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Abstract Integrated surface-subsurface hydrological models (ISSHMs) are well established numerical
tools to investigate water flow and contaminant transport processes over a wide range of spatial and
temporal scales. However, their ability to correctly reproduce the response of hydrological systems to
natural and anthropogenic forcing depends largely on the accuracy of model parameterization, including
the level of detail in the representation of the bedrock. This latter is typically incorporated in some way via
the bottom boundary of the model domain. Issues of bedrock topography, variable soil depth, and the
resulting hillslope storage distribution representation in ISSHMs are vitally important but to date have
received little attention. A standard treatment of the bottom boundary, especially in large catchment and
continental scale applications, is to model it as a flat or inclined (e.g., parallel to the surface) impermeable
base (sometimes with some simple leakage term). This approach does not allow the model to correctly
reproduce bedrock-controlled threshold responses such as the fill and spill process, as observed across
many hillslope and catchment scale field studies. It is still unclear whether Richards equation-based
numerical models are actually able to generate such responses. Here we use a Richards equation-based
model (CATHY) to simulate internal transient subsurface stormflow dynamics observed at the
well-characterized Panola experimental hillslope in Georgia (USA). Soil and bedrock properties were
calibrated starting from values reported in previous studies at the site. Our simulation results show that the
model was able to reproduce threshold mechanisms, which in turn affected both the integrated and
distributed hydrologic responses of the Panola hillslope. We then developed a set of virtual experiments
with modified boundary conditions and base topography at the soil-bedrock interface to explore the
bedrock boundary control on transient groundwater flow patterns. Our results show that accurate
representation of the lower boundary is crucial for ISSHM simulations of hillslope-scale storm runoff and
for connectivity of transient groundwater. We summarize our findings with the development of a new
bedrock topographic wetness index that takes into account the unsaturated infiltration dynamics. The
index is able to help represent the spatial variability of water table response over the bedrock surface
compared to standard surface topography-based indices. This new index may be useful in larger-scale
ISSHM applications where an exact bedrock topography representation is not feasible or possible.

1. Introduction
Recent advances in hydrogeophysics (Binley et al., 2015; Singha et al., 2015) now make it possible to charac-
terize the spatial variability of bedrock topography with relatively little effort. This alleviates the information
constraint on numerical models, allowing fuller investigation of the impact of a bedrock interface on hydro-
logic responses and of the ability of current models to reproduce these responses (Fatichi et al., 2016). In
the development of groundwater models over the past five decades, this marks a step forward analogous
in some respect to, first, the transition from treating the water table as a simple specified-head bound-
ary to unified models of saturated and unsaturated zone phenomena and, more recently, the advent of
integrated surface-subsurface hydrological models (ISSHMs) that can resolve interactions across the land
surface boundary (Paniconi & Putti, 2015).

Field and modeling experiments over a range of scales suggest that the way the bedrock interface is treated
(e.g., smooth versus nonuniform, i.e., with or without microtopographic relief features, impermeable versus
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leaky, and inclusion or not of underlying formations such as fractured aquifers) has a large impact on hydro-
logic response (pressure head distributions, preferential flow pathways, residence times, water table levels,
groundwater recharge, groundwater-surface water interactions, streamflow discharge, etc,)( Banks et al.,
2009; Buttle & McDonald, 2002; Ebel et al., 2008; Freer et al., 2002; Katsuyama et al., 2005; Kosugi et al.,
2008; Uchida et al., 2002; Uchida et al., 2003). One key manifestation of bedrock-influenced processes is the
fill and spill mechanism (Spence & Woo, 2003), which has been used to explain threshold-driven hillslope
responses (Tromp-van Meerveld & McDonnell, 2006a).

Fill and spill is the process whereby free water forms in depressions at the soil-bedrock interface and then
spills downslope over the bedrock ridge when the water level reaches the crest at the edge of a depression
(Tromp-van Meerveld & McDonnell, 2006a). For fill and spill, connectivity becomes very important and
contributing areas do not necessarily grow upslope from the stream channel, as conceptualized in earlier
saturated wedge assumptions (Weyman, 1973). The delayed release of stored water that is characteristic of fill
and spill also impacts solute transport (e.g., enhanced mixing and mass transfer in subsurface depressions)
(Jackson et al., 2016), wherein the flushing frequency in the spill areas results in a stripping of weatherable
products (Burns et al., 1998).

Bedrock-mediated fill and spill and associated phenomena such as threshold behaviors and
connectivity-controlled flow are now well recognized experimentally; whether these processes require new
theoretical frameworks and models is still an unresolved issue. New field evidence of fill and spill has led
to new model approaches (Ameli et al., 2015; Janzen & McDonnell, 2015; Lehmann et al., 2007) and new
theory (McDonnell et al., ??; Spence, 2010). These have been aimed largely at improving the capability of
simpler approaches (e.g., low-dimensional and probabilistic models) to simulate processes associated with
storage filling and connectivity spilling threshold behaviors. There has not as yet been extensive model
testing of these phenomena with ISSHMs, which represent the current state of the art in hydrological
modeling at the hillslope and catchment scales. Owing in part to the information constraint regarding
bedrock characteristics discussed earlier, hydrological models, including ISSHMs, have traditionally relied
on simplified representations of the soil-bedrock interface, generally treating it as a smooth, impermeable
“surface,” sometime with a freely draining or leaky bottom boundary (e.g., Broda et al., 2011; Koussis et al.,
1998; Tromp-van Meerveld & Weiler, 2008). Other studies have set the bottom boundary of the model
domain deeper than the soil-bedrock interface (Ebel et al., 2007, 2008).

A small handful of physics-based modeling studies have taken into account detailed representation of
bedrock features (Ameli et al., 2015; Hopp & McDonnell, 2009; James et al., 2010; Lanni et al., 2013). These
studies have all been done at the Panola Mountain Research Watershed, an experimental trenched hills-
lope in Georgia (USA) with a comprehensive observational data set of hydrologic and hydrostratigraphic
variables. The present study builds on this previous work and investigates whether physics-based models,
fed with accurate and representative data, can properly simulate the behavior of complex hydrological sys-
tems and provide useful insights into the development of threshold-driven responses. We use the CATHY
(CATchment HYdrology) simulator (Camporese et al., 2010; Weill et al., 2011), an ISSHM that uses rigorous
numerics to solve the mass conservation equations governing water flow and solute transport. ISSHMs are
well tested (Kollet et al., 2017; Maxwell et al., 2014) and increasingly used in diverse applications, including
at continental scales (e.g., Condon & Maxwell, 2015; Lemieux et al., 2008), where open questions remain
regarding the representation and role of bedrock boundaries and formations. Our objective is to run the
model with different soil depths, bedrock depths, bedrock resolutions, and boundary conditions, in order to
explore the level of accuracy required to capture the threshold-driven response of systems like the Panola
hillslope and to assess the capability of various topographic wetness indices to explain the spatial variability
of observed water table responses and connectivity at the soil-bedrock interface, including a new index that
accounts for unsaturated zone dynamics.

2. Methods
2.1. Study Area
The study site is the Panola experimental trenched hillslope, a forested hillslope located within the Panola
Mountain State Conservation Park, in the state of Georgia (USA). The climate at the Panola Mountain State
Conservation Park is humid continental to subtropical, with average temperature and annual precipitation
of 15.2 ◦C and 1,220 mm, respectively (NOAA, 1991; Peters et al., 2003). Winter rainfall events are typically
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Figure 1. (a) Three-dimensional finite element mesh of the Panola hillslope. (b) Map of the soil-bedrock interface elevation. (c) Map of the soil thickness. The
color bars indicate elevation (m) in (a) and (b) and thickness (m) in (c).

long, low-intensity rainstorms, while short and intense convective thunderstorms are common in spring
and summer.

Over the last 25 years, experimental investigations on the Panola hillslope have contributed important
knowledge about threshold rainfall-runoff response and its relation to patterns of transient water table
development. A comprehensive set of climate, hydrogeological, and hydrological data are publicly available
(Tromp-van Meerveld et al., 2008), which provide a full description of the assembled data types, their orga-
nization, and their origins. In this study, we used the 2002 rainfall-runoff data set as it includes extensive
spatiotemporal measurements of internal hillslope hydrological response, in the form of water table devel-
opment, and subsurface stormflow delivered to a trench that was specifically excavated for rainfall-runoff
data collection. The trench extends vertically to the interface between the soil and the bedrock. For more
detailed information on the Panola hillslope and data collection, see the http://www.sfu.ca/PanolaData/
index.htm website. Hereafter, water table is relative to the soil-bedrock interface, unless otherwise specified.

2.2. Numerical Model
The CATHY (CATchment HYdrology) numerical model (Camporese et al., 2010) is one of several ISSHMs
recently developed with an overall goal of providing a holistic representation of hydrological processes in
different compartments of terrestrial systems at scales ranging from hillslope to continental.

CATHY consists of a finite element solver of the three-dimensional Richards equation for water flow in
partially saturated porous media coupled with a path-based finite difference solution of the zero-inertia
wave approximation of the Saint-Venant equation for surface water dynamics. Coupling between the two
computational domains is obtained through a time-splitting and boundary condition-switching procedure
that ensures continuity at the surface-subsurface interface (Camporese et al., 2010, 2014). Other features
implemented in the model include solute transport (Weill et al., 2011) and data assimilation (Camporese
et al., 2009).

2.3. Model Setup and Calibration
As in James et al. (2010), the model grid (Figure 1) was built to accurately represent the geology of the Panola
hillslope, consisting of a layer of sandy loam overlying a weathered granite bedrock. The soil thickness is
variable in space, ranging from 0.12 to 1.86 m, based on field estimations with soil corer and hand auger,
while the bedrock is represented, in this present study, with a 1-m uniform thickness. The soil zone is dis-
cretized into 16 computational layers of variable thickness and the bedrock formation into four layers of
uniform (25 cm) thickness. Combined with a surface digital terrain model of 1-m resolution, this results in
a finite element mesh of 23,100 nodes and 123,480 elements.

Boundary conditions for all simulations were assigned as follows: water fluxes corresponding to throughfall
estimated from rainfall data at the surface boundary (evapotranspiration was considered negligible as the
simulated periods correspond to the winter season)( James et al., 2010; Keim et al., 2006); no flow across the
lateral boundaries, except for the downslope one, where a seepage face (limited to the soil numerical layers)
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Table 1
Soil and Bedrock Parameter Values Used in This Study Compared to the Corresponding Values in James et al. (2010)

Material type Ks (m/s) Ss (m−1) 𝜙 (—) 𝛼 (cm−1) n (—) 𝜃r (—)
Present study

Soil 2.6×10−3 a 5.0×10−3 0.58 0.362a 1.26a 0.09
Bedrock 2.1×10−6a 5.0×10−3 0.33 0.305a 1.26a 0.09

James et al. (2010)
Soil 2.5×10−4 N/A 0.58 0.706 1.25 0.09
Bedrock 2.5×10−6 N/A 0.33 0.196 1.25 0.09

Note. N/A = not applicable. aCalibrated.

was used to reproduce trenchflow; and free drainage across the bottom boundary (base of the 1-m bedrock
layer) to reproduce deep percolation. Two precipitation events were simulated. The first event occurred on
8 February 2002 and consisted of a 24-hr low-intensity rainstorm. The second event occurred on 30 March
2002 and consisted of a short, high-intensity convective thunderstorm. It was only during these two largest
rainstorms of 2002 that an extensive saturation at the soil-bedrock interface occurred, which led to a signifi-
cant hillslope response in terms of trenchflow (Tromp-van Meerveld et al., 2008). Here we focus our attention
on the 30 March 2002 thunderstorm, which was used for parameter calibration and testing of different sce-
narios, while the 8 February 2002 rainstorm was used for validation purposes only. In both cases, model
initialization was achieved by running a long warm-up simulation with measured atmospheric forcing, to
achieve realistic initial conditions at the beginning of the event under consideration. Warm-up periods were
from 9 February 2002 and from 1 January 2002, for calibration and validation, respectively, meaning that
the two simulation periods never overlap each other.

Parameter calibration was carried out by means of the shuffled complex evolution method (Duan et al.,
1994). The objective of the calibration was to find a set of soil and bedrock parameters that minimizes the
root-mean-square error between observed and simulated trenchflow for the 30 March 2002 thunderstorm.
Observed trenchflow is defined here as the total of matrix and macropore flow (Tromp-van Meerveld &
McDonnell, 2006a). We opted to not include other data types in the objective function in order to avoid a
complex multiobjective calibration exercise and because we wished to assess whether a model parameteri-
zation optimizing the hillslope integrated response resulted in (1) a realistic representation of the transient
water table patterning and (2) a correct representation of the emergent fill and spill behavior driving the
trenchflow. The calibrated parameters were the saturated hydraulic conductivity, Ks, and the shape param-
eters, 𝛼 and n, of the soil hydraulic functions (van Genuchten, 1980). All other soil and bedrock parameters
(specific storage coefficient, Ss, porosity, 𝜙, and residual water content, 𝜃r) were either taken from James et
al. (2010) (𝛷 and 𝜃r) or assigned based on experience (Ss).

Table 1 reports the soil and bedrock parameters resulting from the calibration as well as the fixed parameters.
Even though anisotropy was allowed in the calibration procedure for the hydraulic conductivity, the shuffled
complex evolution algorithm converged to isotropic Ks values. The final values of the calibrated parameters
are close to the values suggested by James et al. (2010), except for the sandy loam soil, for which we found
a value of Ks that is an order of magnitude larger.

2.4. Synthetic Experiments
Following model calibration, henceforth referred to as the reference simulation, we conducted a number of
synthetic experiments (summarized in Table 2) to explore the influence on the hillslope water budget and
flow patterns of (i) the thickness of the bedrock formation, (ii) the boundary conditions at the bottom of
the bedrock (free drainage vs. no flow), (iii) the soil thickness (spatially variable versus uniform), and (iv)
the geometry of the soil-bedrock interface. In this last factor we included two common assumptions used in
ISSHM modeling, typically as a result of lack of data: a soil-bedrock interface that is parallel to the surface
and a soil-bedrock interface represented by a straight sloping plane. Four of the soil-bedrock configurations
used are shown in Figure 2. All the scenarios described in Table 2 were carried out using the same 30 March
2002 rainfall event as in the reference simulation and with the same warm-up procedure to generate the
initial conditions.

CAMPORESE ET AL. 8448



Water Resources Research 10.1029/2019WR025726

Table 2
Summary Description of the Reference Simulation and Synthetic Experiments

Scenario tag Bedrock thickness Bottom boundary conditions Soil thickness Soil-bedrock interface
Reference 1 m Free drainage Spatially variable, from Spatially variable, from

measured data measured data
Deep10_fd 10 m NC NC NC
Deep10_nf 10 m No flow NC NC
Deep50_fd 50 m NC NC NC
Deep50_nf 50 m No flow NC NC
Parallel_1 NC NC Uniform (1 m) Soil surface parallel

to measured soil-bedrock interface
Parallel_2 NC NC Uniform (1 m) Soil-bedrock interface parallel to

Reference (measured) soil surface
Coarse_2 NC NC NC Reference soil-bedrock interface

but coarsened to 2 m resolution
Coarse_4 NC NC NC Reference soil-bedrock interface

but coarsened to 4 m resolution
Straight NC NC NC Soil-bedrock interface

is a straight sloping plane

Note. NC = not changed with respect to the Reference simulation.

2.5. Topographic Wetness Indices
In addition to the simulation experiments described above, we also investigated the capability of various
topographic wetness indices to explain the spatial variability of the distributed response and the connectivity
patterns over the soil-bedrock interface in the Panola hillslope. Along with the standard topographic wetness
index of the surface topography, TWI (Beven & Kirkby, 1979),

TWI = ln(a∕ tan 𝛽), (1)

where a is the upslope contributing area per unit contour length and tan 𝛽 is the local slope, we considered
here also its equivalent for the bedrock topography, TWIbr, where a and tan 𝛽 are now computed from the
geometry of the soil-bedrock interface. As neither TWI nor TWIbr take into account the soil hydraulic prop-
erties, we also examined two variants that include soil thickness, D, time-averaged infiltration rate, I, and

Figure 2. Map of the soil-bedrock interface for four of the scenarios reported in Table 2: (a) Parallel_2, (b) Coarse_2, (c) Coarse_4, and (d) Straight. All other
scenarios have the same soil-bedrock interface as the reference simulation (see Figure 1).
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saturated or unsaturated hydraulic conductivity:

STWIsat = ln Ia
KsD tan 𝛽

, (2)

STWIuns = ln Ia
K(𝜓D)D tan 𝛽

, (3)

where K(𝜓D) is computed with the calibrated van Genuchten curve assuming pressure head, 𝜓 , equal to
negative soil thickness, −D. Note that STWIsat and STWIuns are dimensionless and that the products KsD
and K(𝜓D)D are indicators of soil transmissivity, wherein the former assumes a fully saturated soil while the
latter takes into account the spatially varying saturation state. As for TWIbr, a and tan 𝛽 are calculated from
the soil-bedrock interface also for STWIsat and STWIuns.

The performance of the wetness indices was evaluated first by computing their Pearson and Spearman rank
correlation coefficients with the water table spatial distribution at the moment of maximum storage during
the simulation. To further expand this analysis, following Lanni et al. (2011), we investigated the capability
of the wetness indices to explain the subsurface connectivity paths. To this aim, the maps of pressure head
over the soil-bedrock interface and wetness index were converted into binary maps (wet/dry) defined by
an indicator function I(zi; zk), equal to 1 (wet) if zi ≥ zk and 0 (dry) otherwise, where zi is the value of
the wetness index or pressure head in node i and zk is a chosen threshold value separating dry from wet
areas. Another indicator function I(zi; zk), equal to 0 if zi ≥ zk and 1 otherwise, was used to ensure that
∑N

i=1 I(zi; zk)I(zi; zk) = N, N being the number of surface nodes in the finite element mesh. The following
similarity coefficients were computed:

𝜆 =
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k)
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k) +
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k)
, (4)

𝜇 =
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k)
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k) +
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k)
, (5)

SM =
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k) +
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k)
N

, (6)

SC =
∑N

i=1 I(WIi;WIk)I(𝜓i;𝜓k)
∑N

i=1 I(𝜓i;𝜓k)
, (7)

Ck = SM − RA
1 − RA

, (8)

where WI represents the wetness index being considered (TWI, TWIbr, STWIsat, or STWIuns). The coefficients
𝜆 and 𝜇 indicate the rates of false negatives and false positives, respectively, while SM is a measure of simple
matching, SC of direct spatial coincidence, and Ck is the Cohen's kappa coefficient (Lanni et al., 2011), which
takes into account the overall probability of random agreement, RA:

RA =
∑N

i=1 I(WIi;WIk)
N

∑N
i=1 I(𝜓i;𝜓k)

N
+

∑N
i=1 I(WIi;WIk)

N

∑N
i=1 I(𝜓i;𝜓k)

N
. (9)

To produce time-independent connectivity patterns over the soil-bedrock interface, we conducted
steady-state simulations assuming a constant throughfall of 1.0×10−6 m/s (3.6 mm/hr). This led to constant
distributions of pressure head over the soil-bedrock interface. Two pressure head thresholds were tested to
distinguish dry from wet soil areas: 𝜓 = 0.0 m and 𝜓 = −8.87 × 10−4 m, the former being the conventional
definition of a water table and the latter being the air entry pressure head corresponding to the calibrated
van Genuchten retention curve (Or et al., 2015), thus accounting for possible effects of the capillary fringe.
For each wetness index, 19 possible thresholds were considered, corresponding to percentiles ranging from
the 5th to the 95th with a step of five.
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Figure 3. Observed and modeled trenchflow for the 30 March 2002 thunderstorm simulation. NSE is Nash-Sutcliffe
efficiency.

3. Results
3.1. Reference Simulation: Measured Bedrock Geometry With Calibrated Parameters
Figure 3 shows the comparison between observed and modeled trenchflow for the 30 March 2002 simula-
tion. The agreement is quite good, with a Nash-Sutcliffe coefficient of 0.86, even though the model exhibits
a slightly faster recession phase compared to the observed one. This is probably due to the choice of the
objective function in the calibration algorithm (root-mean-square error), which tends to give more weight
to the peaks rather than the recession phases. The total volume of the hydrograph is also well captured
by the model. Figure 4 compares simulated and observed trenchflow for the 8 February 2002 validation
event. The model performance is not as good as for the calibration event, but it is nonetheless satisfac-
tory (Nash-Sutcliffe coefficient of 0.72), providing confidence that the model is realistically reproducing the
hydrological dynamics in the hillslope.

We now analyze in detail the results of the 30 March 2002 simulation in terms of the internal distributed
response of the hillslope. Two types of water table data are available in the Panola hillslope: maximum water
level rise at the soil-bedrock interface, measured with 135 crest-stage gauges, and continuous water level,
measured in a series of 29 water table recording wells located along two downslope transects and within a
bedrock hollow (Tromp-van Meerveld & McDonnell, 2006a).

Figure 4. Observed and modeled trenchflow for the 8 February 2002 rainstorm simulation. NSE is Nash-Sutcliffe
efficiency.
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Figure 5. (a) Simulated maximum water level rise above the soil-bedrock interface in response to the 30 March 2002
rainstorm. The circles represent corresponding measurements from the crest-stage gauges (James et al., 2010). Both
simulated and measured values are binned in the categories of 4 = high (>20 cm), 3 = medium (10–20 cm), 2 = low
(<10 cm), and 1 = no (0 cm) rise. (b) Squared correlation coefficient (equivalent to coefficient of determination, R2) of
simulated versus observed water table in 29 continuously monitored boreholes for the 30 March 2002 rainstorm. The
color bar corresponds to the topographic wetness index of the soil-bedrock interface, while both size and color of the
circles vary as a function of the R2 values.

Figure 5a shows the maximum water level rise over the soil-bedrock interface modeled in the 30 March 2002
simulation, compared with the crest-stage measurements. The reported values are binned in categories of
high (>20 cm), medium (10–20 cm), low (<10 cm), and no (0 cm) rise. The maximum values simulated
by CATHY generally fall below those observed (e.g., highest modeled maxima of about 30 cm against mea-
sured values of more than 40 cm), probably due to the fact that parameter calibration was carried out against
trenchflow data only. However, the spatial patterns are in broad qualitative agreement. Comparing simply
whether the water table at the soil-bedrock interface responds or not, out of 116 available observations, the
model and measurements agree in 89 locations, while in 16 cases the model simulates a response that was
not observed and in other 11 cases the model fails to show an observed response (see also Figure S1 in the
supporting information). There is also a clear correlation between the simulated maximum water table rise
in Figure 5a and the topographic wetness index of the soil-bedrock interface, TWIbr (Figure 5b). This is in
agreement with previous results for the Panola hillslope (Freer et al., 2002). Figure 5b also shows the squared
correlation coefficient, R2, between measured and simulated water level (the latter extracted at the position
of each of the 29 recording wells) calculated over the entire simulation. Once again, despite a general under-
estimation of the water table data by the model, the subsurface dynamics is captured fairly well, especially
along the main subsurface flow paths identified by high values of TWIbr. Points with R2 = 1 (large black
circles) indicate boreholes where neither the model nor the measurements detected any response. Overall,
there is qualitative agreement between model and observations for 21 of the 29 recording wells. In four other
cases the model simulates a response while the observations do not show any response, and in the remaining
four cases the opposite occurs.
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Figure 6. Snapshots of simulated Darcy velocity and extent of water buildup (shown by isovolumes bounded by pressure head values between 0 and 0.3 m)
over the soil-bedrock interface for (a–c) the Reference scenario and (d–f) the Parallel_2 scenario, at times (a and d) 88.3 day, (b and e) 88.9 day, and (c and f)
89.1 day. Distances are in meters and velocities in meters per second.

In Figures 6a–6c, as well as in the movie provided in the supporting information that shows the modeled
subsurface response over the duration of the simulation, it can be seen how the hillslope, initially unsatu-
rated, is first subject to vertical infiltration (panel a), followed by the development of a complex pattern of
perched water table (panels b and c) that results from the progressive filling and connecting of upslope and
downslope depressions in the soil-bedrock interface. As a consequence, Darcy fluxes are concentrated in the
flow paths connecting these depressions, with maximum computed flow velocities of about 10−3 m/s. This is
consistent with estimates by Tromp-van Meerveld and McDonnell (2006b), who obtained, based on various
measurements, flux velocities of 8 m/hr (2.2 × 10−3 m/s). The video clearly shows that the main contribu-
tion to the trenchflow comes from the left-hand side portion of the hillslope, in agreement with previous
experimental analyses (Tromp-van Meerveld & McDonnell, 2006a).

We also analyze, in Figure 7, the different terms of the water balance in the hillslope for the 30 March 2002
rainstorm simulation, including the cumulative input (infiltration) and output (surface runoff, trenchflow,
and loss to bedrock) fluxes, together with the time evolution of total subsurface storage. Surface runoff out-
flow is always negligible, consistent with observations (Tromp-van Meerveld & McDonnell, 2006b), although
the CATHY surface module was very briefly activated at the beginning of the rainstorm, resulting in a small
amount of Hortonian overland flow that reinfiltrated downslope. This also agrees with previous literature:
James et al. (2010) reported, for high-intensity storms, indirect evidence of overland flow (such as displaced
leaves), on small portions of the hillslope below bedrock outcrops that quickly reinfiltrated. The final val-
ues of trenchflow, loss to bedrock, and storage change account for about 10%, 30%, and 60% of infiltration,
respectively. By comparison, James et al. (2010) reported estimates based on measurements of 11%, 71%, and
18%, respectively. We note that our simulation yields a comparable percentage of trenchflow, whereas the
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Figure 7. Time evolution of different terms of the water balance during the simulation of the 30 March 2002 rainstorm.

disagreement with the estimates of storage change and loss to bedrock can probably be explained by a differ-
ent domain of integration for the bedrock layers. If we compare instead to the modeled estimates reported
in James et al. (2010), simulated with TOUGH2, our computed water budget terms are in closer agreement,
notwithstanding a difference in the soil to bedrock Ks ratio (1000:1 for CATHY and 5000:1 in James et al.
(2010)).

3.2. Synthetic Experiments: Modified Bedrock and Soil Geometries
Having thus demonstrated an adequate correspondence between simulations and observations for the
Panola hillslope, in terms of both hydrograph and water table response, we will further explore, in this
section, bedrock-driven thresholding behavior with the numerical model for the scenarios reported in
Table 2.

Table 3 summarizes the percent differences in the water balance terms of the virtual scenarios relative to the
reference simulation. It is immediately apparent that the boundary conditions at the bottom of the bedrock
layer (no flow versus free drainage) have a paramount influence on the hillslope response, the no flow scenar-
ios showing dramatic changes with respect to the reference simulation. With the same boundary conditions
(free drainage), the scenario with the 10-m-deep bedrock is quite similar to the reference run, while the
50-m-deep case, being affected by a much larger initial storage, exhibits an overestimated loss to bedrock
and, as a consequence, a largely negative storage change and underestimated trenchflow.

The two parallel scenarios give important indications on the relative roles of soil thickness and soil-bedrock
interface on the hillslope response. Both runs are characterized by a uniform soil thickness of 1 m, but the

Table 3
Changes in Water Balance for the Simulations With the Modified Bedrock and Soil Geometries
and the Modified Bottom Boundary Conditions Compared to the Reference Simulation

Scenario tag 𝛥 trenchflow (%) 𝛥 storage change (%) 𝛥 loss to bedrock (%)
Deep10_fd +7 +8 −11
Deep10_nf +710 −57 −100
Deep50_fd −66 −239 +477
Deep50_nf +1,150 −118 −100
Parallel_1 +7 +2 +6
Parallel_2 −12 +23 −40
Coarse_2 +10 −20 +38
Coarse_4 −5 −16 +87
Straight −17 +31 −43
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Figure 8. Simulated trenchflow for the reference and synthetic scenarios described in Table 2 for the 30 March 2002
rainstorm.

first one has the same soil-bedrock interface as the reference simulation and produces less deviation in the
water balance terms. The second scenario has a (virtual) soil-bedrock interface parallel to the (measured)
surface and produces much larger differences. This is evidence that at Panola the hillslope response is mainly
controlled by the soil-bedrock interface geometry, with soil thickness exercising a second-order control.

The last three scenarios in Table 3 feature a progressive coarsening of the soil-bedrock interface resolution. In
Coarse_2, a 2-m resolution was used instead of the original 1-m resolution, resulting in appreciable changes
of the water balance terms but still smaller than other scenarios such as Deep50_fd or Parallel_2. With
a 4-m resolution, there is a large increase in the loss to bedrock, associated with an underestimation of
the trenchflow. Finally, using a straight sloping plane for the soil-bedrock interface results in the largest
differences, especially in terms of trenchflow underestimation.

Figure 8, which shows the simulated trenchflow for the virtual scenarios, and Figure 9, which reports the
corresponding maximum water table rise over the soil-bedrock interface, confirm the inferences drawn from
Table 3. The simulations with deeper bedrock and no flow boundary conditions resulted in sustained base-
flow caused by return flow from the bedrock, as is apparent from Figure 9e, which exhibits an area of water
accumulation immediately upstream of the trench. A bedrock depth of 50 m with free drainage bound-
ary conditions yielded almost no trenchflow and water table response, while the Deep10_fd run simulated
a response very similar to the reference run. Similar to Deep50_nf, the Deep10_nf run exhibits a slightly
larger extent of saturation upstream of the trench compared to Deep10_fd, which is sufficient to explain the
larger baseflow. Of the two parallel scenarios, the one with a “wrong” soil-bedrock interface resulted in a
largely dampened trenchflow hydrograph and limited water table response relative to the reference, while
the one with measured bedrock geometry but uniform soil thickness had a qualitatively similar trenchflow
dynamics, albeit generally overestimated, and a similar water table rise distribution. Figure 9h and the bot-
tom panel of Figure 8 demonstrate how coarsening the resolution of the soil-bedrock interface from 1 to
2 m did not result in dramatic changes of trenchflow and water table rise, although a slight overestimation
of the main peak of the hydrograph did occur. A further coarsening to 4 m led to significant inaccuracies in
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Figure 9. Simulated maximum water table rise over the soil-bedrock interface for scenarios (see also Table 2): (a) Reference, (b) Deep10_fd, (c) Deep10_nf,
(d) Deep50_fd, (e) Deep50_nf, (f) Parallel_1, (g) Parallel_2, (h) Coarse_2, (i) Coarse_4, (j) Straight. Note that the color scales are not the same for all the panels.

the description of both trenchflow (Figure 8) and water table response (Figure 9i), while a straight bedrock
geometry (Figure 9j) not surprisingly completely altered the response of the hillslope.

3.3. Performance of Topographic Wetness Indices
From a visual inspection of the water table results for the reference run (Figure 6), it would seem that the TWI
of the soil-bedrock interface is a good indicator of subsurface dynamics, as reported also by Freer et al. (2002).
We examined this relationship for the 30 March 2002 rainstorm by computing the correlation between the
water table rise over bedrock at the time of peak subsurface storage and the topographic wetness indices
presented in section 2.5.

Figure 10 shows the relationships between the four topographic indices and the water table at the time
of peak subsurface storage for the reference simulation, while Table 4 summarizes the correlation values,
expressed in terms of both Pearson and Spearman rank correlation coefficients, the latter accounting for
possible effects of nonlinearity. It is clear that the standard TWI is a poor indicator of water table spatial
variability, while TWIbr is much better at explaining the water table dynamics. Interestingly, STWIsat is sig-
nificantly worse than TWIbr, whereas STWIuns, thanks to the additional spatial variability taken into account
with the unsaturated hydraulic conductivity, yields appreciably larger correlations.

Figure 11 reports the similarity coefficients of equations (4)–(8) for the indices TWIbr, STWIsat, and STWIuns,
as a function of wetness index thresholds and the two definitions of wet versus dry areas, as described in
section 2.5. The patterns are very similar for all the wetness indices. However, it is clear that, with a fixed
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Figure 10. Scatter plots of simulated water table level at peak subsurface storage and different topographic wetness
indices for the reference simulation: (a) TWI of surface topography, (b) TWIbr of soil-bedrock interface, (c) STWIsat
(equation (2)), and (d) STWIuns (equation (3)). TWI = Topographic Wetness Index.

definition of wet/dry areas (either 𝜓 = 0.0 or −8.87 × 10−4 m), the proposed index STWIuns outperforms
TWIbr and STWIsat for a broad range of percentiles (from 20 to 75), as evidenced by a smaller count of false
negatives (𝜆) and positives (𝜇) and larger simple matching (SM), spatial coincidence (SC), and Cohen's kappa
(Ck) similarity coefficient values. This is particularly apparent for Ck and 𝜆 in the range of percentiles from
50 to 75.

4. Discussion
4.1. Ability of Richards Equation-Based Models to Represent Hillslope Fill and Spill
The physically based ISSHM CATHY was set up and calibrated to reproduce the integrated and distributed
response of the Panola hillslope, characterized by a complex bedrock topography. The simulations using
the measured bedrock topography demonstrated that a Richards equation-based model, without additional
parameterization or other enhancements, is able to capture the main features of the threshold-driven,
fill, and spill-type hydrological response observed at Panola, reproducing satisfactorily both the trench-
flow and water table rise measurements. This result shows that an ISSHM is indeed able to reproduce

Table 4
Correlation Coefficients Between Simulated Water Table at Peak Subsurface
Storage for the Reference Simulation and Various Topographic Wetness Indices

Index Pearson Spearman
TWI 0.1889 0.1399
TWIbr 0.5084 0.5084
STWIsat 0.3472 0.3751
STWIuns 0.5492 0.5089
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Figure 11. Similarity coefficients of the proposed topographic wetness indices with varying percentile thresholds and
two different definitions of wet versus dry areas above the soil-bedrock interface. TWI = Topographic Wetness Index.

bedrock-controlled fill and spill processes. This contrasts with James et al. (2010), who were unable to find
a parameterization for the TOUGH2 model that could satisfactorily reproduce both trenchflow and water
table response for the 30 March 2002 Panola rainstorm. This was likely due to their simplification of the
bedrock model layers, allowing for dynamics along the vertical direction but not the lateral directions. Good
model performances have been achieved in other numerical studies of the Panola hillslope (Hopp & McDon-
nell, 2009; Ameli et al., 2015) using the Hydrus-3D and HydroGeoSphere models, respectively. In both these
studies, however, model verification was focused on trenchflow and matric potential in the unsaturated zone
and not on the distributed water table response over the soil-bedrock interface. It should be noted that the
hydraulic conductivities found in this present work are broadly consistent with those reported in previous
Panola modeling studies, especially the bedrock values. However, Ameli et al. (2015) obtained a Ks value of
the soil layer of about 640 mm/hr, whereas our value (9,360 mm/hr) is closer to the one reported by Hopp
& McDonnell (2009; 3,500 mm/hr), which was not calibrated but assumed based on field observations. It
is also worth noting that both Hopp and McDonnell (2009) and Ameli et al. (2015) used a transition layer
between the soil and the underlying granite, in contrast to the simple two-layer configuration used here.

It is of course difficult to make precise comparisons between our results and previous studies, owing to the
complexity of the Panola hillslope system and the model forcings used. The inverse problem at the core of
the model calibration phase is typically ill posed, with possibly multiple parameterizations leading to similar
responses. Additionally, the inherent scarcity of measurements in relation to the complexity of the processes
allows only an incomplete characterization of the system. Our results show that a systematic use of bedrock
geometry data resulted in predicted states of reasonable accuracy without the need to introduce additional
processes into CATHY. Although it has been reported that lateral pipe flow plays an important role in sub-
surface stormflow at the Panola hillslope (Tromp-van Meerveld & McDonnell, 2006b; Uchida et al., 2005),
not enough information regarding the geometry and distribution of the soil pipes is available upon which to
base alternative approaches, for example, dual continuum. The relatively high value for Ks found by CATHY
may indeed reflect indirectly the preferential flow impacts on lateral downslope flow at the soil-bedrock
interface as reported elsewhere (Graham et al., 2010). Nevertheless, the use of a dual continuum approach to
simulate pipe flow at the Panola hillslope would necessarily increase the parameter set, ultimately leading
to even larger uncertainties in the results due to increased ill posedness.
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A series of synthetic experiments with modified boundary conditions, soil thickness, and representations
of the bedrock topography illustrated a number of issues associated with the common assumptions in
ISSHM applications at the hillslope scale (e.g., assumptions of smooth and linear soil-bedrock interfaces or
deep bedrock formations with no flow boundary conditions). No previous study of the Panola hillslope has
addressed these issues. Our results showed that such assumptions can lead to large errors. Our results also
showed that relatively small uncertainties in the definition of the soil-bedrock interface can result in sig-
nificant differences in the various terms of the water balance. For instance, we found that a deep bedrock
formation with no flow boundary conditions at the base does not always ensure a correct representation of
the flow and water table patterns. Moreover, for the configuration with “real” surface topography but with
the soil-bedrock interface assumed parallel to the surface, it was impossible to capture the Panola hillslope's
fill and spill dynamics, leading to a delayed and damped hydrological response. In contrast, we also showed
that the configuration with measured bedrock geometry but uniform soil thickness yielded results that were
closer to the reference simulation. This suggests that the soil-bedrock interface geometry can exercise a
more important control on hillslope response than soil thickness. This follows other studies (e.g., Bertoldi
et al., 2006) that found that soil thickness alone had a weaker control on the various terms of the catchment
water budget compared to other geomorphic variables such as terrain slope and the river network length.
Other important implications of our study derive from the observation that a progressive coarsening of the
soil-bedrock interface resolution (from 1 m to a representation of the interface as a straight surface with
an average slope) rapidly leads to a model incapable of reproducing the real hillslope dynamics and water
budget terms. Whether this has significant consequences on Earth system modeling at continental or global
scales, where typically the resolution does not allow a detailed description of the bedrock geometry, warrants
future investigations (and is discussed in section 4.3).

4.2. On the Usefulness of Index Approaches
The Earth system modeling community also recognizes the important role played by the bedrock in con-
trolling hydrological fluxes in hillslopes and catchments (e.g., Fan et al., 2019). However, how to upscale
processes to the typical resolution of Earth system models, that is, ∼20–200 km, remains a formidable chal-
lenge. A possible step forward in this direction can perhaps stem from the development and application of
wetness indices for the bedrock geometry, similar to the well-known TWI (Beven & Kirkby, 1979), originally
proposed to predict the location of saturated areas from readily available topographic data. Of course, this
index has subsequently been used in many other variants and for various purposes, for example, to identify
sources of subsurface flow; to estimate the hydrological, physical, and chemical properties of soils; to charac-
terize vegetation patterns; or to investigate scaling effects (Ali et al., 2014). Freer et al. (2002) already showed
that the bedrock-derived upslope accumulated area can be a good predictor of the water table response in
the Panola hillslope, ultimately controlling the subsurface storm flow response. This suggests that variants
of the TWI that include soil information, such as soil depth and hydraulic conductivity, that is, soil topo-
graphic wetness indices (STWIs), if derived from the bedrock geometry, may have the capability to describe
the saturated connectivity patterns forming at the soil-bedrock interface which are then responsible for
threshold-driven hydrological responses.

Within this context, we conducted further analyses of the simulation results to explore the potential of var-
ious topography- and bedrock-derived wetness indices to be used as predictors of saturated connectivity
patterns within the hillslope. These analyses show that the standard TWI, as expected, could not explain
the spatial variability of the water table. On the other hand, an analogous index derived from the bedrock
rather than land surface topography resulted in good correlations with the saturation distribution over the
soil-bedrock interface. This can be further improved by taking into account the soil thickness and unsat-
urated hydraulic conductivity. The newly proposed index, STWIuns, represents a potentially useful tool
to visualize the tendency of catchments or hillslopes to produce threshold-driven hydrological responses.
However, it is worth noting that, although statistically significant, none of the correlation and similarity
coefficients exceeds 0.6, indicating that no topographic index (yet) can capture the full complexity of water
table dynamics as can be done in physics-based models.

4.3. Beyond the Hillslope Scale
Overall, our results corroborate the fact that, if a sufficiently accurate geometrical characterization of the
active boundary of the process domain is available, the calibration of a horizontally homogeneous parame-
terization leads to reasonably accurate and robust ISSHM predictions. This is consistent with the dissipative
character of Richards equation and the existence of a maximum principle (Celia et al., 1990), whereby
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boundary conditions dictate the solution in the domain interior. This conclusion can have important impli-
cations also for larger-scale applications of ISSHMs, where the simplified parallel-to-surface paradigm is
often used (e.g., Condon & Maxwell, 2015; Lemieux et al., 2008).

Scaling issues are pervasive in hydrological science and have been studied extensively in the literature
(Blöschl & Sivapalan, 1995; Beven, 2002; Hrachowitz & Clark, 2017); nevertheless, upscaling frameworks
remain elusive. We argue that the collection of extensive subsurface structural data, beyond the drilling of
a few boreholes, should be an important part of hillslope and catchment characterization. Rapid advances
and improvements in hydrogeophysical methods (Binley et al., 2015) such as direct current resistivity,
ground penetrating radar, and electromagnetic surveys (including airborne)( e.g., Vittecoq et al., 2019) pro-
vide unprecedented opportunities to improve the field characterization of groundwater storage mechanisms
in catchments (e.g., Cochand et al., 2019; Staudinger et al., 2017) and to build the multiscale data sets
(e.g., Pelletier et al., 2016; Shangguan et al., 2017; Xu & Liu, 2017) needed to develop mathematically
and physically sound methodologies (e.g., Heimsath et al., 1997; Nicótina et al., 2011; Pelletier, 2013) for
upscaling local observations, such as bedrock information from borehole data.

Lastly, parameterizing at the macroscale, the effects of relatively microscale processes at the hillslope are
indeed a grand challenge. The large catchment is not simply a linear superposition of soil core scale pro-
cesses (McDonnell, 2003), and the modeling work herein shows how important fill and spill can be. Many
papers like Dooge (1986) have pushed the community to “search for hydrologic laws” and “regularities” in
hydrology. Along these lines, “fill and spill” as a working hypothesis for runoff generation across scales may
be a way of breaking this theory and scaling impasse. Fill and spill is ubiquitous within runoff generation
behavior across all scales and an alternate approach is possible whereby one defines the scale of interest first
and then evaluates if and how fill and spill manifest at the scale. So, ultimately, incorporating fill and spill
into large domain ISSHMs may be more about finding what fill and spill features manifest at the particular
scale of interest in the model domain and including those details in the parameterization. Certainly, for the
hillslope scale as shown in this paper, subsurface topography is key.

5. Conclusions
We have applied the Richards equation solver of CATHY, an ISSHM that uses rigorous numerics to solve
the mass conservation equations governing water flow and solute transport, to simulate the internal tran-
sient subsurface stormflow dynamics observed at the well-characterized Panola experimental hillslope in
Georgia, USA. The model was able to capture the effects of bedrock boundary conditions on hillslope-scale
threshold behavior related to fill and spill processes in the lower profile. We then ran the model on a series
of virtual experiments with different soil depths, bedrock depths, bedrock resolutions, and boundary con-
ditions to explore the level of detail required to capture with a sufficient accuracy the threshold-driven
response. We found that, even with an accurately represented soil-bedrock interface, the bedrock thickness
and boundary conditions at its bottom are crucial to reproducing the fill and spill processes; soil thick-
ness was a secondary controlling factor on threshold-driven hillslope dynamics. Lastly, we investigated the
capability of various topographic wetness indices to explain the spatial variability of observed water table
responses and connectivity at the soil-bedrock interface and found that a bedrock topographic index that
includes information on the soil unsaturated hydraulic conductivity can partially predict spatial patterns of
saturation over the soil-bedrock interface. For ISSHM modeling applications, our study points to a need to
devote more effort to the characterization of bedrock geometry in catchments, or, when this is not possible,
to take into account bedrock-associated uncertainty.
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