Oyinlola, Muhammed A ORCID: https://orcid.org/0000-0001-5177-854X; Khorsandi, Mostafa
ORCID: https://orcid.org/0000-0002-4359-1600; Penman, Rachael
ORCID: https://orcid.org/0000-0002-8794-7277; Earhart, Madison L
ORCID: https://orcid.org/0000-0002-8280-7857; Arsenault, Richard
ORCID: https://orcid.org/0000-0003-2834-2750; McAdam, Steve
ORCID: https://orcid.org/0000-0002-1647-2534; Brauner, Colin J
ORCID: https://orcid.org/0000-0002-3695-7707 et St-Hilaire, André
ORCID: https://orcid.org/0000-0001-8443-5885
(2025).
Assessing the impact of climate change and a water management programme on white sturgeon physiology in the Nechako River, British Columbia.
Conservation Physiology
, vol. 13
, nº 1.
coaf014.
DOI: 10.1093/conphys/coaf014.
Prévisualisation |
PDF
- Version publiée
Télécharger (2MB) | Prévisualisation |
Résumé
Climate change is impacting river ecosystems, underlining the need for water management strategies to protect native species within these ecosystems. Here, we evaluate the impact of climate change and water management on the physiology of white sturgeon (Acipenser transmontanus) in the Nechako River, British Columbia (Canada). Using the CEQUEAU hydrological–thermal model, we simulated daily water temperatures from 1980 to 2099 under two climate scenarios (SSP2-4.5 and SSP5-8.5). We assessed thermal exposure risk (Te) for different developmental stages of white sturgeon, focusing on the warmest 6-month period. Our findings show that embryos and yolk-sac larvae exhibit resilience, with Te values consistently <1 under both scenarios, signifying low thermal stress. In contrast, feeding larvae and juveniles experience elevated Te values, indicating significant future thermal stress. For feeding larvae, Te values exceeded 1 under both scenarios, reaching up to 1.5 by the mid-century (2050s) and up to 1.8 by the end of the century (2090s) under SSP5-8.5. Juvenile white sturgeon also faced increased thermal risks, with Te values rising >1 during July and August, reaching 1.4 and 1.8 by the 2050s and 1.8 and 2.0 by the 2090s under SSP5-8.5, compared to the 1980s. These results underscore the need to evaluate the existing water management programme to better accommodate the projected changes in thermal conditions associated with climate change. Additionally, regulated river discharge, which can both increase and decrease downstream temperatures, offers a strategic opportunity to mitigate some climate impacts through strategic dam discharge management.
Type de document: | Article |
---|---|
Mots-clés libres: | climate change; conservation; hydrothermal impact; Nechako River; thermal exposure risk; white sturgeon |
Centre: | Centre Eau Terre Environnement |
Date de dépôt: | 26 mars 2025 18:37 |
Dernière modification: | 26 mars 2025 18:37 |
URI: | https://espace.inrs.ca/id/eprint/16391 |
Gestion Actions (Identification requise)
![]() |
Modifier la notice |