More, Tanaji; Yadav, Jay Shankar Singh; Yan, Song; Tyagi, Rajeshwar Dayal et Surampalli, Rao Y. (2014). Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management , vol. 144 . pp. 1-25. DOI: 10.1016/j.jenvman.2014.05.010.
Ce document n'est pas hébergé sur EspaceINRS.Résumé
Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly essential to formulate a logical and scientific basis for the research and industrial activities. One of the very important issues in the production/application/biodegradation of EPS is how the EPS is extracted from the matrix or a culture broth. Moreover, EPS matrix available in different forms (crude, loosely bound, tightly bound, slime, capsular and purified) can be used as a bioflocculant material. Several chemical and physical methods for the extraction of EPS (crude form or purified form) from different sources have been analyzed and reported. There is ample information available in the literature about various EPS extraction methods. Flocculability, dewaterability and biosorption ability are the very attractive engineering properties of the EPS matrix. Recent information on important aspects of these properties qualitatively as well as quantitatively has been described. Recent information on the mechanism of flocculation mediated by EPS is presented. Potential role of EPS in sludge dewatering and biosorption phenomenon has been discussed in details. Different factors influencing the EPS ability to flocculate and dewaterability of different suspensions have been included. The factors considered for the discussion are cations, different forms of EPS, concentration of EPS, protein and carbohydrate content of EPS, molecular weight of EPS, pH of the suspension, temperature etc. These factors were selected for the study based upon their role in the flocculation and dewatering mechanism as well the most recent available literature findings on these factors. For example, only recently it has been demonstrated that there is an optimum EPS concentration for sludge flocculation/dewatering. High or low concentration of EPS can lead to destabilization of flocs. Role of EPS in environmental applications such as water treatment, wastewater flocculation and settling, colour removal from wastewater, sludge dewatering, metal removal and recovery, removal of toxic organic compounds, landfill leachate treatment, soil remediation and reclamation has been presented based on the mos recent available information. However, data available on environmental application of EPS are very limited. Investigations are required for exploring the potential of field applications of EPS. Finally, the limitations in the knowledge gap are outlined and the research needs as well as future perspectives are highlighted.
Type de document: | Article |
---|---|
Mots-clés libres: | bioflocculants; bacterial polymers; extracellular polymeric substances; wastewater; sludge; pollution control |
Centre: | Centre Eau Terre Environnement |
Date de dépôt: | 11 avr. 2018 13:30 |
Dernière modification: | 11 avr. 2018 13:30 |
URI: | https://espace.inrs.ca/id/eprint/3639 |
Gestion Actions (Identification requise)
Modifier la notice |