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Abstract: Exposure to traffic-related air pollution and noise exposure contributes to detrimental
effects on cardiac function, but the underlying short-term effects related to their simultaneous
personal exposure remain uncertain. The aim is to assess the impact of total inhaled dose of
particulate matter and total noise exposure on the variations of electrocardiogram (ECG) parameters
between pre-cycling and post-cycling periods. Mid-June 2019, we collected four participants’
personal exposure data related to traffic-related noise and particulate matter (PMzs and PMio) as
well as ECG parameters. Several Bayesian linear models were built to examine a potential
association between air pollutants and noise exposure and ECG parameters: heart rate (HR),
standard deviation of the normal-to-normal intervals (SDNN), percentage of successive RR intervals
that differ by more than 50 ms (pNN50), root mean square of successive RR interval differences
(rMSSD), low-frequency power (LF), high-frequency power (HF), and ratio of low- to high-
frequency power (LF/HF). We analyzed in total 255 5-min segments of RR intervals. We observed
that per 1 pg increase in cumulative inhaled dose of PM:swas associated with 0.48 (95% CI: 0.22;
15.61) increase in variation of the heart rate, while one percent of total noise dose was associated
with 0.49 (95% CI: 0.17; 0.83) increase in variation of heart rate between corresponding periods.
Personal noise exposure was no longer significant once the PM:s5 was introduced in the whole
model, whilst coefficients of the latter that were significant previously remained unchanged. Short-
term exposure to traffic-related air and noise pollution did not, however, have an impact on heart
rate variability.

Keywords: cycling; heart rate variability; air pollution; environment noise; PM:s; traffic-related air
pollution; traffic noise

1. Introduction

Traffic-related air and noise pollution exposure is recognized as one of the major public health
challenges of the 21st century. It is well-known that exposure to air and noise pollution contributes
to detrimental effects on respiratory and cardiovascular systems [1-3]. These exposures are indeed a
major contributor to increased length of in-hospital stay, morbidity, and mortality associated with
chronic diseases [4-6]. Although the causes are multifactorial, one of the pathophysiological
mechanisms entails acute changes in cardiovascular autonomous modulation [7]. Various studies
have also shown that the autonomic nervous system regulates different functions of the body, such
as breathing, gas exchange, blood pressure, heart muscles, etc., and thus allows the maintenance of
the internal homeostasis of the organism [8,9]. Heart rate variability can hence be used to measure
short-term health effects, thereby showcasing how air and noise pollution disrupts the autonomous
cardiac function [2,10]. While both air and noise pollution co-occur in the same environment and alter
the cardiac autonomic function, their health endpoint resemblance may reflect either their interaction
or one acting as a confounding/effect modifier on the outcome [3].
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To reduce the impact of traffic-related air and noise pollution exposure, different authors
promote healthy living and consistently advocate a shift from automobiles to active transportation,
such as cycling or walking [11-13]. In urban environments, however, cyclists may still be at increasing
risks inasmuch as they have a higher ventilation rate of pollutants, which increases the inhaled dose
of air pollutants [14,15]. For instance, a recent study has shown that during rush hours in Montreal,
cyclists had 3.7 times higher inhaled doses of nitrogen dioxide than motorists, and they were also
exposed to higher levels of noise (1.9 dB(A)) [14]. To this end, several studies have found an
association between exposure to traffic-related air pollution [16-18] and exposure to noise [2,3,19,20]
and their personal impact on heart function. To our best knowledge, there is nonetheless a scarcity of
studies in the scientific literature that explore whether and how the simultaneous traffic-related air
and noise pollution exposure disrupts the heart function in real-world settings. Thus, the study
objective was to examine in real-life setting short-term effects between cyclists” exposure to air and
noise pollution and acute changes in heart rate variability among cyclists in Montreal, Québec. The
aim of this study is to assess the impact of total inhaled dose of particulate matter and total noise
exposure on the variations of electrocardiogram (ECG) parameters between pre-cycling and post-
cycling periods. In other words, all other things being equal, what would be the impact of traffic-
related air and noise pollution on the ability of cyclists to recover?

2. Materials and Methods

2.1. Study Design

Four participants living in the Greater Montreal area were recruited at the Institut National de
la Recherche Scientifique in Montreal to cycle for five days between 12 and 21 June 2019. We enlisted
students at the Masters or Ph.D. levels. All participants were non-smokers and stopped taking coffee,
alcohol, and intense exercises two weeks prior to the study. They had no previous cardiorespiratory
medical history, such as asthma, stroke, angina, heart attack, or coronary heart disease. To minimize
exposure to pollution, participants were scheduled to arrive before 7:00 in the morning because at
that time there was lower air and noise exposure in Montreal. Once at the Research Centre, they were
fitted with the Hexoskin smart shirt [21]. The evaluation framework consisted of four periods: a rest
period before and after cycling, before noon and afternoon (Figure 1). Rest periods consisted of 40
min in a closed and quiet room (temperature 23 °C, humidity between 40 and 60 percent) to monitor
continuous ECG tracings, and while cycling, we measured traffic-related air pollution and noise
exposure. Our study analysis framework for heart rate variability is within similar evaluation
frameworks that were done in previous studies [10,22]. Each participant cycled between 2 to 4 h
before noon and afternoon. Travel distances were relatively similar amongst the participants during
each cycling period, whereas the duration varied because of different traffic conditions and slopes
encountered while cycling. During cycling activities, the participants were instructed to take a 5 min
break after 40 min of cycling. Concretely, they cycled four to six routes.

We randomly divided the participants into two groups: two participants cycled with a mask and
the two others without a mask. We would like to point out that we used the Techno Plus™ Mask with
Techno™ Filter [23]. This study has been approved by the Institutional Review Board of The Institut
National de la Recherche Scientifique (Project N°CER-15-391), and informed consent was obtained
from each participant before the start of the study.
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Figure 1. Evaluation framework. Electrocardiogram (ECG) parameters: heart rate (HR), standard
deviation of the normal-to-normal intervals (SDNN), percentage of successive RR intervals that differ
by more than 50 ms (pNNb50), root mean square of successive RR interval differences; LF, low-
frequency power (rMSSD), high-frequency power (HF), ratio of low- to high-frequency power
(LE/HL). Particulate matter of less than 2.5 um in diameter (PM:2s), particulate matter of less than
10 pm in diameter (PMuio).

2.2. Air Pollution and Noise Exposure Estimation during Cycling Activity

Data collection used six types of devices: (1) Aeroqual Series 500 device, (2) Briiel and Kjaer
personal noise dosimeter type 4448 (class 1), (3) Hexoskin Smart T-shirt, (4) Garmin watch Forerunner
920 XT, (5) Garmin VIRB XE, and (6) cell phone. With the exception of the Hexoskin Smart T-shirt
and the GPS watch, all instruments were front-mounted near the handlebars for each participant. We
measured real-time air pollution using the Aeroqual Series 500 with one sensor for particulate matter
(PM25/PM). It measured one-minute average concentration of air pollution in pg/m?3, temperature
in degree Celsius, and percentage of humidity within the cyclist’s surrounding environment. We then
appraised the pollutants’ inhalation dose using the Hexoskin Smart T-shirt as it assesses the heart
rate, breathing rate, VO2max, and minute ventilation [14,24,25] while cycling. Thus, the pollutants’
inhalation dose per minute was obtained by multiplying the minute ventilation (VE) in liter per
minute analyzed through the Hexoskin by air pollutant concentration value in pg/m? acquired via
the Aeroqual sensor [14] as follows:

For each cycling activity (AM or PM), we then summed the inhaled dose per minute for PM2s
and PMuo pollutants to obtain the cumulative inhaled doses (ug).

Noise exposure was assessed with class 1 dosimeter (Briiel and Kjaer personal noise dosimeter
type 4448). This device measures average noise intensity for 1-min exposure. We are interested in the
A-weighted equivalent continuous sound level which represents in decibel the average for 1-min
time resolution (Laeqimin). We calibrated all dosimeters with the sound calibrator type 4231 to ensure
accuracy daily. The noise dose is the cumulative exposure to noise over time. It is presented as a
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percentage of a reference dose, which enables us to calculate daily maximum acceptable dose.
Classically, according to Berger [26], it is calculated as follows:

Li_LC)
q

D =17?—°Ti10(

)
where D is the total noise dose (in percentage), T. the criterion sound duration (e.g., 24 h), T: time
exposure spent in the i# interval in hours, L. the criterion sound level (e.g., 53 dB(A)), Li the noise
exposure intensity during the i time interval and q the exchange rate parameter (dB)) (e.g., 10 for an
exchange rate of 3 dB).

On the basis of this formula, it is needed to select a cutoff value for the average noise exposure
(c) and a time period (h). In a recent report, The World Health Organization recommends several
guidelines values for the environmental noise exposure: 53 decibels (dB) during 24 h (Lden) for the
average road traffic noise because values above this cutoff are associated with adverse health effects,
and 70 dB Laeq2sn for average leisure noise exposure. In Canada, provinces have, however, different
thresholds. The Ontario Highway Traffic Act retains 55 dB(A), while the Quebec Transport Act
considers 65 dB(A). It should be noted that participants cycled on average 3 h in the morning and 3
h in the afternoon. Variations in noise exposure doses are based on different thresholds (53, 55, 65,
70, 75 dB(A)), as shown in Figure 2. For instance, if the threshold of 53 dB(A) is used over 24 h then
an average exposure of 60 dB(A) over three hours would be 53% compared with 198% for an average
exposure of 65 dB(A). The thresholds of 53 and 55 dB(A) were not adopted because the noise doses
calculated for our observations are much bigger. To a lesser extent, the same problem also arises for
the 65 dB(A) threshold. The opposite problem arises with the threshold of 75 dB(A), the calculated
doses are systematically too small and vary too little to be interpreted. Finally, the 70 dB(A) threshold
offered the best compromise between calculated dose variability and meaningfulness of the
measurement. Therefore, with the threshold of 70 dB(A), it can be assumed that adverse health effects
will be more important, especially on heart function.
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Figure 2. Estimated cumulative noise dose during 3 h by retained cutoffs.

Furthermore, a Garmin watch Forerunner 920 XT was used to collect a global position system
trace with one-second time resolution, while the Garmin VIRB XE videotaped the cyclist to probe
conflict with adjacent traffic. In addition, the cell phone allowed to monitor live the cyclist’s activities
through Life 360 and permitted them to follow a Google Maps route predetermined a-priori by the
research team. Note here that each participant cycled specific routes that were never similar.
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2.3. Heart Rate Variability Parameters

Hexoskin has built-in sensors in the smart t-shirt to record real-time cardiac signals. It identifies
a heart wave sampling rate of 256 Hz, a heart rate between 30 and 220 beats per minute, a QRS
complex, and an RR interval with a resolution of 4 ms [21]. Each participant was thus fitted with the
Hexoskin Smart T-shirt for continuous monitoring of the electrocardiogram for 40 min in the sitting
position. Electrocardiogram recordings started approximately with a 10-min period of preparation
(i.e., wearing the cyclist’s equipment, plugging the Hexoskin T-shirt, etc.) after arrival and roughly a
30-min lunch prior to taking baseline measurement for the Rest I/Rest 11, respectively. As for the Rest
II/IV, each participant was directed immediately into the measurement room after cycling and
arriving at the research center. A complete 40-min segment of the RR interval was exported from the
Hexoskin platform to the R for statistical computing software [27] with the RHRV package [28].

Then, we extracted repeated 5 min RR intervals to process ECG parameters: heart rate (HR),
standard deviation of the normal-to-normal intervals (SDNN), percentage of successive RR intervals
that differ by more than 50 ms (pNNb50), root mean square of successive RR interval differences
(rMSSD), low-frequency power (LF: 0.04-0.15Hz), high-frequency power (HF: 0.15-0.40 Hz), and
ratio of low- to high-frequency power (LF/HF). We collected a total of 255 5-min segments of heart
rate variability parameters from the four participants after taking into account abnormal segments
and missing periods. Different authors, hence, indicate that HF, rMSSD, and pNNb50 reflect
parasympathetic regulation and would be associated with changes in heart’s rhythm [8,9,17],
whereas the SDNN represent global power [9,29].

On the other hand, LF reflects cardiovascular baroreceptor activity which reports information
related to blood pressure and communicates this information directly to the central nervous system
[30]. According to these authors, when there is excessive blood pressure, ‘baroreceptors inhibit the
sympathetic branch by decreasing peripheral resistance, while activation of the parasympathetic
branch induces bradycardia and arterial vasodilatation” [30].

2.4. Statistical Analysis

All statistical analysis was performed using R for statistical computing software version 3.6.1
[27]. Several Bayesian linear models were built by using the BRMS package [31] to examine a potential
association between air pollutants and noise exposure and ECG parameters. The outcome variables
of the models were the variation difference within the 5 min measurement windows for ECG
parameters between corresponding periods (Rest I versus Rest II, and Rest III, versus Rest IV). Next,
we calculated cumulative inhaled doses for the two air pollutants (PM2s, and PMio), and the
cumulative dose for noise exposure, before noon and afternoon periods for each participant. These
cumulative doses were introduced as predictors in the models. We included a priori five controlling
factors: (1) Cumulative of cycling days (1 =1 to 5), (2) period of day (dummy variable: AM or PM),
(3) distance cycled during the period (kilometers), (4) duration of the cycling activity (hours), (5)
number of repeated 5 min RR intervals for the rest period (n =1 to 8). We expected that the first four
confounding factors could increase the participant’s fatigue, which could have an impact on the
variation of the ECG parameters. Moreover, we should also anticipate higher levels of heart rate
variability (HRV) parameters and lower levels of heart rate for Rest I compared to Rest II, Rest III,
and Rest IV. Note that the fifth controlling factor —number of repeated 5 min RR intervals—was
introduced as a temporal autocorrelation term (moving average, MA = 1). Finally, we introduced an
interaction term between each cumulative dose and the participant to estimate participants’ specific
responses to the pollutants. Thus, this allowed us to compare the responses between the participants
with and without a mask.

In short, we built 21 separate Bayesian regression models for three predictors and seven ECG
outcomes adjusting for possible confounders, while the final model included all predictor variables.
We fitted our models using four chains, each with 4000 iterations where the first 1000 were used as a
warmup for sampling [31]. Samples were implemented using the No-U-turn Sampler (NUTS), which
is an extension of the Hamiltonian Monte Carlo Method, to increase the effectiveness in performing
tasks related to the optimal number in each iteration [32]. We expected levels of air pollutant
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inhalation and noise exposure to increase heart rate, thereby reducing heart rate variability
parameters. Indeed, the HRV of those who cycled with a mask should be higher than those who
cycled without masks.

Finally, we applied the Savage-Dickey density ratio to compute the Bayes factor of different
parameters for the separated models and the full model [33]. The Bayes factor was used to examine
the level by which the posterior distribution reflects or not the null hypothesis, thereby probing if the
impact was really significant or not [34]. We indeed measured the Bayesian parameters using the
Bayesian applied regression through rstanarm package based on prior and posterior distributions
[35]. The interpretation of the Bayes factor can be found elsewhere within the scientific literature [36].
Bayes factors are ratios that compare the odds of observed data fitting under the null hypothesis with
the odds of fitting under the alternative hypothesis [37]. It represents the probability of the likelihood
of the observed data given the null hypothesis by the likelihood of the observed data given the
alternative hypothesis [37]. Given the above, as the Bayes factor increases, evidence strengthens the
null hypothesis, while the inverse yields the opposite, which supports the alternative hypothesis.

3. Results

3.1. Descriptive Statistics

Four participants, three males and one female, participated in the study over five days in mid-
June 2019. They were aged 25-37 years with a height of 163 to 175 cm, a weight of 52 to 76.5 kg and a
body mass index of 19.6-25 kg m=. Table 1 shows the participants’ cardiovascular characteristics
prior to cycling. These obtained values are comparable with other baseline measures in previous
studies [38,39].

Table 1. Baseline descriptive cardiovascular measurements .

ECG parameters Mean SD Min P25 P50 P75 Max IQR
HR (bpm) 69 11 49 61 69 77 104 16
SDNN (msec) 100 47 43 76 94 109 341 34
PNNG50 (%) 402 231 11 246 320 568 841 32
rMSSD (msec) 83 52 18 47 60 118 306 71
LF (msec?) 1389 1418 147 609 923 1704 8842 1095
HF (msec?) 1163 1169 79 352 610 1877 5923 1525
LF/HF 211 160 0.08 081 204 296 864 215

! Obtained from the Rest I for the five days, four participants and eight lags of 5 min.
Electrocardiogram (ECG) parameters: heart rate (HR), standard deviation of the normal-to-normal
intervals (SDNN), percentage of successive RR intervals that differ by more than 50 ms (pNN50), root
mean square of successive RR interval differences; LF, low-frequency power (rMSSD), high-frequency
power (HF), ratio of low- to high-frequency power (LF/HL).

For each period (AM or PM), participants cycled an average of 41.7 km (range: 30.7-55.8) during
3 h (range: 2.2-4.3) with an average speed of 13.8 km/h (11.0-16.3 km/h) (Table 2). The latter also
shows the level of exposure during the cycling activity period. On average, the exposure to PMzsand
PMio were 4.1 pg/m? (range: 1.8-10.7) and 13.7 pg/m? (range: 6.9-36.4) respectively, and 71.9 dB(A)
(range: 68.9-73.7) for the noise. The total inhaled doses for particulate matter were 32.1 ug of PMas
(range: 1.0-116.3) and 107.1 pg of PMo (range: 3.3-370.3). For the noise dose, the percentage of a 70
dB(A) cutoff value during 24 h was 20.5% on average (range: 9.0 to 36.6).
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Table 2. Descriptive statistics of air/noise pollution exposure and inhaled doses while cycling.
Characteristics Mean SD Min P25 P50 P75 Max IQOR
Cycling activity (AM or PM)

Length (km) 41.7 5.3 30.7 383 413 44.2 55.8 6.0

Duration (h) 3.0 0.4 2.2 2.8 3.0 3.3 4.3 0.5

Speed (km/h) 13.8 1.2 11.0 13.1 13.7 14.6 16.3 15

Air pollution and noise (AM or PM)

PM2s (ug/m?) 41 2.1 1.8 2.6 3.6 4.9 10.7 23

PMio (ug/m3) 13.7 6.8 6.9 9.3 11.8 15.0 36.4 5.7

Noise (Laeq1min) 71.9 1.2 68.9 71.3 720 72.6 73.7 1.3

Exposure (AM or PM)

Total inhaled dose of PM:s (ug) 321 30.8 1.0 120 186 38.3 116.3 26.2
Total inhaled dose of PMio (ug) 107.1 99.9 3.3 444 78.8 120.9 370.3 76.6

Total dose of noise (%)! 20.5 6.8 9.0 150 199 24.1 36.6 9.1

PM:s: Particulate matter of less than 2.5 um in diameter, PMio: Particulate matter of less than 10 um
in diameter. Laeq1min: Average noise intensity for 1-minute exposure in decibels (dB(A)). ! Total noise
dose in percentage calculated with the cutoff of 70 dB during 24h (Laeq24n).

Table 3 presents descriptive statistics for variations of the ECG parameters before and after the
cycling activity (Rest II minus Rest I, and Rest IV, Rest III, see Figure 1). We observed an increase in
the heart rate (mean: 6.0, SD: 12.6) and the ratio LFHF (mean: 0.2, SD: 2.6). Inversely, all the other
ECG parameters decreased: SDNN (mean: -17.9, SD: 37.1), pNN50 (mean: —4.9, SD: 17.7), rMSSD
(mean: —-11.2, SD: 36.4), LF (mean: —400, SD: 1113), HF (mean: —201, SD: 855).

Table 3. Descriptive statistics of the variation difference in 5 min window of ECG parameters .

ECG Parameters Mean SD Min P25 P50 P75 Max IQR
AHR (bpm) 6.0 12.6 -43.0 -24 3.8 14.1 42.6 16.4
ASDNN (msec) -179  37.1 -2444 -36.0 -11.1 4.0 92.8  40.0
ApNN50 (%) -4.9 17.7 -604 -144 26 22 53.3 16.6
ArMSSD (msec) -11.2 364  -1695 -281 -88 82 1269 36.3
ALF (msec) -400.5 1112.8 -7400.1 -618.1 1942 107.4 47143 725.6
AHF (msec) -201.0 854.6 -4592.0 -411.3 -60.1 99.9 32119 511.2
ALF/HF 0.2 2.6 -10.9 -08 0.1 1.8 7.9 2.6

! Obtained from the AM and PM variations (Rest Il minus Rest I, Rest III minus Rest IV) for five days,
four participants, and eight lags of 5 min. Variations in electrocardiogram (ECG) parameters. AHR:
Variation in heart rate, ASDNN: Variation in standard deviation of the normal-to-normal intervals,
ApNNBb50: Variation in percentage of successive RR intervals that differ by more than 50 ms, ArMSSD:
Variation in root mean square of successive RR interval differences, ALF: Variation in low-frequency
power, AHF: Variation in high-frequency power, ALF/HL: Variation in ratio of low- to high-frequency
power.

3.2. Correlation Between ECG Parameters, Particulate Matter and Noise Measures

The Table 4 represents the correlation among variations of the cardiovascular parameters. Not
surprisingly, the variation of rMSSD is highly and positively correlated with the variation of SDNN
(r=0.87), pNN50 (r =0.71), LF (r =0.76), and HF (r = 0.84). LF and HL are also highly and positively
correlated (r = 0.75). The heart rate is negatively correlated with the other HRV parameters, in
particular with the pNNG50 (r = -0.75).
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Table 4. Pearson correlation between the variations of the cardiovascular measurements.

ECG Parameters AHR ASDNN ApNN50 ArMSSD ALF AHF
ASDNN -0.418 ***
ApNN50 -0.750 ***  0.708 ***
ArMSSD —0.358 ***  0.873 ***  (0.704 ***
ALF -0.199. 0.697 ***  0.500 *** 0.757 ***
AHF -0.176*  0.667 ***  0.481 *** 0.838 ***  0.746 ***
ALF/HF 0.471***  -0.409 *** -0.482** -0.388 **  -0.099  —0.268 **

Sign: * 0.05, ** 0.01, *** 0.001. Electrocardiogram (ECG) parameters. AHR: Variation in heart rate,
ASDNN: Variation in standard deviation of the normal-to-normal intervals, ApNN50: Variation in
percentage of successive RR intervals that differ by more than 50 ms, ArMSSD: Variation in root mean
square of successive RR interval differences, ALF: Variation in low-frequency power, AHF: Variation
in high-frequency power, ALF/HL: Variation in ratio of low- to high-frequency power.

Concerning air and noise exposure, PM2s and PMuw are extremely correlated between them
(r=0.98), and we found a mildly positive correlation between the total dose of dB(A) and the total
inhaled doses of PM2s (r = 0.31) and PMuo (r = 0.33). Due to a very high correlation rate between PM2s
and PMuo, we only considered PM:sfor our subsequent analysis. We also chose the total inhaled dose
of PM:zsbecause, in a very schematic way, PM2sand much smaller particles, such as PM;, are the most
biotoxic since they can penetrate deep into the lungs and lung alveoli [40,41], thereby predicting
health risks from anthropogenic particulate matter much better than PMio [42].

3.3. Effects of Particulate Matter and Noise Assessed Separately

Table 5 shows associations between PMz;sinhaled doses while cycling and variations in ECG
parameters. Recall that the Bayes factor (BF) is interpreted as follows: a Bayes factor greater than 1
makes a proof judgment in favor of the null hypothesis or the numerator model, whereas when it is
less than 1, it rules in favor of the alternative hypothesis or the denominator model. We found in the
literature various thresholds of the BF for interpreting effect size. Jeffreys interprets Bayes factors as
follows: (1) bf = 1-3: Anecdotal, (2) bf = 3-10: Moderate, (3) bf = 10-30: Strong, (4) bf = 30-100: Very
strong, and (5) bf > 100: Extreme [36]. As for the interpretation of Raftery which is more recent, it
states that: (1) bf = 1-3 is weak, (2) bf = 3-20 is positive, (3) bf = 20-150 is strong, and (4) bf > 150 is
very strong [43].

Table 5. Effects of total inhaled doses of PM250on ECG parameters variability .

AHR ! BE 2 ASDNN ! BF 2 ApNN50 1 BF 2
PMas dose 048 (0.22;15.61) 1378  —0.76 (-1.50;-0.03)  0.32  —0.41 (-0.73;-0.09)  1.29
PM2sdose: P23 -022(-0.58;0.14)  0.13  -0.10(-1.13;0.93)  0.04  0.23(-0.20;0.66)  0.13
PMasdose: P.33 034 (-0.60;-0.10)  1.75 0.80(0.10;1.50) 030  0.29 (-0.02;0.59)  0.29
PMasdose: P43 036 (-0.62;-0.10)  1.61 048(-0.24;1.12) 006  0.15(-0.17;0.47)  0.08
ArMSSD 1 BF 2 ALF 1 BE? AHF 1 BE?
PMas dose -043(-1.12;0.30) 013  -459(-25.12;0.11) 0.12  4.03(-10.35;18.29)  0.29
PMasdose: P23 —051(-1.45;0.38) 008  -9.31(-3476;16.11) 0.11 -14.95(-31.24;1.19) 1.33
PMas dose: P.3 3 049 (-0.18;1.15) 010  8.69(-9.32;26.66)  0.09  2.23(-9.98;14.78)  0.23
PMas dose: P.4 3 030 (-0.38;1.00) 005 -3.01(-23.15;16.15) 007 022 (-13.71;14.31) 0.4
ALF/HF ! BE?
PMas dose 0.05(-0.04;0.13)  0.03
PM:2s dose: P.2 3 0.00 (-0.12;0.13)  0.02
PMasdose: P.33  —0.04 (-0.12;0.05)  0.02
PM:2s dose: P.4 3 0.01 (-0.08;0.09)  0.01

Electrocardiogram (ECG) parameters. AHR: variation in heart rate; ASDNN: Variation in standard
deviation of the normal-to-normal intervals, ApNN50: Variation in percentage of successive RR
intervals that differ by more than 50 ms, ArMSSD: Variation in root mean square of successive RR

interval differences, ALF: Variation in low-frequency power, AHF: Variation in high-frequency
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power, ALF/HL: Variation in ratio of low- to high-frequency power. PM2s: Particulate matter of less
than 2.5 um in diameter. ! Estimate and 95% CI adjusted for cumulative of cycling days (n =1 to 5),
period of day (AM or PM), distance cycled during the period (kilometers), duration of the cycling
activity (hours), number of repeated 5 min RR intervals for the rest period (n = 1 to 8), and the
participant. 2 Bayes factor (BF) versus 0. 3 Interaction between total inhaled dose of PM2s and
participants 2 to 4 in comparison with the participant 1 as reference. Note participants 1 and 2 did not
wear a pollution mask, while participants 3 and 4 did.

We observed that per 1 ug increase in cumulative inhaled dose of PM:25 was associated with 0.48
(95% credible interval (CI): 0.22; 15.61) increase in variation of heart rate between corresponding
periods. Given the study data, the presence of the effect is 13.78 times more likely under the
alternative hypothesis than no effect at all. The interaction coefficient (dose*participant) allowed us
to examine whether or not wearing a mask had an impact or not. Let us recall here that the first and
second participants did not wear pollution masks, while the third and fourth participants cycled with
masks. It is also worth mentioning that our reference comparator is the first participant. In
comparison to the benchmark, per 1 ug increase in cumulative PMzs inhaled dose was negatively
associated with -0.34 (95% CI: -0.60; —0.10) and -0.36 (95% CI: —-0.62; —0.10) decline in heart rate
variations for the third and fourth participants (with a mask) with Bayes factors of 1.75 and 1.61,
respectively. As shown here, these Bayes factors are nonetheless very low for these interaction
coefficients.

For the other parameters, only three other coefficients appeared to be significant: 1 ug in
cumulative PMzsinhaled dose increase was associated with —0.76 (95% CI: -1.50; —0.03) decrease in
ASDNN, -0.41 (95% CI: -0.73; —0.09) decline in ApNN50 and 0.80 (95% CI: 0.10; 1.50) increase for the
interaction between inhaled dose of PM2s with the third participant and ASDNN. Observed data
provided weak or anecdotal evidence against the null hypothesis for the ApNN50 with a Bayes factor
equal to 1.29, whilst coefficients were three times more likely true within the null hypothesis than the
alternative hypothesis for the ASDNN.

Table 6 conveys that an increment of one percent in total noise dose was associated with 0.49
(95% CI: 0.17; 0.83) increase in variation of the heart rate. We noted, according to the Bayes factor,
that this association was 5.04 times more likely outside the null hypothesis. We, consequently,
detected that it was negatively associated with the interaction coefficient (Noise dose*participant).
There were, as consequence, —0.59 (95% CI: —-1.02; —0.15) and -0.49 (95% CI: -0.85; —0.12) declines in
heart rate variations for the second and third participants, respectively. The observed data were 3.17
times and 2.10 times more probable to occur under the alternative hypothesis compared to the null
hypothesis for the aforementioned participants. Nonetheless, there is an anecdotal posterior
probability that this is true under the sun. Other parameters were not significant either except their
interaction coefficients for the second and third participants that asymptotically depicted evidence in
favor of the null hypothesis according to their Bayes factors.
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Table 6. Effects of total noise dose exposure on ECG parameters variability '.
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AHR ! BF 2 ASDNN 1 BEF 2 ApNN50 ! BEF 2
Noise dose 0.49 (0.17; 0.83) 5.04 -0.30 (-1.50; 0.94) 0.08 -0.35(-0.82;0.13) 0.23
Noise dose: P.2 3 -0.59 (-1.02; -0.15) 3.17 1.11 (-0.26; 2.47) 0.18 0.73 (0.23; 1.21) 493
Noise dose: P.3 3 -0.49 (-0.85; -0.12) 2.10 1.32 (0.07; 2.53) 0.35 0.51 (0.07; 0.96) 1.10
Noise dose: P.4 3 -0.18 (-0.62; 0.26) 0.11 0.30 (-1.17; 1.79) 0.05  -0.05(-0.56;0.47)  0.09
ArMSSD'!? BF 2 ALF 1 BF? AHF! BF 2
Noise dose -0.05 (-1.23; 1.08) 0.10 -0.21 (-31.8;31.6) 0.19  3.81(-20.10;27.46)  0.40
Noise dose: P.2 3 1.53 (0.46; 2.57) 2.77 15.10 (-8.3; 38.4) 019 1841 (2.67;33.99) 3.71
Noise dose: P.3 3 0.61 (-0.37; 1.62) 0.10 9.32 (-13.2; 31.7) 0.11  8.35(-6.74;23.35) 047
Noise dose: P.4 3 0.03 (-1.10; 1.15) 0.06 5.02 (-19.8; 30.0) 0.09 1.56(-15.77,18.87)  0.30
ALF/HF 1 BF 2
Noise dose 0.08 (-0.03; 0.18) 0.05
Noise dose: P.23 -0.07 (-0.31; 0.17) 0.05
Noise dose: P.3 3 -0.21 (-0.35; 0.07) 1.70
Noise dose: P.4 3 -0.15 (-0.36; 0.07) 0.09

Electrocardiogram (ECG) parameters. AHR: Variation in heart rate, ASDNN: Variation in standard

deviation of the normal-to-normal intervals, ApNN50: Variation in percentage of successive RR

intervals that differ by more than 50 ms, ArMSSD: Variation in root mean square of successive RR

interval differences, ALF: Variation in low-frequency power, AHF: Variation in high-frequency

power, ALF/HL: Variation in ratio of low- to high-frequency power. Noise dose in percentage
calculated with the cutoff of 70 dB during 24h (Laeq24n). ! Estimate and 95% CI adjusted for cumulative
of cycling days (n =1 to 5), period of day (AM or PM), distance cycled during the period (kilometers),

duration of the cycling activity (hours), number of repeated 5 min RR intervals for the rest period (n

=1 to 8), and the participant. 2 Bayes factor (BF) versus 0. 3 Interaction between total dose of dB(A)

and participants 2 to 4 in comparison with the participant 1 as reference. Note participants 1 and 2

did not wear a pollution mask, and participants 3 and 4 did.

3.4. Effects of Particulate Matter and Noise Assessed Simultaneously

The inhaled PM:25 dose and noise dose have been shown to have a small impact only on heart
rate, as demonstrated previously. Are these effects combined and attempt to show that multi-
exposure (air pollution and noise exposure) might increase short-term health impacts? We likewise
examined whether there was a combined effect of these two exposures on electrocardiogram
parameters. However, the results reported in Table 7 show that the noise dose no longer has an effect
once the inhaled PM2sdoseis introduced. The coefficients of the latter, on the other hand, which were

significant previously, remain unchanged.
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Table 7. Effects of total inhaled doses of PM2sand total noise dose exposure levels on ECG parameters
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variability 1.
AHR 1 BEF 2 ASDNN 1 BF 2 ApNN50! BF 2
PM:5 dose 0.40 (0.16; 0.66) 8.12 -0.43 (-1.13; 0.25) 0.08 -0.23 (-0.53; 0.05) 0.17
Noise dose 0.28 (-0.20; 0.76) 0.16 0.90 (-0.43; 2.29) 0.18 0.12 (-0.47; 0.69) 0.11
PMa2s dose: P.2 3 -1.75 (-2.57; -0.94)  238.42 -0.21 -2.51; 2.10) 0.13 1.28 (0.35; 2.20) 5.97
PM:25 dose: P.3 3 -0.35 (-0.60; -0.11) 244 0.50 (-0.17; 1.19) 0.11 0.22 (-0.05; 0.51) 0.16
PM2s dose: P.43 -0.37 (-0.62; -0.13) 4.08 0.27 (-0.40; 0.95) 0.05 0.10 (-0.18; 0.37) 0.06
Noise dose: P.2 4 -0.05 (-0.22; 0.13) 0.99 1.11 (-0.26; 2.47) 1.04 0.05 (-0.13; 0.23) 1.03
Noise dose: P.3 ¢ -0.07 (-0.25; 0.10) 1.26 1.32(0.07; 2.53) 0.83 0.04 (-0.14; 0.23) 1.03
Noise dose: P.4 ¢ 0.02 (-0.17; 0.20) 0.94 0.30 (-1.17; 1.79) 0.95 -0.02 (-0.21; 0.16) 0.99
ArMSSD ! BF 2 ALF? BF 2 AHF 1 BEF 2
PMzs5 dose -0.59 (-1.27; 0.08) 0.27 -4.41(-24.52;1590) 012 -11.86(-26.29;2.67) 0.41
Noise dose 0.92 (-0.43; 2.22) 0.29 4.90 (-34.22; 43.92) 0.23  10.81(-19.08;39.75)  0.32
PM:s dose: P.23 -2.6 (—4.28; -0.06) 140  -14.00 (-75.88;46.21) 0.38 -96.37 (-140.6; -52.7) 921.5
PM2s dose: P.3 3 0.58 (-0.06; 1.22) 0.29 9.45 (-9.81; 28.87) 0.17 11.98 (-1.80; 25.63) 0.49
PM:2s5 dose: P.4 3 0.24 (-0.38; 0.88) 0.07 -4.29 (-23.92;15.22)  0.12 3.56 (-10.51; 17.23) 0.13
Noise dose: P.2 4 0.20 (-0.16; 0.58) 1.64 5.83 (-9.34; 21.41) 1.12 8.61 (-1.90; 19.10) 3.38
Noise dose: P.3 ¢ -0.09 (-0.46; 0.29) 1.10 -3.75(-18.62;11.39)  0.94 -3.76 (-14.14; 6.49) 1.11
Noise dose: P.4 -0.01 (-0.38; 0.37) 0.97 -0.08 (-15.97;15.96)  0.89  -0.14 (-11.15;10.85)  0.97
ALF/HF 1 BF 2
PM:5 dose 0.00 (-0.09; 0.09) 0.02
Noise dose -0.11 (-0.27; 0.06) 0.06
PMa25 dose: P.2 3 -0.18 (-0.47; 0.13) 0.10
PM:5 dose: P.3 3 0.01 (-0.08; 0.10) 0.02
PM2s dose: P.43 0.03 (-0.05; 0.12) 0.02
Noise dose: P.2 4 0.01 (-0.14; 0.16) 0.83
Noise dose: P.3 4 -0.05 (-0.18; 0.08) 0.88
Noise dose: P.4 ¢ -0.06 (-0.22; 0.11) 1.04

Electrocardiogram (ECG) parameters. AHR: Variation in heart rate, ASDNN: Variation in standard
deviation of the normal-to-normal intervals, ApNN50: Variation in percentage of successive RR
intervals that differ by more than 50 ms, ArMSSD: Variation in root mean square of successive RR
interval differences, ALF: Variation in low-frequency power, AHF: Variation in high-frequency
power, ALF/HL: Variation in ratio of low- to high-frequency power. PMzs: Particulate matter of less
than 2.5 ym in diameter. Noise dose in percentage calculated with the cutoff of 70 dB during 24h
(LAeq24n). ! Estimate and 95% CI adjusted for cumulative of cycling day (1 =1 to 5), period of day (AM
or PM), distance cycled during the period (kilometres), duration of the cycling activity (hours),
number of repeated 5 min RR intervals for the rest period (17 =1 to 8), and the participant. 2 Bayes
factor (BF) versus 0. 3 Interaction between total inhaled of PM2s5and participants 2 to 4 in comparison
with the participant 1 as reference. # Interaction between total dose of dB(A) and participants 2 to 4 in
comparison with the participant 1 as reference. Note participants 1 and 2 did not wear a pollution
mask, and participants 3 and 4 did.
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4. Discussion

To our best knowledge, this is the first study to report the short-term impact of simultaneous
traffic-related particulate matter with aerodynamic diameters of less than 2.5um (PM2s) and noise
exposure on cardiac function among healthy young cyclists in Montreal, Canada. It is important to
remember that the metric of exposure used in statistical analysis was the 5-min RR intervals within
which we analyzed corresponding electrocardiogram parameters and cumulative inhaled doses for
air pollution and noise dose exposure. Our hypothesis was that short-term exposure to air and noise
pollution would lead to the reduction of heart rate variability due to the dysfunction of the autonomic
nervous system. We found only limited effects on the heart rate variation. These effects are, however,
so low that could explain the lack of effects for other parameters related to heart rate variability. This
is consistent with the results of previous studies which show that although exposure to PM2s may
increase heart rate, this does not translate into changes in the parameters of heart rate variability in
low polluted environments [44]. Different authors found no associations between PMasand heart rate
variability parameters in their systematic review, regardless of small negative associations across all
parameters, especially because of large confidence intervals that comprised sometimes the null effect
[7]. Moreover, Dzhambov and Dimitrova in a recent systematic review [45], observed a weak
association between traffic-related noise exposure and blood pressure in children, but that was wiped
out after considering the soundness of included studies. It is also known that “in low traffic-related
air pollution (TRAP) environments, intermittent physical activity has stronger beneficial effects on
systolic blood pressure than in high-TRAP environments’ [4]. These results should, nevertheless, be
read with caution so as not to minimize the potential impact of exposure to noise and air pollution
on health, especially since there are various studies which have found their impact on the health of
the population [46].

The levels of air pollution and noise exposure are probably insufficient in Montreal to show
significant and important effects between exposure to pollutants and absolute variations in heart rate
variability. For instance, Montreal had an average air quality index of 6.8 and 7 pg/m?3 for PM:2sin
2017 and 2018, respectively [47]. These levels are within the World Health Organization target for the
PMo:sto ensure no adverse health effects. For this reason, studies should be carried out in the world’s
most polluted cities, especially in South East Asian countries or where there is more unavailable data,
like in some parts of Africa. By the way of comparison for Montreal, the city of Gurugram in India,
which is the most polluted city in the world, had 145.6 and 135.8 pg/m?, while New Delhi had 108.26
and 113.5 ug/m3 for the PMasin 2017 and 2018, respectively [47]. Without prejudice, a study under
these conditions will be more likely to demonstrate the impact of air pollution and noise exposure on
electrocardiogram parameters.

Let us recall that participants cycled, on average, 3 h in the morning and 3 h in the afternoon. As
utilitarian cyclists usually commute between 30 and 60 min, it can be assumed that cycling in
Montreal for utilitarian trips has no short-term or at least meager adverse health effects. This could
lead to the adoption of a healthy lifestyle, such as active transportation, thereby promoting physical
activity that could contribute to reducing and prevent chronic diseases. These results are consistent
with current studies indicating that the benefits of cycling outweigh the risks of air pollution to the
health of the population in urban centers [13]. These authors found that years of life expectancy
gained through cycling were much larger than in those who commuted by car or public transport,
such as bus, train, and subway, because of increased physical activity despite higher inhaled doses.
Besides, physical activity has a positive impact on reducing the inflammatory processes. Hence, its
increase would prevent cardiovascular risk factors [4]. As a result, a built environment conducive to
physical activity while cycling could improve the physical health and well-being of urban residents
[48].

Keep in mind, however, that the exposure of PM:5 may considerably fluctuate according to space
and time of the day. It is, nonetheless, difficult to assess its long-term impact with empirical data at
least on cyclists because of practicability and associated cost. The long-term impacts are probably
very detrimental to health, as has been stipulated by different authors [49,50]. Since this impact is
difficult to assess in the long run, cycling facilities, such as bicycle paths, should reduce air pollution
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and noise exposure by moving them away from moving vehicles. Municipal planners could
accommodate whenever possible these cycle ways in green or residential areas. They should thus
foster the establishment of cycling infrastructure to reduce inhaled or uptake doses through spatial
separation of cyclists from high traffic roads [51]. Ramos et al. stipulate that these facilities ‘should
be achieved with separated bicycle facilities, low volume routes, and off-peak travel’ [52].

This study, therefore, offers us an estimate of simultaneous exposure to particulate matter with
a diameter less than 2.5 um (PM:s) and noise exposure on cyclists’ cardiac function. There are,
however, some strengths and limitations, as in any research project. Without being exhaustive, one
of the strengths is that it has examined pollutants” exposure at the individual level, particularly under
real-world conditions. It also shows in detail the measurements of air pollution, noise exposure, and
electrocardiogram parameters, as well as possible confounding factors deemed important. Indeed,
the study design allowed us to disentangle the influence of wearing mask or not. As limits, air
pollution and noise exposure have higher spatial and temporal distribution, which can increase the
risk of bias. Although this may be a limit, the distances and routes traveled by the participants
encompass the distribution within the Montreal Island. In addition, the small sample size may fail to
measure the effect of air pollution and noise exposure on the cardiac function when it exists, while
the temporality of the evaluation does not make it possible to examine the additive effects with long-
term consequences. This demonstrates the need for further large-scale studies to generalize on the
health and well-being of the population.

5. Conclusions

This study’s findings support that separate exposure to PMzs and noise exposure related to road-
traffic lead to a minor increase in heart rate variation between corresponding pre-cycling and post-
cycling periods. When considering the simultaneous effect in relation to the aforementioned
pollutants, that effect disappears for noise exposure, however. These results should not be
extrapolated to the general public, such as commuters or cyclists as such, because of small sample
size, albeit they show the absence of effects on heart rate variability for the participants. Given that it
is based on a rigorous methodology that can grasp short-term health effects arising from multi-
exposure related to traffic exposure, it might be interesting to examine the synergetic effects of
multiple exposures, such as traffic-related air pollutants and noise exposure on cardiac function. This
would better position the use of bicycles across the city while reducing exposure to pollutants both
from traffic-related air pollution and from noise exposure, thereby shedding light on their health
impacts.
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