Dépôt numérique
RECHERCHER

A comparison of artificial intelligence models for predicting phosphate removal efficiency from wastewater using the electrocoagulation process.

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Gholami Shirkoohi, Maji; Tyagi, Rajeshwar Dayal; Vanrolleghem, Peter A. et Drogui, Patrick ORCID logoORCID: https://orcid.org/0000-0002-3802-2729 (2022). A comparison of artificial intelligence models for predicting phosphate removal efficiency from wastewater using the electrocoagulation process. Digital Chemical Engineering , vol. 4 . p. 100043. DOI: 10.1016/j.dche.2022.100043.

[thumbnail of P4161.pdf]
Prévisualisation
PDF
Disponible sous licence Creative Commons Attribution Non-commercial No Derivatives.

Télécharger (1MB) | Prévisualisation

Résumé

In this study, artificial intelligence (AI) models including adaptive neuro-fuzzy inference systems (ANFIS), artificial neural networks (ANN), and support vector regression (SVR) were applied to predict the removal efficiency of phosphate from wastewaters using the electrocoagulation process. The five input variables used in this study were current intensity, initial phosphate concentration, initial pH, treatment time, and electrode type. The optimal hyperparameters of the ANN and SVR models were found by integrating metaheuristic algorithms such as genetic algorithms (GA) and particle swarm optimization (PSO) to these models. To increase the reliability and robustness of the developed AI models, a search for optimal hyperparameters was conducted based on repeated random sub-sampling validation instead of a single split approach. The results demonstrated that the effectiveness of the data-driven model depends on how the data is distributed to the training, validation, and test sets. However, hybrid ANN models outperformed other models and PSO-ANN models showed exceptional generalization performance for the different sub-datasets. The average MSE, R2, and MAPE values of the 10 test subsets for PSO-ANN were determined as 7.201, 0.981, and 2.022, respectively. The EC process was interpreted for phosphate removal efficiency using the trained PSO-ANN model. The two input factors with the greatest influence on the effectiveness of phosphate removal, according to the results, are the electrode type and initial phosphate concentration. Additionally, it was found that lowering the pH and initial phosphate concentration and increasing the current intensity and treatment time enhance the removal efficiency.

Type de document: Article
Mots-clés libres: data-driven model; electrochemical process; hyperparameters; metaheuristic algorithm; modelling; phosphorus removal
Centre: Centre Eau Terre Environnement
Date de dépôt: 06 févr. 2024 20:56
Dernière modification: 06 juill. 2024 04:00
URI: https://espace.inrs.ca/id/eprint/14164

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice