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Abstract
Stream temperature is one of the most important environmental variables in lotic habitats as
it has important and direct impacts on the ecosystem. Given the continuous nature of this
variable, the aim of this paper was to introduce functional regression for the air‐stream
temperature relation, being capable to model an entire seasonal or annual curve of
temperatures as one entity, rather than multiple daily or weekly values in classical models.
Three types of functional models were explored in the study and compared to two classical
models (Generalized Additive Model and Logistic Model) for six rivers from the United States
The results show the functional models have the best performance for all the considered
rivers. When comparing functional models between them, one variant of the historical
functional model performs better than the two other models and is the most parsimonious.
Functional regression leads to encouraging results to model the complete annual stream
temperature curve as one entity compared to other classical approaches.
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Research Impact Statement: By modeling the stream temperature curve rather than scalar daily values,
functional regression models better represent the stream temperature variable and perform better than other
classical models.
Data Availability Statement: All data used in this study are freely available and can be downloaded
directly from the NOAA (for air temperatures) and USGS (for stream temperatures) websites (links
available in the following references).

INTRODUCTION

Stream temperature is one of the most important characteristics when studying aquatic
ecosystems (Beschta et al. 1987; Caissie 2006). Many fishes are sensitive to water temperature,
especially during growth and spawning periods (Handeland et al. 2008). Their ability to correctly
perform their biological functions can be severely affected if the water temperature is inadequate
(Lee and Rinne 1980; Sigholt and Finstad 1990; Bjornn and Reiser 1991). Furthermore, the
thermal regime of a river can be modified through human activities. For instance, deforestation
influences the canopy cover, which causes changes to the heat input into the river (Beschta et
al. 1987). In addition, Webb and Walling (1993) showed that flow regulation can increase mean
value of the stream temperatures. More recently, Maheu et al. (2016) found that the presence of
dams on medium size rivers in Eastern Canada causes an increase in their September monthly
mean temperature. Finally, global warming is typically expected to cause increases in stream
temperature that are likely to continue in the future with a higher amplitude (Morrison et al. 2002;
Kaushal et al. 2010; Isaak et al. 2012), which will affect thermal‐sensitive fish species such as
salmonids (e.g., Rieman et al. 2007; Isaak et al. 2010; Hedger et al. 2013; Holsinger et al. 2014;
Isaak, Luce, et al. 2018).

Models that predict and simulate stream temperature are therefore needed. They can be divided
in two main categories: deterministic and statistical models (Benyahya, Caissie, et al. 2007). The
former focus on mathematical relations that characterize the physical processes of heat transfer
and link the stream temperature to other hydro‐meteorological and physical variables, based on
an energy budget approach (Morin et al. 1981). However, these models require several input
variables and are often costly in computation time (Benyahya, Caissie, et al. 2007). Indeed, most
mechanistic thermal models require multiple, spatially distributed meteorological inputs such as
solar radiation (both short and long wave), wind velocity, vapor pressure, cloud cover, etc. In
addition, discharge and/or water levels are often required as a prelude to the heat budget
calculation to be performed on a known water volume. Statistical models typically use fewer
predictors, less computational time and often lead to more simplicity than deterministic models.
Statistical models in stream temperature include nonparametric approaches like the artificial
neural network (Bélanger et al. 2005; Chenard and Caissie 2008; DeWeber and Wagner 2014;
Piotrowski et al. 2015) and the k‐nearest neighbors (KNN) model (Benyahya et al. 2008; St‐
Hilaire et al. 2012). On the other hand, parametric models can be stochastic or regression‐
based. Times series models are among the former and include second‐order Markov process
(Cluis 1972; Caissie et al. 1998; Caissie et al. 2001), periodic autoregressive model (Benyahya,
St‐Hilaire et al. 2007) and nonlinear autoregressive process with exogenous variable (Kwak et al.
2017). In the regression models, the stream temperature is modeled as a function of one or
multiple predictors. This relation is often assumed to be linear (Crisp and Howson 1982;
Jeppesen and Iversen 1987; Mackey and Berrie 1991; Jourdonnais et al. 1992; Stefan and
Preud'homme 1993) or nonlinear like the logistic model (LM) of Mohseni et al. (1998), the
Gaussian process of Grbić et al. (2013) and the generalized additive model (GAM) (Wehrly et al.
2009; Laanaya et al. 2017). However, regression models can suffer from collinearity when
significant correlation exists between predictors and thus, a Ridge regression can be used to
overcome this problem (Ahmadi‐Nedushan et al. 2007).
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For all the aforementioned models and others described in the literature, stream temperature
data are considered in a punctual or discrete manner, as it is recorded. However, stream
temperature is naturally a continuous variable and shows a strong seasonal pattern. Hence, it
can be better represented by a curve over a year or a season rather than using aggregate values
such as a mean over a certain period or with multiple correlated observations. For some current
methods, a serious loss of information is made when aggregating many values, which is not the
case when working with an entire curve of stream temperatures. For example, the LM of Mohseni
et al. (1998) performs better with weekly mean temperatures than daily, given the greater
autocorrelation in daily data (Pilgrim et al. 1998; Morrill et al. 2005; Caissie 2006; Benyahya,
Caissie, et al. 2007). For the above reasons, it is of interest to introduce Functional Data
Analysis (FDA) in this context. FDA is a framework that uses curves or functions as
observations, in contrast with scalar or vectors in other classical frameworks in statistics. Hence,
working with a curve instead of daily, weekly, or monthly metrics naturally leads to a better
description and understanding of the whole phenomenon and captures more of its variability
(Chebana et al. 2012). Another interesting fact about using FDA in this context is to avoid
collinearity in the predictors used in regression models. For example, models using air
temperature at different time scales, for example, at t − 1 and t − 2, to model stream temperature
at t, will suffer from possible redundancy as the air temperature series is highly autocorrelated.
However, with FDA, this problem is avoided as the whole curve of predictor values (in this study,
air temperature) can be used as a single input (Cuevas et al. 2002). This also means that FDA
inherently handles seasonality in the data, whereas other regression models will need either a
prior step to remove it or the addition of an extra covariate to take it in account (Caissie 2006;
Laanaya et al. 2017). Finally, in the functional framework, the prediction error remains constant
over the modeled period because it is a single simulated curve, whereas this error can increase
when using time series approaches (Box et al. 2015). On the other hand, as FDA uses curves
instead of scalars or vectors, a year of daily records will only be n = 1 functional observation in
FDA, whereas it corresponds to n = 365 observations in the classical models, which means that
many years of records will be needed to adequately calibrate a functional regression model
(Ramsay 2006). Finally, FDA requires that the studied phenomena are smooth enough, which
does not create any problem for air and stream temperature series, but may be problematic for
other meteorological variables such as rainfall that is characterized by greater stochasticity than
temperature (Suhaila et al. 2011; Masselot et al. 2016).

FDA was introduced by Ramsay (1982) and became very popular and present in the literature
during the last decade, with multiple textbooks (Ferraty and Vieu 2006; Ramsay 2006; Dabo‐
Niang and Ferraty 2008; Ramsay et al. 2009; Bosq 2012) and recent applications in various
fields including ecology, transportation (Chiou 2012), energy (Chaouch 2014; Brockhaus et al.
2015), waste management (Bernardi et al. 2017), biotechnology (Brockhaus, Melcher, et al.
2017), medicine (Ciarleglio et al. 2016), neuroscience (McLean et al. 2014; Ivanescu et al. 2015;
Meyer et al. 2015). Chebana et al. (2012) were the first to introduce FDA in the hydrological
context, seeing the annual series of streamflow, the hydrograph, as a curve, that is, a functional
datum. Many recent studies have applied FDA to the streamflow variable (i.e., Masselot et al.
2016; Ternynck et al. 2016; Brunner et al. 2017; Larabi et al. 2017; Requena et al. 2018),
whereas no attempt has been made to model the stream temperature curve. Similarly to
streamflow, where the hydrograph was seen as a curve over a year (Chebana et al. 2012),
stream temperature can also be adequately represented using a single annual curve, especially
given its pronounced seasonal trend. Hence, the aim of this work is to introduce the FDA
framework to the stream temperature modeling with a focus on functional regression models.
These functional models are compared to two other regression models previously used with
stream temperature, that is, the LM, widely used in the literature (i.e., Mohseni et al. 1998;
Caissie et al. 2001; Webb et al. 2003; Morrill et al. 2005; St‐Hilaire et al. 2012; Grbić et al. 2013;
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Segura et al. 2015) and the GAM (Wehrly et al. 2009; Laanaya et al. 2017). As a generalization
of the LM, GAM allows for more flexibility and was recently shown in one case study to be the
best model for daily mean stream temperature compared to other models (Laanaya et al. 2017).

METHODS

Functional Regression Models

FDA aims at working with functions (curves) instead of discrete observations. Because data are
not recorded continuously, a first step in FDA is to convert discrete recorded observations to
functions by smoothing techniques. This can be achieved by defining a function x(t) as a
weighted sum of M known basis functions that adequately represent the given discrete
observations (Ramsay 2006):

(1)

where c  and ϕ (t) are, respectively, the coefficients to be estimated and the basis functions.
For periodic data, a Fourier series expansion is often used as basis functions, and for
nonperiodic data the most popular basis functions are B‐splines (Ramsay 2006). Once the data
curves have been constructed, the functional data (i.e., the curves) are ready to be used in the
FDA framework including functional regression models.

In the standard linear regression model, values of all variables are scalar (Neter et al. 1996). In
the functional case, three possible scenarios occur (Morris 2015). The scalar‐on‐function
models, where at least one of the predictors is functional but the predictand is a scalar.
Conversely, in the function‐on‐scalar models, the predictand is functional but all the predictors
are scalar values. The last one is the function‐on‐function models, where the predictand and at
least one of the predictors are functional (Ramsay 2006).

As a first attempt to model the stream temperature curve, only one predictor will be used: the air
temperature curve. Even if air temperature is not the major driver of water temperature increase
or decrease (Sullivan and Adams 1991; Johnson 2003), it is, however, a good substitute in
statistical models of complex heat flux equations (Webb 1987) and has been used in many other
studies to model stream temperature with success (Caissie 2006; Benyahya, Caissie, et al.
2007). Hence, to model the stream temperature curve from the air temperature curve, it is
appropriate to consider the function‐on‐function models. First, the simplest model in this class is
called the concurrent model (Ramsay 2006). It is the analogue to the linear model with functional
observations:

(2)

where y (.) and x (.) represent, respectively, the curves of stream and air temperatures for the
year i and day t and the domain Ω  is the same for both y(t) and x(t). Note that in this model, the
intercept α(t) and the regression coefficient β(t) are also functions. Basically, their expressions
are of the same nature as of y(t) and x(t) (Equation 1), that is, linear combination of basis

x (t) = (t) , t ∈ ,∑
m=1

M

cmϕm Ω1

m m

(t) = α (t) + β (t) (t) + (t) , t ∈ ,yi xi εi Ω1

i i

1
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functions. Model (2) only allows the predictor x (.) to influence y (.) at the same time t or at a fixed
lag t − l. However, the predictand at time t can be affected by the predictor at different times. In
the case of stream temperature, it can take several days before a rise or fall in air temperature
induces a change in stream temperature. Hence, the concurrent model in (Equation 2) is not
suitable to incorporate this heat exchange process and the fully functional linear model (FFLM)
should be introduced:

(3)

where β(s,t) is a surface representing the effect of x (.) at time s on y (.) at any time t. The
domain Ω  of s can differ from the domain Ω  of t. In this model, all the values of x (.) are used to
model the value of y (.) at any time t. In Masselot et al. (2016), FFLM (Equation 3) was used to
model streamflow curve from the precipitation curve, allowing lagged effect of the precipitation
on the streamflow, that is, precipitations occurring at s >  t were used to model streamflow at t.
Even if from a meteorological point of view precipitations occurring at s  >  t cannot affect the
streamflow at time t, the β(s,t) surface was close to 0 for s >  t, motivating the use of the FFLM
with those variables. In the case considered here, it is more appropriate to introduce the
historical functional linear model (HFLM) as it allows to restrict the domain where the predictor
influences the predictand (Malfait and Ramsay 2003; Harezlak et al. 2007; Gervini 2015). The
HFLM has known recent developments regarding its implementation (Brockhaus et al. 2015;
Brockhaus, Melcher, et al. 2017) and is defined as follows:

(4)

where l(t) and u(t) are, respectively, the lower and the upper bound where the predictor x (.) can
influence y (.) at time t. This model allows an important flexibility with particular cases of interest.
For instance, if all past values of x (.) affect y (.) at t, then l(t) = 0 and u(t) =  t. If only the past
values of a series of length d affect x (.) on y (.) at t, then l(t) = max(0, t − d) and u(t) =  t (Malfait
and Ramsay 2003; Kim et al. 2011). For comparison, three functional regression models will be
used in this study:

1. FFLM (Equation 3)
2. HFLM1 (Equation 4), with l(t) = 0 and u(t) = t
3. HFLM2 (Equation 4), with l(t) = max(0, t − d), u(t) = t, and d = 15

The choice of d  =  15 was motivated by the fact that there is a lag between a change in air
temperature and the resulting change in the stream temperature series especially for larger
systems. Hence, a period of 15 days should typically be enough to include and represent this lag
(Preud'homme and Stefan 1992).

i i

(t) = α (t) + β (s, t) (s) ds + (t) , t ∈ ,yi ∫
Ω2

xi εi Ω1

i i

2 1 i

i

(t) = α (t) + β(t, s) (s)ds + (t) , t ∈ ,yi ∫
u(t)

l(t)

xi εi Ω1

i

i

i i

i i
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In order to fit functional models, the functional linear array model (FLAM) implemented in R (R
Core Team 2017) by Brockhaus et al. (2015) in the package FDboost (Brockhaus, Ruegamer, et
al. 2017) was used as it can fit both model (3) and (4) with different configurations of l(t) and u(t).
The FLAM is fitted using a component‐wise gradient boosting algorithm, a machine learning
procedure that estimates the model parameters by minimizing an empirical loss function (Freund
et al. 1999; Bühlmann and Hothorn 2007; Brockhaus, Melcher, et al. 2017). In our case, the
minimized loss function is the root mean squared error (Brockhaus et al. 2015):

(5)

where  is the simulated stream temperature curve by the functional model. The
minimization procedure is iterative and each iteration leads to a rougher β(s,t) surface
(Brockhaus et al. 2015). The minimization procedure is halted when the mean square error
calculated with a leave‐one‐out validation procedure is minimized, leading to more regularized
effects (i.e., smoother β(s,t) surface) and more stable predictions (Brockhaus, Rügamer, et al.
2017). More information about the FLAM, the FDboost package and the boosting algorithm can
be found in the above references.

Generalized Additive Model

This model was introduced by Hastie and Tibshirani (1990) as an extension of the generalized
linear model, without the assumption of linearity in the relationship between predictors and the
predictand, as well as relaxing the normality assumption. Even if only few applications of the
GAM in stream temperature have been reported (Wehrly et al. 2009; Laanaya et al. 2017), it has
been widely used in hydrology (Chebana et al. 2014; Zhang et al. 2015; Falah et al. 2017;
Iddrisu et al. 2017; Rahman et al. 2018). GAM is defined as follows:

(6)

where g is the link function, E(y) is the expected value of the predictand (in our case, the daily
mean stream temperature), x  is the jth predictor, f  is the associated smooth nonlinear function
(often combination of cubic splines), and ε is the error term. Here, we use the identity function as
link function g(.) and two covariates, x  the Julian day of year to account for the seasonality in
stream temperature data and x  the daily mean air temperature as previously done in Laanaya et
al. (2017). The inclusion of an additional predictor that accounts for seasonality in the GAM,
f (x ), where x  is the Julian day of year, will make the comparability between GAM and
functional models more reliable, as functional models inherently handle seasonality, whereas
GAM require the inclusion of an extra covariate to do so (Laanaya et al. 2017).

To avoid overfitting, a penalized GAM is used and fitted by minimizing an error term calculated
by cross‐validation with the package mgcv (minimized generalized cross‐validation) (Wood 2006;
Wood 2015) in R (R Core Team 2017).

dt,
1

n
[ (t) − (t)]∑

i=1

n

∫
Ω1

yi ŷ i

2
− −−−−−−−−−−−−−−−−−−−−−

⎷


(. )ŷ i

g(E(y) = ( ) + ( ) + … + ( ) + ε,f1 x1 f2 x2 fp xp
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Logistic Model

As highlighted in Mohseni et al. (1998), the relation between air and stream temperatures can be
represented with a continuous S‐shaped function better than with a linear regression. A common
function to model this relation is the logistic function (denoted LM) defined as follows:

(7)

where T  and T  are, respectively, stream and air mean temperatures. The parameters to be
adjusted are α: the estimated maximum stream temperature, γ: the measure of the steepest
slope and β: the air temperature inflection point. Mohseni et al. (1998) first used the logistic
function to estimate the whole year of weekly stream temperatures data for different
watercourses in the United States (U.S.). In our case and for comparison purposes, the LM
model is applied on daily summer mean temperature as done in recent applications (Kelleher et
al. 2012; St‐Hilaire et al. 2012; Grbić et al. 2013; Bustillo et al. 2014; Laanaya et al. 2017).

Performance Criteria

To assess model performances, criteria commonly used in the context of stream temperature are
calculated for each model as well as new functional criteria. A cross‐validation technique called
the annual leave‐one‐out cross‐validation method is used (Quenouille 1949). Basically, one year
of observed data is temporarily removed prior to fitting each model. Then, the fitted model is
used to simulate the stream temperature for the year that was removed. The performance criteria
are then calculated based on the simulated values for each year when it was removed from the
calibration period.

Classical criteria are valid for daily simulated stream temperature. As functional regression
models a curve, the daily simulated temperatures are extracted from the curve by taking the
mean value over the period [t, t  +  1] where t is in days. This is done to compare functional
models to classical models on the same modeled period (i.e., one day).

The first criterion is the root mean square error, denoted RMSE (Janssen and Heuberger 1995)
and is defined as follows:

(8)

where O  and P  are, respectively, the observed and simulated daily mean stream temperature
for day i, and n is the number of days in the studied period of the year.

The second criterion is the bias error (Benyahya, Caissie, et al. 2007). It indicates if the model is
overestimating (bias < 0) or underestimating (bias > 0) the observed values. It is defined by the
following equation:

= ,Tw
α

1 + eγ(β− )Ta

w a

RMSE = ,
1

n
∑
i=1

n

( − )Oi Pi
2

− −−−−−−−−−−−−−

√

i i



7/11/2019 e.Proofing

https://wileyproofs.sps.co.in/eproofing_wiley_v2/printpage.php?token=UMJ09Tl6ejGKScHLS7Fie69cwBbaYY43pIuVAdu1x079Mi07zs1eew 8/32

(9)

Finally, the third criterion is the Nash‐Sutcliffe coefficient of efficiency, denoted NSC (Nash and
Sutcliffe 1970). Its maximum value is 1, indicating a perfect match between the model and the
observed data. It is defined as follows:

(10)

where  is the mean stream temperature for the studied period of the year.

Functional criteria are used to compare the three functional models, as they model one curve for
each year instead of multiple daily values.

A functional version of the classical RMSE (Equation 8) has been defined and used in both
Brockhaus et al. (2015) and Brockhaus, Rügamer, et al. (2017). The functional RMSE
(funRMSE) is given by the following equation:

(11)

where y (t) and  are, respectively, the observed and simulated curves of stream
temperature for the year i and n is the number of functional observations (i.e., number of years).
The funRMSE can be compared to the classical RMSE (Equation 8), except that discrete
observations are replaced by curves integrated over their domain Ω .

In a similar way, we can define new functional criteria as analogues of classical bias (Equation 9)
and NSC (Equation 10), respectively, as follows:

(12)

(13)

Bias = ( − ).
1

n
∑
i=1

n

Oi Pi

NSC = 1 − ,
∑n

i=1 ( − )Oi Pi
2

∑n
i=1 ( − )Oi Ō

2

Ō

funRMSE = dt,
1

n
∑
i=1

n

( (t) − (t))∫
Ω1

yi ŷ i

2− −−−−−−−−−−−−−−−−−−−−−

√

i (t)ŷ i

1

funBias = ( (t) − (t))dt,
1

n
∑
i=1

n

∫
Ω1

yi ŷ i

funNSC = 1 − ,
dt∑n

i=1 ∫Ω1
( (t) − (t))yi ŷ i

2

dt∑n
i=1 ∫Ω1

( (t) − )yi ȳ i
2



7/11/2019 e.Proofing

https://wileyproofs.sps.co.in/eproofing_wiley_v2/printpage.php?token=UMJ09Tl6ejGKScHLS7Fie69cwBbaYY43pIuVAdu1x079Mi07zs1eew 9/32

CASE STUDIES

Stream temperature regimes can vary widely from a small watercourse to a large river. For
instance, Maheu et al. (2014) provided an example of the impact of the size of the river on
evaporative cooling, showing the differences that can exist in the relation between air and stream
temperatures, according to river size. This article proposes a case study based on six different
rivers from the U.S. with long series of observations to see how functional regression models can
be applied for rivers of different size and with different thermal regimes. The period in which the
stream and air temperatures were recorded is from 1978 to 2017. The study focuses on the
nonfreezing period (May 1–October 31) which means 184 days per year.

Mean daily stream temperatures were obtained from the U.S. Geological Survey (USGS 2017)
on six rivers with long enough records of stream temperatures: Potomac, Missouri, Delaware,
Hyco Creek, Clearwater, and Snake rivers (Figure 1). Different instruments were used to record
water temperature at the selected study sites. In some cases (Missouri, Delaware, Hyco Creek,
Clearwater), thermistors were connected to land‐based dataloggers that recorded water
temperature at frequencies varying from 1/15  min to 1/hour. In other rivers (Potomac and
Snake), autonomous water quality probes (respectively, DTS and Hydrolab) were deployed.
Precision of these instruments varied between ±0.1°C to ±0.5°C. Daily averages were calculated
from these data. The drainage areas of the six rivers vary from 119 to 240,765 km  (Table 1).
For the air temperature, data were obtained from the National Oceanic and Atmospheric
Administration (NOAA 2017). For each year of stream temperature records, the air temperature
data from the closest meteorological station with complete data in the studied period (less than
five missing daily values) were used to produce the air temperature curve for this year. This was
repeated for every year until all air temperature curves were produced. Meteorological stations
were 1.9–66 km away from the stream temperature stations (Table 2). The resulting stream and
air temperature series used in the study are illustrated to show the marked differences in thermal
regimes across the six rivers (Figure 2). The QA/QC of temperature time series was performed
by the providers of the data. In addition, we visually inspected both air and stream temperature
data simultaneously for each year of each river to ensure there was no air exposure of the water
temperature data logger. A smoothing of the data also occurred naturally because daily mean
values were used as model inputs.

AQ4
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Fig. 1 Map of the stream and air temperature stations. The stars show the location of the
stream temperature station on each river, whereas the white dots correspond to the air
temperature stations used for each river.

Table 1 Stream temperature data used in the study and summary statistics.

River
name

Location of
the station

Drainage
area at the
station
(km )

Mean
streamflow in
the observed
period (m /s)

Temperature (°C) Number
of years
available

Min Mean Max

Potomac
Washington,
District of
Columbia

29,940 262.1 9.3 23.4 33.3 25

Missouri Toston,
Montana 37,920 153.4 0.5 15.5 25.5 25

Delaware Lackawaxen,
New York 5,232 84.4 5 19.2 30.1 26

Hyco
Creek

Leasburg,
North
Carolina

119 0.9 6.8 20.8 28.5 15

Clearwater Peck, Idaho 20,658 484.3 5.5 11.6 21.8 33

2 3
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Snake Anatone,
Washington 240,765 1,068.5 8.8 17.5 24.8 27

Note

Stream temperature data were downloaded from the United States Geological Survey website.
Summary statistics were also calculated such as mean streamflow and minimum, mean, and
maximum stream temperatures in the observed period.

Table 2 Air temperature data used as model predictors for each river.

River
name

Air temperature
station

Distance from
stream temperature
station (km)

Years

Potomac

Dalecarlia
Reservoir 1.9 1989–1993, 1996–1998, 2001–2002,

2005–2012

Washington
Dulles
International
Airport

14.4 1995, 2000, 2003–2004, 2013–2015

Missouri Helena Airport
Asos 66.0

1978–1979, 1981–1985, 1987–1988,
1990–1993, 1995–1996, 1998–1999,
2001–2008

Delaware

Delhi 2 Se 14.8 1983, 1988, 1992–1996, 1998, 2000–
2010

Deposit 17.7 1989, 1991, 2011

Milanville 23.3 2013–2014

Callicoon
Center 37.5 2012

Hyco
Creek

Danville 5.6 2003–2006, 2009, 2013–2014, 2016–
2017

Danville
Regional Airport 7.3 1985, 1992, 1994, 1997, 1998, 2000

Clearwater

Craigmont 4.4 1981–1983, 1987–1991, 1994, 1995,

Dworshak Fish
Hatchery 5.5 1980, 1986, 1993, 1996–1998, 2000–

2009, 2011–2016

Kamiah 9.8 2010, 2017

Snake Alder Ridge
Washington 11.1 1990, 1995, 1998, 2003–2007, 2009,

2010, 2011, 2013, 2013, 2016, 2017

Anatone 12.8 1980, 1981
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Fig. 2

Lewiston Nez
Perce Co
Airport

29.9 1982, 1983, 1988, 1991, 1993, 1994,
1996, 1999, 2002, 2015

Note

Air temperature data were downloaded from the National Oceanic and Atmospheric Administration
website. For each year of stream temperature for each river, the closest station with complete air
temperature data (less than five missing values) was used to construct the air temperature curve for
this year.

Illustration of stream and air temperature regimes. The blue and the black lines
show, respectively, the interannual mean stream and air temperature. The blue and black
shading represent the internannual variability in the temperature series over the sampling
period as illustrated by plus and minus one standard error.

AQ5
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RESULTS

Complete Results for the Potomac River

Functional Regression Models

The domain of the stream temperature curves, y(.), is Ω  = [121; 305] days and the domain or air
temperature curves, x(.), is Ω  = [106; 305] days, are both limited using Julian days of year. The
iterative procedure to fit the functional models (described in Section 2.1) is stopped when the
computed RMSE stops decreasing by more than 0.01°C or increases. The intercept α(.) is the
same for all models as it represents the smoothed mean functional observation  and
accounts for seasonality (Figure 3a). β(s,t) surfaces (Figure 3b3d) show the dependence
between air temperature at Julian day s (y‐axis) and stream temperature at Julian day t (x‐axis).
A positive dependence (in orange to dark red) implies that an increase (or decrease) in air
temperature would be associated with an increase (or a decrease) for stream temperature.
Negative dependence (in gray) means that a change in the air temperature would be related to a
change in the opposite direction for stream temperature. Overall, the β(s,t) surface for the FFLM
shows that there is a positive dependence (light orange region in Figure 3b) between air and
stream temperature particularly in the range s = t ± 15 days. The stronger dependence (in darker
orange) seems to appear around May 20 (Julian day  ≈  145), were β(s,t) is 0.06, which
corresponds to the period when the stream temperature shows its greatest increase. For the
HFLM1 (Figure 3c), the β(s,t) surface is restricted to the range s < t. The β(s,t) shows a positive
dependence between of air and stream temperature in the 15  days before s  =  t. This
dependence gets stronger as the line s  =  t is approached. The surface also highlights three
particular moments where the surface takes higher values: late May (Julian day ≈ 145), late July
(Julian day  ≈  210), and beginning of October (Julian day  ≈  280). For the HFLM2, the surface
β(s,t) is restricted to s  ∈  [t, t  –  15] and shows high contribution of air temperature to model
stream temperature in all this time range (Figure 3d). For all three models, β(s,t) surface is close
to 0 elsewhere, which is expected since air temperature does not typically show high correlation
to stream temperature at a lag greater than 15 days. Small negative dependence that sometimes
appear in the β(s,t) surfaces (in gray) are negligible as they have low values.

AQ6

1

2

(. )ȳ
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Fig. 3 Functional regression coefficients for the Potomac River. (a) shows the functional
intercept ɑ(t) which is the same for the three models, (b) the β(s,t) surface of the fully
functional linear model (FFLM), (c) the β(s,t) surface of the historical functional linear
model 1 (HFLM1), and (d) the β(s,t) surface of the HFLM2. The color scale is the same for
the three surfaces to allow easy comparison.

AQ7

The classical RMSE for the Potomac River are 2.05°C, 1.62°C, and 1.45°C, respectively, for the
FFLM, HFLM1, and HFLM2 and the NSC are 0.81, 0.88, and 0.90. The bias is below 0.01°C for
all three models, but the FFLM has the smallest value (0.0016°C). Concerning the functional
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performance criteria (available in Table 4), they are comparable to their classical analogues
calculated on a daily basis and will not be described here to avoid redundancy.

Generalized Additive Model

The smooth effect functions for the GAM are obtained from the minimized generalized cross‐
validation (Figure 4). The smooth function of the Julian day of year (Figure 4a) captures the
seasonal variation in stream temperature, increasing from May to mid‐July, and then decreasing.
The estimated smooth effect function for air temperature (Figure 4b) shows a slight nonlinear
relation between air and stream temperature for high‐ and low‐temperature values as mentioned
in the introduction. For high air temperatures (>30°C), the effect function becomes steady. In
addition, a small change in slope is observed in the 0°C–12.5°C and 12.5°C–30°C ranges. The
confidence interval is very narrow for any Julian day of year (cannot be seen on the figure), and
it tends to be relatively wide in the extremities of the air temperature effects (<5°C and> 30°C) as
there are fewer stream temperature observations in those ranges of values. These effect
functions are comparable to the ones obtained by Laanaya et al. (2017) who modeled stream
temperature on the Sainte‐Marguerite River (Canada). The RMSE for the GAM is 1.78°C for this
river, whereas the NSC is 0.85. Its bias is 0.0003°C with a standard deviation of ±0.89°C.



7/11/2019 e.Proofing

https://wileyproofs.sps.co.in/eproofing_wiley_v2/printpage.php?token=UMJ09Tl6ejGKScHLS7Fie69cwBbaYY43pIuVAdu1x079Mi07zs1eew 16/32

Fig. 4 Estimated smooth effect functions in the generalized additive model (GAM) for the
Potomac River for (a) the Julian day of year and (b) the air temperature.
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Logistic Model

Optimal parameters are found by minimizing the sum of square errors between simulated and
observed stream temperature. The resulting model equation for the Potomac River is:

(14)

While the bias of the LM is comparable to the other models (bias  <  0.1°C), the RMSE is the
highest obtained among all the models for the Potomac River (RMSE of 2.57°C). The NSC is
also the lowest obtained (NSC of 0.69).

Results Illustration

Simulated stream temperatures from the leave‐one‐out procedure and estimated standard
deviations are illustrated for the last four years of the Potomac River (Figure 5). For the
functional models (FFLM, HFLM1, and HFLM2), a continuous curve of stream temperature is
simulated for the entire season. The FFLM simulated well the stream temperature seasonal
trend, but underestimated peak temperatures, whereas both the HFLM1 and HFLM2 appear to
be better adapted to model minimum and maximum stream temperature than FFLM across the
season for the four illustrated years. Results from GAM and LM are plotted as dots as they
model discrete values. For these two models, the simulated values vary highly from day to day
and do not represent the continuous nature of the stream temperature variable.

= .Tw
42.7463

1 + e0.07483(18.2254− )Ta
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Fig. 5 Simulated stream temperatures by the leave‐one‐out procedure for the Potomac
River. The logistic model (LM) and the GAM simulated multiple daily values (as discrete
blue dots) over the studied period, whereas the functional models (FFLM, HFLM1, and
HFLM2) simulated a continuous curve (as a continuous blue line). For illustration purpose,
only the last four years are shown.

AQ9

Results for the Other Rivers
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For the Missouri River, the RMSE is the lowest for the HFLM2 (1.13°C) followed by the HFLM1
(1.36°C) and the GAM (1.40°C) (Table 3). HFLM2 shows strong improvement compared to the
GAM (RMSE difference of −0.27°C), whereas HFLM1 only shows little improvement (RMSE
difference = −0.04°C). Regarding the NSC, the same conclusion can be drawn. Bias are below
0.01°C for all models on this river except for the FFLM that has a small positive bias
(+0.0301°C).

Table 3 Classical performance criteria results.

  Models RMSE (°C) NSC

LM GAM FFLM HFLM1 HFLM2 LM GAM FF

Rivers

Potomac

Global 2.57 1.78 2.05 1.62 1.45 0.69 0.85 0.8

Std.
Dev. 0.41 0.41 0.26 0.30 0.37 0.13 0.10 0.0

Range
1.84
to
3.78

1.38
to
3.12

1.58
to
2.69

1.12 to
2.34

1.04 to
2.79

0.23
to
0.88

0.47
to
0.93

0.6
to
0.8

Missouri

Global 1.97 1.40 1.69 1.36 1.13 0.82 0.90 0.8

Std.
Dev. 0.18 0.20 0.24 0.19 0.18 0.05 0.04 0.0

Range
1.64
to
2.33

1.14
to
1.89

1.28
to
2.23

0.97 to
1.83

0.90 to
1.5

0.70
to
0.88

0.79
to
0.95

0.7
to
0.9

Delaware

Global 2.80 2.06 2.47 2.21 2.01 0.64 0.80 0.7

Std.
Dev. 0.35 0.31 0.35 0.29 0.32 0.11 0.10 0.1

Range
2.17
to
3.44

1.52
to
2.63

1.82
to
3.11

1.63 to
2.79

1.49 to
2.87

0.35
to
0.80

0.54
to
0.91

0.4
to
0.8

Hyco
Creek

Global 1.63 1.30 1.92 1.53 1.26 0.81 0.88 0.7

Std.
Dev. 0.28 0.25 0.27 0.31 0.31 0.06 0.05 0.0

Range
1.32
to
2.39

0.99
to
1.80

1.45
to
2.29

0.97 to
2.03

0.82 to
2.13

0.70
to
0.90

0.76
to
0.94

0.4
to
0.8

Clearwater Global 2.49 2.00 1.74 1.70 1.77 0.01 0.29 0.4

Std.
Dev. 0.70 0.53 0.63 0.66 0.58 0.27 0.44 0.4
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For the Delaware River, the LM seems unable to adequately model stream temperature with an
RMSE of 2.80°C, whereas the four other models have much lower values. The HFLM2 has the
lowest RMSE (2.01°C) followed closely by the GAM (2.06°C). The FFLM and the HFLM have a
lower RMSE than the LM, but higher than the GAM. Regarding the NSC, both the GAM and the
HFLM2 have the same highest value (0.80), followed by the HFLM1 (0.77), the FFLM (0.71) and
the LM (0.64). GAM has the lowest bias across the different models (0.0002°C).

For Hyco Creek, as noted for the Delaware, a small improvement is made in terms of RMSE
using the HFLM2 (1.26°C) over the GAM (1.30°C). NSC is also 1% higher for the HFLM2
compared to the GAM. The GAM outperforms the two other functional regression models (FFLM
and HFLM1) in terms of RMSE and NSC. Bias is the highest (but still relatively low) for FFLM
(+0.0537°C), whereas all other models have bias below 0.01°C for this river. One should also
note that the LM performs better than the FFLM on this river.

The Clearwater River obtains satisfying RMSE (below 2°C) for all functional models: 1.74°C,
1.70°C, and 1.77°C for the FFLM, the HFLM1 and the HFLM2, even though the NSC values are
relatively low (around 0.45–0.50). For this river, the three functional models are better than both
GAM and LM to model daily stream temperatures, in terms of NSC and RMSE. When comparing
the functional models, the HFLM1 shows the best performance, followed by the FFLM and then
the HFLM2. It is the only river where the HFLM2 does not outperform the other functional
regression models.

Finally, for the Snake River, the lowest RMSE is obtained by the HFLM2 (1.10°C), followed by
the HFLM1 (1.13°C), the GAM (1.17°C), and the FFLM (1.19°C). The same conclusion is drawn
when comparing the NSC. The LM seems to be not adapted for this river with a high value of
RMSE (2.87°C) and low NSC (0.46). Finally, again the models have low bias (<0.01°C), except
the FFLM and the HFLM1 that both have a positive bias of, respectively, 0.0413°C and
0.0412°C.

The functional performance criteria are then calculated (Table 4). Conclusions drawn from these
criteria are similar to the ones drawn above from classical criteria: the HFLM2 outperforms the

Range
1.64
to
4.70

1.23
to
3.71

0.86
to
3.07

0.78 to
3.25

0.87 to
3.20

−0.65
to
0.38

−1.35
to
0.78

−1
to
0.8

Snake

Global 2.87 1.17 1.19 1.13 1.10 0.46 0.90 0.8

Std.
Dev. 0.35 0.35 0.38 0.41 0.36 0.16 0.08 0.0

Range
2.26
to
3.97

0.69
to
2.23

0.74
to
2.23

0.58 to
2.20

0.69 to
2.30

−0.06
to
0.61

0.66
to
0.97

0.5
to
0.9

Note

The bold and green background indicate which model performed the best when looking at root mean
square error (RMSE) and Bias (lowest values) and Nash–Sutcliffe coefficient (NSC) (highest value).
The Bias must not be used for comparison purpose here because all values are below the precision
of the record instruments of 0.1°C–0.5°C.
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two other functional models for all rivers in terms of functional RMSE and NSC, except for the
Clearwater River. For this river, the HFLM1 and the FFLM both have lower RMSE (respectively,
of 1.68°C and 1.73°C) than the HFLM2 (RMSE of 1.77°C). The NSC is higher for the HFLM1
(0.49) than the HFLM2 (0.46), but lower for the FFLM (0.45). The functional bias is lower for the
HFLM2 for all rivers.

Table 4 Functional performance criteria results.

  Models funRMSE (°C) funNSC funBia

FFLM HFLM1 HFLM2 FFLM HFLM1 HFLM2 FFLM

Rivers

Potomac

Global 2.03 1.67 1.49 0.81 0.87 0.89 0.0028

Std.
Dev. 0.27 0.30 0.37 0.06 0.06 0.08 0.99

Range
1.55
to
2.66

1.14 to
2.39

1.08 to
2.82

0.66
to
0.88

0.69 to
0.94

0.57 to
0.95

−1.80
to
1.46

Missouri

Global 1.65 1.40 1.19 0.87 0.90 0.93 0.0305

Std.
Dev. 0.25 0.19 0.19 0.06 0.04 0.03 0.57

Range
1.22
to
2.19

0.97 to
1.87

0.96 to
1.55

0.72
to
0.93

0.79 to
0.96

0.86 to
0.96

−1.21
to
1.03

Delaware

Global 2.45 2.23 2.05 0.71 0.76 0.79 0.0376

Std.
Dev. 0.36 0.29 0.31 0.12 0.10 0.11 1.13

Range
1.79
to
3.09

1.65 to
2.75

1.55 to
2.84

0.44
to
0.89

0.50 to
0.89

0.44 to
0.91

−2.07
to
2.15

Hyco
Creek

Global 1.86 1.56 1.33 0.75 0.82 0.87 0.0545

Std.
Dev. 0.26 0.31 0.30 0.09 0.08 0.05 0.85

Range
1.40
to
2.24

1.00 to
2.04

0.91 to
2.08

0.49
to
0.86

0.59 to
0.90

0.78 to
0.94

−1.33
to
1.44

Clearwater

Global 1.73 1.68 1.77 0.45 0.49 0.46 0.0060

Std.
Dev. 0.64 0.66 0.57 0.47 0.42 0.31 0.76

Range
0.85
to
3.07

0.77 to
3.26

0.88 to
3.21

−1.68
to
0.88

−1.45
to 0.92

−0.55
to 0.85

−1.56
to
1.69
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DISCUSSION

Overall, the HFLM2 seems to be the best performing model compared to the others, with both
lowest RMSE and highest NSC on five rivers among six (Potomac, Missouri, Delaware, Hyco
Creek, and Snake). For the case of the Clearwater River, the HFLM2 is less performant than the
HFLM1 and the FFLM (higher NSC and lower RMSE), but still more performant than the LM and
the GAM. The HFLM1 is the best model for one river and the second best on three of the six
rivers. The FFLM is outperformed by the GAM for all rivers except for the Clearwater River, but it
outperforms the LM on all rivers except for Hyco Creek. However, the LM is generally
inappropriate to simulate daily stream temperatures from air temperature data, with higher RMSE
and lower NSC compared to other models. In fact, the LM is more suitable for weekly data, as
the daily stream temperature have greater autocorrelation (Mohseni et al. 1998; Caissie et al.
2001; Mohseni et al. 2003).

The fact that the FFLM was outperformed by the two other functional models may be attributable
to its over parameterization and covering the estimation of the effect in the whole time range
including where the effect is clearly negligible. Indeed, by comparing the β(s,t) surface of
functional models, the surface is only defined on s < t for the HFLM1 and in s ∈ [t, t – 15] for the
HFLM2, reducing the overfitting that can result from using the FFLM with relatively few years
used as functional observations. This can be better confirmed on Hyco Creek River where the
performance of the FFLM is the lowest since only 15 functional observations were available
(compared to 25 and more for the other rivers). With the HFLM2, the functional model with
fewest parameters (parsimonious), the results on this river were better than all other models
despite the low number of observations. Furthermore, in the case of modeling stream
temperature from air temperature data, both the HFLM1 and the HFLM2 would be preferred from
a meteorological point of view, as the air temperature at s can only affect the stream temperature
if s < t, which is not the case for the FFLM.

Among the six rivers studied, the Delaware and the Clearwater rivers have the worst result in
terms of RMSE and NSC. Both the Delaware and the Clearwater River have thermal regimes
that vary a lot across the different years compared to the other rivers, as shown by the size of
the standard deviation, especially the Clearwater River (Figure 2). It appears that a lag between
air and stream temperature exists for this river. This may explain why the GAM and the LM did
not perform well on this river compared to the three functional models. The fact that the complete
air temperature curve is used as input for functional models may help to model stream

Snake

Global 1.17 1.13 1.10 0.89 0.90 0.91 0.0418

Std.
Dev. 0.39 0.42 0.37 0.09 0.10 0.08 0.79

Range
0.72
to
2.23

0.58 to
2.30

0.68 to
2.24

0.56
to
0.97

0.53 to
0.98

0.66 to
0.97

−1.75
to
1.98

Note

The bold and green background indicate which model performed the best when looking at funRMSE
and funBias (lowest values) and funNSC (highest value). The funBias must not be used for
comparison purpose here because all values are below the precision of the record instruments of
0.1°C–0.5°C.
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temperature on rivers like the Clearwater that show a lag between air and stream temperature
and may be influenced by other anthropogenic activities (like the presence of a dam in the case
of Clearwater), which results in bad performance for classical models like GAM or LM. The
Delaware River is the second smallest watershed of this study (sub‐drainage area at the stream
temperature station; Table 1). Our smallest watershed, the Hyco Creek River, obtains good
modeling performance, so low performance on the Delaware River may not be related to the size
of the sub‐drainage area. Hence, the Delaware River may be impacted by other natural and/or
anthropogenic variables like the thermal impact of tributaries, the canopy cover or water
abstraction (e.g., for the city of New York). All models achieve RMSE  >  2°C on this river,
suggesting that adding more predictors (i.e., streamflow, precipitations, light intensity, etc.) to
model the stream temperature should be attempted.

By comparing the results obtained in this study to other models used in the literature, our
functional models show encouraging and better results for air‐stream relation. For example, the
most performant model, the HFLM2, applied to the Missouri, Potomac, Snake, and Hyco Creek
rivers, has RMSE ranging from 1.10°C to 1.45°C and NSC from 0.89 to 0.94. This is comparable
and even better for some rivers than the GAM performance on the Sainte‐Marguerite River (e.g.,
RMSE of 1.36°C and NSC of 0.91, Laanaya et al. 2017). Nonparametric methods, such as the
KNN model based on water temperature at t − 1 and t − 2 of St‐Hilaire et al. (2012) applied to the
Moisie River (RMSE of 1.57°C), also showed lower performance than the HFLM2 of our study
(RMSE lower than 1.57°C for four rivers of the six studied). One should note here that the KNN
is based on past stream temperatures, whereas the functional model only relies on air
temperature to model stream temperature Also, as we used rivers with longer time series
compared to the ones of the Sainte‐Marguerite River or the Moisie River and obtained lower
RMSE, this may mean that our results are more robust than the ones above because of the
larger size of the dataset we used in our study to evaluate models performance.

In addition to better performance, functional models show clear advantages of modeling a whole
curve of temperatures instead of multiple daily simulated values in the other classical models.
First, the confidence interval for a complete season of simulated values is constant with respect
to time, whereas it typically increases when using time series approach (Box et al. 2015).
Second, functional regression leads to a parametric model easier to understand and to interpret
compared to nonparametric approaches, often called “black‐box models” such as KNN or
artificial neural networks (not compared in this article). Third, the use of air temperature curve as
one single functional predictor corrects the problem of collinearity when the air temperatures at
different time steps or different aggregations like the mean, maximum or minimum over the
season are used in other regression models. However, a limitation of the functional models is
that they require several years of data to be calibrated. Our river with the shorter record period
(15  years) has obtained the smallest improvement using functional regression instead of
classical methods (increase in RMSE of 0.04°C compared to GAM and of 0.42°C compared to
LM). However, by reducing the size of the β(s,t) surface with the HFLM1 and the HFLM2, we
improved substantially the results of functional models with such a low number of functional
observations. If such stream temperature data become more available in the future, and they are
expected to be given the increased interest for the thermal regime of rivers (e.g., the NorWeST
project in western U.S., Isaak et al. 2017; Isaak, Young, et al. 2018, and the RivTemp project in
eastern Canada, Boyer et al. 2016), the functional regression models have the potential to
become a very useful tool in stream temperature modeling.

Given the current emphasis in meteorology and hydrology on short to medium term forecasts, an
initial implementation of functional regression in forecast mode would have to use the historical
climatology or an output from a global/regional climate models as a predictor. Using this as input
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in a fitted functional regression model (in our case, the HFLM2 seems to be the most promising
tool) would provide a first rough forecast of the stream temperature for next year (season). Then,
as the air temperature is observed and forecasted for a shorter time‐step, we would replace our
first estimation by the real observed or operationally forecasted air temperature. This will then
adjust the predictions that are made for a different time scales, especially for the short‐term
period of 10–15 days, as shown by the functional regression surface. This could be done for a
particularly interesting period for commercial or recreational fisheries of thermally sensitive
species, for example. This approach can be repeated operationally to provide daily updated
predictions of stream temperature curves to managers as the air temperature
observation/forecast database is being built. Even though models based on air temperature
should not be used to long‐term forecast stream temperature (Arismendi et al. 2014), our results
based on a leave‐one‐out validation procedure show potential applicability for at least a one‐year
window forecast.

CONCLUSION

In the study presented here, three functional models were compared to two classical approaches
to model the stream temperature. The functional models were able to model a complete season
of stream temperature as a continuous curve compared to the classical model with multiple daily
simulated values. To validate the proposed approach, six rivers were modeled to test the
performance of functional models in different scenarios. The FFLM and two types of HFLMs
(HFLM1 and HFLM2) were tested and the HFLM2 was found to have a better fit based on
classical and functional performance criteria on five of the six rivers. For the last river, the
HFLM1 appears to be more adapted due to the lag between air and stream temperature regimes.
By comparing the HFLM1 to the GAM, the former was found to have a lower RMSE on four of the
six rivers. Hence, functional regression seems to be a promising way to model stream
temperature with only one predictor. Besides their conceptual advantages, functional models,
and more precisely historical functional models, show better results on daily mean stream
temperature modeling compared to classical models. Hence, they may provide reliable estimates
of stream temperature over a complete season and ultimately, in forecasting stream
temperatures.
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