Trevathan-Tackett, Stacey M. ORCID: https://orcid.org/0000-0002-4977-0757; Kepfer-Rojas, Sebastian; Malerba, Martino
ORCID: https://orcid.org/0000-0002-7480-4779; Macreadie, Peter I.; Djukic, Ika; Zhao, Junbin
ORCID: https://orcid.org/0000-0001-5142-4901; Young, Erica B.; York, Paul H.; Yeh, Shin-Cheng; Xiong, Yanmei; Winters, Gidon; Whitlock, Danielle; Weaver, Carolyn A.; Watson, Anne; Visby, Inger; Tylkowski, Jacek; Trethowan, Allison; Tiegs, Scott; Taylor, Ben; Szpikowski, Jozef; Szpikowska, Grażyna; Strickland, Victoria L.; Stivrins, Normunds; Sousa, Ana I.
ORCID: https://orcid.org/0000-0003-0783-5177; Sinutok, Sutinee; Scheffel, Whitney A.; Santos, Rui; Sanderman, Jonathan; Sánchez-Carrillo, Salvador; Sanchez-Cabeza, Joan-Albert
ORCID: https://orcid.org/0000-0002-3540-1168; Rymer, Krzysztof G.; Ruiz-Fernandez, Ana Carolina; Robroek, Bjorn J. M.; Roberts, Tessa; Ricart, Aurora M.; Reynolds, Laura K.; Rachlewicz, Grzegorz; Prathep, Anchana; Pinsonneault, Andrew J.; Pendall, Elise; Payne, Richard; Ozola, Ilze; Onufrock, Cody; Ola, Anne
ORCID: https://orcid.org/0000-0001-7271-3630; Oberbauer, Steven F.; Numbere, Aroloye O.; Novak, Alyssa B.; Norkko, Joanna
ORCID: https://orcid.org/0000-0001-9885-8408; Norkko, Alf; Mozdzer, Thomas J.; Morgan, Pam; Montemayor, Diana I.; Martin, Charles W.; Malone, Sparkle L.; Major, Maciej; Majewski, Mikołaj; Lundquist, Carolyn J.; Lovelock, Catherine E.; Liu, Songlin
ORCID: https://orcid.org/0000-0002-6478-4938; Lin, Hsing-Juh; Lillebo, Ana; Li, Jinquan
ORCID: https://orcid.org/0000-0002-2219-2571; Kominoski, John S.
ORCID: https://orcid.org/0000-0002-0978-3326; Khuroo, Anzar Ahmad; Kelleway, Jeffrey J.; Jinks, Kristin I.; Jerónimo, Daniel; Janousek, Christopher
ORCID: https://orcid.org/0000-0003-2124-6715; Jackson, Emma L.; Iribarne, Oscar; Hanley, Torrance; Hamid, Maroof; Gupta, Arjun; Guariento, Rafael D.; Grudzinska, Ieva; da Rocha Gripp, Anderson
ORCID: https://orcid.org/0000-0002-0099-6990; González Sagrario, María A.; Garrison, Laura M.; Gagnon, Karine
ORCID: https://orcid.org/0000-0002-0971-7740; Gacia, Esperança; Fusi, Marco; Farrington, Lachlan; Farmer, Jenny; de Assis Esteves, Francisco; Escapa, Mauricio; Domańska, Monika; Dias, André T. C.; de los Santos, Carmen B.
ORCID: https://orcid.org/0000-0002-7013-494X; Daffonchio, Daniele; Czyryca, Paweł M.; Connolly, Rod M.; Cobb, Alexander
ORCID: https://orcid.org/0000-0002-3128-3002; Chudzińska, Maria; Christiaen, Bart; Chifflard, Peter; Castelar, Sara; Carneiro, Luciana S.; Cardoso-Mohedano, José Gilberto; Camden, Megan; Caliman, Adriano; Bulmer, Richard H.; Bowen, Jennifer; Boström, Christoffer; Bernal, Susana
ORCID: https://orcid.org/0000-0002-6726-8840; Berges, John A.; Benavides, Juan C.
ORCID: https://orcid.org/0000-0002-9694-2195; Barry, Savanna C.
ORCID: https://orcid.org/0000-0002-8743-4383; Alatalo, Juha M.
ORCID: https://orcid.org/0000-0001-5084-850X; Al-Haj, Alia N. et Adame, Maria Fernanda
(2024).
Climate Effects on Belowground Tea Litter Decomposition Depend on Ecosystem and Organic Matter Types in Global Wetlands.
Environmental Science & Technology
, vol. 58
, nº 49.
pp. 21589-21603.
DOI: 10.1021/acs.est.4c02116.
Résumé
Patchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of “recalcitrant” (rooibos tea) and “labile” (green tea) organic matter (OM) decomposition. Freshwater wetlands and tidal marshes had the highest tea mass remaining, indicating a greater potential for carbon preservation in these ecosystems. Recalcitrant OM decomposition increased with elevated temperatures throughout the decay period, e.g., increase from 10 to 20 °C corresponded to a 1.46-fold increase in the recalcitrant OM decay rate constant. The effect of elevated temperature on labile OM breakdown was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming, but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.
Type de document: | Article |
---|---|
Mots-clés libres: | blue carbon; macroclimate; teacomposition H2O; tea bags; teal carbon |
Centre: | Centre Eau Terre Environnement |
Date de dépôt: | 06 janv. 2025 17:03 |
Dernière modification: | 06 janv. 2025 17:03 |
URI: | https://espace.inrs.ca/id/eprint/16233 |
Gestion Actions (Identification requise)
![]() |
Modifier la notice |