Dépôt numérique
RECHERCHER

Document quand l'auteur est "Khoshkalam, Yegane"

Groupement par sans groupement | Centre | Type de document
Nombre de documents archivés : 3.

Khoshkalam, Yegane ORCID logoORCID: https://orcid.org/0000-0001-8885-936X; Rousseau, Alain N. ORCID logoORCID: https://orcid.org/0000-0002-3439-2124; Rahmani, Farshid; Shen, Chaopeng ORCID logoORCID: https://orcid.org/0000-0002-0685-1901 et Abbasnezhadi, Kian (2025). Does grouping watersheds by hydrographic regions offer any advantages in fine-tuning transfer learning model for temporal and spatial streamflow predictions? Journal of Hydrology , vol. 650 . p. 132540. DOI: 10.1016/j.jhydrol.2024.132540.

Khoshkalam, Yegane ORCID logoORCID: https://orcid.org/0000-0001-8885-936X (2024). Application of Long Short-term Memory (LSTM) Networks for Short-range Streamflow Modeling – Application to a few Canadian Watersheds of Contrasting Climates Thèse. Québec, Université du Québec, Institut national de la recherche scientifique, Doctorat en sciences de l'eau, 263 p.

Khoshkalam, Yegane ORCID logoORCID: https://orcid.org/0000-0001-8885-936X; Rousseau, Alain N. ORCID logoORCID: https://orcid.org/0000-0002-3439-2124; Rahmani, Farshid ORCID logoORCID: https://orcid.org/0000-0001-9241-7206; Shen, Chaopeng ORCID logoORCID: https://orcid.org/0000-0002-0685-1901 et Abbasnezhadi, Kian ORCID logoORCID: https://orcid.org/0000-0002-6747-1902 (2023). Applying transfer learning techniques to enhance the accuracy of streamflow prediction produced by long Short-term memory networks with data integration. Journal of Hydrology , vol. 622 . p. 129682. DOI: 10.1016/j.jhydrol.2023.129682.

Cette liste a été générée le Thu Oct 30 01:52:21 2025 EDT.