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ABSTRACT

Climate change will impact both mean and extreme precipitation, having potentially significant consequences

onwater resources. The implementation of efficient adaptationmeasuresmust rely on the development of reliable

projections of future precipitation and on the assessment of their related uncertainty. Natural climate variability

is a key uncertainty component, which can result in apparent decadal trends that may be greater or lower than the

long-term underlying anthropogenic climate change trend. The goal of the present study is to assess how natural

climate variability affects the ability to detect the climate change signal for mean and extreme precipitation.

Annual and seasonal total precipitation are used as indicators of themean,whereas annual and seasonalmaximum

daily precipitation are used as indicators of extremes. This is done using the CanESM2 50-member and CESM1

40-member large ensembles of simulations over the 1950–2100 period. At the local scale, results indicate that

natural climate variability will dominate the uncertainty for annual and seasonal extreme precipitation going up to

the end of the century in many parts of the world. The climate change signal can, however, be reliably detected

much earlier at the regional scale for extreme precipitation. In the case of annual and seasonal total precipitation,

the climate change signal can be reliably detected at the local scale without resorting to a regional analysis.

Nonetheless, natural climate variability can impede the detection of the anthropogenic climate change signal until

the middle to late century in many parts of the world for mean and extreme precipitation.

1. Introduction

Research conducted in the past decades has empha-

sized human influence on the climate system through

anthropogenic emissions of greenhouse gases (IPCC

2013). It is also expected that global climate warming will

induce significant changes in many parts of the world in

the distribution of extremes such as extreme precipitation

events, droughts, and floods. To ensure public safety,

the most important infrastructures are typically de-

signed based on an estimate of the recurrence likeli-

hood of a specific extreme precipitation event (e.g., the

100-yr storm). This estimate is itself usually based on

available historical annual daily maxima data. Since

such infrastructures often have typical lifespans ex-

ceeding 75 years, the potential impact of the anthropo-

genic climate change signal (referred to as the climate

change signal hereafter) on extreme precipitation events

has important implications for design practice and

public safety.
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While the climate change signal needs to be accounted

for in design practice, consideration also needs to be

given to the inherent chaotic nature of the climate sys-

tem (i.e., the unforced variability that naturally appears

in the climate system, and which will be hereafter re-

ferred to as natural variability). There are many in-

dications that natural variability may mask the climate

change signal for short- and long-term precipitation at

both the local and regional scales (Deser et al. 2012a,b,

2014; Fischer and Knutti 2014; Fischer et al. 2013, 2014;

Giorgi and Bi 2009; Hawkins and Sutton 2011, 2012;

King et al. 2015; Maraun 2013; Mora et al. 2013;

Thompson et al. 2015; Sanderson et al. 2018). A good

example of how natural variability can conceal the cli-

mate change signal at the decadal scale is the hiatus in

the rise of the global mean surface temperature ob-

served between 1998 and 2012 (Hawkins et al. 2014;

IPCC 2013).

To convince policy makers of the importance of

adapting infrastructures to climate change, it is crucial to

better understand and explain the influence of natural

variability on the climate system. However, the ability to

assess natural variability is strongly hampered by the

short length of available historical records for key

weather variables. An alternative approach is to study it

through simulations of a general circulation model

(GCM) or an Earth system model (ESM). Most pub-

lished studies use many GCMs and/or ESMs [e.g.,

models from phase 5 of the Coupled Model In-

tercomparison Project (CMIP5); Taylor et al. 2012] to

gather a large enough ensemble of models to perform

such analyses (Fischer et al. 2014; Giorgi and Bi 2009;

Hawkins and Sutton 2012; IPCC 2013; King et al. 2015;

Maraun 2013; Mora et al. 2013). In many such studies,

the concept of time of emergence (TOE) is defined to

assess the moment when the climate change signal

emerges from natural variability (Giorgi and Bi 2009;

Hawkins and Sutton 2012; IPCC 2013; King et al. 2015;

Maraun 2013). Generally, it is defined through a signal-

to-noise (S/N) ratio based on a measure of the anthro-

pogenic climate change signal (S) and some measure of

natural variability (i.e., noise; N). The TOE is then es-

timated for each simulation (either from an individual

model or from different models), and then some mea-

sure of the TOE distribution over all simulations (e.g.,

mean or median TOE) is used.

Most of these studies look at mean climate variables,

and few analyze precipitation extremes under such a

framework (Fischer et al. 2014; King et al. 2015; Maraun

2013). Most of them, though, share a common limitation

in their ability to separate natural variability from in-

termodel variability (uncertainties) since they combine

simulations from various models. To correctly assess the

sole impact of natural variability, one must first disen-

tangle the intermodel uncertainties from natural vari-

ability (Fischer et al. 2013; Kay et al. 2015).

This can be done using a large ensemble of climate

simulations from a single GCM or ESM to assess the

simulated natural variability (Fischer et al. 2013; Kay

et al. 2015). To date, quite a few studies of this kind using

large ensembles have been conducted on mean pre-

cipitation (as well as other mean climate variables; Deser

et al. 2012a,b, 2014; Fischer et al. 2014; Kay et al. 2015;

Thompson et al. 2015; Sanderson et al. 2018). These

studies showed that natural variability has a substantial

influence over mean precipitation trends at the local and

regional scales.

A relatively limited number of studies have been

conducted on the influence of natural variability on the

detection of climate change signals for precipitation

extremes, based on large ensembles of climate simula-

tions from a single model (Fischer and Knutti 2014;

Fischer et al. 2013, 2014). One of the key findings in

these studies is that the signal for precipitation extremes

is more robust than that for mean precipitation,

indicating a potential earlier emergence of the climate

change signal from natural variability in many regions.

However, the impact of natural variability on the

probability of detecting a climate change signal at the

local and regional scales remains a complex problem.

Accordingly, the main objective of the present study is

to look at how natural variability could impair the de-

tection of the climate change signal for both precipitation

means and extremes at the local and regional scales. This

is addressed using two large ensembles of 150-yr climate

simulations. Themodels andmethods used are developed

in section 2. A comparison of model data against obser-

vations, as well as results for both mean and extreme

precipitation, is presented in section 3 and discussed in

section 4. Concluding remarks are presented in section 5.

2. Datasets and methods

a. The CanESM2 and CESM1 large ensembles

The first large ensemble used in the present study is

composed of 50 climate simulations with a 2.88 resolu-
tion, derived from the Canadian Centre for Climate

Modeling and Analysis (CCCma) second-generation

Canadian Earth System Model (CanESM2; Arora

et al. 2011; Sigmond and Fyfe 2016). Five simulations

covering the 1850–1950 historical period were per-

formed to generate five different states of the ocean in

1950. Then, 10 coupled ocean–atmospheric simulations

were run from each of these five historical simulations

using randomly perturbed initial conditions (in 1950),
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for a total of fifty 150-yr simulations over the 1950–2100

period. Because of the chaotic nature of the climate

system, small perturbations in the initial 1950 conditions

quickly resulted in different atmospheric states after a

few days following the perturbation (Deser et al. 2012a;

IPCC 2013). The simulations were conducted from 1950

to 2006 using historical greenhouse gas concentrations

data. From 2006 on, the representative concentration

pathway scenario resulting in an 8.5Wm22 increase in

the atmospheric radiative forcing in 2100 (i.e., RCP8.5)

was used (IPCC 2013).

The second large ensemble is made up of 40 climate

simulations with a 18 resolution, derived from the

Community Earth System Model version 1 (CESM1)

coupled with CAM5.2 for the atmospheric component

(Kay et al. 2015). The covered period ranges from 1920

to 2100, but only the 1950–2100 period was analyzed

in this study to allow a direct comparison with the

CanESM2 large ensemble. The same RCP8.5 scenario

was considered from 2006 until the end of the simulation

period. Aside from the model structure, the main dif-

ferences between the two ensemble simulations lie in

the spatial resolutions (2.88 for CanESM2 vs 18 for

CESM1) and the initial ocean conditions (five different

ocean states for CanESM2 vs a single ocean state

for CESM1).

b. Precipitation indices

Two precipitation indices were used in this study:

1) the total wet-day precipitation (PRCPTOT) from

days$ 1mm and 2) the max 1-day precipitation amount

(RX1day). Both indices were analyzed at the annual and

seasonal scales for winter [December–February (DJF)]

and summer [June–August (JJA)].

These two indices are recommended by the Expert

Team on Climate Change Detection and Indices

(ETCCDI; Klein Tank et al. 2009; Sillmann et al. 2013a,b;

Zhang et al. 2011). Using the same indices allows a

comparison and further discussion of the results obtained

here with observed datasets (Donat et al. 2013a,b) and

with other climate change studies (e.g., Fischer and

Knutti 2014; Fischer et al. 2013, 2014; IPCC2013).Having

both mean and extreme indices furthers our under-

standing of the role of natural variability in the climate

change signal.

c. Probability of detecting the climate change signal at
the local scale

Eleven periods (1950–2000, 1950–2010, 1950–2020, . . . ,

1950–2100) were considered to investigate annual and

seasonal time series of PRCPTOT and RX1day indices

at each grid point of both ensembles. The nonparametric

Theil–Sen estimator (Sen 1968), which corresponds to

the median of the slopes over all pairs of sample points,

was used to estimate the slope of a linear trend over each

period for all 50 members. This estimator was mainly

used to compare observed trends with the simulated

trends of both ensembles (see section 3a). The local

trend significance of each grid point was estimated using

the nonparametric Mann–Kendall test (Kendall 1975)

at a 95% confidence level:

S5 �
n21

i51
�
m

j5i11

sign(x
i
2 x

j
) , (1)

where x is the index value (i.e., PRCPTOT or RX1day)

at time i and j, with sign() being equal to 11 if xi is

greater than xj and 21 if xi is smaller than xj. Also, S

represents the number of times xi is greater than xjminus

the number of times xi is smaller than xj. The sign of S

also indicates the sign of the trend.

The Mann–Kendall test was used to characterize the

climate change signal at the local scale (i.e., over a given

grid point without considering regional spatial correla-

tions) over the corresponding periods. The probability

of detecting the climate change signal for a given period

was then defined by the percentage of members with a

significant trend of a given sign (positive or negative) at

the 95% confidence level. The 11 predefined periods

allowed the investigation of the probability of locally

detecting the climate change signal over the 11 periods.

An advantage of using these two tests is that they do

not make assumptions about the distribution of the an-

alyzed variable and they can be applied to both observed

and simulated series.When dealing with recorded series,

the Theil–Sen estimator and Mann–Kendall test are

often used to detect the nonstationarity associated with

the climate change signal (Donat et al. 2013a; Lins and

Slack 1999; Westra et al. 2013).

The 90% detection decade (90%DD) was defined as

the decade ending the first period (e.g., decade 2060–70 of

the 1950–2070 period), where at least 45 out of 50 mem-

bers for CanESM2 or 36 out of 40 members for CESM1

(therefore, a 90% probability of detecting the trend

among the various simulations) had a significant trend

(95% confidence level) of the same sign (either positive

or negative) over that period and over all subsequent

periods up to the 1950–2100 period (in our example the

trend must remain over the 1950–2080, 1950–2090, and

1950–2100 periods). The 45 members of the CanESM2

(36 members for CESM1) thresholds were chosen such

that the probability of having 5 members (4 members)

with a nonsignificant trend due to type II errors (false

negatives) was less than 5%. The 90%DD was estimated

using the annual index series and the seasonal index se-

ries. The 90%DD is, to some extent, related to the time of
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emergence used in previous studies (Giorgi and Bi 2009;

Hawkins and Sutton 2012; IPCC 2013; King et al. 2015;

Maraun 2013). Results shown hereafter, based on the

local trends analysis, are referred to as the ‘‘local scale.’’

An example of an estimated 90%DD is shown in Fig. 1

for the land grid point containing the city of Toronto

(Ontario, Canada) for the RX1day index. In this example,

the 90%DD is the 2090–2100decade. Two main features

can be observed in Fig. 1 for both ensembles (CanESM2 in

Fig. 1a and CESM1 in Fig. 1b) as the length of data in-

creases: 1) the distribution becomes narrower, and 2) there

is a shift in the central value of the distribution. This sug-

gests that, when using a smaller number of decades, nat-

ural variability has a greater influence on the detected

trend resulting in a wider distribution. However, when a

greater number of decades is used, the distribution be-

comes narrower as the signal increases and the influence of

natural variability on the trends decreases. Moreover, as

the climate change signal becomes stronger, the central

value of the distribution shifts to the right.

There was a possibility of inaccurate results being

obtained when the estimated 90% probability of

detecting the climate change signal was reached near the

end of the 1950–2100 period, since it could theoretically

have fallen below the 90% threshold in the decades after

2100. This situation was investigated by looking at the

probability of a grid point that had reached the 90%

probability threshold before 2100 dropping back below

the threshold of 45/50 members for CanESM2 or 36/40

members for CESM1 in any subsequent periods. The

probability of occurrence of such cases was estimated to

average 0.0103 for PRCPTOT and 0.0039 for RX1day

over all land grid points (for both ensembles and for

annual and seasonal scales). It would therefore be very

unlikely that grid points with a reported 90%DD before

2100 would be changed beyond 2100.

d. Probability of detecting the climate change signal at
the regional scale

The methodology described in section 2c does not

take into consideration a possible spatial correlation

between neighboring grid points. It is expected that if

gridpoint values are spatially correlated, this could re-

sult in earlier 90%DD than expected at the local scale.

To investigate regional trends, a field significance test

combined with a resampling approach by bootstrap is

performed over each grid point of both ensembles. The

method proposed for assessing the regional trend sig-

nificance is also described in Douglas et al. (2000),

Kiktev et al. (2003), and Westra et al. (2013). Figure 2

describes the method through an example using the grid

point containing the city of Toronto for the RX1day

index with the CanESM2 ensemble.

Regions were defined in CanESM2 by using the near-

est neighboring grid points for each grid point (33 35 9

total grid points). In CESM1, a relatively similar surface

FIG. 1. Gaussian distribution of the nonparametric Theil–Sen trend estimators for the grid point corresponding to the city of Toronto for

the RX1day index estimated from the (a) 50-member CanESM2 ensemble and (b) 40-member CESM1 ensemble. Continuous lines

correspond to the distributions for periods with fewer than 45 members with a 95% significant trend and dashed lines correspond to

periods with 45 or more members with a 95% significant trend of the same sign. The number of members with a significant trend (n) is

shown in the legend for each period.
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areawas selected to allow a fair comparisonwithCanESM2

results. A total of 81 grid points (93 9 5 81 grid points)

were taken for each region. The result of the test was

associated to the middle grid point of each region.

The regional average Mann–Kendall’s S (Sm) is then

computed as the average of the local trend values from

each grid point within the region:

S
m
5

1

m
�
m

k51

S
k
, (2)

where Sk is the Mann–Kendall S [see Eq. (1)] for the

kth grid point in a region of m grid points (m 5 9 for

CanESM2 and m 5 81 for CESM1).

To determine whether or not the regional trend is

significant, a bootstrap resampling approach was per-

formed (Douglas et al. 2000). For each bootstrap

sample, a sample of years with replacement corre-

sponding to the period analyzed (i.e., 1950–2000, 1950–

2010, . . . 1950–2100) was randomly generated (Fig. 2).

The same sample of years was then used for each grid

points of the region to compute the Mann–Kendall’s S

metric [Eq. (1)]. Using the same years allows us to keep

track of the spatial correlation between neighboring grid

points. The regional average Mann–Kendall Sm is then

computed using Eq. (2). This procedure is repeated 1000

times and sorted in ascending order of S assigning a

nonexceedance probability based on the Weibull plot-

ting position formula:

P5
r

B1 1
, (3)

where r is the rank of each sample and B 5 1000 (1000

samples). The 95% confidence level of the empirical

CDF obtained is then defined as the Mann–Kendall Sm

associated with the 25th rank (a 5 0.025; negative sig-

nificant trend) and the 975th rank (a 5 0.975; positive

significant trend).

This methodology is then repeated using all avail-

able members of both ensembles for each of the 11

periods. As for the local trend analysis described in

section 2c, the 90%DD is defined as the decade

ending the first period where at least 45 out of 50

members for CanESM2 (36 out of 40 members for

CESM1) had a significant trend at the 95% confi-

dence level of the same sign over that period and over

all subsequent periods. Finally, the methodology is

reproduced over all grid points using the same sample

of years for the bootstrap. Results shown hereafter,

FIG. 2. Summary of the methodology used to assess regional trend (see section 2d). The grid point containing the city of Toronto in

CanESM2 is used in this example.
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based on the regional trends described in this section,

are referred to as the ‘‘regional scale.’’

The proposed regional trend analysis is based on the

hypothesis that PRCPTOTandRX1day annual series are

temporally uncorrelated. The median value of the lag-1

autocorrelation coefficient across all land grid points over

the 1950–2100 period for annual values (similar values for

DJF and JJA) was equal to 0.011 for the PRCPTOT in-

dex and 20.010 for the RX1day index in the CanESM2

ensemble and 0.046 and 20.004 for the CESM1 ensem-

ble. Autocorrelations were computed on the residuals

from a linear regression. These small values suggest that,

on average, the hypothesis of temporal independence is

valid for both indices. Nonetheless, the field significance

resampling approach was also performed using amoving-

block bootstrap method to account for autocorrelations

(Wilks 1997, 2011). Amoving block of 2 years was used in

the bootstrapping (which was above the median obtained

for both indices and both ensembles). The results were

consistent with that obtained under the hypothesis of

temporal independence (not shown for conciseness).

e. Global region analysis

The analyses described in the previous two sections

were performed globally and thenusing the 21 geographical

regions listed in Table 1 and shown in Fig. 3. These 21

geographical regions were also used by Giorgi and

Francisco (2000), Sanderson et al. 2018, and Sillmann et al.

2013a,b. An analysis of the combined land grid points from

these 21 regions (LGP; excludingAntarctica) is also shown.

3. Results

a. Representation of natural variability in CanESM2
and CESM1

Since the representation of natural variability in

CanESM2 (resolution of 2.88 latitude 3 2.88 longitude)
andCESM1 (resolution of 18 latitude3 18 longitude) is a
key element of the present study, variability in trends in

both ensembles is compared to corresponding values in

the observed values from the climate extremes gridded

datasets of the Hadley Centre (HadEX2; Donat et al.

2013a; resolution of 2.58 latitude 3 3.758 longitude) and
theGlobalHistorical ClimatologyNetwork (GHCNDEX;

Donat et al. 2013b; resolution of 2.58 latitude 3 2.58
longitude). These two datasets have different spatial and

temporal coverage due to the different data sources used

and quality control performed (Dittus et al. 2015). There

is also a larger number of grid points available for the

TABLE 1. List of the 21 regions used in this study. The number of land grid points available in CanESM2, CESM1, HadEX2, and

GHCNDEX gridded datasets for the PRCPTOT and RX1day indices over the 1950–2010 period are also shown and will be further

discussed in section 3. Only HadEX2 and GHCNDEX grid points with at least 40 years of data available over the 1950–2010 period were

considered.

Number of land grid points

CanESM2 CESM1 HadEX2 GHCNDEX

Name Acronym Latitude (8) Longitude (8) Both indices Both indices PRCPTOT RX1day PRCPTOT RX1day

Australia AUS 458–118S 1108–1558E 89 587 42 18 108 86

Amazon basin AMZ 208S–1228N 828–348W 127 856 32 9 39 15

Southern South America SSA 568–208S 768–408W 70 462 50 23 36 17

Central America CAM 108–308N 1168–838W 32 183 29 17 35 14

Western North America WNA 308–608N 308–1038W 89 553 75 59 109 84

Central North America CNA 308–508N 1038–858W 41 301 43 42 68 85

Eastern North America ENA 258–508N 858–608W 34 215 29 27 52 47

Alaska ALA 608–728N 1708–1038W 68 503 71 7 80 10

Greenland GRL 508–858N 1038–10W 186 1272 88 14 84 15

Mediterranean Basin MED 308–488N 108W–408E 64 460 55 35 76 45

Northern Europe NEU 488–758N 108W–408E 85 569 67 67 110 103

Western Africa WAF 128S–188N 208W–228E 71 551 10 1 0 0

Eastern Africa EAF 128S–188N 228–528E 82 571 5 1 0 0

Southern Africa SAF 358–128S 108W–528E 66 417 35 19 47 22

Sahara SAH 188–308N 208W–658E 127 743 11 1 7 1

Southeast Asia SEA 118S–208N 958–155E 41 293 22 13 21 8

East Asia EAS 208–508N 1008–1458E 103 693 95 67 140 90

South Asia SAS 58–308N 658–1008E 58 391 46 25 21 6

Central Asia CAS 308–508N 408–758E 77 557 78 18 95 26

Tibet TIB 308–508N 758–1008E 63 438 62 22 81 12

Northern Asia NAS 508–708N 408–1808E 296 1995 277 119 420 203

Land grid points LGP — — 1869 12610 1222 604 1629 889
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PRCPTOT index compared to the RX1day index in both

the HadEX2 and GHCNDEX datasets due to the in-

terpolation technique used to create these datasets

(Donat et al. 2013a, 2013b).

Only grid points with at least 40 (out of 60) years over

the 1950–2010 period were considered for the observed

datasets (resulting in a total of 1222 grid points and 1629

grid points for the PRCPTOT index and 604 grid points

and 889 grid points for the RX1day index for HadEX2

and GHCNDEX respectively). The numbers of land

grid points within each of the 21 analyzed regions ana-

lyzed are shown in Table 1.

The performance of the CanESM2 and CESM1 en-

sembles is first assessed through the comparison of the

60-yr annual mean and annual standard deviation

(1950–2010) of the PRCPTOT and RX1day indices with

the HadEX2 and GHCNDEX datasets (Figs. 4 and 5).

For both ensembles, the median of the distribution of

annual mean and annual standard deviation values (i.e.,

one value for each member over the 1950–2010 period)

at each grid point was considered.

As shown in maps on the left-hand side of Fig. 4, the

spatial distribution of the annualmean PRCPTOT values

is globally well reproduced by both ensembles when

compared to the HadEX2 and GHCNDEX datasets.

Similarly, both ensembles capture relatively well the

observed spatial pattern of annual standard deviation as

shown by the maps on the right-hand side of Fig. 4.

Mean annual values of the RX1day index (maps on

the left-hand side of Fig. 5) are generally under-

estimated by both ensembles when compared to the

observed datasets. Such results were expected, however,

because of the spatial mismatch between the ensembles

resolution and the smoothed grid point estimates con-

structed in the HadEX2 and GHCNDEX datasets

(Sillmann et al. 2013a). However, the interannual vari-

ability as estimated by the annual standard deviation is

well captured by both CanESM2 and CESM1 ensembles

(maps on the right-hand side of Fig. 5).

Trends estimated by the Theil–Sen estimator and the

Mann–Kendall test for the PRCPTOT and RX1day

annual time series over the 1950–2010 period were also

compared. Figure 6 (PRCPTOT) and Fig. 7 (RX1day)

show maps of land grid points comparing local linear

trend values fromHadEX2 and GHCNDEX datasets to

the member with the smallest, median, and largest

global trend (defined as themedian of the distribution of

trends over all grid points) for both ensembles.

As seen for the PRCPTOT index (Fig. 6) and RX1day

index (Fig. 7), a larger number of grid points displayed a

significant trend for PRCPTOT than for RX1day

(44.5% vs 16.3% for HadEX2 and 45.8% vs 14.8% for

GHCNDEX). A similar behavior was observed for in-

dividual members of both ensembles. However, as

shown in Figs. 6 and 7, there is amuch smaller fraction of

grid points with a significant trend in the different

FIG. 3. Map of the 21 geographical regions used in this study. Label colors represent the respective continents:

Oceania (blue), SouthAmerica (green), NorthAmerica (purple), Europe (yellow),Africa (red), andAsia (orange).

Only land grid points were considered in the regional analysis (see Table 1) (Giorgi and Francisco 2000; Sillmann

et al. 2013a,b). Grid points correspond to CESM1 grid points.
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members of both ensembles as compared with obser-

vations when comparing the same areas. These results

outline the stronger influence of natural variability at

the local scale for the RX1day index and the ability of

the two ensembles to reproduce this behavior. The se-

lected individual members also highlight the large range

of possible local trends (individual grid points). This

range is due to the uncertainty related to natural vari-

ability, which can even span negative and positive trends

at a given grid point for various members.

b. PRCPTOT index

An analysis of the 90%DD for annual and seasonal

total precipitation (using the PRCPTOT index) allows

FIG. 4. Comparison of the (left) mean and (right) standard deviation of annual total wet-day precipitation

(PRCPTOT) over the 1950–2010 period. Shown are the observed (a),(b) HadEX2 and (c),(d) GHCNDEX datasets,

and the median value over the (e),(f) CanESM2 50-member ensemble and (g),(h) CESM1 40-member ensemble.
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an overview of how natural variability affects the detec-

tion of the climate change signal in both the CanESM2

and CESM1 ensembles. Figure 8 (local scale) and Fig. 9

(regional scale) show maps of the decade in which the

PRCPTOT index reaches 90%DD. Figure 10 (local

scale) and Fig. 11 (regional scale) give a more detailed

analysis of these results over the 21 geographical regions

listed in Table 1.

A global comparison between Figs. 8 and 9 suggests

that there is a relatively good agreement between both

ensembles for both the annual (Y) and seasonal scales

(DJF, JJA). Figure 8 indicate that the PRCPTOT 90%

DD based on local trends occurs before the end of the

century over large fractions of ocean and land surface

areas, especially at higher latitudes and over the

tropics. The seasonal analysis of 90%DD for DJF and

FIG. 5. As in Fig. 4, but for RX1day.
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JJA shows a later detection than in the annual case.

These results show that the likelihood of detecting a

significant signal (stippled regions) is greater at the

annual scale than at the seasonal scale for most

regions. Figure 9 shows very similar results for the

regional trends analysis based on field significance

resampling approach. Overall, the 90%DD is reached

somewhat earlier (slightly darker colors) and there is

FIG. 6. Linear trends in annual total wet-day precipitation (PRCPTOT) over the 1950–2010 period as defined by the

Theil–Senestimator. Thefirst row represents observed (a)HadEX2and (b)GHCNDEXdataset decadal trends.Gridpoints

where fewer than40out of 60 years of datawere availableover the 1950–2010period are shown inwhite. The remaining rows

represent decadal trends for two individualmembers corresponding to the (c),(d) smallest, (e),(f) median, and (g),(h) largest

median global trend value in the CanESM2 50-member ensemble and CESM1 40-member ensemble, respectively.
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less noise in the maps as compared to the results ob-

tained at the local scale.

The spatial patterns of average trend signs tend to be

similar over both the annual scale and DJF, but differ in

JJA. For instance, average trends are of different sign

over most parts of Europe and North America, where

more negative trends are observed for JJA as compared

to the annual scale and DJF (Figs. 8 and Figs. 9e,f).

Overall, for CanESM2 (CESM1), there are 75.8%

(76.4%) of all grid points with a positive trend, 70.8%

(74.2%) for DJF and 68.5% (68.7%) for JJA.

As shown in the left-hand side panels of Figs. 10 and 11

for CanESM2, 17 (18) regions out of 21 have 50% of

their land grid points with 90%DD occurring prior to

FIG. 7. As in Fig. 6, but for RX1day.
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2100 at the annual scale, with 13 (16) regions for DJF

and 9 (11) regions for JJA based on the local (regional)

scale. Not a single region crosses this 50% of land grid

points threshold before 2040 at the local scale and 2030

at the regional scale (and for most regions this will only

occur a few decades later) at both the annual and

seasonal scales.

For CESM1, the 90%DD is reached later than for

CanESM2 as shown in the right-hand side panels of

Figs. 10 and 11. A total of 12 (15) regions out of 21 have

50% of their land grid points reach their 90%DD prior

to 2100 at the annual scale, with 9 (13) regions for DJF

and 3 (8) regions for JJA at the local (regional) spatial

scale. Not a single region crosses the threshold before

2060 for the local and 2050 for regional trends [except

for Tibet (TIB)] at both the annual and seasonal scales

(two decades later than for CanESM2). On average, the

threshold where 50% of the regions’ land grid points

reach their 90%DD in CESM1 is 1.6 decades later than

for CanESM2 for the annual scale (1.6 for DJF and 0.9

for JJA at the regional scale).

DespiteCESM1having a later 90%DDthanCanESM2,

as well as some differences in their spatial patterns (see

Figs. 8 and 9), both ensembles agree in many respects.

The 90%DD is reached earlier at the regional scale for

all 21 geographical regions and at the global land scale.

FIG. 8. Global local trends analysis (i.e., corresponding to each grid point) of the estimated 90%DD for the

PRCPTOT index, showing results based on (left) the CanESM2 ensemble and (right) the CESM1 ensemble for the

(top)–(bottom) annual (Y), DJF, and JJA scales. The brown colors represent an average decreasing trend while

the blue/teal colors indicate an average increasing trend. The stippled patterns identify grid points where the

estimated 90%DD occurred before 2100.
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The regions with the earliest 90%DD are TIB, the

tropical zones [the Amazon basin (AMZ; except for

CESM1), eastern Africa (EAF), and western Africa

(WAF)] and high-latitude zones above the 50th parallel

[Alaska (ALA), Greenland (GRL), and northern

Asia (NAS)]; see Table 1 for all regions and abbrevia-

tions. Eastern North America (ENA) is also one of the

regions with the earliest 90%DD with CESM1, but this

is not as clear for CanESM2. At the annual scale, a clear

climate change signal emerges worldwide for the

PRCPTOT index, except for the Australia (AUS), the

Mediterranean Basin (MED), southern Africa (SAF),

and South Asia (SAS) regions. When looking at DJF

and JJA, the climate change signal emerges later. By the

end of the century, the climate change signal will most

likely be detected in many regions of the world at the

local or regional scales for this index.

c. RX1day index

A 90%DD analysis was also realized for precipitation

extremes (using the RX1day index). Figure 12 (local

scale) and Fig. 13 (regional scale) showmaps of the 90%

DD, while Fig. 14 (local scale) and Fig. 15 (regional

scale) show the results for the 21 geographical regions.

The comparison between Figs. 12 and 13 indicates that

differences between both ensembles is much smaller

FIG. 9. Global regional trends analysis (i.e., computed with the field significance resampling approach) of the

estimated 90%DD for the PRCPTOT index, showing results based on (left) the CanESM2 ensemble (region size of

33 3 grid points) and (right) the CESM1 ensemble (region size of 93 9 grid points), for the (top)–(bottom) annual

(Y), DJF, and JJA scales. The brown colors represent an average decreasing trend while the blue/teal colors

indicate an average increasing trend. The stippled patterns identify grid points where the estimated 90%DD oc-

curred before 2100.
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than for the PRCPTOT index. Figure 12 shows that the

local-scale results have a much larger fraction of both

oceans and land surface areas that do not reach the 90%

DD by the end of the simulation (nonstippled areas) for

both annual and seasonal scales. However, Fig. 13 shows

that the 90%DD occur earlier at the regional scale.

One distinctive feature here is that a larger number of

average positive trends is observed for RX1day than for

PRCPTOT. The percentage of all grid points showing a

positive trend for CanESM2 (CESM1) is 86.4% (90.3%) at

the annual scale, with 80.5% (83.3%) for DJF and 77.1%

(77.6%) for JJA.Aswas the case for PRCPTOT, the spatial

patterns are similar for the annual scale and DJF, but no-

table differences are seen for JJA. Negative trends are ob-

served across large parts of Europe and North America at

the JJA scale for RX1day ( Figs. 12 and Figs. 13e,f).

As shown in the left-hand side panels of Figs. 14 and

15 for CanESM2, 11 (21) regions out of 21 have 50% of

their land grid points with a 90% probability of detecting

the climate change signal before the end of the simulation

FIG. 10. Cumulative percentage of land grid points within each of the 21 regions (listed in Table 1) with the local

trend analysis (i.e., corresponding to each grid point) estimated 90%DD occurring in each decade for the

PRCPTOT index, showing results based on (left) the CanESM2 ensemble (region size of 3 3 3 grid points) and

(right) the CESM1 ensemble (region size of 9 3 9 grid points), for the (top)–(bottom) annual (Y), DJF, and JJA

scales. The black ‘‘x’’ indicates the decade when more than 50% of the region’s land grid points reached the 90%

probability of detecting the climate change signal. The white boxes correspond to regions that had no 90%DD at

any grid point in (and prior to) that decade.
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at the annual scale, with 8 (13) regions for DJF, and 4 (12)

for JJA at the local (regional) scale. The threshold of 50%

of land grid points was not achieved for any of the 21

geographical regions before 2050 (and most regions be-

yond that decade) at the local scale, and 2030 at the re-

gional scale (with the exception for EAF at the annual

scale, where it reached as early as 2010).

For the CESM1 ensemble, the 90%DD was also

reached slightly later than for CanESM2, as shown in

the right-hand side panels of Figs. 14 and 15. Overall, 8

(18) regions out of 21 reached the same threshold at the

annual scale, 6 (14) regions for DJF and 2 (8) regions for

JJA. For this ensemble, the regions that have 50% of

their land grid points reaching the 90%DD the earliest

were two high-latitude regions beyond 508N: GRL (2070

for annual) and NAS (2070 for DJF) at the local scale.

For the regional scale, the earliest was 2040 for five re-

gions at the annual scale (ENA, GRL, WAF, EAF, and

TIB; for TIBonly forDJF and 2050 in the TIB region also

for JJA). On average, the threshold where 50% of the

FIG. 11. Cumulative percentage of land grid points within each of the 21 regions (listed in Table 1) with the

regional trend analysis (i.e., computed with the field significance resampling approach) estimated 90%DD oc-

curring in each decade for the PRCPTOT index, showing results based on (left) the CanESM2 ensemble (region

size of 33 3 grid points) and (right) the CESM1 ensemble (region size of 93 9 grid points), for the (top)–(bottom)

annual (Y), DJF, and JJA scales. The black ‘‘x’’ indicates the decade whenmore than 50% of the region’s land grid

points reached the 90% probability of detecting the climate change signal. The white boxes correspond to regions

that had no 90%DD at any grid point in (and prior to) that decade.
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land grid points reached their 90%DD in CESM1 is

0.4decades later than for CanESM2 at the annual scale,

and 0.3 for DJF and 0.8 for JJA at the regional scale.

Similarly to the PRCPTOT index, the geographical

regions with the earliest 90%DD are also consistent for

both ensembles when looking at the regional scale. This is

also reflected in the combined land grid points, where we

see a similar percentage of grid points reaching 90%DD

globally. The regions with the earliest 90%DD for the

RX1day index are the tropical zones (EAF and WAF),

high-latitude zones above the 50th parallel (ALA, GRL,

andNAS), regions affected bymonsoons [SAS, EastAsia

(EAS), and TIB], and finally ENA, which is affected by

hurricanes. These regions share in common the fact that

an increase in warming will likely result in a robust cli-

mate change signal for RX1day. A later 90%DD is ex-

pected at the seasonal scale.

4. Discussion

a. Validation of both ensembles

The comparison with observations suggest that the

spatial patterns of interannual variability and mean

PRCPTOT index values and, to a lesser extent, of the

RX1day index, as simulated by both CanESM2 and

CESM1 ensembles are globally in agreement with cor-

responding patterns of the observed HadEX2 and

GHCNDEX datasets. Differences can be partly

explained by natural variability, as the distribution of

annual mean and standard deviation over the various

members can be quite dispersed, especially for grid

points displaying large interannual variability (see

Fig. S1 for PRCPTOT and Fig. S2 for RX1day in the

online supplemental material). These discrepancies can

also be due to biases in both ensembles and also from

FIG. 12. As in Fig. 8, but for the RX1day index.
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sampling errors and uncertainties in HadEX2 and

GHCNDEX datasets.

Furthermore, the comparison of trends between

models and observations for both indices suggests that

it is difficult to directly compare the global spatial

distribution of trends obtained by the different mem-

bers of each ensemble to observed trends. When

comparing one realization (the observed recent past)

against a probabilistic distribution (ensemble mem-

bers), the best possible outcome is to frame this re-

alization within the possible predicted range according

to the expected statistical frequency. However, the

large variability of trends extracted for each ensemble

members demonstrates the challenge of detecting the

climate change signal at the local scale. Comparison of

observed and simulated trends was only achieved at the

local scales.

A comparison for each region listed in Table 1 could

also have been performed, but a qualitative analysis of

all members for each ensemble (not shown due to lack of

space) clearly outlined a very large intermember vari-

ability at the scale of the regions and would not have

changed the above conclusion. Other difficulties when

dealing with local and regional comparisons arise from

the different sources of uncertainty in observation da-

tasets, such as short observational records, homogeneity

problems, and missing data (Hegerl et al. 2015). Fur-

thermore, since gridded observed datasets are typically

constructed by interpolated point values (e.g., station),

various upscaling/downscaling problems are always

present (Avila et al. 2015; Chen and Knutson 2008;

Herold et al. 2017; Sillmann et al. 2013a).

The 90%DD is shown to be conservative estimate as it

corresponds to the decade where the climate change

FIG. 13. As in Fig. 9, but for the RX1day index.
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signal is detected in most of simulations from a large

ensemble of simulations, as compared to a ‘‘single re-

alization’’ of the climate system when dealing with the

real world. This is well illustrated in the supplemental

material (Figs. S3–S6), showing the probability of

detecting a significant trend during a given decade at

both the local and regional scales. While the probability

increases overall as wemove further into the twenty-first

century, very high probabilities are only reached after

the midcentury, and even later for many grid points. For

the 1950–2010 period, this probability remains relatively

low for most regions.

A limited qualitative comparison of CanESM2 and

CESM1 against the CMIP5 multimodel mean signal was

made to frame the general behavior of both climate

models against other GCMs or ESMs. Globally, spatial

patterns of increasing and decreasing trends match the

multimodel average changes obtained by Sillmann et al.

(2013b) for both annual total and extreme precipitation

indices. Furthermore, both the sign of the change and

robustness of the climate change signal (characterized in

this study by an early 90%DD) match the signal ob-

tained by Fischer et al. (2014) remarkably well (espe-

cially for RX1day) in regions where at least 12 out of 15

CMIP5 models agreed on the direction of change. The

regions with the most robust climate change signal for

precipitation extremes obtained by Scoccimarro et al.

(2013) are consistent with the regions with the earliest

90%DD for the majority of land grid points for both

ensembles. There are no reasons to assume that the

FIG. 14. As in Fig. 10, but for the RX1day index.
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conclusions drawn from both ensembles would be

markedly different when using another GCM/ESM.

b. Impact of natural variability at the local and
regional scales

Both local and regional trend-based analyses were

performed to determine how the spatial correlation af-

fects results for the PRCPTOT and RX1day indices. In

general, the field significance resampling approach

showed that a more robust climate change signal can be

detected from natural variability at the regional scale as

compared to the local scale. Figures S3–S6 show that the

increasing probability of detecting a significant trend is

initially larger and grows faster at the regional scale.

For the PRCPTOT index, results from both the local

and regional scales are quite similar for the annual and

seasonal scales. This suggests that mean precipitation

trends can likely be detected at the local scale. However,

for RX1day, spatial dependence was shown to have a

great influence, as the results for the regional scale were

markedly different from those at the local scale.

Figures 14 and 15 clearly show the difference between

the local and regional scales for RX1day.

These results show that when investigating extreme

precipitation at the local scale, it is likely that natural

variability will strongly impede the detection of a sta-

tistically significant climate change signal over a long

period. Overall, this is also in agreement with Fischer

et al. (2013), who concluded that it is not possible to

provide stakeholders with reliable information for

changes in extreme precipitation when investigating at

the local scale.

FIG. 15. As in Fig. 11, but for the RX1day index.

1 JUNE 2018 MARTEL ET AL . 4259



Westra et al. (2013) investigated trends on theHadEX2

dataset for the RX1day index using a field significance

resampling approach. The areas that showed the most

significant trends were the United States, Europe, South

Africa, and some parts of India and Southeast Asia.

With the exception of South Africa, the results obtained

here for these areas (Figs. 12 and 13) also showed a

relatively early 90%DD, corresponding to areas with a

robust climate change signal.

Further comparisons were made using the CESM1 en-

semble to investigate the effect of using an increasing region

size in the field significance resampling approach. Regions

made of 1 (13 1), 9 (33 3), 25 (53 5), 49 (73 7), and 81

(9 3 9) grid points were used for this analysis. Results can

be seen in Fig. S7 (PRCPTOT) and Fig. S8 (RX1day).

Overall, for RX1day, the results indicate a convergence

around the 5 3 5 domain, with minor changes seen as we

move to a larger domain. As for the PRCPTOT index,

there was no significant difference at any of the sizes tested,

which is consistentwith the previously discussed results. It is

expected that using a larger regionwould eventually lead to

an overlap of wetter and dryer regions, which could impair

the ability to detect trends at the regional scale.

c. Impact of natural variability on the PRCPTOT and
RX1day indices

The discussion from the previous section clearly out-

lines one of the main differences between both indices,

which is the strong influence of natural variability at the

local scale for RX1day, and its much smaller influence

for the PRCPTOT index.

Fischer and Knutti (2014); and Fischer et al. (2014)

show that there is a greater expectation of extreme

precipitation to emerge from natural variability than

mean precipitation. They argue that natural variability is

indeed greater in the case of extreme precipitation.

However, this difference is likely due because pre-

cipitation extremes respond more strongly to global

warming than does mean precipitation (Fischer and

Knutti 2014; Fischer et al. 2014). Results in Table 2

show a comparison between both indices of the

percentage of grid points that have reached their 90%

DD before the end of the century. When looking at the

local scale, we see that the RX1day index has fewer

grid points reaching their 90%DD as compared to

PRCPTOT (e.g., the CESM1 annual-scale LGP per-

centage for PRCPTOT is 57.3% vs 38.9% for RX1day).

However, at the regional scale, the RX1day ends up

with a larger number of grid points reaching their 90%

DD than the PRCPTOT index (e.g., the CESM1 annual-

scale LGP percentage for PRCPTOT is 67.1% vs 81.5%

for RX1day). These results indicate that the climate

change signal for RX1day is indeed more robust than for

PRCPTOTat the global scale, which is in agreement with

previous studies.

For PRCPTOT, many regions will experience an in-

crease in precipitation (especially at high latitudes),

while a considerable number of regions will also see a

decrease in precipitation (see Figs. 8 and 9). However,

for RX1day (see Figs. 12 and 13), nearly all land grid

points show an increasing trend due to climate change.

Globally, the RX1day index shows more increasing

trends than the PRCPTOT index, both for the annual and

seasonal scales (with the smallest percentage at the JJA

scale). Thus, there will be regions that will see a decrease

in annual total precipitation, but an increase in RX1day.

While the RX1day index increases globally at the annual

scale, many regions will see a decrease at the JJA [e.g.,

AUS, central North America (CNA), MED, northern

Europe (NEU), and SAF]. The Amazon basin and cen-

tral North America seem to be the only regions where

decreases are observed year round. Overall, these spatial

patterns of average increasing or decreasing trends agree

with the general behavior of the expected climate change

signal described by the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change (IPCC) and

other published studies (Fischer et al. 2014; Hegerl et al.

2015; IPCC 2013; King et al. 2015; Maraun 2013).

The results indicate that for both indices the climate

change signal will be affected by natural variability until

TABLE 2. Comparison of the percentage of grid points (either all grid points or land grid points) with 90%DD before the end of the

simulations in 2100. Results for CanESM2 andCESM1 ensembles at the annual (Y) and seasonal (DJF and JJA) scales are shown for both

indices at both the local and regional scales.

Model Scale

All grid points Land grid points (LGP)

Local scale Regional scale Local scale Regional scale

PRCPTOT RX1day PRCPTOT RX1day PRCPTOT RX1day PRCPTOT RX1day

CanESM2 Y 60.5% 59.6% 64.1% 74.1% 66.0% 53.2% 71.2% 78.2%

DJF 46.4% 43.8% 52.6% 59.7% 56.0% 55.0% 64.1% 69.3%

JJA 44.0% 41.5% 51.7% 59.1% 30.0% 26.8% 38.4% 42.7%

CESM1 Y 54.6% 52.2% 60.3% 78.8% 57.3% 38.9% 67.1% 81.5%

DJF 42.1% 37.0% 49.2% 61.1% 50.7% 47.1% 60.2% 68.8%

JJA 38.7% 34.7% 47.3% 60.9% 23.8% 21.1% 33.6% 43.2%
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past themidcentury for most land grid points at the local

and regional scales. At the global scale, Fischer and

Knutti (2014) showed that a significant fraction of grid

points will experience increases. It is also likely that this

influence will be stronger during summer (JJA) than

during winter (DJF) or at the annual scales. When

looking at the 21 geographical regions, high-latitude

(e.g., GRL, ALA, and NAS) and tropical (e.g., AMZ,

WAF, and EAF) climate change signals will be detected

much earlier than in other regions for both ensembles;

other regions will see their 90%DD reached later in the

century.

Overall, natural variability represents a considerable

source of uncertainty and it can mask or amplify the

climate change signal at both the local and regional

scales. This conclusion agrees with those from previous

studies (Deser et al. 2012a,b; Fischer and Knutti 2014;

Kay et al. 2015; Thompson et al. 2015; Sanderson

et al. 2018).

5. Discussion of limitations

The following issues need to be discussed as their

outcome may impact the conclusions of this study:

a. Coarse resolution of the ESM

There are indications that even with their coarse

spatial resolutions, both GCMs and ESMs do a reason-

ably good job capturing the large-scale events usually

associated with synoptic weather patterns (IPCC 2013;

Sillmann et al. 2013a). However, smaller-scale weather

events in GCMs or ESMs are not directly simulated but

considered through convection parameterization

schemes (Chan et al. 2014; Jones and Randall 2011;

Kendon et al. 2012, 2016; Prein et al. 2015, 2017). A

spatial resolution of the order of the kilometer would be

required to adequately simulate the deep convection

that plays a significant role in the generation of extreme

rainfall in some regions at the daily scale (Prein et al.

2015). Thus, the impact of spatial resolution and deep

convection parameterization needs to be investigated

using a large ensemble of simulations at very high res-

olutions (approximately a few kilometers). The only

available simulations are still limited to small regions

(Prein et al. 2015, 2017).

b. Representative concentration pathway

There is evidence to suggest that the rate of increase in

extreme precipitation does not depend specifically on

the emission scenario (as it does for mean precipitation)

but rather on the total amount of warming (Pendergrass

et al. 2015). TheRCP8.5 used in this study represents the

scenario with the largest increase in greenhouse gas

concentrations typically used in climate change studies

(IPCC 2013). It is reasonable to think that under less

significant anthropic forcing, natural variability could be

expected to hide the anthropogenic climate change sig-

nal over longer time periods since forcing is weaker. This

hypothesis could only be validated by comparing two

large ensembles of simulations from the same model

with different forcing scenarios.

A study by Sanderson et al. (2018) used two large

ensembles from the Community Earth System Model

with identical settings (30members usingRCP8.5 and 15

members using RCP4.5) to explore the role played by

greenhouse gas concentration trajectories. Their results

suggest a considerable overlap in possible outcomes for

both ensembles even in the 2080decade. Some signifi-

cant changes between both scenarios started appearing,

albeit with considerable overlap after 2040 at the re-

gional scale in northern Europe, while no difference was

observed at the local scale.

By extending these conclusions to this work, under the

weaker RCP2.6 or RCP4.5 scenarios, lower probabili-

ties of detecting the climate change signal could be ex-

pected resulting in later 90%DD than those obtained for

the RCP8.5 at the regional scale, but with little differ-

ence at the local scale.

c. Simulation period

Trend analyses were performed on subperiods of the

1950–2100 simulations. Extending this to the pre-1950s

period, and ultimately to the nineteenth century, when

anthropogenic forcing began, could possibly have an

impact on trends detection in the climate change signal.

This is because trends detection will very likely be im-

pacted when using longer time series, which could in

turn have an impact on the estimated trend detection

probability during forthcoming periods. Such work

could only be performed if both large ensembles had

simulations using extended periods prior to 1950.

This was tested to see the impact of using the longer

simulation period available for CESM1 (from 1920 to

2100) and shown in Figs. S9 and S10 for PRCPTOT and

Figs. S11 and S12 for RX1day. Using an extended period

early in the twentieth century did not provide different

conclusions from those obtained using the simulations

starting in 1950. Thus, it is reasonable to assume that this

limitation should not have a significant impact on the

results and conclusions obtained in the present paper.

6. Concluding remarks

For precipitation extremes, natural variability is likely

to dominate the climate change signal at the local scale

until the next century in many parts of the world. To
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properly estimate trends in extreme precipitation it is

essential to take into account spatial dependence. This is

less critical for annual and seasonal total precipitation,

which is comparably less affected by natural variability

at the local scale. When accounting for spatial de-

pendence, trend detection for precipitation extremes is

expected to occur for a larger number of grid points than

for annual and seasonal total precipitation.

In some instances, natural variability may undermine

our ability to detect the climate change signal at the local

and regional scales. This should not prevent us from

implementing adaptation measures, especially when

dealing with precipitation extremes. In other words, the

uncertainty linked to natural variability should not de-

tract decision makers from underlying anthropogenic

changes. Nonetheless, results from this study clearly

show that natural variability can impede the detection of

the anthropogenic signal for a few to several decades

over many parts of the world, and this should be con-

sidered when implementing adaptation strategies.
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