Dépôt numérique
RECHERCHER

Identification of Factors Affecting Bacterial Abundance and Community Structures in a Full-Scale Chlorinated Drinking Water Distribution System

Téléchargements

Téléchargements par mois depuis la dernière année

Dias, Vanessa C. F.; Durand, Audrey-Anne; Constant, Philippe ORCID logoORCID: https://orcid.org/0000-0003-2739-2801; Prévost, Michèle et Bédard, Émilie (2019). Identification of Factors Affecting Bacterial Abundance and Community Structures in a Full-Scale Chlorinated Drinking Water Distribution System Water , vol. 11 , nº 3: 627. pp. 1-16. DOI: 10.3390/w11030627.

[thumbnail of water-11-00627.pdf]
Prévisualisation
PDF - Version publiée
Télécharger (1MB) | Prévisualisation

Résumé

Disentangling factors influencing suspended bacterial community structure across distribution system and building plumbing provides insight into microbial control strategies from source to tap. Water quality parameters (residence time, chlorine, and total cells) and bacterial community structure were investigated across a full-scale chlorinated drinking water distribution system. Sampling was conducted in treated water, in different areas of the distribution system and in hospital building plumbing. Bacterial community was evaluated using 16S rRNA gene sequencing. Bacterial community structure clearly differed between treated, distributed, and premise plumbing water samples. While Proteobacteria (60%), Planctomycetes (20%), and Bacteroidetes (10%) were the most abundant phyla in treated water, Proteobacteria largely dominated distribution system sites (98%) and taps (91%). Distributed and tap water differed in their Proteobacteria profile: Alphaproteobacteria was dominant in distributed water (92% vs. 65% in tap waters), whereas Betaproteobacteria was most abundant in tap water (18% vs. 2% in the distribution system). Finally, clustering of bacterial community profiles was largely explained by differences in chlorine residual concentration, total bacterial count, and water residence time. Residual disinfectant and hydraulic residence time were determinant factors of the community structure in main pipes and building plumbing, rather than treated water bacterial communities.

Type de document: Article
Mots-clés libres: drinking water distribution system; chlorine residual; residence time; high-throughput sequencing; building plumbing; bacterial community structure
Centre: Centre INRS-Institut Armand Frappier
Date de dépôt: 20 nov. 2019 21:38
Dernière modification: 15 févr. 2022 14:32
URI: https://espace.inrs.ca/id/eprint/8585

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice