Dépôt numérique
RECHERCHER

Metal-phytoplankton interactions : Modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake.

Fortin, Claude; Denison, Frank H.; Garnier-Laplace, Jacqueline (2007). Metal-phytoplankton interactions : Modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake. Environmental Toxicology and Chemistry , vol. 26 , nº 2. p. 242-248. DOI: 10.1897/06-298R.1.

Ce document n'est pas hébergé sur EspaceINRS.

Résumé

The influence of pH and hardness cation concentrations on uranium uptake by a green alga, Chlamydomonas reinhardtii, was investigated through short-term exposure experiments. Uranium uptake at pH 5 and at pH 7 was measured over a large concentration range (0.020-2.0 microM 233U), and the effects of hardness cations were studied over environmentally pertinent concentration ranges (approximately 0.05-2 mM) at a constant uranium concentration (0.25 microM). Calcium and magnesium inhibited uranyl uptake, but the influence of pH was more complex than anticipated. The equilibrium biotic ligand paradigm of metal bioavailability predicts that two distinct phenomena of antipathetic effect will influence uranium availability as pH is varied. Increasing pH reduces the concentration of protons, thus reducing competition for the physiologically active sites, whereas the concomitant complexation by carbonates and hydroxides reduces the free uranyl activity. Maximum uranium uptake rates observed at pH 7, however, were far greater than those observed at pH 5, suggesting a noncompetitive inhibition of metal transport by protons. Modeling on the basis of our results strongly suggests that cells grown and exposed at pH 7 have either a greater internalization rate of uranyl or a higher number of transport sites compared with cells grown and exposed at pH 5. We thus conclude that the simple proton-metal competition described by the biotic ligand model cannot successfully depict uranium-algae interactions. The development of an appropriate model incorporating the influence of protons to predict metal uptake and toxicity will be more challenging than anticipated.

Type de document: Article
Mots-clés libres: bioavailability; biotic ligand model; pH; phytoplankton; uranium
Centre: Centre Eau Terre Environnement
Date de dépôt: 08 janv. 2021 19:11
Dernière modification: 08 janv. 2021 19:11
URI: http://espace.inrs.ca/id/eprint/10916

Actions (Identification requise)

Modifier la notice Modifier la notice