Dépôt numérique
RECHERCHER

Rhizospheric miRNAs affect the plant microbiota

Téléchargements

Téléchargements par mois depuis la dernière année

Middleton, Harriet; Dozois, Jessica; Monard, Cécile; Daburon, Virginie; Clostres, Emmanuel; Tremblay, Julien; Combier, Jean-Philippe; Yergeau, Étienne ORCID logoORCID: https://orcid.org/0000-0002-7112-3425 et El Amrani, Abdelhak (2024). Rhizospheric miRNAs affect the plant microbiota ISME Communications , vol. 4 , nº ycae120. pp. 1-12. DOI: 10.1093/ismeco/ycae120.

[thumbnail of Rhizospheric miRNAs affect the plant microbiota.pdf]
Prévisualisation
PDF - Version publiée
Disponible sous licence Creative Commons Attribution.

Télécharger (1MB) | Prévisualisation

Résumé


Small ribonucleic acids (RNAs) have been shown to play important roles in cross-kingdom communication, notably in plant-pathogen relationships. Plant micro RNAs (miRNAs)-one class of small RNAs-were even shown to regulate gene expression in the gut microbiota. Plant miRNAs could also affect the rhizosphere microbiota. Here we looked for plant miRNAs in the rhizosphere of model plants, and if these miRNAs could affect the rhizosphere microbiota. We first show that plant miRNAs were present in the rhizosphere of Arabidopsis thaliana and Brachypodium distachyon. These plant miRNAs were also found in or on bacteria extracted from the rhizosphere. We then looked at the effect these plants miRNAs could have on two typical rhizosphere bacteria, Variovorax paradoxus and Bacillus mycoides. The two bacteria took up a fluorescent synthetic miRNA but only V. paradoxus shifted its transcriptome when confronted to a mixture of six plant miRNAs. V. paradoxus also changed its transcriptome when it was grown in the rhizosphere of Arabidopsis that overexpressed a miRNA in its roots. As there were differences in the response of the two isolates used, we looked for shifts in the larger microbial community. We observed shifts in the rhizosphere bacterial communities of Arabidopsis mutants that were impaired in their small RNA pathways, or overexpressed specific miRNAs. We also found differences in the growth and community composition of a simplified soil microbial community when exposed in vitro to a mixture of plant miRNAs. Our results support the addition of miRNAs to the plant tools shaping rhizosphere microbial assembly.

Type de document: Article
Mots-clés libres: Variovorax; bacterial communities; plant miRNAs; rhizosphere; transcriptomics
Centre: Centre INRS-Institut Armand Frappier
Date de dépôt: 06 nov. 2024 05:54
Dernière modification: 06 nov. 2024 05:54
URI: https://espace.inrs.ca/id/eprint/16109

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice