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A B S T R A C T 

Rainfall-runoff modeling is at the core of any hydrological forecasting system. High 
spatio-temporal variability of precipitation patterns, complexity of the physical 
processes, and large quantity of parameters to characterize a watershed make the 
prediction of runoff rates quite difficult. In this study, a hyper-complex Artificial 
Neural Network (ANN) in the form of an Octonion-Valued Neural Network 
(OVNN) is proposed to estimate runoff rates. Evaluation of the proposed model is 
performed using a rainfall time series from a rain gauge near a Canadian watershed. 
Results of the AI-generated runoff rates illustrate its capacity to produce more 
computationally efficient runoff rates when compared to those obtained using a 
physically-based model. In addition, training the data using the proposed OVNN 
versus a real-valued neural network shows less space-complexity (1*3*1 vs. 8*10*8, 
respectively) and more accurate results (0.10% vs. 0.95%, respectively), that 
accounts for the efficiency of the OVNN model for real-time control applications. 

Keywords: Machine learning, Flow rate prediction, Stormwater management, 

Hydrology, Multi-dimensional, Hyper complex network 

 

1- Introduction 
The paradigm shift from using physically-based simulation to Artificial Intelligence (AI) in 

hydrological processes allows accurate modelling of complex systems without prior understanding of 

physical laws governing the process (Kalteh 2008). Artificial Neural Network (ANN) algorithms are 

among AI forecasting methods that have been widely employed in various hydrological fields 

particularly in the context of Climate Change (CC) (Daliakopoulos and Tsanis 2016) including rainfall-



runoff modelling (Kan et al. 2015; Tayyab 2019), flood prediction (Berkhahn et al. 2019) and long-

term rainfall forecasting (Mekanik et al. 2013). All these hydrological phenomena are highly non-linear, 

time-varying and spatially distributed (Jurkar et al. 2009), and their mathematical representation 

requires detailed data on physical infrastructure, precipitation time series and hydrological 

characteristics of the studied watershed that could lead to high complexities in the modelling process. 

Rainfall-runoff simulation can be realized by either data-driven or physically-based models (Kan et al. 

2015). Hernonin et al. (2013) report, in their state-of-the-art, that physically-based simulation models 

are not fast enough for real-time forecasting. However, the historical statistics and simple data-driven 

models have the ability to perform fast and reliably (Hernonin et al. 2013). Application of ANN as a 

data-driven model to estimate streamflow out of a rainfall data series was successfully employed during 

the last decades and the number of such applications has been growing fast (Daliakopoulos and Tsanis 

2016). Even the popularity of ANN amongst hydrologists has been reported by American Society of 

Certified Engineering Technicians (ASCET) (Tayyab 2019).  

The related literature shows that several procedures and architectures of ANN were proposed to 

deal with rainfall-runoff modelling. In Aytek et al. (2008), the performance of two ANN techniques, 

Feed Forward Back Propagation (FFBP) and Generalized Regression Neural Network (GRNN), was 

evaluated using historical hydro-meteorological data for the estimation of runoff in the Juniata River 

Basin (USA). Wavelet based ANNs is another type of neural networks that has been studied mostly to 

find a better correlation coefficient between the rainfall and runoff estimations (Dumka and Kumar 

(2021), Alizadeh, et al. (2021). Although this method can be employed for runoff forecasting, the large 

number of neurons in rainfall-runoff modelling studies may affect the correlation between the input and 

output features (Dumka and Kumar, 2021) to provide a reliable estimation of runoff. In another study 

by Mittal et al. (2012), a dual ANN was proposed to improve the performance of the flow prediction 

model in extreme events and compared to a Feed-Forward ANN (FF-ANN), which is widely present in 

the rainfall-runoff modelling literature. The developed dual ANN in that study outperformed the popular 

FF-ANN technique in prediction of high flows and it was suggested to be used under extreme events. 

Three other neural networks have been studied in Chen et al. (2014) where Copula-entropy theory was 

employed to skip the marginal and joint probability calculation in the ANN algorithm. Multi-layer FF-

ANN, radial basis function networks and GRNN were chosen to evaluate the stream flow prediction 

performance of the system (Chen et al. 2014). In a recent study by Kao et al. (2020), an FF-ANN 

Encoder-Decoder algorithm is compared with a Long-Short Term Memory Encoder Decoder in order 

to provide an accurate flood forecasting for flood control systems. The proposed model in this study 

integrates a sequence-to-sequence learning procedure that converts the input sequence including hourly 

inflows, to the output sequence of reservoir inflow forecasts. As a result, they report that considering a 

sequence-to-sequence learning into the encoder-decoder algorithm can enable translation of the rainfall 

sequence into the runoff sequence while increasing the interpretability of the proposed model (Kao et 

al. 2020). Recent real domain ANN models have been developed to higher dimensional domains based 



on which several hyper-complex techniques have been proposed. Among all these hyper-complex 

ANNs, Octonion-Valued Neural Networks (OVNNs) are proved to be one of the most promising 

approaches to model high-dimensional nonlinear processes (Saad Saoud and Ghorbani 2019). OVNNs 

consist of 8-dimensional inputs, outputs, weights and biases that are defined based on the Octonion 

numbers introduced by Conway and Smith (2003). In spite of Clifford algebras, the Octonion algebras 

are neither associative nor commutative i.e.  𝑖𝑖𝑘𝑘𝑖𝑖𝑙𝑙 ≠ 𝑖𝑖𝑙𝑙𝑖𝑖𝑘𝑘   ∀𝑘𝑘 ≠ 𝑙𝑙 and 𝑖𝑖𝑘𝑘(𝑖𝑖𝑙𝑙𝑖𝑖𝑚𝑚) ≠ (𝑖𝑖𝑘𝑘𝑖𝑖𝑙𝑙)𝑖𝑖𝑚𝑚  ∀𝑘𝑘 ≠ 𝑙𝑙 ≠ 𝑚𝑚.  

This study is motivated by the need to model the complex process of rainfall transformation to 

runoff in real-time. As recommended in Shishegar et al. (2019), this complexity is inevitable specially 

in watershed-level investigations where the spatio-temporal variability of precipitation patterns is high, 

the associated physical processes are difficult to study and there are numerous parameters involved in 

the representation of the watershed. On the other hand, the OVNN algorithms are proved to be capable 

of providing efficient forecasting outputs for multi-dimensional complex problems relying on their two 

main features: 1) the ability to reduce the input-output dimensions by eight times; while 2) expanding 

the traditional backpropagation algorithm by adding seven other dimensions (Saad Saoud and Ghorbani 

2019). Hence, in this study, an OVNN algorithm is developed as an alternative to physically based 

simulation models for runoff predictions in urban areas. To the best of our knowledge, the OVNN has 

not yet been employed in the literature for the estimation of runoff rates resulting from precipitation 

time series. Considering the real-time forecasting required in designing many modern urban stormwater 

management systems as a component of a greater whole named smart city (see e.g. Shishegar et al., 

2020), the problem-solving speed is an important factor here.  

In order to address the above problems, the scientific objectives of this study can be presented as 

follows: 

• To propose an octonion-valued neural network algorithm to estimate the runoff rates at 

the outlets of a stormwater management network; 

• To evaluate the performance of the proposed algorithms over the traditional physically 

based rainfall-runoff simulation approach in terms of not only the quality of prediction, 

but the computing time;  

• To assess the outcomes of the multi-dimensional neural network for a real-case urban 

stormwater system; and  

• To carry out a comparative analysis between the real-valued neural network and OVNN 

performances. 

2- Experimental Area 
The study area is an urban watershed located at the central province of Quebec, Canada. The 

catchment area has a surface of 311 ha of which 64% is residential, 14% is industrial, 9% is commercial 

and 13% is institutional, with an average impermeability of 62%. The physically based rainfall-runoff 



simulation model of the sewer network of this catchment has already been developed and is used here 

for the comparative analysis of the proposed OVNN algorithm. PCSWMM software Version 7.0 was 

used for the rainfall/runoff simulation of the studied sector (Figure 1). This software performs based on 

the Stormwater Management Model ‐ SWMM (Rossman and Huber 2016), that dynamically simulates 

stormwater runoff and flows in sewer networks from the specified rainfall series. In order to convert 

the current combined drainage network to a separated (stormwater) sewer network, all the wastewater 

flow values were given a zero value. This allows studying the runoff rates generated from the rainfall 

series which is here considered as the inputs of the proposed algorithm.  Four storage units, designed at 

the outlets of the separate sewer network, are the points where the runoff rates will be estimated. A 

more detailed explanation of the input parameter structure is given in section 3-2. 

Precipitation Data 

An operating rain gauge located 80 km from the studied watershed measures the rainfall data by 

a tipping bucket and provides the observation record at a 5-minute time step. This recorded data is then 

validated by performing a comparative analysis with the recorded rainfall series by Environment 

Canada at the same station. In this study, the rainfall time-series of the year 2013 from May to 

November has been selected for the analysis of generated runoff. Generally, due to the meteorological 

characteristics of the Quebec Province region with long and snowy winters, the rainfall analysis is 

performed for the months of May to November. The data recorded for this period of the year 2013 

shows a relatively higher average amount of rainfall (903 mm) compared to those recorded in average 

between 2000 and 2017 for the same period (759 mm). The reason to select this rainfall series for the 

investigations of this paper is to enable assessing the performance of the proposed OVNN algorithm 

under challenging conditions. Evidently, the more the proposed algorithm is trained based on critical 

data, the better its performance would be facing rainy periods. The rainfall characterization analysis is 

carried out based on two criteria for rainfall events separation: an inter-event duration of 6 hours and a 

minimum rainfall intensity of 1.2 mm/h. Table 1 shows the monthly and total rainfall height of the year 

2013 in comparison to the average values (2000- 2017), along with the characteristics of this 2013 

rainfall time series that provides a better understanding of the precipitation data used for ANN training. 

Also, the hyetograph of the 2013 rainfall series is illustrated in Figure 2.  

3- Methodology 

3-1- Octonion Valued Neural Network (OVNN) 

This section develops the octonion valued neural network for training the rainfall and runoff data 

series in the form of octonion numbers given like: 

 



𝑂𝑂𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥1 + 𝑖𝑖1𝑥𝑥2 + 𝑖𝑖2𝑥𝑥3 + 𝑖𝑖3𝑥𝑥4 + 𝑖𝑖4𝑥𝑥5 + 𝑖𝑖5𝑥𝑥6 + 𝑖𝑖6𝑥𝑥7 + 𝑖𝑖7𝑥𝑥8     (1) 

Where: 𝑥𝑥𝑖𝑖, 𝑖𝑖 ∈ {1,2, … , 8} are the real parts and  

𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4,𝑥𝑥5, 𝑥𝑥6,𝑥𝑥7,𝑥𝑥8  ∈ 𝑹𝑹 

and 𝑖𝑖𝑗𝑗, 𝑗𝑗 ∈ {1,2, … , 7} are the imaginary parts and  

𝑖𝑖12 = 𝑖𝑖22 = 𝑖𝑖32 = 𝑖𝑖42 = 𝑖𝑖52 = 𝑖𝑖62 = 𝑖𝑖72 = −1 

 

The latter includes three layers (Figure 3): an input layer with n  octonion inputs, one hidden 

layer with m  neurons, and one output layer with s neurons. These layers are related, respectively, to 

weights 𝑤𝑤𝑛𝑛𝑚𝑚1  and 𝑤𝑤𝑚𝑚𝑚𝑚
2 . The hidden and output layers have biases represented by 𝑤𝑤0𝑚𝑚1  and 𝑤𝑤0𝑚𝑚1 , 

respectively. All network settings, inputs and outputs are considered octonion.  

The 𝑗𝑗𝑡𝑡ℎ OVNN output can be calculated using the following equation: 

𝑦𝑦�𝑗𝑗(𝑘𝑘 + 1) = 𝑓𝑓2�𝑦𝑦�𝑗𝑗𝑅𝑅𝑑𝑑� + ∑ 𝑖𝑖𝑟𝑟𝑓𝑓2 �𝑦𝑦�𝑗𝑗
𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟�         7

𝑟𝑟=1                                     (2) 

Where:  

 Re  and ( )Im ri  indices are the real and imaginary parts of 𝑖𝑖1, 𝑖𝑖2, 𝑖𝑖3, 𝑖𝑖4, 𝑖𝑖5, 𝑖𝑖6,  and 𝑖𝑖6,  respectively.  

𝑓𝑓2 is the sigmoid non-linear function given by the following equation: 

𝑓𝑓2(. ) = 1
1+𝑑𝑑−(.)      (3) 

𝑦𝑦� = ∑ 𝑤𝑤𝑙𝑙2ℎ𝑙𝑙𝑚𝑚
𝑙𝑙=1 + 𝑤𝑤02                                                                    (4) 

Where: 

𝑙𝑙 = 1, … ,𝑚𝑚 

 lh  is the lth hidden neuron output, which is given by: 

ℎ𝑙𝑙 = 𝑓𝑓1�ℎ�𝑙𝑙𝑅𝑅𝑑𝑑�+ 𝑖𝑖1𝑓𝑓1 �ℎ�𝑙𝑙
𝐼𝐼𝑚𝑚(𝑖𝑖1)� + 𝑖𝑖2𝑓𝑓1 �ℎ�𝑙𝑙

𝐼𝐼𝑚𝑚(𝑖𝑖2)� + 𝑖𝑖3𝑓𝑓1 �ℎ�𝑙𝑙
𝐼𝐼𝑚𝑚(𝑖𝑖3)�                           (5) 

+𝑖𝑖4𝑓𝑓1 �ℎ�𝑙𝑙
𝐼𝐼𝑚𝑚(𝑖𝑖4)� + 𝑖𝑖15𝑓𝑓1 �ℎ�𝑙𝑙

𝐼𝐼𝑚𝑚(𝑖𝑖5)� + 𝑖𝑖6𝑓𝑓1 �ℎ�𝑙𝑙
𝐼𝐼𝑚𝑚(𝑖𝑖6)�+ 𝑖𝑖7𝑓𝑓1 �ℎ�𝑙𝑙

𝐼𝐼𝑚𝑚(𝑖𝑖7)� 

Where: 

ℎ�𝑙𝑙 = 𝑤𝑤𝑛𝑛𝑙𝑙1 𝑢𝑢𝑛𝑛 + 𝑤𝑤0𝑙𝑙1                                                                  (6) 

               

𝑢𝑢𝑛𝑛 is the octonion valued vector of n octonion elements. 

Noteworthy is that ReLU and sigmoid are the most employed non-linear activation functions in 

the literature for the hidden and output layers, both of which have the lower bound of zero. The sigmoid 

function transfers all the data to the bounded range between zero and 1, while ReLU keeps the upper 

bound of the data and converts all the negative values to zero. This feature of ReLU may be problematic 

as it decreases the ability of the ANN to train negative values by ignoring them. However, in rainfall-



runoff modeling where there is no negative data, the ReLU activation function can be used. In addition, 

ReLU is far more computationally efficient with a faster training process than the sigmoid function due 

to neurons with rectified functions that perform well to overcome saturation during the learning process 

as reported in Mboga et al. (2017). The sparsity and the reduced likelihood of vanishing the gradient 

are other advantages of ReLU that motivated us to use this activation function. The non-linear ReLU 

function is employed in the hidden layer which is given by the equation below: 

𝑓𝑓1(𝑥𝑥) = max (0,𝑥𝑥)   (7) 

 

To optimize the network parameters, the octonion valued backpropagation is used. The objective 

is to optimize the parameters of the network in such a way that the total sum squared error in the output 

layer is minimized, which can be expressed as:  

𝐸𝐸 = 1
2
𝑒𝑒𝑐𝑐𝑒𝑒 = 1

2
∑ 𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑∗𝑑𝑑 = 1

2
∑ 𝐸𝐸𝑑𝑑𝑑𝑑                                                              (8) 

𝐸𝐸𝑑𝑑 = 𝑒𝑒𝑑𝑑𝑒𝑒𝑑𝑑∗ = |𝑒𝑒𝑑𝑑|2                                                                         (9) 

Where: 

The superscript ‘*’ represents the conjugate operator;  

C is the Cayley operator (Cayley 1846);  

d is the number of samples; and  

𝑒𝑒∗ is the error’s conjugate. 

The error e between the desired output y  and estimated output ŷ  is: 

                 

𝑒𝑒 = 𝑦𝑦(𝑘𝑘 + 1) − 𝑦𝑦�(𝑘𝑘 + 1) = 𝑒𝑒𝑅𝑅𝑑𝑑 + ∑ 𝑖𝑖𝑟𝑟𝑒𝑒𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)7
𝑟𝑟=1                                               (10) 

In order to determine the optimal network parameters including weights and bias, the real valued 

delta rule proposed in Saad Saoud and Ghorbani (2019) is extended as follows: 

The bias 𝑤𝑤0𝑚𝑚2  is: 

𝑤𝑤0𝑚𝑚2 = 𝑤𝑤0𝑚𝑚2𝑅𝑅𝑑𝑑 + 𝑖𝑖1𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖1) + 𝑖𝑖2𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(𝑖𝑖2) + 𝑖𝑖3𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖3) + 𝑖𝑖4𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(4) 

+𝑖𝑖5𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖5) + 𝑖𝑖6𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(𝑖𝑖6) +  𝑖𝑖7𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖7)                (11)                          

We have: 

∆𝑤𝑤0𝑚𝑚2
𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑤𝑤0𝑚𝑚2𝑅𝑅𝑑𝑑 + 𝑖𝑖1∆𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(𝑖𝑖1) + 𝑖𝑖2∆𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖2) + 𝑖𝑖3∆𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(𝑖𝑖3) + 𝑖𝑖4∆𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖4) + 𝑖𝑖5∆𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(𝑖𝑖5)

+ 𝑖𝑖6∆𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖6) + 𝑖𝑖7∆𝑤𝑤0𝑚𝑚

2𝐼𝐼𝑚𝑚(𝑖𝑖7) = ∆𝑤𝑤0𝑚𝑚2𝑅𝑅𝑑𝑑 + �𝑖𝑖𝑟𝑟∆𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)

7

𝑟𝑟=1

= −𝜂𝜂�
𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤0𝑚𝑚2𝑅𝑅𝑑𝑑
+ �𝑖𝑖𝑟𝑟

𝜕𝜕𝐸𝐸

𝜕𝜕𝑤𝑤0𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)

7

𝑟𝑟=1

� = −𝜂𝜂∇𝑤𝑤0𝑠𝑠
2 𝐸𝐸 

 



 

→ ∇𝑤𝑤0𝑠𝑠
2 𝐸𝐸 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤0𝑠𝑠
2𝐼𝐼𝐼𝐼(𝑖𝑖𝑟𝑟)                                                            (12) 

∇𝑤𝑤0𝑠𝑠
2 𝐸𝐸 = −{𝑒𝑒𝑅𝑅𝑑𝑑(1− 𝑦𝑦�𝑚𝑚𝑅𝑅𝑑𝑑).𝑦𝑦�𝑚𝑚𝑅𝑅𝑑𝑑} + ∑ 𝑖𝑖𝑟𝑟𝑒𝑒𝑚𝑚

𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟) �1 − 𝑦𝑦�𝑚𝑚
𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)� .𝑦𝑦�𝑚𝑚

𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)7
𝑟𝑟=1      (13) 

𝑤𝑤0𝑚𝑚2 (𝑘𝑘 + 1) = 𝑤𝑤0𝑚𝑚2 (𝑘𝑘) − 𝜂𝜂∇𝑤𝑤0𝑠𝑠
2 𝐸𝐸                                       (14) 

For the weights 𝑤𝑤𝑚𝑚𝑚𝑚
2 : 

𝑤𝑤𝑚𝑚𝑚𝑚
2 (𝑘𝑘 + 1) = 𝑤𝑤𝑚𝑚𝑚𝑚

2 (𝑘𝑘) − 𝜂𝜂∇𝑤𝑤𝐼𝐼𝑠𝑠
2 𝐸𝐸                                                                 (15) 

where  

𝑤𝑤𝑚𝑚𝑚𝑚
2 = 𝑤𝑤𝑚𝑚𝑚𝑚

2𝑅𝑅𝑑𝑑 + ∑ 𝑖𝑖𝑟𝑟𝑤𝑤𝑚𝑚𝑚𝑚
2𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)7

𝑟𝑟=1           

and 

∇𝑤𝑤𝐼𝐼𝑠𝑠
2 𝐸𝐸 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐼𝐼𝑠𝑠
2𝑅𝑅𝑅𝑅 +∑ 𝑖𝑖𝑟𝑟

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝐼𝐼𝑠𝑠
2𝐼𝐼𝐼𝐼(𝑖𝑖𝑟𝑟)

7
𝑟𝑟=1             (16) 

∇𝑤𝑤𝐼𝐼𝑠𝑠
2 𝐸𝐸 = −ℎ𝑚𝑚𝑚𝑚

∗ . �𝑒𝑒𝑅𝑅𝑑𝑑(1− 𝑦𝑦�𝑅𝑅𝑑𝑑).𝑦𝑦�𝑅𝑅𝑑𝑑 +∑ 𝑖𝑖𝑟𝑟𝑒𝑒𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)(1 − 𝑦𝑦�𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)).7
𝑟𝑟=1 𝑦𝑦�𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)�  (17) 

For bias 𝑤𝑤0𝑚𝑚1  and weights 𝑤𝑤𝑛𝑛𝑚𝑚1 , the same procedure is used where:  

𝑤𝑤0𝑚𝑚1 = 𝑤𝑤0𝑚𝑚1𝑅𝑅𝑑𝑑 + 𝑖𝑖1𝑤𝑤0𝑚𝑚
1𝐼𝐼𝑚𝑚(𝑖𝑖1) + 𝑖𝑖2𝑤𝑤0𝑚𝑚

1𝐼𝐼𝑚𝑚(𝑖𝑖2) + 𝑖𝑖3𝑤𝑤0𝑚𝑚
1𝐼𝐼𝑚𝑚(𝑖𝑖3) + 𝑖𝑖4𝑤𝑤0𝑚𝑚

1𝐼𝐼𝑚𝑚(𝑖𝑖4) + 𝑖𝑖5𝑤𝑤0𝑚𝑚
1𝐼𝐼𝑚𝑚(5) +

𝑖𝑖6𝑤𝑤0𝑚𝑚
1𝐼𝐼𝑚𝑚(𝑖𝑖6) + 𝑖𝑖7𝑤𝑤0𝑚𝑚

1𝐼𝐼𝑚𝑚(𝑖𝑖7)                                             (18) 

𝑤𝑤𝑛𝑛𝑚𝑚1 = 𝑤𝑤𝑛𝑛𝑚𝑚1𝑅𝑅𝑑𝑑 + 𝑖𝑖1𝑤𝑤𝑛𝑛𝑚𝑚
1𝐼𝐼𝑚𝑚(𝑖𝑖1) + 𝑖𝑖2𝑤𝑤𝑛𝑛𝑚𝑚

1𝐼𝐼𝑚𝑚(𝑖𝑖2) + 𝑖𝑖3𝑤𝑤𝑛𝑛𝑚𝑚
1𝐼𝐼𝑚𝑚(𝑖𝑖3) + 𝑖𝑖4𝑤𝑤𝑛𝑛𝑚𝑚

1𝐼𝐼𝑚𝑚(𝑖𝑖4) + 𝑖𝑖5𝑤𝑤𝑛𝑛𝑚𝑚
1𝐼𝐼𝑚𝑚(5) +

𝑖𝑖6𝑤𝑤𝑛𝑛𝑚𝑚
1𝐼𝐼𝑚𝑚(𝑖𝑖6) + 𝑖𝑖7𝑤𝑤𝑛𝑛𝑚𝑚

1𝐼𝐼𝑚𝑚(𝑖𝑖7)                                             (19) 

The modification approach is therefore given as follows: 

∇𝑤𝑤0𝐼𝐼
2 𝐸𝐸 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤0𝐼𝐼
1𝑅𝑅𝑅𝑅 + ∑ 𝑖𝑖𝑟𝑟

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤0𝐼𝐼
1𝐼𝐼𝐼𝐼(𝑖𝑖𝑟𝑟)

7
𝑟𝑟=1     (20) 

∇𝑤𝑤0𝐼𝐼
2 𝐸𝐸 = �(1 − ℎ𝑚𝑚𝑅𝑅𝑑𝑑).ℎ𝑚𝑚𝑅𝑅𝑑𝑑.∇𝑤𝑤0𝑠𝑠

2 𝐸𝐸.𝑤𝑤2∗(∇𝑤𝑤0𝑠𝑠
2 𝐸𝐸.𝑤𝑤𝑚𝑚𝑚𝑚

2∗ )𝑅𝑅𝑑𝑑 +∑ 𝑖𝑖𝑟𝑟 �1 −7
𝑟𝑟=1

ℎ𝑚𝑚
𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)� .ℎ𝑚𝑚

𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟). (∇𝑤𝑤0𝑠𝑠
2 𝐸𝐸.𝑤𝑤𝑚𝑚𝑚𝑚

2∗ )𝐼𝐼𝑚𝑚(𝑖𝑖𝑟𝑟)�                                              (21) 

𝑤𝑤0𝑚𝑚1 (𝑘𝑘 + 1) = 𝑤𝑤0𝑚𝑚1 (𝑘𝑘) = −𝜂𝜂∇𝑤𝑤0𝐼𝐼
1 𝐸𝐸    (22) 

∇𝑤𝑤𝑛𝑛𝐼𝐼
1 𝐸𝐸 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝑛𝑛𝐼𝐼
1𝑅𝑅𝑅𝑅 + ∑ 𝑖𝑖𝑟𝑟

𝜕𝜕𝜕𝜕

𝜕𝜕𝑤𝑤𝑛𝑛𝐼𝐼
1𝐼𝐼𝐼𝐼(𝑖𝑖𝑟𝑟)

7
𝑟𝑟=1         (23) 

                                ∇𝑤𝑤𝑛𝑛𝐼𝐼
1 𝐸𝐸 = −𝑢𝑢𝑛𝑛∗ .∇𝑤𝑤𝑛𝑛𝐼𝐼

1 𝐸𝐸           (24) 

 𝑤𝑤𝑛𝑛𝑚𝑚1 (𝑘𝑘 + 1) = 𝑤𝑤𝑛𝑛𝑚𝑚1 (𝑘𝑘) = −𝜂𝜂∇𝑤𝑤𝑛𝑛𝐼𝐼
1 𝐸𝐸    (25) 

With 𝜂𝜂 as the learning rate. 

Note that the conjugate of an octonion number is: 

𝑜𝑜∗𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥1 − 𝑖𝑖1𝑥𝑥2 − 𝑖𝑖2𝑥𝑥3 − 𝑖𝑖3𝑥𝑥4 − 𝑖𝑖4𝑥𝑥5 − 𝑖𝑖5𝑥𝑥6 − 𝑖𝑖6𝑥𝑥7 − 𝑖𝑖7𝑥𝑥8                                          (26) 

3-2- Determination of Input Structure 

Following the discussion provided in the « study area and database » section, the input data can 

be computed by running the PCSWMM simulation model in order to generate, from the rainfall series, 



the inflow rates at the four outlets of the studied drainage network.  

The OVNN model is built based on the combination of the recorded rainfall time series and runoff 

outflows simulated by PCSWMM at the four outlets of the network. The rainfall measures in eight 

consecutive time-steps is combined to create one single input parameter for the feed-forward network. 

In total, 61,630 5-minute records are available over the period of May-November 2013 for the studied 

area. This data set is divided into two subsets for training and testing, as shown in Table 2, where the 

parameter 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 represents the minimum value, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value, 𝑆𝑆𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 is the 

standard deviation, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑������ is the mean for each subset, separately. As for the proposed methodology, 

the first 85% of the data is employed for training of the OVNN with 15% of the remaining data for 

testing based on which all the performance criteria are calculated. 

As seen in Table 1, the most critical months in terms of rainfall height are May and August with 

reported total rainfall of 180 mm and 166 mm, respectively. However, the highest daily rainfall heights 

are recorded in August and June with 73 mm and 56 mm, respectively. Also, looking at the data recorded 

over other years, like the year 2007 for instance, some extreme events occurred in May, September and 

October with no reported extreme event in August and June. This shows that the occurrence of extreme 

events can be in any month and also highlights the importance of the input data used to train the model 

and how these data may sometimes be noisy, correlated or even with no relevance to the output 

parameters (Chen et al. 2014). In this study, the data is modified in such a way that it becomes feedable 

to the OVNN-forecaster. For this purpose, all the data are defined in the octonion domain as shown in 

Figure 3. This data preparation allows employing the eight rainfall height predicted over the next eight 

5-minute time-steps (40 minutes in total) for prediction of upcoming runoff rates during a 40-minutes 

period which starts from 10 minutes in the future due to the runoff delays. It means that each 8 time-

step of rainfall data (𝑥𝑥𝑖𝑖) creates a single unit (𝑢𝑢𝑖𝑖(𝑘𝑘)) to feed to the neural network to finally predict the 

output units (𝑦𝑦�𝑖𝑖(𝑘𝑘)) each of which consists of 8 consecutive runoff flow rates (𝑜𝑜�𝑖𝑖) (Figure 3). 

As the last step of the methodology, the available dataset related to the year 2013 is used to train a 

real-valued neural network (RVNN) in order to evaluate the advantages of using the OVNN-forecaster. 

The designed RVNN algorithm is a Multi-Layer Perceptron (MLP) algorithm which consists of 8 

input/output pairs. The MLP neural networks are popular ANNs n time-series forecasting studies that 

represent promising target values estimations (Ahmad, et al., 2010). 61,630 samples, 85% of which is 

used for training with 15% for testing. Ten neurons over one hidden layer are considered resulting a 

total of 178 parameters in the network including weights and biases. Besides, coherent with the 

proposed OVNN, the ReLU activation function is employed for non-linearity of the outputs from the 

neurons in RVNN.  

4- Results and Discussion 
Figure 4 illustrates the hydrographs of the simulated (with the SWMM model) versus predicted 



(with the OVNN model) flow rates at the outlets of the studied watershed. As can be seen from Figure 

3, the OVNN model is able to reasonably estimate the flow rates out of the precipitation data of the year 

2013. To provide a quantitative analysis of the OVNN-forecast accuracy, two performance criteria are 

considered: 1) the Normalized Root Mean Squared Error (nRMSE), and 2) the Mean Absolute Error 

(MAE). nRMSE is employed here to facilitate the comparison of model performance for different 

stormwater outlets that may have different flow rate scales. Also, MAE is a common metrics in neural 

network studies with the ability to measure the accuracy for continuous variables. Table 3 compares the 

value of these two performance criteria for each stormwater outlet separately. It can be seen that the 

runoff estimation by OVNN is carried out with small nRMSE and MAE, respectively less than 4% and 

0.2%, when compared to the SWMM model outputs. Besides, the sequence-to-sequence process of the 

proposed OVNN that converts the rainfall input sequence to the runoff output sequence (Kao et al., 

2021) includes 61,737 training samples. This indicates that the training process of OVNN from scratch 

with a space complexity of 1*3*1, reduces the number of samples by eight times in the input layer 

compared to the RVNN approach with the space complexity of 8*10*8 and takes an average time of 2 

hours and 31 minutes using a PC computer Core i7 16GB GPU for extracting the data related to a 48-

hour period. Once it is trained, the prediction can be performed almost instantly. While the simulation 

using SWMM for the same period takes more than 26 minutes. Noteworthy is that the training of the 

OVNN algorithm should be frequently repeated as a background process, in order to keep the 

performance of the algorithm updated regarding the new arriving data. However, predicting the outflow 

rates can be done in some seconds to enable keeping up with the real-time control process.  

Figure 5 shows the linear fit between the values simulated by the SWMM and OVNN models, 

for all studied outlets, to evaluate the performance of the OVNN forecaster.  As a result of this univariate 

linear analysis, obtained using the least-squares fit polynomial method, the coefficient of correlation 

(𝑅𝑅) along with the forecast intercepts are calculated to determine the goodness of fitness of the model 

forecaster as shown in Table 4. 

As reported in Table 4, the high values of R (≌ 1) and low values of b (≌ 0) show the ability of the 

proposed model to determine the runoff data however, for higher flow rates, more variations from the 

simulated values are shown. Here, since more than 96% of the sample data are related to flow rates less 

than 1.3 m3/s , the regression line does not represent well the higher rates especially in outlets 1 and 2. 

This implies the importance of feeding validated input data to the model forecaster in order for it to 

properly estimate the predictions. As aforementioned, since the model training based on more critical 

meteorological conditions is more beneficial, the rainiest year (the year 2013) was selected in this study 

to train the OVNN.  

As a further analysis and in order to validate the advantages of the introduced OVNN, the data 

of the studied case was also used to train a real-valued neural network (RVNN). To this purpose, the 



RVNN algorithm was developed with varying number of iterations from 200 to 20000 to ensure the 

errors have already been reduced. The results from the performance criteria obtained using RVNN 

modelling approach are shown in Table 5. 

In Table 6, the comparative analysis between the performances of the introduced OVNN with 

those of the real-valued neural network for a one week period shows that the developed RVNN performs 

slower in comparison to the OVNN while the accuracy of OVNN in estimation of runoff rates is much 

higher. The implementation of RVNN can achieve the same level of accuracy only by allocating more 

iterations, which causes a significant increase in running time. On the other hand, the total size of the 

input vector for the RVNN is eight times more than the input vector of OVNN. Furthermore, the space 

complexity of OVNN is significantly less than the RVNN with a size of 1*3*1 (excluding bias) versus 

8*10*8, respectively. Although the OVNN architecture can be extended to support longer term 

predictions, a neural network with more neurons in the output layer has to endure a relatively higher 

training and prediction time, which makes it inappropriate to use in real-time control applications. 

5- Conclusion 

Physically based models have been employed for several years for rainfall-runoff modelling, 

however advances in technology along with the emergence of real-time control systems, created a need 

to employ faster tools to generate real-time forecasting data. Octonion-valued neural networks as a 

multi-dimensional network was introduced in this paper for representing complex problems like 

rainfall-runoff hydrological modeling. Through this study, precipitation time series data is used to 

model the flow rate data based on an octonion neural network algorithm, where the ReLU is employed 

as the activation function. Simulated flow rates using the physically-based simulation model were used 

to train the proposed OVNN-forecaster and, furtherly, the performance of the proposed model in 

estimating runoff flow rates was compared with those obtained using a real-valued neural network. 

Results showed that using the OVNN model was beneficial in terms of run time and accuracy making 

it an efficient, fast and reliable tool for decision makers in real-time controllers that finally serve as a 

small, yet effective, component of a greater whole named smart city. 

It was also shown that the model is less accurate for more intense rain events. Hence, it would be 

beneficial to train the model based on more critical meteorological conditions. In addition, a 

metacognitive component can be added to the OVNN-forecaster to enable self-regulation of the network 

parameters during the learning process. This capability provides an enhanced learning process by 

selecting more critical samples to train the model. In all cases, keeping the computational efficiency of 

the algorithm to achieve smaller running times yet more accurate predictions, should be taken as the 

highest priority. 
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Tables: 
Table 1- Characteristics of 2013 rainfall series with an inter-event duration of 6 h and comparison to the total rainfall 

height of 2000-2017 at the considered station (Environment Canada 2019) 

2013 Rainfall Characteristics 

Month May Jun Jul. Aug. Sep. Oct. Nov. Total Avg.  
2000-2017 

Total rain 
depth (mm) 180.8 154.5 70.0 166.9 145.8 100.2 85.7 903.9 759.5 

Number of events 74 
Average water height/event (mm) 8.94 
Average intensity/event (mm/h) 1.84 
Average maximum intensity over 10 min (mm/h) 12.08 
Average duration (h) 6.23 

 

 
  



 
Table 2- Characteristics of training and testing data 

 Training set Testing set 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 (mm) 0  0 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (mm) 73.14 35.88 
𝑆𝑆𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 (mm) 1.455 1.008 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑������ (mm) 0.1878 0.1554 

 
 

  



 
Table 3- OVNN performance criteria calculations for the four studied outlets 

 
nRMSE (%) MAE (%) Max. Simulation  Max. Prediction 

Outlet 1 2.8705 0.0817 4.29 m3/s 3.98 m3/s 
Outlet 2 3.4481 0.1206 6.47 m3/s 6.87 m3/s 
Outlet 3 3.8263 0.1458 7.39 m3/s 6.01 m3/s 
Outlet 4 2.3319 0.0549 7.01 m3/s 6.82 m3/s 

 

 

  



Table 4- The regression analysis parameters calculated for the four studied 
outlets  

Coefficient of correlation (R)   Forecast intercept (b)  
Outlet 1 0.8601 0.0107 
Outlet 2 0.9549 0.0081 
Outlet 3 0.9118 0.0103 
Outlet 4 0.9689 0.0234 

 

 

 

  



Table 5- RVNN performance criteria calculation with considering 20000 and 200 iterations 
Performance 

Criteria 
nRMSE 

(%) 
MAE (%) nRMSE 

(%) 
MAE (%) 

Number of Iterations 20000 200 
Outlet 1 10.52 1.061 10.71 1.032 
Outlet 2 9.93 1.053 10.26 1.002 
Outlet 3 9.75 0.929 9.89 0.973 
Outlet 4 9.16 0.901 9.35 0.925 

 
 

  



Table 6- Comparison between the RVNN and OVNN models over the four studied outlets for a one-
week period 

Network Iterations Parameters Neural 
Network 

Architecture 

Average 
nRMSE 

(%) 

Average 
MAE 
(%) 

Training 
Time 
(sec.) 

RVNN 20000 178 8x10x8 9.84 0.986 10523 
OVNN 2000 10 1x3x1 3.05 0.173 115 

 
 

  



Figures: 

 

Figure 1- Simulation model of the studied sector using SWMM 

  



 

 
Figure 2- Time series plot of 2013 daily rainfall data for the period May to November. 

  



 

 
 
Figure 4-Octonion valued neural network architecture and its associated rainfall-runoff parameters Figure 3-Octonion valued neural network architecture and its associated rainfall-runoff parameters 



 
 

 
 

Figure 4-Simulated flow rates by SWMM versus forecasted flow rates by OVNN for the 
data samples of the year 2013 



 

  

Figure 5- Univariate linear regression analysis of the simulated and estimated flow rates for the four studied stormwater outlets 
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