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Abstract  

Despite the widespread use of pesticides in the Pampa region of Argentina, mathematical 

models are rarely employed to predict pesticide fate due to the lack of regionally tested 

models and the absence of readily available databases to run such models.  The objective of 

the current study was to perform a sensitivity analysis of the Pesticide in Water Calculator 

(PWC) model for the Pampa Region of Argentina. The sensitivity analysis was performed 

while simulating applications of 2,4-D (mobile, low Kd) and glyphosate (soil-binding, high 

Kd) in five localities of the Pampa region: Anguil, Paraná, Marcos Juárez, Pergamino and 

Tres Arroyos.  The sensitivity of the various parameters involved in PWC modelling was 

evaluated though a two-steps sensitivity analysis which included a first screening of less 

sensitive parameters with Morris method, followed by a fully global sensitivity analysis of 

the remaining parameters using Sobol method. When ran under soil and climate conditions 

typical of the Pampa region of Argentina, PWC was most sensitive to 25% of the parameters 

evaluated.  The sensitive parameters identified depended mainly on the nature of the 

pesticide molecule being modelled; the location and endpoint considered having much less 

influence on the sensitivity results. Sensitive parameters belonged to two main grand 

categories: (i) degradation rates of the pesticide in soil and water, and (ii) parameters 

descriptive of soil binding, runoff and erosion. The sensitivity analysis of the model PWC 

performed in the current study represents a crucial first step towards the development and 

expansion of probabilistic pesticide risk assessment in Argentina, and provides important 

parameterization criteria that will help obtaining more certain modelling results from PWC 

in Argentina and elsewhere. 
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1. Introduction 

The Pampa region of Argentina is characterized by fertile deep soils and temperate 

climate that have favored the establishment of a thriving farming economy (Barros et al. 

2014). Extensive agriculture is largely predominant in the region, and most of the land is 

dedicated to pesticide-dependent genetically-modified soybean, corn and wheat crops. 

When sprayed on crops, a fraction of applied pesticides may reach surface and/or 

groundwater through runoff, drainage or drift, potentially altering aquatic ecosystems 

health and drinking water quality (Schäfer et al., 2011).  A number of recent studies have, 

indeed, revealed the presence of a variety of pesticide residues in fish, surface waters, 

groundwater, sediments, soils and rainwater of the Pampa region (Peruzzo et al., 2008, 

Aparicio et al., 2013, Bonansea et al., 2013, De Gerónimo et al., 2014, Lupi et al., 2015, Hunt 

et al., 2016, Ronco et al., 2016, Etchegoyen et al., 2017, Pérez et al., 2017, MacLoughlin et 

al., 2017, Primost et al., 2017, Brodeur et al., 2017, Castro Berman et al., 2018, Alonso et al., 

2018). 

Mathematical models are now widely used in many countries to predict the 

transport and fate of pesticides in the environment (Teklu et al. 2015, Gagnon et al. 2016, 

Ouyang et al. 2017, Hartz et al. 2017, Bach et al 2017, Xie et al. 2018, Rumschlag et al., 

2019). Modelling represents an attractive alternative to environmental monitoring, which is 

expensive and time-consuming, and may sometimes be imprecise, as results depend on 

sampling frequency, and spatial and temporal variability (Bundschuh et al., 2014; Nsibande 

et al., 2015; Lorenz et al., 2017).  In contrast, mathematical models are fast, versatile and cost 

effective and allow to: (i) explore the potential range of aquatic concentrations of several 

pesticide molecules before they are actually applied to crops and (ii) assess how climate, soil 

and crop growth conditions in different geographic locations influence the fate of pesticides 
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(Blenkinsop et al., 2008; Nolan et al., 2008, Bach et al. 2016). Nevertheless, in spite of 

widespread intensive pesticide use, mathematical models are rarely employed to predict 

pesticide fate in the Pampa region of Argentina.  Part of this situation is due to the lack of 

regionally tested or developed fate models and the absence of readily available databases to 

run such models. This state of affairs precludes the development of probabilistic 

environmental risk assessment at the regional and national levels, since results from 

mathematical fate models are essential for conducting such high tier risk assessment 

(Rousseau et al., 2012; Gagnon et al., 2016).  

Globally, a number of models have been developed to model the fate of pesticides in 

surface and ground waters. Models adopted for regulatory purposes in the European Union 

include: (i) runoff estimations with PRZM (Carsel et al., 1984), (ii) drainage estimations 

with MACRO (Larsbo and Jarvis 2003) and (iii) pesticide presence in surface water with 

TOXSWA (Adriaanse 1996). For their part, both the United States and Canada actually rely 

on the Pesticide in Water Calculator (PWC) for aquatic pesticide risk assessment. PWC is a 

flexible software that models pesticide fate in the environment using locally relevant 

characteristics of climate, soil, hydrology, and crop management. PWC user interface allows 

performing simulations with data from pre-loaded scenarios or sites selected and 

parameterized by the user. The water bodies modelled by PWC may be ponds, reservoirs or 

even custom size waterbodies, and may include, or not, fluctuations in water levels 

throughout the simulation period. Output values are made available in terms of regulatory 

formats accepted by the USEPA as average pesticide concentrations in surface water over 

the entire simulation, the peak and the 1-, 4-, 21-, 60- and 90-days average pesticide 

concentrations. Sediment and benthos pesticide concentrations are also calculated by PWC, 

as well as the fate of metabolites from parent molecules (Young 2016).    
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According to best practice guidelines for implementation and use of pesticide fate 

models (USEPA, 2009), it is essential to perform a sensitivity analysis of fate models before 

using them, in order to obtain a quantitative evaluation of the model’s uncertainty. A 

sensitivity analysis is defined as "the study of how the uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the input 

of this model" (Saltelli, 2004). The identification of the most influential/sensitive parameters 

of a mathematical model represents a first step towards the reduction of overall model 

uncertainties. In addition, setting the values of non-influential parameters can decrease 

computational time without reducing the performance of the model (Gan et al., 2014).  

Several methods exist to perform a model-based sensitivity analysis (Pianosi et al., 

2016). The selection of the appropriate method depends on the information expected from 

the analysis, the number of model variables and the available computational power (Saltelli 

et al., 2008, Saltelli et al. 2019).  The simplier types of analysis are the so-called local 

sensitivity analysis, which involve keeping all parameters at nominal values while varying 

one parameter at a time within the associated maximum and minimum value range, and 

observing the effect on the output variables. This process is repeated sequentially for all 

parameters. Comparatively, global sensitivity analyses, are most-advanced sensitivity 

methods, which require the simultaneous variation of several parameters to allow the 

exhaustive exploration of the multidimensional parameter space (Pianosi et al., 2016, 

Sarrazin et al., 2016). However, because they involves sampling methods such as the Monte-

Carlo method, the computational requirements and complexity of global sensitivity analyses 

is generally high, especially when models include numerous parameters (Saltelli 2019). For 

futher readings about sensitivity analysis methodologies across disciplines Saltelli et al. 

(2017, 2019). 
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In the present study, the software Pesticide in Water Calculator v.1.52 (PWC) was 

used to model pesticide fate in water bodies of the Pampa region. The selection of PWC as 

the modelling software was based on a number of characteristics: (i) PWC is freely available 

online, (ii) it is versatile and allows the introduction of a large number of locally - or 

regionally- specific parameter values, (iii) it is widely used for North American pesticide 

regulation and registration. Although studies using PWC have previously been published in 

the literature (Xie et al. 2018, Hatz et al 2019, Rumschlag et al., 2019), we are not aware that 

any sensitivity analysis has previously been performed for PWC, for either input values 

from the Pampa region or elsewhere.  In this context, the objective of the current study was 

to perform a model-based sensitivity analysis of PWC for the Pampa Region of Argentina. 

The sensitivity analysis was performed while simulating applications of 2,4-D and 

glyphosate in five (5) localities of the Pampa region.  2,4-D and glyphosate were selected as 

model pesticides because they have two extreme and opposite ways of behaving within the 

environment. Glyphosate and its metabolite AMPA bind strongly to topsoil particles and 

therefore reach waterways, ponds and lakes through water erosion events (Todorovic et al., 

2014, Bento et al., 2018, Bento et al., 2019). For its part, 2,4-D is a highly mobile herbicide 

presenting potential of runoff to aquatic habitats (Canada 2016). Similarly, the five localities 

selected represented the largest possible ranges of variability in climate, soil and slope 

conditions found within the Pampa region (Moscatelli et al. 1991, Barros et al. 2014). The 

sensitivity analysis was carried out for output values of average surface water concentration 

over 4 and 60 days to illustrate acute and chronic toxicity scenarios for a surface water body, 

respectively. The methodological approach consisted in two steps: (i) detecting and 

eliminating from the analysis the less sensitive variables using the Morris method for 
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sensitivity analysis, and (ii) comparing the sensitivity indices of the remaining parameters 

using the Sobol global sensitivity analysis. 

2. Methodology 

2.1. Study area 

The Pampa region is a vast herbaceous flat plain of about 500,000 km2 that covers 

most of central Argentina and is located between south latitudes 31 and 39 and west 

longitudes 57 and 65 (Fig. 1). The Pampa is characterized by flat or slightly undulated 

landscapes and native vegetation composed of small shrubs and grasses. The temperate 

climate and deep fertile soils have favored the establishment of a prosperous agricultural 

economy.  Over the last 40 years, the region has experienced an accelerated process of 

agricultural intensification, where activities changed from a mixture of livestock and grain 

production to extensive soybean monoculture (Paruelo et al., 2005). During this period, the 

cultivated area doubled from 14 to 31 million hectares (MAGyP, 2015).  

The climate of the Pampa region of Argentina is temperate humid, without a dry 

season and with a very hot summer (Hall et al., 1992). The average annual temperature 

increases gradually from 14 to 19 oC from south to north, while the average annual rainfall 

gradually decreases from 1200 mm to 600 mm from east to west (Rubi Blanchi and Cravero, 

2012). The western limit of the region is marked by the 600 mm isoline of rainfall that 

constitutes the natural limit of rainfed agriculture. Most of cultivated soils belong to the 

order of the Mollisols, which were developed from wind sediments of the Pleistocene era 

(Moscatelli, 1991). In the central zone, soils belong mainly to the great group of the 

Argiudolls (Panigatti, 2010), while the Haplustolls are abundant in the western limit. 
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Haplustolls are soils that have sandy granulometry, low organic matter content in the upper 

soil (1-3%), and low clay content (Moscatelli, 1991, Satorre, 2011). 

 

2.2. PWC Model PWC is a graphic user interface that links the output of two sub-models: (i) 

the "Pesticide Root Zone Model version 5 (PRZM 5)" and (ii) the "Variable Volume Water 

Body Model (VVWM)” (Burns, 2004; Fry et al., 2014). PRZM 5 is a one-dimensional and 

dynamic compartmental model that is used to simulate the movement of chemicals in 

unsaturated soil systems within and immediately below the plant root zone (Carsel et al., 

1984). The hydrologic component for calculating runoff and water erosion in PRZM 5 is 

based on the curve number technique (NRCS, 1986) and the Universal Soil Loss Equation 

(Williams 1975, Young and Fry, 2014). For its part, VVWM is designed to model the 

transport and fate of chemical substances in a water body. It contains a set of mathematical 

modules that relate the fundamental chemical properties of the pesticide to the limnological 

parameters responsible for the kinetics of transport and the fate of chemical substances in 

aquatic ecosystems (Burns, 2004).  Mass balance equations used in PWC assume that all 

materials in water and sediment are at thermodynamic equilibrium. The inflow of dissolved 

pesticides or drift is delivered to the water compartment, and sorbed pesticides are delivered 

to both water and sediment. Pesticides are removed from the water body via sediment 

burial, volatilization, and degradation (Rumschlag et al., 2019). Additional background 

information on PWC can be obtained from Young (2016). 

2.3. Parametrization 

To simulate the environmental fate of a sprayed pesticide and ensuing 

concentrations in surface water, PWC requires four major categories of input parameters 

(Table 1): (i) the mode and date of the pesticide application and the physicochemical 
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characteristics of the applied pesticide, (ii) local/regional characteristics of climate, soil, and 

crop phenology and (iii) the limnological characteristics and dimensions of the receiving 

water body, (iv) water erosion and runoff processes. In total, excluding the weather file and 

soil horizon data, 38 parameters need to be characterized before performing a simulation 

with PWC (Table 1).  Range of values used in the current study for each of these parameters 

are described in Table 1 to 5 of the Supplementary Material.  

 

2.3.1. Parameters describing the physicochemical characteristics of the pesticide and 

application modes and dates. 

As mentioned above, glyphosate and 2,4-D, two pesticides with contrasting soil 

adsorption coefficient (kd) were used for sensitivity analysis to insure that the variation in 

pesticide behavior was maximized. The ranges of plausible values of pesticide 

physicochemical parameters used in the current study are described in Supplementary 

Material Table 1 for both 2,4-D and glyphosate. These ranges were defined according to the 

information found in the literature. Seven main databases were consulted: (i) Pesticide 

Properties Database (PPDB) (Lewis et al., 2016), (ii) Toxnet - Hazardous Substances Data 

Bank (HSDB) (National Library of Medicine, 2018), (iii) European Union (European 

Commission, 2001, 2002), (iv) Department of Pesticide Regulation of the State of California 

(Schuette, 1998; Walters, 1999), (v) Network of Extension Toxicology (Cornell University) 

(Hotchkiss et al., 1989), (vi) Reports of the Food and Agriculture Organization (FAO / 

WHO, 1998) and (vii) EPA Evaluation Records (USEPA, 1999). Only parent compounds 

were considered in the analysis, even though PWC allows to simulate the fate of 

metabolites.  
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A ground application of pesticide was simulated once a year for thirty consecutive 

years. The amount of pesticide applied on each occasion was kept constant at 1.037 and 2.16 

kg/ha for 2,4-D and glyphosate respectively. These doses correspond to maximum, approved 

application rates for soybean in Argentina. Spray efficiency and drift were arbitrarily set at 

0.99 and 0.001, respectively. Pesticide application dates were selected to occur in a period of 

7 to 15 days before soybean emergence. The exact dates of this application period vary in 

every locality as soybean emergence date depends on latitude. Namely, application dates 

were selected among the worst possible cases (in terms of surface water contamination), 

defined as a date immediately prior to the occurrence of a rainfall event greater than 3 mm 

within the period considered for each location and year simulated. If during a year it did not 

rain more than 3 mm during the considered range of possible dates, the application date 

corresponded to the soybean emergency date for the corresponding location.  

2.3.2. Parameters describing local/regional characteristics of climate, soil, and crop phenology  

Although it may make sense for some parameters to be varied independently within 

their possible range as previously described for the physicochemical characteristics, it makes 

little sense to use this approach when parameters are tied one to another such as when 

describing the different horizons of a soil type or linking weather data to soil types within a 

specific region.  For this reason, instead of varying each soil and climate input data 

independently, we chose to vary these parameters altogether to examine the impact of 

variation in soil and climate data on the model output.  This was achieved by running the 

model in five distinct and, as different as possible, locations considering the normal range of 

variability existing within the Pampa region. Selected localities include: Anguil (La Pampa 

Province), Paraná (Entre Ríos Province), Marcos Juárez (Córdoba Province), Pergamino 

(Buenos Aires Province) and Tres Arroyos (Buenos Aires Province) (Fig. 1, Table 2). These 
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locations were selected because they cover the whole range of latitudes and longitudes 

included in the Pampa Region and exhibit a range of soil and climate characteristics that 

cover most of the variability expected within this region.  Three of the localities, Paraná, 

Pergamino, and Marcos Juárez are located in the north and, although they present similar 

temperatures and rainfalls, they differ in terms of their hydrologic soil group, and their 

slopes. The locality of Tres Arroyos is located to the south of the region and exhibits the 

lowest temperatures, whereas Anguil, located at the western limit of rainfed agriculture, has 

sandy soils and low rainfalls (Fig. 1, Table 2). 

To standardize the analysis, it was decided that a fallow application of pesticide 

preceding a soybean crop would be modelled in all locations. Although the same crop was 

modelled in all locations, the phenology of the soybean crop was varied according to the 

conditions existing in each locality. General information regarding the phenology 

characteristics and weather stations that were used in each location are described in Table 2 

and Supplementary Material Table 2. Climate data were thoroughly checked for quality and 

consistency as part of a recently published study (D’Andrea et al. 2019). Data describing soil 

profile characteristics are described for each location in Supplementary Material Table 3, 

while the range of values used for all other location-specific parameters, including 

hydrologic variables, are given in Supplementary Material Tables 4 and 5. 

 

2.3.3. Parameters describing the limnological characteristics and dimensions of the receiving 

water body  

 

The goal of the current study was to identify the parameters which are most 

sensitive amongst the high number of parameters that are needed to run PWC.   Because it 

is clear that the size of the water body is a sensitive parameter that will modify the final 
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water concentration of the pesticide, this parameter was set to a constant in the current 

study so that the sensitivity of the other parameters could be better determined.  The 

decision to use a constant and unique size for the water body was also motivated by the fact 

that very little quantitative information is available regarding the ranges of water body sizes 

existing in the different localities. Input data used in the section “Watershed and water body 

dimensions” of PWC were: (i) area of treated field, 290000 m2 (29 ha); (ii) fraction of the 

field cropped, 1; (iii) surface area of water body, 8000 m2 (0.8 ha); and (iv) initial and final 

depths, 1.5 m. These values correspond to a well-studied water body located in the locality 

of Paraná. For their part, limnologic parameters were varied according to the ranges of 

values found in the literature regarding Pampean lakes and ponds. Values used can be found 

in Supplementary Material Table 4.  

2.4. Construction of weather files for PWC 

An R package named PWCfilegenerator v0.1.0 (D’Andrea and Brodeur, 2019) was 

designed to facilitate the construction of weather files in an input file format needed to run 

PWC. The package is freely available from a GitHub repository:  

https://github.com/flor14/PWCfilegenerator. 

2.5. Global sensitivity analysis 

Given the large number of parameters involved in PWC simulations, the sensitivity 

of the various parameters was evaluated simultaneously though a global sensitivity analysis 

executed in two consecutive steps: (i) the less computationally demanding Morris method 

was used to identify a first subset of the least sensitive parameters, and (ii) the more complex 

Sobol method was applied to compare their sensitivity of the remaining parameters and 

identify the most sensitive parameters in each location/pesticide combination modelled. 

2.5.1. Morris method 
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The Morris method (Morris, 1991) is a global sensitivity analysis technique that 

allows the least sensitive parameters to be identified within a mathematical model by using 

threshold sensitivity values (Sarrazin et al., 2016). Its computational requirements are lower 

than that of most other global methods and it is considered one of the simplest global 

sensitivity analysis techniques available because it discretizes the parameter space to allow a 

"once at a time" (OAT) design to be applied a certain number of times (Iooss and Lemaître, 

2014). Each repetition is called "a trajectory", and the optimal number of trajectories for an 

analysis is normally considered to be between 4 and 10 (Saltelli, 2004, 2008). When a model 

presents a large number of input values, the Morris method is used to allow a preliminary 

analysis and thereby identify least sensitive parameters (Morris, 1991). The method is based 

on systematic sampling of the multidimensional space defined by the possible values of the 

parameters to generate a random set of OAT experiments (Pianosi et al. 2016). Two 

measures of sensitivity are calculated: μ, which characterizes the influence of a given 

parameter on the output, and σ that is used to quantify the interaction the parameter with 

other factors (Saltelli, 2004). In the current study, 10 trajectories were performed for each 

location/pesticide combination. The definition of the sampling trajectories and the 

calculations of the μ and σ estimators of sensitivity were performed using SimLab 2.2 

(Tarantola, 2005). The ranges of values used for the different parameters required by PWC 

are described in Supplementary Material Tables 1 to 5, and sections 2.3.1 and 2.3.3 . In cases 

where values could not be found in the literature for the Pampa region, the widest possible 

range reported was used in the analysis. SENSAN software was used to automate the 

sensitivity analysis (Doherty, 1994). A sensitivity threshold was established where a 

variation in the output was considered significant if it exceeded 1 μg/L. Therefore, all input 

parameters that resulted in a variation of more than 1 μg/L in the output, were considered 
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sufficiently sensitive to be further examined and included in the second part of the 

sensitivity analysis which used Sobol method. 

2.5.2 Sobol method 

As mentioned above, the subset of parameters which exceeded the sensitivity 

threshold in the Morris method was included in the second part of the sensitivity analysis. 

Here, Sobol’s method (Sobol, 1993) was used to quantify the amount of variation in the 

model output contributed by each input parameter (Song et al., 2015). These quantities, 

whether generated by a single parameter or by the interaction of two or more parameters, 

are expressed as sensitivity indices. The use of the Monte Carlo analysis as a sampling 

method for this analysis implies a high level of computational complexity. The Sobol 

method returns two types of indices: (i) a first-order index or main effects index that 

measures the direct contribution of an individual input factor to the variance of the model 

output, and (ii) an index of total order or index of total effects that measures the general 

contribution of an input factor, considering its direct effect and its interactions with all 

other factors (Pianosi et al., 2016). 

When performing Sobol’s analysis, it is necessary to assign a specific distribution to 

all input parameters. In the present study, most parameters were described by a uniform 

distribution, with the exception of the universal soil loss equation (USLE) soil conservation 

practice factor (usle p), the USLE soil erodibility factor (usle k), the photolysis parameter 

(dfac), and the lowest depth at which erosion interacts with the soil (edepth).  A triangular 

distribution was assumed for these parameters because a most probable value could be 

determined for the Pampa region within the considered data range (Supplementary Material 

Tables 3 and 5). The parameter ireg  representing the location of NRCS 24-hour hyetograph 

was sampled among the three possible values with equal probability (Supplementary 
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Material Table 5). The ranges of values used for the different parameters are described in 

Supplementary Material Tables 1 to 5 and sections 2.3.1 and 2.3.3. Ranges of input 

parameter values used were the same for both Morris and Sobol methods. The sample size 

selected to ensure the convergence of the indices was established at 11,776 for each 

pesticide/locality combination in order to obtain stable indices of main and total effects 

(Pianosi et al., 2016). The generation of samples and calculations of main and total effects 

were carried out using SimLab 2.2. (Tarantola, 2005). The SENSAN software was used to 

automate Sobol’s sensitivity analysis (Doherty, 1994). 

3. Results 

3.1 Sensitivity Analysis Part A: Morris Method 

The results of the first part of the sensitivity analysis, carried out with Morris 

method, are presented in Fig. 2, 3 and 4 for 4-d average concentration outputs, and in 

Supplementary Materials Fig. 1, 2 and 3 for 60-d average concentration outputs.  This first 

part of the sensitivity analysis, identified that 14 of the 38 parameters evaluated presented a 

sensitivity value lower than the set threshold (μ<1 μg/L) when considering all 

pesticide/locations combinations. These 14 parameters are considered to have a very low 

influence on the output of the model because they exhibit sensitivity values between 10 to 

more than 100 times lower than the remaining other 24 parameters. For this 14 less 

sensitive parameters (μ < 1 μg/L), the values of σ never exceeded 1 μg/L, indicating that 

these parameters do not interact significantly with others. On the other hand, of the 24 

more sensitive parameters, 17 are sensitive in simulations realized with both glyphosate and 

2,4-D. These parameters include: (i) the curve number (cna), (ii) the amount of runoff that 

interacts with the soil (rseff), (iii) the universal equation of soil loss (USLE) in particular the 

topographic factor (usle ls), (iv) soil conservation practice factor USLE (usle p), (v) USLE 
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coverage management factor (usle c), (vi) hydrolysis (hidrohl) of the pesticide, (vii) the 

average life of the pesticide in the water column, (wchl), (viii) the soil adsorption coefficient 

to the soil (kd), (ix) the half-life of the pesticide in the benthos, (bdhl), (x) the mass transfer 

coefficient for exchanges between the benthos and the water column (mxc), (xi) the organic 

fraction of solids in suspension in the water column (wcfoc), (xii) the depth of water 

extraction for evaporation in the soil (evapod), (xiii) retention of water by the leaves of the 

canopy of the crop (choldup), (xiv) the half-life of the pesticide in the soil (soilhl), (xv) the 

exponential decrease in the interaction of runoff as a function of depth in the soil (rdecli), 

(xvi) the concentration of suspended solids in the water column (wcss) and (xvii) the 

correction factor for biodegradation based on the actual temperature (Q10). 

Two parameters were sensitive only when simulated with 2,4-D: (xviii) the greater 

depth at which the runoff interacts with the soil (rdepth) and (xix) the pan evaporation 

coefficient (pfac). On the other hand, four parameters were sensitive only when glyphosate 

was used in the model: (xx) the organic carbon concentration in the water column (wcdoc), 

(xxi) the root depth of the crop (rootd), (xxii) the hydraulic terrain slope (slope), (xxiii) the 

Manning coefficient before cultivation (mna) and (xxiv) the location of the 24-hour 

hyetograph (ireg). These 24 parameters for which the PWC model proved to be sensitive in 

one or more opportunities were selected to go through further analysis using Sobol’s 

method. 

3.2 Sensitivity Analysis Part B: Sobol method 

The results of the secong part of the sensitivity analysis, carried out with Sobol 

method, are presented in Fig. 5 for 4-d average concentration outputs, and in 

Supplementary Materials Fig. 4 for 60-d average concentration outputs.  Sobol sensitivity 

analysis demonstrated that PWC is most sensitive to 9 different input parameters when ran 
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under climate and soil conditions characteristic of the Pampa Region. The most sensitive 

parameters identified depended greatly on the nature of the pesticide molecule being 

modelled; the location and endpoint considered having much less influence on the 

sensitivity results.  When both 2,4-D and glyphosate were modelled, the following four 

parameters were identified as sensitive, as they presented the highest µ and σ values: (i) 

half-life of the pesticide in soil (soilhl), (ii) the soil adsorption coefficient (kd), (iii) half-life 

of the pesticide in the water column, (wchl), and (iv) the value of curve number (cna). In 

the case of 2,4-D, two more input parameters were sensitive: (v) the amount of runoff that 

interacts with the soil (rseff), and (vi) the hydrolysis half-life (hidrohl) of the pesticide. In 

contrast, five different input parameters specifically appeared as sensitive when glyphosate 

was modelled: (vii) the topographic factor (usle ls), (viii) the USLE crop management factor 

(usle c), and (ix) the fraction of solids in suspension in the water column (wcfoc).  

 

Specific characteristics of the locality modelled had less influence on the identity of 

the parameters identified as sensitive than the pesticide molecule that was used in the 

model. Indeed, when modelling 2,4-D, very similar results were obtained in four out of five 

sites; the locality of Tres Arroyos being the only exception where the soil adsorption 

coefficient (kd) explained almost all of the variability.  Similarly, when glyphosate was 

modelled, the same input parameters were highlighted as sensitive irrespectively of the 

locality being modelled, the only difference residing in the order in which these parameters 

were ranked. Finally, using 4d or 60d average concentration as an endpoint had little 

influence on the results of the sensitivity analysis, except for the half-life of the pesticide in 

the water column (wchl), whose sensitivity increased when considering 60d instead of 4d 

average concentrations for both pesticides modelled. 
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4. Discussion 

The two-step sensitivity analysis performed in the current study revealed that, when 

used with soil and climate conditions representative of the Pampa Region, PWC was most 

sensitive to about 25% of the parameters evaluated. Considering all possible combinations of 

localities, and pesticides tested, PWC exhibited a significant sensitivity to 9 input 

parameters in one or more simulations. Highlighted sensitive parameters belong to two 

main grand categories: (i) degradation rates of the pesticide in soil and water (soilhl, wchl, 

hidrohl), and (ii) parameters descriptive of soil binding, runoff and erosion (kd, cna usle ls, 

usle c, rseff). The aforementioned parameters should therefore be carefully parameterized 

when performing PWC modelling, since, the variability in the value entered for these 

parameters can be directly translated into a variability in the output of the model. Four of 

the above mentioned parameters were identified as sensitive in all simulations carried out: 

the half-life of the pesticide in the water column (wchl), the soil adsorption coefficient (kd), 

the half-life of the pesticide in the soil (soilhl), and the curve number value (cna).  It is 

therefore recommended to always have solid specific information regarding these 

parameters when modelling pesticide fate with PWC, especially in the Pampa region, but 

probably elsewhere too.   

The information obtained from the above-described sensitivity analysis of PWC is 

also crucial to promote and help develop the use of pesticide fate modelling for 

environmental risk assessment in the Pampa region. Indeed, by knowing which parameters 

are most critical when modelling pesticide fate with PWC, it is possible to orient research 

efforts towards the generation of regionally and/or locally-specific field and experimental 

values describing the parameters highlighted as most sensitive. For example, given the 

demonstrated constant large sensitivity of PWC to soil adsorption coefficient (kd), particular 
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attention should be placed on determining locally-specific Pampean kd values for most used 

pesticides in the region; especially considering how largely kd values can vary based on soil 

characteristics such as pH and organic or clay contents (Wauchope et al., 2002, Okada et al., 

2016, De Gerónimo et al. 2018). The sensitivity analysis performed in the current study 

demonstrated that guided efforts to obtain more precise soil- or locally-specific data on 

degradation rates, soil-binding capacity, or erosion or runoff descriptive factors, should 

reduce the uncertainty of pesticide fate modelling and risk assessment in the Pampa Region 

and elsewhere.    

The sensitivity analysis performed also demonstrated that the nature of the pesticide 

modelled has a greater influence on model output than locality or type of output considered 

(ie. 4d or 60d average concentrations). In the present study, the two modelled pesticides, 

glyphosate and 2,4-D were selected because of their opposite behavior in the environment: 

whereas glyphosate tends to bind strongly to soil particles, 2,4-D, because of it lower kd, is 

mainly dissolved and thus transported by runoff. This difference in the physicochemisty and 

resulting environmental behavior of the two pesticide molecules was critical for 

determining which input parameters of PWC were most sensitive in each simulation. 

Indeed, because of the tight binding of glyphosate with soil particles, water erosion specific 

parameters of the USLE equation such as usle ls, usle p and usle c were identified as most 

sensitive in simulations with this pesticide, whereas for the most water-soluble pesticide 

2,4-D, the most sensitive parameters corresponded to runoff-associated parameters such as 

the curve number (cna) or efficiency of runoff interaction with soil (rseff). Likewise, the 

greater sensitivity of the parameter hydrolysis (hidrohl) in simulations with 2,4-D rather 

than with glyphosate, is probably related to the fact that PWC’s algorithm considers hidrohl 

only in dissolved molecular species (Fry et al., 2014).  
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In view of above-mentioned observations, anticipating the environmental behavior 

of the molecule to be modelled may help define which model parameters are the most 

strategic to carefully parametrize and refine in order to obtain simulation outputs as precise 

as possible.  Similarly, it can logically be deduced that all efforts at reducing water erosion in 

agricultural lands would be efficient at reducing surface water contamination of soil-binding 

pesticide molecules.  Furthermore, although the sensitivity of PWC to most parameters was 

similar when comparing 4d- and 60d-average concentrations, the exception to this rule was 

the pesticide half-life in water (wchl), which presented a greater sensitivity when 

considering the longer (60d) average pesticide concentration. In PWC, wchl models the 

degradation of the pesticide from the moment it reaches the water body. It is therefore 

logical for the sensitivity of PWC to wchl to become more important as longer periods are 

considered. 

Finally, it has to be clarified that, the calculated surface water concentrations, and 

the whole simulation exercise performed in the current study were realized for model 

evaluation purposes only, and may not be used for further interpretations regarding 

pesticides water contamination. Indeed, although many parameter values used were 

realistic, our focus was to select parameter ranges that allowed an effective sensitivity 

analysis of PWC, not to reproduce a field reality.  Likewise, the fact that little differences in 

parameters sensitivity were observed when varying the simulated locality, only means that 

similar parameters are sensitive in most sites, regardless of soil or climate specification, not 

that all locations are equivalent in terms of pesticide concentrations that could reach surface 

water bodies. In fact, results obtained, which show that parameters descriptive of soil 

binding, runoff and water erosion are amongst the most sensitive of PWC, are an indication 

that site differences surely exist within the Pampa Region in terms of pesticide fate to 
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surface water.  These results also mean that the next step in the path to using PWC in the 

Pampa Region will be to define and compare Pampean exposure scenarios.  

5. Conclusion 

The current study describes a two-steps sensitivity analysis which includes a first 

screening of less sensitive parameters with the Morris method, followed by a fully global 

sensitivity analysis of the remaining parameters using Sobol’s method. Results obtained 

show that, when used in soil and climate conditions characteristic of the Pampa Region, the 

model PWC is most sensitive to about 25% of the parameters evaluated. Parameters 

identified as most sensitive belong to two main categories: (i) degradation rates of the 

pesticide in soil and water and (ii) parameters descriptive of soil binding, runoff and erosion.  

More specifically, the following 9 parameters were detected as sensitive in one or more 

simulations: (i) pesticide half-life in soil (soilhl), (ii) soil adsorption coefficient (kd), (iii) 

pesticide half-life in water column, (wchl), (iv) curve number (cna), (v) runoff soil 

interaction (rseff), (vi) pesticide hydrolysis half-life (hidrohl),  (vii) the USLE factors (usle 

ls), (viii) usle c, and (ix) solids in suspension in water column (wcfoc). The sensitivity 

analysis of the model PWC performed in the current study is a crucial first step towards (i) 

parametrize more efficiently PWC, reducing uncertainty in the results; (ii) facilitate the 

elaboration of pesticide exposure scenarios for pesticide fate modelling in the Pampa region 

and (iii) use PWC to estimate environmental concentrations values needed to perform 

aquatic pesticide risk assessment in the Pampa region of Argentina.  
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Table 1. Abbreviations of the parameters used by PWC and the process they describe. 

Abbreviation Definition Process Described 

bbiomass Benthic Biomass (g/cm2). Water Body Physical Parameters 

bdhl Benthic Metabolism half-life (day) Pesticide 

cheight Canopy Height (cm) Growth Descriptors 

choldup Canopy Holdup (cm) Growth Descriptors 

ccover Canopy Cover (%): Growth Descriptors 

cna Curve Number (before and after  crop) Run Off/Erosion 

cnb Curve Number (during crop) Run Off/Erosion 

chlor chlorophyll concentration, effects photolysis attenuation 

only. 

Water Body Physical Parameters 

cropfrac Cropped Area Fraction Water Body Dimensions 

dfac DFAC:  photolysis parameter as defined in VVWM 

documentation 

Water Body Physical Parameters 

edepth E-Depth (cm): The lowest depth at which erosion interacts 

with the soil. 

Distribution of Eroded Soils 

evapod Evaporation Depth (cm) Hydro Factors 

foliarhl Foliar half-life (day) Pesticide 

hidrohl Hydrolysis half-life (day) Pesticide 

ireg Location of NRCS 24-hour hyetograph. Run Off 

kd Sorption Coefficient (mL/g) Pesticide 

mna Manning coefficient before and after cropping Run Off/Erosion 

mnb Manning coefficient when cropping Run Off/Erosion 

mxc Mass Xfer Coefficient: Mass transfer coefficient for 

exchange between benthic and water column (m/s).    

Water Body Physical Parameters 

pfac Pan Factor Hydro Factors 

phohl Aqueous Photolysis Half-life (days) Pesticide 

Q10 Q10 factor: increase in the degradation rate every 10 ° C Pesticide 

rdecli R-Decline (cm): The exponential decline of runoff 

interaction as a function of depth. 

Distribution of Runoff in Surface 

rdepth 

 

R-Depth (cm): The lowest depth at which runoff interacts 

with the soil. 

Distribution of Runoff in Surface 

rseff The amount of runoff that interacts with the soil. Distribution of Runoff in Surface 

slope Slope of the hydraulic flow path Run Off 

soilhl Soil half-life (day) Pesticide 

solubility Solubility (mg/L) Pesticide 

usle c Universal soil loss cover management factor Run Off/Erosion 

usle ls Universal soil loss equation topographic factor Run Off/Erosion 

usle p Universal soil loss equation practice factor Run Off/Erosion 

vappres Vapor Pressure (torr) Pesticide 

wcbiomass Water Column Biomass: biomass concentration in water 

column (mg/L). 

Water Body Physical Parameters 

wcdoc Water Column DOC: Dissolved Organic Carbon content in 

water column. 

Water Body Physical Parameters 

wcfoc Water Column foc: Organic Carbon fraction on suspended 

solids in water column 

Water Body Physical Parameters 

wchl Water Column Metabolism half-life (day) Pesticide 

wcss Water Column SS: suspended solid concentration in water 

body. 

Water Body Physical Parameters 
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Table 2.  Source of the climatic data used in the five localities included in the sensitivity analysis. 

 

 Anguil Marcos 

Juárez 

Paraná Pergamino Tres 

Arroyos 

Reference 

Latitude (˚E) -36.50 

 

-32.70 

 

-31.78 

 

-33.93 

 

-38.33  

Longitude (˚N) -63.98 -62.15 -60.48 -60.55 -60.25  

Elevation 

(meters above sea level) 

165 114 78 65 115  

Hydrologic Soil Group (HSG) B C D D D Godagnone et al. 

(2014) 
Great Group 

of Soil 

Entic 

Haplustolls 

Typic 

Argiudolls 

Vertic 

Argiudolls 

Typic 

Argiudolls 

Typic 

Argiudolls 

Climate Data WMO 

station 

87624 

 

WMO 

station 

87467 

 

WMO 

station 

87374 

 

WMO 

station 

87484. 

 

WMO 

station 

87688 

 

INTA(2018) / SMN 

 

Average Precipitation (mm) 721 881 1080 1003 787 

Average Temperature 7.9 11.6 13.5 10.5 7.6 

Climatic zone * A B B C A Diaz and Mormeneo, 

2002 

WMO = World Meteorological Organization, INTA = Instituto Nacional de Tecnología Agropecuaria, SMN = 

Servicio Meteorológico Nacional.  
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FIGURE LEGENDS 

 

Figure 1.  Geographic locations within the Pampa of the five localities used in the present 

study. 

Figure 2.  Results of PWC model sensitivity analysis performed using Morris Method in each 

of the five Pampa localities. The test pesticide was 2,4-D and the output used was the upper 

90th ranked annual 4d average water concentrations. 

Figure 3.  Results of PWC model sensitivity analysis performed using Morris Method in each 

of the five Pampa localities. The test pesticide was glyphosate and the output used was the 

upper 90th ranked annual 4d average water concentrations. 

Figure 4.  Overview of sensitivity values (µ) obtained using Morris Method when modelling 

the fate of either 2,4-D or glyphosate in each of the five Pampa localities. Results obtained 

when using the upper 90th ranked annual 4d average water concentrations are presented. 

Figure 5 Results of PWC model sensitivity analysis performed using Sobol Method in each 

of the five Pampa localities. Test pesticide was (a) 2,4-D and (b) glyphosate forthe upper 90th 

ranked annual 4d average water concentration.  
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Figure 1.  Geographic locations within the Pampa of the five localities modelled in 

the present study. 
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Figure 2.  Results of PWC model sensitivity analysis performed using Morris Method in each 

of the five Pampa localities. The test pesticide was 2,4-D and the output used was the upper 

90th ranked annual 4d average water concentrations. 
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Figure 3.  Results of PWC model sensitivity analysis performed using Morris Method in each 

of the five Pampa localities. The test pesticide was glyphosate and the output used was the 

upper 90th ranked annual 4d average water concentrations.  
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Figure 4.  Overview of sensitivity values (µ) obtained using Morris Method when modelling 

the fate of either 2,4-D or glyphosate in each of the five Pampa localities. Results obtained 

when using the upper 90th ranked annual 4d average water concentrations are presented. 
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Figure 5. Results of PWC model sensitivity analysis performed using Sobol Method in each 

of the five Pampa localities. Test pesticide was (a) 2,4-D and (b) glyphosate for the upper 

90th ranked annual 4d average water concentration.  
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Graphical abstract 

 

Highlights 

 A sensitivity analysis was performed for PWC for the Pampa region of Argentina. 

 PWC was most sensitive to 25% of the parameters evaluated. 

 Soil adsorption coefficient and water and soil half-lives are sensitive parameters. 

 Sensitive parameters depended on the nature of the pesticide modelled. 
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