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Abstract 

In this study, artificial intelligence (AI) models including adaptive neuro-fuzzy inference 

systems (ANFIS), artificial neural networks (ANN), and support vector regression (SVR)  

were applied to predict the removal efficiency of phosphate from wastewaters using the 

electrocoagulation process. The five input variables used in this study were current 

intensity, initial phosphate concentration, initial pH, treatment time, and electrode type. 

The optimal hyperparameters of the ANN and SVR models were found by integrating 

evolutionary algorithms such as genetic algorithms (GA) and particle swarm 

optimization (PSO) to these models. To increase the reliability and robustness of the 

developed AI models, a search for optimal hyperparameters was conducted based on 

repeated random sub-sampling validation instead of a single split approach. The results 

demonstrated that the effectiveness of the data-driven model depends on how the data 

is distributed to the training, validation, and test sets. However, hybrid ANN models 

                  



 

outperformed other models and PSO-ANN models showed exceptional generalization 

performance for the different sub-datasets. The average MSE, R2, and MAPE values of 

the 10 test subsets for PSO-ANN were determined as 7.201, 0.981, and 2.022, 

respectively. The EC process was interpreted for phosphate removal efficiency using 

the trained PSO-ANN model. The two input factors with the greatest influence on the 

effectiveness of phosphate removal, according to the results, are the electrode type and 

initial phosphate concentration. Additionally, it was found that lowering the pH and initial 

phosphate concentration and increasing the current intensity and treatment time 

enhance the removal efficiency. 
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Data-driven model, Electrochemical process, Hyperparameters, Metaheuristic 
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Nomenclature 
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ANFIS Adaptive neuro-fuzzy inference systems  
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FCM Fuzzy c-mean clustering 

GA Genetic algorithms  

MAPE Mean absolute percentage error 

MSE Mean square error 

PSO Particle swarm optimization  

R2 Correlation coefficient 

RBF Radial Basis Function 

SVR Support vector regression 

                  



 

1. Introduction 

Human activities have significantly increased the soluble forms of phosphorus 

compounds in aquatic environments over the last 50 years, owing to the widespread 

use of detergents and chemical fertilizers, animal manure, wastewater effluents, and 

plant residues. Environmental concerns such as eutrophication can be caused by 

soluble forms of phosphorus in water, compromising the quality and sustainability of 

water bodies. This phenomenon can deplete oxygen levels in water due to algae 

breakdown, which can harm fish and other aquatic life, resulting in decreased 

biodiversity (Ano et al., 2019; Li et al., 2022; Tran et al., 2012). Chemical precipitation 

(Lavanya et al., 2021), adsorption (Gizaw et al., 2021), ion exchange (Bektaş et al., 

2021), and biological processes (Zhang et al., 2022) have all been developed to lower 

phosphate levels in wastewater before it is released into the environment. An alternative 

method for removing phosphates is electrochemical treatment, such as 

electrocoagulation (EC) (Kobya et al., 2021). The main advantages of the (EC) process 

are the ease of use of the equipment, the ease of automation, and the process 

efficiency in the treatment of a wide range of pollutants. Furthermore, because this 

process does not necessitate the use of chemicals, treatment costs are reduced. Metal 

cations are released in situ by electrodissolution of an Al or Fe anode immersed in the 

effluent, as opposed to chemical precipitation (Jing et al., 2021). 

Modelling and optimization of the electrochemical process are seen as a key part of the 

study in order to examine the efficacy of the process. The concentration of pollutants, 

the applied current density and electrical potential, the types of electrodes, the 

electrolyte type and concentration, and chemical interactions between contaminants are 

all important aspects in electrochemical processes for water and wastewater treatment 

(Drogui et al., 2007). Phenomenological and empirical modelling approaches are 

generally used for water treatment processes. Electrochemical processes for water 

treatment are highly complicated nonlinear systems due to the complex relationships 

between input parameters and outputs. This is due to the fact that several mechanisms 

usually happen at the same time in an electrochemical system. For instance, In the 

electrocoagulation process, detailed mechanisms of charge transport, electrochemical 

                  



 

kinetics, thermodynamics, adsorption isotherms and kinetic models, flocculation, 

flotation, settling, and complexation should be known (Hakizimana et al., 2017). Also, in 

electrooxidation, the concentration of every compound in an electrochemical cell 

depends on time and space, that is, their distance from the electrode surface. 

Describing the profile of compounds under such conditions involves a number of partial 

differential equations, which are often difficult to solve and involve many model 

parameters. The complexity of these models depends on the number of species 

included in the model. In a multivariable model, all the significant species in an 

electrochemical cell are included. This however requires further knowledge on reaction 

pathways to account for subsequent formations and transformations (Cañizares et al., 

2004a; Cañizares et al., 2004b). Empirical (regression) modelling is one of the 

alternative modelling approaches for phenomenological modelling. In most cases, a 

quadratic linear regression model will be selected that is often not adequate to describe 

the nonlinearities of the systems (Nandi et al., 2004). Therefore, it is not always the best 

option to use phenomenological or conventional empirical models to model, simulate, 

and optimize the processes. Given the diversity of aspects, modelling, simulation, and 

optimization of these processes are challenging. Artificial intelligence methods such as 

artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), 

support vector regression (SVR), and evolutionary algorithms such as genetic 

algorithms (GA) and particle swarm optimization (PSO) have emerged as appealing 

approaches for modelling and optimizing these nonlinear processes. These data-driven 

models are based on empirical data and linkages between process input and output 

variables rather than process knowledge.  

Some recent studies have shown the application of AI models in electrochemical 

processes for water and wastewater treatment with reasonable accuracy (Farzin et al., 

2020; Gholami Shirkoohi et al., 2021; Taheri et al., 2013). Farzin et al. (2020) applied 

different approaches to data mining, including ANN, SVM, M5 model tree, and ANFIS 

for electrochemical removal of Ciprofloxacin (CIP) as a model pollutant. The 

interpolation method was used as an augmentation technique to increase the number of 

data samples in the dataset. Based on multi-criteria decision-making, it was found that 

M5 and the SVM model (tuned by the firefly optimization algorithm) had the best 

                  



 

performance and could be used for different tasks, such as determining the optimal 

removal of the drug, and investigating the impact of different parameters on drug 

removal process. Curteanu et al. (2014) applied two machine learning techniques 

(artificial neural networks and support vector machines) for the prediction of the 

performance of an electrooxidation method to decrease the organic compounds and 

remove micro-organisms from activated sludge effluent. It was reported that overall, the 

SVM outperformed the ANN models when comparing correlation coefficients. ANFIS, 

along with ANN, has also been studied for the treatment of greywater using 

electrocoagulation by Nasr et al. (Nasr et al., 2016). Comparison between the 

mentioned AI techniques in other fields of science has also been studied (Azad et al., 

2019; Zakeri et al., 2022).    

AI models include built-in hyperparameters that should be fine-tuned so that the model 

can solve the machine learning problem to its full potential. The learning process is 

controlled by these hyperparameters, which directly impact the model performance. In 

the case of ANN models, these hyperparameters include training algorithms, number of 

epochs, maximum validation failure, number of hidden layers and hidden neurons, and 

transfer functions (Viana et al., 2018). For SVR models, the penalty factor, margin of 

tolerance for errors, and the type of kernel function and the kernel parameters should be 

optimally selected (Rui et al., 2019). Membership functions and the number of clusters 

affect the performance of ANFIS models (Abdulshahed et al., 2015). Grid search and 

random search are often used to search for the optimal values within the space of 

hyperparameters of the AI models. In the case of a large space to investigate, grid 

search would be too computationally intensive and slow, and with random search, there 

is a chance not to be able to find the optimal hyperparameters (Menapace et al., 2021). 

Recently, metaheuristic algorithms such as genetic algorithm (Gu et al., 2011), particle 

swarm optimization (Huang et al., 2021), firefly algorithm (FA) (Zhang et al., 2019), ant 

colony optimization algorithm (ACO) (Jiang et al., 2020), and bat algorithm (BA) (Hafezi 

et al., 2015) have been used to efficiently tune and optimize the AI models’ parameters. 

For instance, Viana et al. (2018) used the PSO algorithm to optimize neural network 

model hyperparameters, including the hidden neuron number, the transfer function, and 

the learning rate.  

                  



 

With the significant investment of time and money in experimental work, only a limited 

number of samples is available in datasets for data-driven models. As the use of data-

driven models in the field of electrochemical processes for water and wastewater 

treatment expands, model reliability and robustness become increasingly important. 

Apart from hyperparameters, the allocation of the data to training and testing sets 

influences the performance of the AI model generated with relatively small sample 

sizes. The use of single split training and test sets (hold-out cross-validation) 

methodologies is a standard research technique, but it is problematic given the limited 

sample sizes of experimental datasets accessible from electrochemical processes 

(Singh et al., 2021). There have been some studies focusing on the tuning 

hyperparameters of the AI models based on single split cross-validation using trial-and 

error approach for electrochemical processes in wastewater treatment (Ahmed Basha et 

al., 2010; da Silva Ribeiro et al., 2019; Piuleac et al., 2010; Sangal et al., 2015; Valente 

et al., 2014). One of the most thorough studies on the effect of various network 

architectures and parameters on the modelling performance was performed by Hasani 

et al. (2018) for the modelling of alternating pulse current electrocoagulation-flotation 

(APC-ECF) for humic acid (HA) removal. Their study focused on the effect of various 

network architectures and parameters (e.g., two different ANN architectures as MLP 

and generalized feedforward, number of hidden neurons, transfer functions, and 

learning parameters) on the modelling performance. However, the reliability of AI 

models used in electrochemical processes for water and wastewater treatment in the 

context of the mentioned issue has not been considered thoroughly in the literature.  

In this paper, different AI models including ANFIS, ANN, and SVR are developed to 

predict the removal efficiency of phosphate from wastewaters using the 

electrocoagulation process. To optimize the hyperparameters of the SVR and ANN 

models, GA and PSO have been integrated as the proposed approach. To increase the 

robustness of the AI models with the optimal hyperparameters with respect to the 

division of the data between training and testing sets, repeated random sub-sampling 

validation has been utilized for the hybrid models. This would help to find 

hyperparameters that are optimal values for the different variations of data distributions 

to reduce the related uncertainty and improve the reliability and robustness of the 

                  



 

developed AI models. In order to illustrate the predicting performance of the proposed 

models, results were compared based on statistical indices. The best AI model trained 

with optimal hyperparameters found was used to interpret the phosphate removal 

efficiency by electrocoagulation process.   

2. Development of the AI models 

2.1. Electrocoagulation process 

Electrocoagulation (EC), developed from chemical coagulation, produces coagulant 

agents (Fe2+/Fe3+ or Al3+) in-situ to effectively remove pollutants by deposition on the 

cathode or by floatation caused by the generation of hydrogen gas at the cathode 

(Asselin et al., 2008a). The schematic of the EC process is shown is Fig. 1. The 

following equations describe the main reactions occurring in an EC cell: 

At the anode: 𝑀(𝑠) → 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑒− 

At the cathode: 2𝐻2𝑂 + 2𝑒− → 2𝑂𝐻− + 𝐻2 

In the bulk solution: 𝑀(𝑎𝑞)
𝑛+ + 𝑛𝑂𝐻− → 𝑀(𝑂𝐻)𝑛(𝑠) 

where M(s) is the metal, M(aq)
n+ refers to the metallic ion (iron or aluminum ion), M(OH)n(s) 

represents the metallic hydroxide, and ne− is the number of electrons transferred in the 

reaction at the electrode. It is worth mentioning that Eq. Error! Reference source not 

found. describes a simple case of metallic hydroxide formation. In fact, depending on 

the pH and the type of metal involved, the formation of different metallic complex 

species is possible (Dia et al., 2017).  

                  



 

 

Fig. 1. Schematic of the electrocoagulation process 

EC has several advantages over chemical coagulation, such as easy automation, low 

salinity of the effluent after treatment, low footprint, and reduced production of solid 

residuals. On the other hand, some disadvantages may include the necessity for regular 

replacement of sacrificial anodes, electrode passivation, and operating cost where 

electricity is not abundant (An et al., 2017; Drogui et al., 2007). The EC process has 

been widely studied for environmental applications to treat drinking water, urban 

wastewater, textile wastewater, restaurant wastewater, refractory oily wastewater, and 

heavy metal containing wastewaters (Al-Shannag et al., 2015; Asselin et al., 2008b; 

Daghrir et al., 2012; Elazzouzi et al., 2017; Kobya et al., 2014; Mólgora et al., 2013). 

Several factors affect the efficiency of the electrocoagulation process (Moussa et al., 

2017), including: 

 Current density: The quantity of metal ions discharged from the electrodes is 

controlled by current density, which is the current per area of electrode. 

                  



 

 Electrode material: Since it affects the processes that might occur, choosing the 

right electrode material is essential. Due to their availability and reliability, 

aluminum and iron electrodes are most frequently utilized. 

 Initial pH:  When it comes to electrocoagulation, pH is a crucial factor since it has 

an impact on the solution's conductivity, zeta potential, and electrode dissolution. 

 The concentration of ions: The destabilizing characteristics of metal ions are 

affected differently by the presence of various anions. Additionally, a significant 

component that impacts EC efficiency and power consumption is the solution's 

conductivity; the higher the conductivity, the lower EC's power consumption. 

 Electrode arrangement: Monopolar or bipolar electrode configurations in series or 

parallel connections are employed when a large electrode surface area is 

required. 

2.1. Data acquisition 

To develop the AI models, a total number of 62 experimental data for the removal of 

phosphate from synthetic wastewaters using an electrocoagulation process was 

gathered from Ano et al. (2019). In their study, factorial design (FD) and central 

composite design (CCD) were used as response surface methodology (RSM) to 

investigate the effect of current intensity, initial phosphate concentration, initial pH, 

treatment time, and electrode type. Table 1 shows the description and statistical 

parameters of the dataset used in this study. The experimental matrix is obtained by 

combining the coded values [-2, -1, 0, 1, 2] of all factors. The last two rows of the Table 

1 show the coded and actual experimental domain for all the independent variables in 

which the 62 experimental runs were conducted. The FD consisting of 32 experiments 

is designed at the coded experimental domain of [-1, 1] for all the independent 

variables. The CCD, including the other 30 experiments, is obtained at the coded 

experimental domain of [-2, 0, 2]. The CCD consists of 16 experiments at the axial 

points ([-2, 2]) and 14 experiments at the center points. 

 

Table 1. Description of the dataset from Ano et al. (2019) used in this study 

                  



 

Statistical 
parameters 

Independent variables/Inputs Dependent 
variable/Output 

Current 
Intensity (A) 

Initial 
phosphate 

concentration 
(mg/L) 

pH Treatment 
time (min) 

Electrode 
type 

Removal 
efficiency (%) 

Number of 
samples 

62 62 62 62 62 62 

Range 0.25-1.25 15-75 2-10 10-90 Al/Fe 29.2-100 

Average 0.75 45 6 50 - 74.0 

Standard 
deviation 

0.22 13.3 1.77 17.7 - 20.6 

Coded 
experimental 
domain 

[-2, -1, 0, 1, 2] [-2, -1, 0, 1, 
2] 

[-2, -1, 
0, 1, 2] 

[-2, -1, 0, 
1, 2] 

- - 

Actual 
experimental 
domain 

[0.25, 0.5, 
0.75, 1, 1.25] 

[15, 30, 45, 
60, 75] 

[2, 4, 6, 
8, 10] 

[10, 30, 
50, 70,90] 

- - 

 

 

2.2. Adaptive neuro fuzzy inference system 

ANFIS, introduced by Jang (Jang, 1993) is a hybrid technique of artificial intelligence in 

which a Sugeno-type Fuzzy Inference System (FIS) and an artificial neural network 

(ANN) are combined. Fuzzy Logic produces fuzzy rules that map the inputs to an output 

based on a given input-output data set. Using the ANFIS hybrid approach, an initial 

fuzzy model based on fuzzy logic from the input-output data of the system is derived. 

Then, the neural network learning process is utilized to fine-tune the rules of the initial 

fuzzy model to generate the optimal ANFIS model of the system. Therefore, ANFIS 

benefits from the advantages of Fuzzy Logic and neural networks in a single integrated 

system (Buragohain, 2009). 

The FIS structure can be generated by different strategies, including grid partitioning, 

Fuzzy C-mean clustering (FCM) and the subtractive clustering method (SCM). FCM 

integrated with ANFIS helps obtaining a relatively small number of rules which prevents 

the model from being too complex and reduces the risk of overfitting. The FCM 

clustering method partitions the input data into different clusters and is used to identify 

the fuzzy membership functions and fuzzy rule base for the ANFIS model (Melin et al., 

                  



 

2014). In this study, FCM has been used for the ANFIS model and the number of 

clusters will be manually selected for the best generalization performance. The 

architecture of the ANFIS models with two clusters (which is identified in section 3.1) 

used for phosphate removal efficiency is given in Table 2.   

Table 2. The ANFIS model characteristics 

Parameters Value/description 

Fuzzy structure Takagi-Sugeno  

Initial FIS generated Fuzzy C-Means clustering 

Input membership function type Gaussian (‘gaussmf’)  

Output membership function type Linear 

No. of clusters 2 

Optimization method Hybrid (least-squares and backpropagation gradient descent 

method) 

Number of linear parameters 10 

Number of nonlinear parameters 16 

Total number of parameters 26 

No. of fuzzy rules 2 

No. of maximum epoch 100 

Number of inputs 5 

Number of outputs 1 

 

2.3. Support vector regression 

Support vector regression (SVR) is an extension of support vector machines (SVM), first 

presented by Vapnik (1963), used for prediction and regression problems. Due to its 

promising generalization performance, SVR has been widely applied to regression 

prediction problems (Saradhi et al., 2007). In SVR, the main goal is to obtain a predictor 

function 𝑓(𝑥) that describes the relationship between input and output data with an error 

value less than 𝜀 for all the training data. At the same time, the function 𝑓(𝑥) is required 

to be as flat as possible, meaning that the errors are not significant as long as they are 

less than 𝜀, but any deviation larger than this amount is not tolerated. The SVR models 

were developed based on the standardized data of five input variables and one output 

                  



 

variable. In this work, dummy variables were generated for the categorical input of 

electrode type. 

2.3.1. SVR parameters optimization 

The performance of the SVR model highly depends on the accurate selection of its 

hyperparameters. These include the box constraint (C), the acceptable error epsilon (𝜀), 

the type of kernel function, and the kernel parameter. The box constraint C is a trade-off 

between model complexity and generalization ability. The magnitude of the penalty for 

samples with losses greater than 𝜀 is determined by the C-value. With too small C-

values, the model will be simpler (less complex), but the training error will increase. On 

the other hand, when C is too large, the empirical risk (the second term in the 

regression risk 𝑅) will be the dominant term for the minimization objective, which results 

in the overfitting issue (Rui et al., 2019). The 𝜀 hyperparameter influences the number of 

support vectors and, hence, the performance of the SVR by determining the size of the 

𝜀-insensitive zone. The kernel function and its relevant parameter maps nonlinear input 

data into the higher dimensional feature space to help SVR handle nonlinear problems 

(Alade et al., 2019).  

Therefore, the three hyperparameters of C, 𝜀, and kernel parameter (𝜎 for RBF and 𝑞 

for polynomial kernel function) should be selected carefully in view of the effectiveness 

of the SVR model. In this study, PSO and GA are applied to find the optimal values of 

these hyperparameters. It should be noted that in the case of a linear kernel function, 

only C and 𝜀 will be optimized by the optimization algorithms.  

2.4. Artificial neural networks  

An ANN imitates the essential characteristics of the human brain (which itself is a highly 

nonlinear, complex, and parallel computer), such as self-adaptability, self-organization, 

and error tolerance (Haykin, 1998). Considering how the different neurons are 

positioned and connected to each other as well as the composition of layers, various 

ANN architectures can be generated. The multilayer perceptrons (MLP) feedforward 

network is one of the most common ANN architectures. These networks are applied to 

                  



 

diverse problems, including function approximation, pattern classification, system 

identification, process control, process optimization, and so on (Gholami Shirkoohi et 

al., 2021). The weights of the connections between the neurons are adjusted in the 

training process. Multiple optimization algorithms can be used for the training process, 

such as gradient descent, Levenberg–Marquardt, and Bayesian Regularization 

backpropagation. MLP-ANN models with five input neurons and one output neuron have 

been developed to predict the phosphate removal efficiency of the EC process with the 

standardized data. 

2.4.1. ANN parameters optimization 

The hyperparameters of an ANN model, which define its topology and learning options, 

influence the accuracy and effectiveness of the trained model. The numbers of hidden 

layers and neurons in each hidden layer, training algorithm, transfer functions, the 

regularization parameter, the learning algorithm, and the maximum validation failure are 

considered as ANN hyperparameters (Shirkoohi et al., 2021; Sinha et al., 2021; 

Valencia et al., 2021; Viana et al., 2018). In this study, the selection of the number of 

hidden neurons, the training algorithm, the type of transfer function in the hidden layer, 

and the number of maximum validation failures are considered for tuning with PSO and 

GA. As training algorithms Gradient descent with momentum and adaptive learning rate 

backpropagation (traingdx), Levenberg-Marquardt backpropagation (trainlm), and 

Bayesian Regularization backpropagation (trainbr) have been selected for the 

optimization process. Also, transfer functions including Log-sigmoid (logsig), hyperbolic 

tangent sigmoid (tansig), and positive linear (poslin) were chosen as options. 

2.5. Hybrid ANN and SVR models 

Metaheuristic optimization algorithms, including GA and PSO will be used in this study 

to search for optimal hyperparameters of the developed SVR and ANN models. Genetic 

Algorithms, first proposed by Holland (Holland, 1992) are evolutionary search and 

optimization algorithms based on natural selection. GAs, thanks with good global 

searching ability, flexibility, no need for gradient information of the objective (fitness) 

                  



 

functions, and ease of operation, have been a powerful technique for optimization 

problems (Curteanu et al., 2007; Ding et al., 2011). PSO, first introduced by Kennedy et 

al. (1995), is based on the social behaviour simulation of a flock of birds, called ‘swarm’, 

searching for food. PSO is a stochastic population-based optimization approach in 

which particles, a swarm of potential solutions, fly in the problem space to find better 

regions and finally the optimal solution, while cooperating and competing with other 

ones (Chen et al., 2010). GA and PSO have been used to find optimal hyperparameters 

of AI models in the other disciplines of science (Amar et al., 2020; Gao et al., 2020; 

Haznedar et al., 2018; Mandal et al., 2015; Wang et al., 2015).  

Fig. 2 shows the flowchart of the integrated GA and PSO to find the optimal 

hyperparameters of the models. The repeated random sub-sampling validation or Monte 

Carlo cross-validation (Picard et al., 1984) is used in this study as applied before in 

literature (Altaf et al., 2016; Cao et al., 2020; Severeyn et al., 2019). In the simplest and 

most common cross-validation technique, single-split (hold-out cross-validation), the 

dataset is divided into training, validation, and test sets where the model will be trained 

and tuned on the training and validation sets and tested on the test set. In the repeated 

random sub-sampling validation, which is a variation of k-fold cross-validation in case 

that k is the number of the times the model will be trained, not the number of folds. In 

this cross-validation technique, on every iteration, samples will be randomly selected as 

training, validation, and test sets. To have an equal distribution of data for the different 

AI models, at first, 10 sub-datasets are generated randomly, each containing 62 data 

points. From these 10 sub-datasets, 42 data points will be selected for training, 10 data 

points for validation, and 10 data points for testing. The search for the optimal 

hyperparameters will be conducted using all 10 sub-datasets. This helps to find 

hyperparameters that result in the best performance available for the 10 sub-datasets 

and to overcome the uncertainty related to the use of single split training, validation and 

test sets method with limited data points available.  

To evaluate the performance of the AI models, the mean square error (MSE), the 

correlation coefficient (R2), and the mean absolute percentage error (MAPE) were used 

                  



 

as comparison criteria. To train and validate the hybrid models, MSE was used as the 

error function. These functions were calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

   

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
|

𝑛

𝑖=1

 

where 𝑦𝑖 is the experimental value, 𝑦𝑖̂ is the predicted value, and 𝑦̅ is the average value 

of the experimental data. 

MATLAB (version R2019a) has been used in our study to develop and apply different AI 

techniques. Hardware used was Intel(R) Core(TM) i7 with 16 GB RAM and equipped and 

an NVIDIA T500. Overall computation times for ANFIS, PSO-SVR, GA-SVR, PSO-ANN, 

and GA-ANN were recorded as 110 s, 1127 s, 1148 s, 4851 s, and 4897 s, respectively. 

Since the ANFIS approach does not include an optimization algorithm, it has much 

shorter computation times than the hybrid models.     

                  



 

 

Fig. 2. Flowchart of the proposed hybrid models 

3. Results 

3.1. ANFIS model 

The number of clusters in FCM-FIS generation affects the performance of the ANFIS 

model. Table 3 shows the impact of increasing the number of clusters on the 

performance of trained ANFIS models in training, validation, and test. As can be seen, 

setting a higher number of clusters for an ANFIS model results in having better 

performance on the training set by making the model more complex. However, this 

causes the model to lose generalization capability and to risk overfitting. This is evident 

from the performance of the models on the validation and test sets when higher number 

of clusters are adopted. Although both models with two and three clusters perform well 

on the validation and test stage, the model with two clusters would have a lower total 

number of parameters than a model with three clusters (38 parameters compared to 57) 

                  



 

and hence leads to a simpler model. Therefore, ANFIS models with two clusters were 

selected. 

Table 3. Error analysis as a function of the number of clusters in ANFIS 

No. of 
clusters 

MSE R
2
 MAPE 

Train Validation Test Train Validation Test Train Validation Test 

2 31.642 68.733 60.763 0.924     0.794     0.835 6.550 9.322 9.275 

3 17.647 58.422 96.994 0.958     0.832     0.757 5.066 8.176 10.823 

4 16.695 103.391 120.240 0.961     0.709     0.676 4.506 11.294 12.706 

5 8.306 151.575 179.181 0.981     0.557    0.504 2.690 12.961 14.650 

6 1.558 932.835 1030.522 0.996   -0.986 -2.050 0.757 19.982 22.588 

3.2. PSO-SVR and GA-SVR 

As mentioned before, the selection of kernel function and its inherent parameter 

influence the performance of the SVR model. Therefore, it was necessary to select the 

kernel function of the SVR model before fine-tuning the hyperparameters. For this 

purpose, the three kernel functions (linear, polynomial, and RBF) were tested on the 

data using the 5-fold cross-validation method. This method applies the training process 

on 4 folds of observations and (each time) leaves one fold of observations out to 

calculate the generalization error of the models. Table 4 shows the results for the 

different kernel functions used. The generalization error calculated is the out-of-sample 

MSE. It should be mentioned that the MSE obtained in Table 3 is based on the default 

values of the hyperparameters and the optimal hyperparameters of the SVR models 

with the three different kernel functions on the validation sets. As can be seen, the 

polynomial function leads to the best results on the 5-fold cross-validation method with 

the default hyperparameters. The kernel parameter, C, and 𝜀 should be optimally 

selected by the hyperparameter optimization algorithm. The three kernel functions were 

also tested for hyperparameter optimization by PSO-SVR and GA-SVR on the 10 data 

subsets. It can be seen that optimal SVR models with polynomial kernel function obtain 

the lowest MSE on the validation sets of PSO and GA algorithms with a population size 

of 50. 

Table 4. Effect of the kernel function on the SVR performance 

                  



 

Kernel functions MSE 

Default hyperparameters PSO and GA optimal hyperparameters 

Linear function 119.96 72.89 

Polynomial function 105.48 65.43 

RBF 361.61 66.09 

3.3. GA-ANN and PSO-ANN 

GA and PSO were used to find the optimal hyperparameters of the ANN models. A 

population size of 50 has been considered for the algorithms. Although population size 

is problem-dependent and no universal value can be proposed, there are studies 

suggesting that population sizes between 20 and 50 would be appropriate for solving 

optimization problems (Lobo et al., 2007; Poli et al., 2007; Wang et al., 2018; Zhang et 

al., 2005). Other control parameters of the GA and PSO are the same as suggested in 

the literature as described in section 2.5. The number of maximum iterations was set to 

200 and 100 for GA and PSO, respectively, to have an equal number of function calls 

for both algorithms (with respect to convergence), allowing for an unbiased comparison. 

Indeed, an equal number of iterations for each test, and not an equal number of function 

calls, may result in a better performance of the optimization algorithm that is attributed 

to a larger number of function calls (Piotrowski et al., 2020).  

Table 5 represents the optimal hyperparameters of the ANN models found by GA and 

PSO. The prediction accuracy of the hybrid models is given as the average MSE based 

on the 10 validation sets. It can be seen that both GA and PSO perform reasonably on 

the validation subsets. The best performances, in terms of average MSE over 10 

validation sets, are calculated as 7.686 and 7.830 for GA and PSO, respectively. 

However, their performance will be evaluated in the next section for the test subsets as 

well. The Levenberg-Marquardt training algorithm and log-sigmoid transfer function 

were found to be optimal for both GA and PSO techniques. The Levenberg-Marquardt 

method has shown its good performance including its ability to converge 10–100 times 

faster than the conventional gradient descent backpropagation algorithm (Da Silva et 

al., 2017; Kamosi et al., 2010). 

                  



 

Table 5. Optimal hyperparameters and prediction accuracy results for the hybrid GA and PSO models 

Technique Hyperparameters MSE 

No. of hidden 
neurons 

Training 
algorithm 

Transfer 
function 

No. of maximum 
validation failures 

GA-ANN 7 trainlm logsig 5 7.686 

PSO-ANN 9 trainlm logsig 7 7.830 

 

3.4. Performance comparison of the proposed models 

The objective of the proposed AI models including ANFIS, PSO-SVR, GA-SVR, PSO-

ANN, GA-ANN was to predict the removal efficiency of phosphate from wastewaters 

using the electrocoagulation process. The performance of each data-driven model was 

evaluated by its correspondence with experimental data on training, validation, and test 

sets. Table 6 represents the statistical analyses of the proposed models with the optimal 

parameters. Results are provided for training, validation, and test sets as the average of 

the 10 sub-datasets.   

The results in Table 6 show that hybrid ANN models perform better than ANFIS and 

hybrid SVR models in all training, validation, and test stages. Both PSO-SVR and GA-

SVR models showed similar performance results on the datasets. This comes from the 

fact that both evolutionary algorithms found the same SVR parameters as the optimal 

parameters. The optimal parameters (C, q, 𝜀) of PSO-SVR and GA-SVR were identified 

as (1, 3, 3.171). While the ANFIS models performed better in terms of generalization for 

test sets, it was outperformed by PSO-SVR and GA-SVR in the training and validation 

steps. The best performance both in training and generalization was obtained by the 

PSO-ANN models, while the GA-ANN models also showed their effectiveness. The 

average MSE, R2, and MAPE values of the 10 sub-datasets for PSO-ANN are 

determined as 7.201, 0.981, and 2.022 for the test sets, respectively.  

Fig. 3 shows the performance comparison of the AI models on the test sets of each of 

the 10 data subsets. As can be observed, the effectiveness of the data-driven model 

depends on how the data is distributed over the training, validation, and test sets. For 

instance, the hybrid SVR models have low MSE, MAPE, and high R2 for sub-dataset 1. 

                  



 

Their performance is comparable to the hybrid ANN models. However, the hybrid ANN 

models outperform ANFIS and hybrid SVR models for the test sets of other data 

subsets. Fig. 4 presents the box plots of the performance indices of the AI models for 

the test sets of 10 data subsets. It shows that there is a greater variability for the hybrid 

SVR models than for the hybrid ANN models. It can be concluded that generally, hybrid 

SVR models are more sensitive than hybrid ANN models to the distribution of the data 

points among the training, validation, and test sets. Nevertheless, hybrid ANN models 

show less dispersed performance for the test sets of the different data subsets. 

According to the mentioned analyses, it can be concluded that the proposed hybrid 

ANN models have great performance in the prediction of the removal efficiency of 

phosphate using the electrocoagulation process. The results confirmed that PSO-ANN 

models have exceptional generalization performance for the different data subsets.     

Table 6. Performance evaluation of the developed AI models 

Model MSE R
2
 MAPE 

Train Validation Test Train Validation Test Train Validation Test 

ANFIS 31.642 68.732 60.763 0.924 0.793 0.835 6.550 9.322 9.275 

PSO-SVR 9.374 65.433 75.893 0.978 0.808 0.800 4.377 8.998 10.779 

GA-SVR 9.374 65.433 75.894 0.978 0.808 0.800 4.377 8.998 10.779 

PSO-ANN 7.259 7.830 7.201 0.983 0.978 0.981 1.958 2.286 2.022 

GA-ANN 8.765 7.686 9.759 0.979 0.978 0.970 2.520 2.747 2.774 
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Fig. 3 Performance evaluation of the developed AI models on the test sets of the 10 subsets; (a) MSE, (b) 
R

2
, (c) MAPE  

 

(c) 

                  



 

 

Fig. 4 Boxplot comparison of the performance of the different AI models for the test sets using three 
performance criteria 

3.5. Interpretation of the phosphate removal process with the 

optimal model 

In this section, the optimal PSO-ANN model found will be used to interpret the 

electrocoagulation process for phosphate removal from wastewater. In this matter, the 

ANN model will be trained with the optimal hyperparameters found in section 3.3. The 

performance of the trained model is shown in Fig. 5. As can be seen, there is a good 

agreement between actual and predicted values for the phosphate removal efficiency 

(R2=0.974). Also, the residual error analysis and the histogram shows that the errors are 

approximately symmetrically distributed around zero with a mean value of -0.19109 and 

a standard deviation of 3.1788. 

                  



 

 

Fig. 5 Performance of the trained ANN model using optimal hyperparameters found by PSO 

The weights acquired during ANN training represent synaptic strengths between axons 

and dendrites in a real neuron in the brain. These weights, like in real life, determine the 

proportion of the incoming signal that is delivered to the neuron's body (Khataee et al., 

2010). Despite the black-box nature of ANNs, a sensitivity analysis on the ANNs may be 

performed to evaluate the effect of several independent factors on the output. The 

neural connection weight matrix may be used to determine the relative relevance of 

each input independent variable on the intended output. First, Garson (Garson, 1991) 

and then Goh (Goh, 1995) presented a method for partitioning the connection weights in 

order to establish the relative importance of the various inputs. This method basically 

involves partitioning the hidden-output connection weights of each hidden neuron into 

components associated with each input neuron (Zhang et al., 2018). In essence, this 

strategy entails partitioning each hidden neuron's hidden-output connection weights into 

                  



 

components related to each input neuron. The relative importance of each input variable 

on the output variable is calculated as follows: 

Ij =
∑ ((|Wjm

jh
| / ∑ |Wkm

ih |
Ni
k=1 ) × |Wmn

ho |)
m=Nh
m=1

∑ [∑ (|Wkm
ih |/ ∑ |Wkm

ih |
Ni
k=1 )

m=Nh
m=1 × |Wmn

ho |]
k=Ni
k=1

 

where Ij is the relative importance of the jth input variable on the output variable, Ni and 

Nh are the numbers of input and hidden neurons, respectively; the Ws are connection 

weights, the superscripts i, h and o refer to input, hidden, and output layers, 

respectively. Also, the subscripts k, m and n refer to input, hidden and output neurons, 

respectively. 

As can be seen in Fig. 6, the relative importance of each individual variable was found 

as: electrode type > initial phosphate concentration > treatment time > current intensity 

> pH. The electrode type and initial phosphate concentration are the two most influential 

input variables on the phosphate removal efficiency. This is in accordance by the results 

of the Ano et al. (2019) obtained by the RSM approach. Surface plots of the ANN model 

for phosphate removal efficiency as a function of initial phosphate concentration and 

treatment time at the center point of the current intensity and pH are illustrated in Fig. 7. 

Generally, it can be said that treatment time has a positive effect on the removal 

efficiency for both electrodes meaning that with an increase in the treatment time, the 

removal efficiency improves. However, the initial phosphate concentration has a 

negative impact on the phosphate removal efficiency.  

                  



 

 

Fig. 6. Relative importance of the input variables on the phosphate removal efficiency 

 

                  



 

 

Fig. 7. Surface plots of the ANN model for phosphate removal efficiency as function of initial phosphate 
concentration and treatment time at a current intensity of 0.75 A and pH of 6. 

The main effects of each independent variable on the phosphate removal efficiency are 

represented in Fig. 8. For each variable, other independent variables were set at their 

mean values. In all the four plots, it is evident that the Al electrode has better removal 

efficiency than the Fe electrode. Because of their demonstrated durability and 

availability for electrocoagulation, Al and Fe electrodes are the most commonly utilized. 

However, due to its lower positive charge, Fe (II) is a poor coagulant when compared to 

Fe (III). A lower positive charge suggests a poorer capacity of the ion to compress the 

electrical double layer/destabilize colloids. Most studies have shown that Al electrodes 

improve the effectiveness of eliminating pollutants better than Fe electrodes (Moussa et 

al., 2017). The removal efficiency is improved by increasing the current intensity and 

electrolysis time. In fact, Faraday's law states that the amount of metal cations produced 

in the medium, which is dependent on the electrolysis time and current intensity, 

determines the removal efficiency of phosphate. The higher current intensity and longer 

electrolysis time help the generation of more metal cations. On the other hand, 

increasing initial phosphate concentration results in a decrease in removal efficiency for 

both electrodes. This is because the amount of metal cations formed at the given values 

                  



 

for other variables will likewise be fixed, which may not be enough to coagulate the high 

phosphate concentrations. Finally, it is shown that the removal efficiency is lower in 

higher pH (basic condition) than in lower pH (acidic condition) for both electrodes. Due 

to the predominance of the Al3+ and Fe3+ cations at acidic pH, a significant number of 

metal cations would precipitate with the phosphate ions as AlPO4 and FePO4, 

respectively. The different precipitates AlPO4, FePO4, Al(OH)3, and Fe(OH)3 become 

more soluble as the pH rises which would account for the decrease in efficiency (Attour 

et al., 2014). Also, It is worth mentioning that several authors have suggested that in the 

case of Al electrodes, the maximum performance of the EC system can be reached at 

around neutral pH, as predicted in this study (Katal et al., 2011; Terrazas et al., 2010). 

The optimal ANN model found by the PSO helped to interpret the electrocoagulation 

process for the removal of phosphate from wastewater.  

 

 

Fig. 8. Main effect plot of each independent variable on caffeine removal efficiency 

                  



 

 

 

4. Conclusion  

In this study, GA and PSO algorithms were used to optimize the hyperparameters of the 

SVR and ANN models to forecast the removal efficiency of phosphate from wastewaters 

using the electrocoagulation process. The current intensity, initial phosphate 

concentration, initial pH, treatment time, and electrode type were considered as models’ 

inputs. The performance criteria (MSE, R2, MAPE) comparison of models showed that 

the effectiveness of the data-driven models depends on how the data is distributed to 

the training, validation, and test sets. The ANFIS and hybrid SVR models were more 

sensitive than hybrid ANN models to the distribution of data points. The hybrid ANN 

models showed greater accuracy than the ANFIS and hybrid SVR models that they 

were compared to using different performance criteria and indicated less dispersed 

performance for the test sets of the different sub-datasets. Remarkably, PSO-ANN 

models illustrated exceptional generalization performance for the 10 data subsets 

examined. The trained PSO-ANN model was used to interpret the EC process for 

phosphate removal efficiency. Results showed that the electrode type and initial 

phosphate concentration are the two most influential input variables on the phosphate 

removal efficiency. Also, it was found that the removal efficiency is improved by 

increasing the current intensity and treatment time and decreasing the initial phosphate 

concentration and the pH. Further research in the application of hybrid evolutionary 

algorithms and AI models may be carried out in electrochemical processes for water 

and wastewater treatment with respect to the reliability and robustness of the models. 
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