Dépôt numérique
RECHERCHER

Validation and Use of a Semidistributed Hydrological Modeling System to Predict Short-Term Effects of Clear-Cutting on a Watershed Hydrological Regime.

Lavigne, Martin-Pierre; Rousseau, Alain N.; Turcotte, Richard; Laroche, Anne-Marie; Fortin, Jean-Pierre; Villeneuve, Jean-Pierre (2004). Validation and Use of a Semidistributed Hydrological Modeling System to Predict Short-Term Effects of Clear-Cutting on a Watershed Hydrological Regime. Earth Interactions , vol. 8 , nº 3. p. 1-19. DOI: 10.1175/1087-3562(2004)008<0001:VAUOAS>2.0.CO;2.

Ce document n'est pas hébergé sur EspaceINRS.

Résumé

The Gestion Intégrée des Bassins versants à l'aide d'un Système Informatisé (GIBSI), a semidistributed hydrological modeling system, was evaluated for its ability to simulate the impact of deforestation on the hydrological regime of the Famine River watershed (728 km2), a subwatershed of the Chaudière River, Québec, Canada. Annual, spring and summer, and low-water runoff, as well as peak flows, were estimated for both a base-case scenario and a deforestation scenario using 31 annual meteorological series. GIBSI simulated an average increase of annual runoff after clear-cutting of 57% (268 mm) and the proportion of runoff to precipitation increased from 40% to 63%. The average increase in spring runoff was 25%, while in summer it was 138%. For summer low-flow periods, GIBSI simulated an average increase in runoff of 102%. For spring and summer peak-flow rates, hydrographs generated by GIBSI showed that average spring peak flows were increased after deforestation by 26% while summer peak flows were increased by 101%. Differences between spring and summer runoffs as well as peak-flow rates are due to changes in the degree of saturation of the soil and actual evapotranspiration between the two scenarios. Hence, while land-use changes have a substantial impact on summer runoff and low flows, they have little impact on extreme peak-flow events, especially during spring (less than 10% or more than 90% nonexceeding probability). This suggests that land use has a limited role in controlling these extreme events. The simulation results obtained by GIBSI were consistent with those found in the literature. Therefore, GIBSI offers potential as a management tool for investigating prevention and reduction measures of deforestation effects on the hydrological regime of a watershed.

Type de document: Article
Mots-clés libres: deforestation; hydrological modeling; regional planning
Centre: Centre Eau Terre Environnement
Date de dépôt: 08 janv. 2021 14:55
Dernière modification: 08 janv. 2021 14:55
URI: http://espace.inrs.ca/id/eprint/11034

Actions (Identification requise)

Modifier la notice Modifier la notice