Dépôt numérique
RECHERCHER

Plasmas lasers et champs magnétiques.

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Albertazzi, Bruno (2014). Plasmas lasers et champs magnétiques. Thèse. Québec, Université du Québec, Institut national de la recherche scientifique, Doctorat en sciences de l'énergie et des matériaux, 184 p.

[thumbnail of Albertazzi, Bruno.pdf]
Prévisualisation
PDF
Télécharger (16MB) | Prévisualisation

Résumé

Nous avons étudié le couplage entre un plasma crée par laser et un champ magnétique dans deux configurations : 1) celle où les champs magnétiques sont autogénérés au cours de l’interaction laser-plasma, problématique liée à celle de la Fusion par Confinement Inertiel (FCI) et 2) celle où un champ magnétique externe est appliqué à un plasma laser en expansion libre dans le vide, configuration permettant notamment la modélisation en laboratoire des jets de matière observés en astrophysique. La première partie de cette thèse est donc dédiée à une étude numérique et expérimentale de la dynamique des champs magnétiques autogénérés lors de l’irradiation d’une cible solide par un laser de puissance (de durée d’impulsion nanoseconde ou picoseconde). Ces champs sont à considérer dans le cadre de la FCI car, en influençant la dynamique des électrons générés dans l’interaction, ils conditionnent en partie la réussite des expériences de fusion. La seconde partie de cette thèse est dédiée à l’étude expérimentale et numérique de la capacité qu’a un champ magnétique externe à modifier la morphologie d’un jet de plasma produit par laser, notamment à le collimater. Ce travail vise à mieux comprendre le phénomène de collimation à grande échelle observée dans les jets astrophysiques. Nous montrons notamment qu’un champ magnétique purement axial peut contraindre un écoulement, au départ isotrope, en un choc de recollimation générant un étroit jet bien collimaté, un phénomène non expliqué dans le cadre des théories jusqu’alors prévalentes. La convergence observée, et le chauffage subséquent, du plasma au point recollimation sont de plus avancés comme permettant d’expliquer d’intrigantes observations d’émission X stationnaire au sein des jets astrophysiques.

We studied the coupling between a laser produced plasmas and a magnetic field in two cases: 1) in the context of Inertiel Fusion Confinement (ICF), we first studied how magnetic fields are self generated during the interaction between a target and a laser, then 2) to progress in the understanding of the large-scale shaping of astrophysical jets, we studied the influence of an externally applied magnetic field on the dynamics of a laser-produced plasma expanding into vacuum. The first part of this thesis is thus dedicated to a numerical and experimental study of the self generated magnetic fields that are produced following the irradiation of a solid target by a high power laser (having pulse duration in the nanosecond and picosecond regimes). These fields play an important role in the frame of ICF since they influence the dynamics of the electrons produced during the laser-matter interaction, and thus condition the success of ICF experiments. The second part of this thesis is a numerical and experimental study of the influence of an externally applied magnetic field on the morphology of a laser produced plasma freely otherwise expanding into vacuum. This work aims at better understanding the observed large-scale collimation of astrophysical jets which cannot be understood in the frame of existing models. We notably show that show that a purely axial magnetic field can force an initially isotropic laboratory flow, scaled to be representative of a flow emerging from a Young Star Object, in a recollimation shock, from which emerges a narrow, well collimated jet. We also show that the plasma heating induced at the recollimation point could explain the “puzzling” observations of stationary X ray emission zones embedded within astrophysical jets.

Type de document: Thèse Thèse
Directeur de mémoire/thèse: Pépin, Henriet Fuchs, Julien
Mots-clés libres: plasma laser; champs magnétiques; régime nanoseconde; régime picoseconde; jet astrophysique; collimation; morphologie
Centre: Centre Énergie Matériaux Télécommunications
Date de dépôt: 28 nov. 2014 15:19
Dernière modification: 01 oct. 2021 15:50
URI: https://espace.inrs.ca/id/eprint/2437

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice