying user densities and traffic patterns. By using a relatively small-scale network
setup, the study might not fully capture the challenges and dynamics associated with managing
energy efficiency in more extensive and heterogeneous network environments. Additionally, the
specific characteristics of a network with only one macro and 10 small base stations may not
adequately represent the complexities and intricacies of practical network deployments, potentially
limiting the model’s ability to handle diverse network topologies and traffic variations effectively.

To enhance the robustness and reliability of the proposed approach, we explore the implications
of the model when applied to larger and more diverse network configurations. Scaling up the study
to encompass a more comprehensive range of base station types, network sizes, and geographical
distributions would provide a more comprehensive understanding of the model’s performance un-
der varying network conditions and further validate its effectiveness in optimizing energy efficiency
across different deployment scenarios.

89



TABLEAU 6.7 : Trainning and testing accuracy, 30.000 samples, 800 epochs

LSTM Model
UEs per cell 100 Variable
w Train accuracy Test accuracy Train accuracy Test accuracy
0.1 100% 100% 99.51% 99.51%
0.5 100% 100% 99.56% 99.56%
0.9 100% 100% 99.57% 99.57%

GRU Model
UEs per cell 100 Variable
w Train accuracy Test accuracy Train accuracy Test accuracy
0.1 100% 100% 99.56% 99.56%
0.5 100% 100% 99.47% 99.47%
0.9 100% 100% 99.62% 99.62%

Fused Model
UEs per cell 100 Variable
w Train accuracy Test accuracy Train accuracy Test accuracy
0.1 100% 100% 99.92% 99.92%
0.5 100% 100% 99.92% 99.92%
0.9 100% 100% 99.92% 99.92%

In the third scenarios, a network with a hexagonal architecture is tested, comprising three Macro
Base Stations (MBSs) and two Small Base Stations (SBSs) per cell, with ’N’ UEs per MBS. The
MBS is placed in the center of the hexagon, whereas the SBSs are randomly positioned.

The comparison between the findings in Tab. 6.2 and Tab. 6.7 indicates that the configuration
involving the three MBSs forming 3 cells within a heterogeneous network yields promising results.
Notably, the network achieves a remarkable 100% accuracy for UE fixe and demonstrates a high
accuracy rate of 99.92% for UE variable. These outcomes suggest the effectiveness of the hexago-
nal network configuration in ensuring excellent performance in terms of accuracy, highlighting the
network’s capability to manage and accommodate different types of scenarios within the system.

The comprehensive comparison within these results demonstrates the distinct advantages of
the fused LSTM model over the LSTM and GRU models, affirming its potential for enhancing the
learning process in this context.

In summary, the fused model’s functionality provides flexibility in modeling and predicting BSs
states. The network can adapt to various scenarios and learn from multiple modalities, leading to
more precise predictions. Overall, the fused LSTM and Dense layers, with LeakyReLU activation
functions, offer improved learning capabilities, nonlinear transformations, the utilization of comple-
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mentary information, and enhanced flexibility in modeling and prediction.

TABLEAU 6.8 : NMSE for throughput prediction in different Scenarios

w = 0.1
UEs per cell Variable 100
LSTM 0.1205 0.0110
GRU 0.1026 0.0110
Fused Model 0.0414 0.0022
In the first scenario, involving 1 Macro BS and 2 Pico cells with a weight factor w of 0.1 and a

random number of users, the LSTM model achieved an NMSE of 0.1205, indicating a moderate
level of error in predicting throughput based on received power. The GRU model performed slightly
better with an NMSE of 0.1026, while the fused model demonstrated a significant improvement with
an NMSE of 0.0414. In the second scenario, where the number of users was fixed at 100, the LSTM
and GRU models both exhibited exceptional accuracy, with NMSE values of 0.0110 each. The
fused model continued to enhance predictive performance, yielding an even lower NMSE of 0.0022.
These results from Tab. 6.8 indicate that, in scenarios with a fixed number of users, the fused
model consistently outperforms individual LSTM and GRU models, showcasing its effectiveness in
improving predictive accuracy for throughput prediction based on received power or SINR.

6.3 Conclusion

In our study, we initially employed the brute force algorithm to identify the optimal combination of
on/off base stations. This algorithm maximizes the utility function by striking a balance between the
gains in throughput and the reductions in power consumption. The brute force approach served
as a benchmark for our subsequent work involving deep learning techniques. Within our deep
learning model, we utilized three distinct architectures : Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), and a fused model (combining LSTM and dense layers). Through extensive
testing across various scenarios, we applied LSTM and GRU to predict the optimal configuration
of active base stations based on received power levels as input parameter. Notably, we observed
that increasing the number of epochs or expanding the training dataset enhanced the prediction
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accuracy for both LSTM and GRU. The ’fused’ model, incorporating an additional parameter as
input representing user associations with base stations, achieved a remarkable 100% prediction
accuracy. This result signifies the attainment of an optimal combination that maximizes gains in
both throughput and power, aligning with the outcomes generated by the brute force algorithm.

Consequently, our work empowers us to achieve energy efficiency levels comparable to those
of the BF algorithm, while significantly reducing computational costs in terms of both time and re-
sources. A prominent advantage of this model lies in its ability to save time, aligning with one of the
primary objectives of our research : adapting optimization outcomes to real-world environments,
enabling swift adjustments of mobile cells in response to dynamic user changes.
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7 Conclusion and Future Work

7.1 Conclusions

To face the exponential increase of traffic demands from cellular networks and the subsequent
potential danger of more damage to our environment due to the release of substantial amounts of
greenhouse gases, the reduction of OPEX by improving the energy efficiency in such networks will
be extremely important for service providers. So, from an operator’s perspective, reducing energy
consumption will also translate to lower operating expenditure (OPEX) costs, which will lead to
reducing carbon emissions for wireless cellular networks. In fact, to obtain significant reductions
in CO2 emissions in the upcoming years, the Green Radio program is one of the most important
aspirations of achieving a hundredfold reduction in power consumption over current designs for
wireless communication networks.

In this context, our work represents a substantial advancement in the realm of energy effi-
ciency in wireless communications. Our approach achieves efficiency levels comparable to the
well-established Brute Force (BF) algorithm while significantly reducing computational costs in
terms of time and resources. The introduction of Deep Multimodal Learning (DML) in wireless com-
munications marks a novel endeavor to enhance energy efficiency. Simulation results underscore
the superior performance of DML-based architectures over conventional approaches, emphasizing
the potential of leveraging multi-modal data.

A notable advantage of our proposed model lies in its time-saving capability, aligning seam-
lessly with one of our primary research objectives : adapting optimization outcomes to real-world
environments. This adaptability enables swift adjustments of mobile cells in response to dynamic
user changes, a crucial feature for the evolving landscape of wireless communication.

Looking forward, our proposed Base Station (BS) on/off switching algorithms hold particular
promise for future-generation networks characterized by extreme BS densification, introducing a
new layer of complexity to the energy efficiency challenge. The suggested approaches stand out
for their flexibility, adaptability, low complexity, and scalability. They can effortlessly incorporate
additional optimization criteria (i.e., CAPEX & OPEX costs, etc.) by simply adjusting the proposed
metric.

In conclusion, our research not only addresses the pressing need for energy-efficient wireless
communication networks but also paves the way for innovative solutions that balance environmen-
tal concerns with the evolving demands of modern communication systems.
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7.2 Future Work Directions

The efforts undertaken in this thesis within various aspects of environmentally friendly cellular
networks represent progress towards aligning 5G networks to meet the rigorous end-user applica-
tion demands while ensuring a minimal energy impact. This objective encompasses several goals,
including the reduction of carbon emissions, grid energy consumption, and operational electric
costs for network operators. Our research has revealed numerous unexplored opportunities within
this domain as per bellow :

7.2.1 Enhance the BS Switch-Off Strategy in HetNets by Effectively Utilizing a Com-
bination of Diverse Criteria

As a future work, our focus will be on further exploring the implementation of the BS switch-off
strategy as a means to enhance energy efficiency and performance in HetNets. To ensure the de-
velopment of more sustainable and resilient 5G systems, we plan to investigate the introduction of
additional measures that leverage the combination of various criteria, including resource allocation,
inter-site carrier aggregation (CA), and load-aware strategies. Additionally, our research will delve
into the design and examination of strategies that effectively utilize a fusion of different criteria and
perspectives, such as the combination of load and distance criteria , or random and load criteria ,
among others.

7.2.1.1 Incorporate the Quality of Experience (QoE) into the System Design

The imminent widespread deployment of 5G networks calls for efficient management of control
overhead and better utilization of shared bandwidth. Integrating enhanced Quality of Service (QoS)
constraints is crucial for meeting user satisfaction, considering various QoS factors including ou-
tage probability, download rate, congestion probability, delay, video type and format, and energy
consumption of mobile devices. To address this, the proposed work will focuse on introducing wi-
reless access virtualization and a novel scheduling approach to prioritize individual user’s QoS
requirements and dynamic adaptive clustering. This approach aims to create user-specific virtual
base stations (uVBSs) that cater to each user’s environment and QoS needs, ensuring balanced
traffic distribution and seamless communication without cell-edge effects. The objective is to esta-
blish effective resource allocation strategies to achieve fairness, maximum spectral efficiency, and
QoS.
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7.2.2 Renewable Energy Sources for Powering Base Stations

To optimize the performance of the BS switched on/off approach and mitigate the environmen-
tal impact of mobile networks, particularly in terms of energy consumption and cost savings, a
novel solution integrating renewable energies with the electrical grid for powering wireless systems
is proposed. Nevertheless, this strategy encounters uncertainties associated with renewable po-
wer generation, power pricing, and wireless traffic load. To address these challenges, an adaptive
demand-side power management scheme will be developed, enabling intelligent decision-making
on energy consumption between renewable sources and grid energy. The aim is to achieve highly
efficient energy utilization while simultaneously reducing operating expenses and greenhouse gas
emissions.

7.2.3 Machine Learning and Data Correlations

Given the advantages of machine learning in enhancing performance and simplifying complex
problem-solving, it becomes evident that it offers a feasible alternative to conventional algorithmic
approaches. The ability to learn from the environment stands as its primary advantage. Howe-
ver, the scarcity of research datasets and the challenges associated with data acquisition from
networks remain pressing issues.Preparing the model for training entails precise data alignment,
debugging, and the removal of any biased values, necessitating significant time and effort. Future
research should prioritize the trade-off between efficient machine learning for wireless networks
and the simplification of models, particularly in regions where energy efficiency is of paramount
significance.

In conclusion, the investigation into sleep mode technologies and the broader realm of green
cellular networks continues to be an active and essential field of research. Given the growing em-
phasis on energy efficiency in the present era, these research domains are expected to remain
relevant, presenting substantial prospects for advancements and the resolution of pertinent chal-
lenges.
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