Dépôt numérique

Rainfall-runoff modelling using octonion-valued neural networks.


Téléchargements par mois depuis la dernière année

Plus de statistiques...

Shishegar, Shadab; Ghorbani, Reza; Saad Saoud, Lyes; Duchesne, Sophie ORCID logoORCID: https://orcid.org/0000-0002-5619-0849 et Pelletier, Geneviève (2021). Rainfall-runoff modelling using octonion-valued neural networks. Hydrological Sciences Journal , vol. 66 , nº 13. pp. 1857-1865. DOI: 10.1080/02626667.2021.1962885.

[thumbnail of P3965.pdf]
Télécharger (1MB) | Prévisualisation


Rainfall-runoff modelling is at the core of any hydrological forecasting system. High spatio-temporal variability of precipitation patterns, complexity of the physical processes, and large quantity of parameters to characterize a watershed make the prediction of runoff rates quite difficult. In this study, a hyper-complex Artificial Neural Network (ANN) in the form of an Octonion-Valued Neural Network (OVNN) is proposed to estimate runoff rates. Evaluation of the proposed model is performed using a rainfall time series from a rain gauge near a Canadian watershed. Results of the AI-generated runoff rates illustrate its capacity to produce more computationally efficient runoff rates when compared to those obtained using a physically-based model. In addition, training the data using the proposed OVNN versus a real-valued neural network shows less space-complexity (1*3*1 vs. 8*10*8, respectively) and more accurate results (0.10% vs. 0.95%, respectively), that accounts for the efficiency of the OVNN model for real-time control applications.

Type de document: Article
Mots-clés libres: machine learning; flow rate prediction; stormwater management; hydrology; multi-dimensional; hyper complex network
Centre: Centre Eau Terre Environnement
Date de dépôt: 15 oct. 2021 17:26
Dernière modification: 07 août 2022 04:00
URI: https://espace.inrs.ca/id/eprint/11955

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice