Dépôt numérique
RECHERCHER

In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

Canton, Rocío F; Sanderson, J. Thomas ORCID logoORCID: https://orcid.org/0000-0002-3190-2811; Nijmeijer, Sandra; Bergman, Ake; Letcher, Robert J. et van den Berg, Martin (2006). In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action? Toxicology and Applied Pharmacology , vol. 216 , nº 2. pp. 274-281. DOI: 10.1016/j.taap.2006.05.007.

Ce document n'est pas hébergé sur EspaceINRS.

Résumé


Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH(3)O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17alpha-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 muM), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 muM, but with a concurrent decrease in cell viability at the higher concentrations. Replacement of the 6-OH group by a 6-CH(3)O group eliminated this cytotoxic effect, but CYP17 activity measured as DHEA production was still significantly inhibited. Other OH- or CH(3)O-PBDE analogues were used to elucidate possible structural properties behind this CYP17 inhibition and associated cytotoxicity, but no distinct structure activity relationship could be determined. These in vitro results indicate that OH and CH(3)O-PBDEs have potential to interfere with CYP17 activity for which the in vivo relevance still has to be adequately determined.

Type de document: Article
Mots-clés libres: Brominated flame retardants (BFRs); Polybrominated diphenyl ethers (PBDEs); Hydroxylated PBDEs (OH-PBDEs); Methoxylated; PBDEs (CH3O-PBDEs); CYP17; Dehydroepiandrosterone (DHEA); H295R human adrenocortical carcinoma cells
Centre: Centre INRS-Institut Armand Frappier
Date de dépôt: 22 oct. 2024 13:44
Dernière modification: 22 oct. 2024 13:44
URI: https://espace.inrs.ca/id/eprint/14462

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice