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ABSTRACT

Understanding the spatial distribution of organid/ar inorganic contaminants is crucial to
facilitate decision-making of rehabilitation strgites in order to ensure the most appropriate
management of contaminated sites in terms of cantarhremovals efficiencies and operating
costs. For these reasons, various interpolatiomaast[Thiessen Polygon (TP) method, inverse
of distance (IDW) method, ordinary kriging (OK), a®ll as sequential Gaussian simulations
(SGS)] were used to better understand the spastlkdition of As, Cr, Cu, pentachlorophenol
(PCP) and dioxins and furans (PCDD/F) found onspecific industrial site. These methods do
not only vary in complexity and efficiency but alkad to different results when using values
coming from the same characterization campaignrefbee, it is often necessary to evaluate
their relevance by performing a comparative analyEhe results showed that ordinary kriging
(OK) was a better estimator of the mean and movarazed compared to the two other methods
of interpolation (TP and IDW). However, it appeathdt SGS has the same power than OK but
it also permitted to calculate a reliable valueha probabilities of exceeding regulatory cut-offs

of contamination.

Keywords: Contaminated site; heavy metals; PCDD/F; Ordinaiyitkg; Sequential Gaussian

simulations; Risk assessment.



1 INTRODUCTION

During the last decades, the amount of sites cdntged with inorganic and/or organic
compounds dramatically increased. Therefore, chgdlse related to the rehabilitation of
contaminated sites are becoming ubiquitous aronedjtobe because of the serious health risks
they represent as well as the significant costelied (Guemizeet al., 2017). Treated wood
storage sites are an example of areas of mixedagonation and are the subject of several
studies. The coexistence of heavy metals and argammpounds in treated wood storage sites
are the result of the use of preservative agentprovect wood against insects, fungi and
weathering conditions (PCA, 2009). Over the lasirgethe most commonly used preservative
agents were Pentachlorophenol (PCP) preservatigat againly composed of PCP and some
trace of dioxins and furans (PCDD/F) as well as oGtated Copper Arsenate (CCA)
preservative agent mainly composed of As, Cr and $&veral studies demonstrated that the
contents of As, Cr, Cu, PCP and/or PCDD/F foundsails are significantly higher near the
pollution source (treated wood storage sites). Mdagtors can affect the amount of
contaminants leached from treated wood. Such fadtwiude how long the wood has been
exposed to the environment, the size and type aidwbat was treated and the type of soil
(Coudertet al., 2013). Studies have shown that these contamiraetsnainly distributed and
immobilized during the first 30 cm and that the ratgon of PCP can be up to 60 cm
(Khodadoustet al., 2005, Lespagnol, 2003) Despite the results ofdahstudies, the spatial
distribution of such contaminants in soils surrangdndustrial activities is poorly understood.
An incorrect estimate of the contamination’s sitabf a site (volume of contaminated soil and
level of contamination) can lead to a mismanagerogits efficiency and controllability as well

as important increases of rehabilitation costiefd¢ontamination is underestimated.



For this reason, it would be of interest to devekimtegies to better evaluate the spatial
distribution of both organic and inorganic contaamts through the combination a systematic

sampling strategy with a geostatistical data preiogs

In fact, conventional statistical methods do notegan accurate description of the spatial
variability of contaminants in soils, whose knowdeds necessary to efficiently treat values in
terms of average values or probability and to havenit value lower than a certain cut-off
(Vauclinet al., 1982). Goovaerts (1999) reported that when tlenpmena studied is complex,
classical statistics are quickly abandoned in fasfdhe geostatistical models. Geostatistical data
modeling has now virtually permeated all areas céamography, cartography, meteorology,
agriculture, fisheries resources, civil engineerifigance (Ordofiezst al., 2018) as well as the
environment, especially for the rehabilitation ohtaminated soils (Liet al., 2016, Shet al.,
2017, Xieet al., 2011). During the past years, significant effeatve been invested to improve
the characterization of contaminated soils ancethuce the costs related to the rehabilitation of
these sites by applying geostatistical techniquékiwthe characterization phase. Indeed,
rehabilitation of contaminated sites should be Basea precise and accurate characterization of
soil contamination to avoid errors in the quanéfion of pollution, which can have serious
consequences for both health and rehabilitatiotsc@oudreaulet al., 2016). Before starting
any sampling campaign, it is important to use tifermation related to the history of the site,
when available, because it provides historical nmiation related to the nature and sometimes
the potential location of the pollution (inorgar@ad/or organic) at a lower cost compared to a
systematic characterization campaign on the estiee A visit of the contaminated site is also
very valuable in order to make an inventory of itifeastructures present on this site, to evaluate

the zones of potential contamination and to deéinmore appropriate sampling plan (CCME,



1993). The history of site and the site visit akowo build a conceptual model of the
contamination both spatially but also in time. Thignceptual model will then guide the
sampling strategy. The number of samples thatheiltollected usually depends on the sampling
area and the allocated budget (€ual., 2016). In general, a more important number ofdam
will produce a more accurate description (map) had pollution and its spatial distribution
(Muelleret al., 2001). The choice of the sampling mesh, as agethe interpolation method, are
considered as key factors since they strongly affee pollution mapping (Kravchenko, 2003).
In recent years, a growing number of studies harebined geographical information science
(GIS) and multivariate statistical analysis teclugg to examine the spatial distribution of heavy
metals in soils at a regional scale (Heual., 2017, McGrathet al., 2004). GIS-based
geostatistics were proved to be a powerful todtudying soil contamination (Facchinedtial .,
2001). Jinet al. (2019) showed through their study that a system@imbination of GIS with
multivariate statistical analysis proved valuabte flucidating anthropogenic and natural
sources of heavy metals in soil and dust at chldrplaygrounds in Beijing (China). In the same
context, Zawadzket al. (2016) demonstrated that it is possible to useagnmato-geochemical
data set in order to discriminate the origins ofl smntamination between natural and
anthropogenic sources. Henrikssatral. (2013) successfully coupled GIS and multivaristéad
analysis (PCA) in order to assess the levels of PAEzontamination in soil from a sawmill site.
Their results showed that GIS and PCA are powetdols in decision-making on future

investigations, risk assessments and remediaticor@iminated sites.

Actually, interpolation methods are numerous aneythlvary in complexity and efficiency
(Bobbiaet al., 2001). Therefore, it is often necessary to evalta¢ relevance of these methods

by performing a comparative analysis of the varimethods used. Indeed, Saito and Goovaerts



(2000) conducted a comparative study of four ctagsnterpolation methods including ordinary
kriging, log-normal kriging, multi-Gaussian krigingnd indicator kriging in order to accurately
delineate a site highly contaminated with dioximgl durans in Michigan (USA). This study
revealed that lognormal kriging gave the best teswith smaller prediction errors as well as
lower characterization costs compared to the ogjeestatistical algorithms. Fahiezyk et al.
(2017) studied the magnetometric assessment ofceatiamination by using three advanced
geostatistical methods, namely indicator krigingape&ical Bayesian kriging, and indicator
cokriging. Their results showed that properly clmogeostatistical methods can greatly improve
the effectiveness of magnetometric screening of gollution, even in problematic areas.
Zawadzkiet al. (2008) studied the spatial distribution of leach@entrations in soils by using
ordinary kriging and sequential Gaussian simulat{8&S). According to these authors, the
results showed that unlike kriging, the simulati@produced the maximum values of lead

concentrations in soils without smoothing effect.

The most commonly used interpolation methods aréhel Thiessien Polygon (TP) method and
the inverse of distance (IDW) and the most usedtagistical method is ordinary kriging (OK).
As long as the basic conditions of the random fonctuinder study are met, kriging will always
be a better estimator of the mean than the othénads (Cui et al., 2016). This interpolator has
been used in many cases of soils contaminated métals. For example, Attert al. (1994)
used OK to identify the distribution of seven pdiaify toxic metals (Cd, Co, Cr, Cu, Ni, Pb,
and Zn) on a contaminated area of 14.5° kegion of the Swiss Jura. Other authors like
McGrath et al. (2004) have used kriging to measure the spatialabiity of Pb in the
Silvermines region of Ireland. Burges al. (2006) demonstrated that the kriging-interpolated

maps are considered as very valuable tool in stgdgollution and monitoring soil parameters



after amendment application at field scale. Howgetlezse linear interpolation methods do not
allow the calculation of probabilities of exceedirgntamination cut-offs. In this case, non-linear
methods such as the indicator kriging or geosiegissimulations are recommended to be used
(Juang et al., 2004; Lin et al., 2016). In recea&rg, many studies have focused on SGS to
generate probability maps for assessment of sdilipn and to optimize of sampling plans
during the characterization of contaminated siBxsufireaultet al., 2016, Demougeot-Renaetl

al., 2004).

The main objective of this study is to determineg@ostatistical techniques can be used to
adequately determine the volumes of soils contaméhéy both inorganic (As, Cr, Cu) and
organic contaminants (PCP, PCDD/F) and to comgaeptedictive ability of these methods.
Therefore, specific objectives of the present stwdye to: (1) map the spatial distribution of As,
Cr, Cu, PCP, and PCDD/F initially present on arustdal contaminated site; (2) determine the
volumes of soils contaminated using different iptdation methods (TP, IDW and OK) and by
the SGS method and to compare their performanoeis(3 quantify the risk assessment of the

evaluation of spatial distribution of these contaamts.
2 MATERIAL AND METHODS

2.1 Investigation area and soil sampling

The present study was conducted on an industt@alsiere treated wood samples where stored
for different period of time, named S3 for confitlality reasons, with a total area of 375.m
The inappropriate management and/or disposal @ftelde wood led to heterogeneous soil
contamination by As, Cr, Cu, PCP and PCDD/Fs. Hystd industrial activities on this site is

poorly documented, increasing challenges relatethéodefinition of an appropriate sampling



campaign to adequately identify contaminants spdistribution. The geology, observed on the

site, indicates the presence of an embankmentéfralvove a natural soil (clayey silt).

In this study, two sampling methods (systematic @mdlom) were coupled over the area. This
approach was chosen in order to optimize the sagppjuality and the representativeness of the
data. Sampling was done on a grid of (15 m x 25am)two depths: P1 (depth O to 15 cm) and
P2 (15 to 30 cm). A total of 27 exploration holésn{ x 1 m each) were dug up on each depth
(P1 and P2) on November, 2014 on the industrialssing a John Deer mini-excavator, model
35D. Among the 27 samples collected on the sitgl8s (B1, B2, and B3) were dug up outside
of the industrial site to determine the backgromaise. The site plan and location of the 27
exploration holes that have been completed are shoWwig. 1. In each of the exploration holes,
a first sample was taken from the surface up torhf depth (depth P1) and a second one was
taken between 15 cm and 30 cm depth (depth P2)sa&mpling was done by excavating soll
from the hole and collecting 200 g of soils usihg tcone and quartering” method to ensure the
representability of the sample. Between each smhpdes, all the equipment used (dipper,
manual showels, etc.) were rinsed with water usiri¢archer or dichloromethane to avoid any

contamination.

Table 1 presents the different cut-offs defined éach contaminant (As, Cr, Cu, PCP and
PCDD/F) that were used in the exploratory analgéithe data. These cut-off values (cut-off 1,
cut-off 2, cut-off 3 and cut-off 4) have been definaccording to regulatory criterion of

industrialized countries, depending of the intendsel of the site once rehabilitated.
2.2 Analytical methods

Several parameters were used to characterize tharomated soil samples collected on the

industrial site. For example, pH was determinedostiog to the method described by the
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Quebec Expertise Center for Environmental Anal{SEAEQ) (MA. 100 - pH 1.1) by using a
pH-meter (Accumet Research AR25 Dual Channel pHioeter, Fischer Scientific Ltd.,
Nepean, Canada) equipped with a double junctiore-Barmer electrode with an Ag/AgCl
reference cell. Organic matter content was analymedrding taCEAEQ method (MA. 1010 —
PAF 1.0) (CEAEQ, 2003). The particle size distribntof the fine fraction (less than 0.1g26)

of the X11 Y12 sample was determined using a lpadicle sizer (Partica Laser Scattering LA-
950V2-Laser Particle Size Analyser, ATS Burlingtd@N, Canada). The cation exchange
capacity (CEC) was determined according to Metsathod (AFNOR X 31-130) (Metson,

1956).
2.2.1 Metal analysis

Metal and metalloid analyses were performed inlité@pe in our laboratories using an
inductively coupled plasma - atomic emission spsciopy (ICP-AES) (Varian, Mississauga,
ON, Canada), after partial digestion performed etiog to the Method 30301 (APHA, 1999).
The detection limits (LOD) and limit of quantifiah (LOQ) were estimated at 0.15 and 0.50
mg As.kg", 3.00 and 10.0 mg Cr.Kg1.00 and 3.33 mg Cu.RgFor each series of experiments,
the quality of the results was controlled usingified soil samples (CNS 392-050, PQ-1, lot #
7110C513, CANMET, Canadian Certified Reference Male Project (CCRMP)) and certified
standard solutions (Multi-elements standard, CgtseddN0.C00-061-403, SCP Science, Lasalle,

QC, Canada).
2.2.2 PCP analysis

PCP analysis was performed in triplicate accordmghe CEAEQ method MA. 400 — Phe. 1.0
(CEAEQ, 2013)using gas chromatography with mass spectroscopy-NISL (Perkin Elmer,

model Clarus 500, column type RXi-17, 30 m x 0.281m 0.25um). The LOD and LOQ are

9



estimated at 0.003 and 0.009 mg PCP.Kgontaminants present in soil samples were exact
using Soxhlet extraction in the presence of metig/lehloride, followed by liquid/liquid
extraction using sodium hydroxide. Then, a deraaion step of PCP was performed overnight
using anhydrous acetate and carbonate calciumlhsiRCP-acetates were extracted from the
aqueous solution using methylene chloride. Cedif®il samples (CMR 143, BNAs-Sandy
Loam) were also analyzed to confirm the adequacthefextraction and analytical methods.
Internal and recovery standards were also usecdltowf the behavior of PCP during the

preparation and/or analysis steps.
2.2.3 PCDD/F analysis

The determination of PCDD/F content was done inlaboratories according to the CEAEQ
method MA. 400-D.F. 1.1.(CEAEQ, 2011) using GC-M&érmo Scientific, model Trace 1310
Gas Chromatograph coupled with mass spectrometectde 1ISQ, column type ZB Semi-
volatile, 60 m x 0.25 mm x 0.28m). The LOD vary between 0.1 and 3 ng-kghile the LOQ
vary between 0.3 and 9 ng/kgccording to the congeners of PCDD/F. In ordevaiidate the
PCDD/F analysis method and results, recovery stdsdeere used and some samples were sent

to accredited laboratories for analyses checking.
2.3 Interpolation methods

Once sampling was done and contaminant concermisatietermined, an exploratory analysis of
the data was performed to: (1) validate the avkaldata, (2) establish baseline levels of data for
consistent data support (number of samples, minimmaximum and mean content values,
variance or standard deviation, symmetry, etc))s{@dy the spatial distribution of the data and

understand their degree of homogeneity (Arnetwad., 2000).
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2.3.1 Thiessen Polygon (TP)

The Thiessen polygons (TP) method consists on idiyithe geographical space into polygons
by plotting at the turn of each sampling point d&ygon containing all the points of the plane.
These polygons are obtained by plotting bisectingsl perpendicularly to the lines, connecting
all sampling points for which the sample consideiethe nearest sample. The clustered data
will have small-area influence polygons, whereas i#olated data will have larger polygons
(Mu, 2009). Supposing that one wants to estimatevdiue at a point SO of a site D, this point
necessarily belongs to one of the influence polggdie value estimated at point SO will then
be identical to the value that has been assignetiegqgolygon to which it belongs. The TP

method was performed using ArcGIS software.
2.3.2 Inverse Distance (IDW)

The inverse of distances (IDW) is one of the mpgliad and deterministic interpolation method
(Bhuniaet al., 2016). For each point to be estimated, it cosgistcalculating the average of the
values of the points situated in the neighborhoethted by the inverse of the distance (1 / d) at

the calculated point (Bartiegt al., 1996). The estimatorZ((S0)) is calculated according to

Eq. (1).

ng Z(S)

5 _ ~Elg-Sl

Z(SO)_ZnO—SlsO Eq. 1
=1i5-Sol
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Where Z(S,) is the interpolated value at location S, n representing the total number of
neighbour data values, Z(S) represents the known samples at the points S. |S - S| represents

the distances between the pointsi and O.

2.3.3 Ordinary Kriging method (OK)

Ordinary Kriging (OK) is a method interpolating regalized random variables. It is defined as
an optimal and unbiased linear estimation method é al., 2001). It predicts the value of a
variable at non-sampled sites by a linear combmnatif point values of a regionalized variable
or averages on blocks of a regionalized variablegughe structural properties of the semi-
variogram and the data of the considered param@ensstronget al., 1997). First step of OK
consists in computing an experimental semivariogtarmeasure the spatial correlation of the
variable under study. The semivariogram is then etemtl using a variogram function
parametrized with three parameters consisting sl 4C, + C), a range (R) and a nugget effect
(Co). The sill represents the spatial variance ofréimelom field. The range is a distance at which
data is no longer autocorrelated and the nuggettkefepresents the micro-scale variation or

measurement error.

Several standard models are available to fit thegeemental semivariogram, e.g., spherical,
exponential, Gaussian, linear and power models €Lial., 2008). In the present study, after the
cross validation, the semivariograms of As, PCP B@DD/F have been modeled using a
combination of a small nugget effect and sphenatlels, using Istatis software. Information
generated through variogram was used to calculataple weighing factors for spatial
interpolation by OK, using nearest 15 sampling fgand a maximum searching distance equal

to the range distance of the variable (Letrkl., 2004).
12



The interpolated valu&/((S)) of the regionalised variable z at the poigisSgiven by Eq (2).

Z(Sp) = YL Z(Sy) Eq. 2

Where Z( S,) is the predicted value at location S, , Z (S) is the measured value of a soil
attribute at position x. 4;is the corresponding weight obtained from the OK system with

M1 4 = 1; and N isthe number of sample data within the neighborhood.

Kriging estimates are calculated as weighted sumiseoadjacent sampled concentrations. These
weights depend on the exhibited correlation stmegctThat is, if data appear to be highly
continuous in space, the points closer to thosmattd receive higher weights than those farther

away. These weights are selected based upon a imatiom of the estimation variance.

By construction, OK is an estimator of the meanhits won’t reproduce the histogram and the
variogram of the measured data. It is then not ama#tically consistent to apply cut-off or non-

linear manipulation of the kriged maps in ordeintier probabilities or reliable decision maps.
2.3.4 Sequential Gaussian simulation (SGS)

A simulation is a possible realization of the comitaant contents on the field of interest, which
reproduces the spatial variability of the studié@momenon while respecting the histogram and
the variogram of the measured contents (GeoSIP@D52 SGS is one of the most used

simulation algorithms because its ease to be donéid to measured data values.

The SGS is based on multi-Gaussianary assumptiarraridom function variable (Delbatial.,
2009). It consists on defining a regulatory spaged, covering the region of interest and

establishing a random path through all grid nodesh that each node is visited only once in

13



each sequence (Delbagi al., 2009). This approach can produce a large nurobgossible
realizations (equally probable solutions) of patintdistribution through original sampling data
from the considered site contaminated by organid @organic compounds. However, the
number of realizations to calculate is debataliighis case, we simulated realizations until we
obtained a stabilization of the variance of the wated blocks (300 realizations for all the
contaminants). Similarly to OK, the same semi-vgidons must be computed and modeled
before the calculation of SGS. Nevertheless, the& Sen requires more assumptions, in
particular a multigaussian framework: each variablest be transformed into a normal
distribution beforehand and the simulation resulustmbe back-transformed to the raw
distribution afterwards. So the data that were notmally distributed were transformed
(Gaussian anamorphosis transformation) in thisystBg using a gaussian transformed data set,
an experimental, an omni-directional semi-varioggaai As, PCP and PCDD/F have been
calculated and then modelled. In this case, theeinads composed of two structures, nugget
effect and spherical model. Thereafter, the coowgti simulation step using SGS can be
performed. A conditional simulation correspondsitgrid of values having a normal distribution
and obeying the model. Moreover, it honors the gaiats as it uses a conditioning step based
on kriging which requires the definition of a ndigithood. In this study, SGS have been
performed on a grid of (15 m x 25 m), the sameypiwh neighborhood parameters as in the
kriging was chosen. The number of 300 realizatibas been fixed and the Gaussian back
transformation has been done using the anamorphositon. The determination of the cut-off
maps giving the probability PCDD/F exceeds difféerehresholds has been done using

Simulation Post processing on Isatis software.
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3 RESULTS AND DISCUSSION

3.1 Physico-chemical characterization of the soil S3

Table 2 presents some parameters of the sample 22Lairsoil S3 and the initial concentrations
of both organic and inorganic contaminants. Thim@a contained 0.5% of organic matter and
its CEC was estimated at S.Q(mOOgl. The pH value of this soil was quite neutral (pH.#&).
The elemental analysis of this sample revealedivelg low calcium, phosphorus, potassium
and sodium contents with values reaching 3,524t7.0.107 and 0.017 mg.kgrespectively,
and a concentration in iron and aluminum of 416kgigand 387 mg.kg, respectively. This
entire soil sample was chosen because it contariledl concentration of organic contaminants.
Indeed, it contained 9 mg Askg22 mg Cr.kg, 23 mgCu.kg, 0.09 mg PCP.K§ and
340 ng TEQ.kg (PCDD/F). The distribution study of the particlsize by laser granulometry of
the fraction less than 0.128n of the X11 Y12 sample, revealed that 14% of thpesécles were
less than 2um, 69% were between 2 and pth and 17% were between 50 and 2,060 The

texture of entire soil is silty loam (CEPP, 1987) .
3.2 Spatial distribution and descriptive statistics

An implementation map (Fig. 2) as well as a desimeptable (Table 3) of the exploratory
statistics have been established for each contam{As, Cr, Cu, PCP and PCDD/F) present on
the site by using MATLAB Software. A quick visuaikon of the data on the implantation maps
established for the different contaminants gaverst fdea of the spatial distribution of the
contaminants. For the samples B1, B2 and B3 (backgl noise), the results highlighted a
contamination inferior than cut-off 2 for the fiw®ntaminants, supporting the choice of their

location. High contamination of PCP and of PCDD#¥k¢eeding cut-off 3 could be detected in
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the northwestern part of the site as well as @sligntamination of As (> cut-off 2). Moreover,
it appeared that the concentration of both orgamd inorganic contaminants were more
important in the first 15 centimeters in almostdton (except X8YOP1 for PCP) and had
tendency of decreasing with the depth, which isaacordance with the results obtained by

Lespagnol (2003).

Following As contamination, the results indicatdthtt As contents varied from 8.85 to
86.4 mg.kg for P1 and from 6.02 to 25.1 mgkdor P2. Average contents and standard
deviation were estimated at 23.3 + 15.4 mg.kor P1 and 10.6 + 4.4 mg.Rgfor P2. The
implementation map indicated an excess of the fuBo(50 mg.kg") for a single sample
(X10Y4P1) and an excess of the cut-off 2 (30 mgflglonly 4 samples among the 54 samples
collected (X9Y1P1, X0Y3P1, X4Y8P1 and X11Y11P1). mélover, no contamination was
observed for the depth 2 (15-30 cm), indicating tha mobility of As was restricted to the first
15 cm, which is in accordance with the results ioleth by Lespagnol (2003). The established
implementation maps for the Cr and the Cu revealedntamination superior to the cut-offs 2
(250 mg.kg" for Cr and 100 mg.Kgfor Cu) for both depths P1 and P2, with averageerin of
33.2 mg Cr.kg for P1 and 23.1 mg Cr.Kgor P2. For Cu, average contents were estimated at
40.5 mg.kg and23.6 mg.kd for P1 and P2, respectively, indicating that thetamination was

more important at the surface (0-15 cm).

The PCP implantation map showed an excess of theftd (74 mg.kg) of PCP for samples
X4Y2P1 and X8YOP2 and an excess of the cut-off ¢pkg') for 6 samples derived from P1
and for 1 sample derived from P2, with average emtst estimated at 7.89 mgképr P1 and

5.71 mg.kg for P2. According to the PCDD/F implementation map,important contamination

of the northwestern part of the site was observedeed, 5 samples found in P1 revealed
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contents above the cut-off 4 (5,000 ng TEQkdpr P1 and several samples in P1 and P2
revealed levels above cut-off 3 (750 ng TEQ)kdccording to the results presented in Table 3,
PCDD/F contents varied from 295 to 12,620 ng TEQ.{ay P1 and from 29.5 to 1,716 ng
TEQ.kg" for P2, indicating a huge heterogeneity of PCDDdRtamination on the considered

site.

Considering that the contamination of As, of Cr ah€u come from the CCA-treated wood and
that the PCP and PCDD/F contamination come fromP@e-treated wood, correlation studies
have been performed on the following variables-C&} (As-Cu), (Cr-Cu), (PCP- PCDD/F) for
both depth P1 and P2. The scatterplots betweewatfi@bles (As, Cr and Cu), illustrated in Fig.
3, showed a satisfactory correlation between (As{@s-Cu) and (Cr-Cu) in P1 with respective
correlation coefficients of 0.885 - 0.889 and 0.89hese results also highlighted a slight
decrease in the correlations existing between tlwggaminants with depth. Considering
contamination coming from PCP-treated wood, thetteqaots obtained between PCP and
PCDD/F variables showed a good correlation level Pd (Fig. 3). This correlation level
decreases by 50.9% in P2. This decrease of coomrléetween the contaminants with the
observed depth in both clouds of points can beagx@tl by the fact that the contaminants do not
migrate in the same way in soils. In fact, sevstatlies have demonstrated that the As, Cr, Cu
and PCDD/F are distributed and immobilized durimg first 30 cm, unlike PCP can migrate up
to 60 cm (Khodadoust et al., 2005; Lespagnol, 2@&yramanian, 2007). Besides, these studies
have shown that these organic and inorganic contams are significantly higher near the

source of pollution and tend to decrease rapidti tie depth.
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Based on these results, interpolations were cordpime As, PCP and PCDD/F as the
contamination of the site by Cr and Cu was very (owt-off 2) compared to As (cut-off 3), PCP

(cut-offs 3 and 4) and PCDD/F (cut-offs 3 and 4).
3.3 Geostatistical analysis

The parameters of the semivariograms and variognaatels chosen for As, PCP and PCDD/F
that were used for OK and SGS methods, are presemtdable 4 (a) and (b), respectively.
Unlike for OK method, a Gaussian transformatiorthef data was performed for SGS method
before the semi-variogram calculation and backsfiammed to original space after simulation in
Gaussian space. The absence of contamination im R2 and by Cr and Cu in Pland P2 is
noticed in Table 4 (a) and (b). This absence is tduthe low contents of these contaminants
(contents < cut-off 3). All experimental variograrm either OK or SGS were adjusted to a
spherical model for each of the contaminants inaRd P2. Besides, in all the variograms of
contaminants, a nugget effect was observed (a mliscaty at the origin of the variograms
representing noise level or short spatial strustumat sampled). This nugget effect is probably
due to the fact that soil pollution generally deys in a complex and heterogeneous
environment (Jeannée, 2001). The ratio (Nugget)/iSiconsidered as a criterion for classifying
the spatial dependence of contaminant content (é&taad., 1998; Chieret al., 1997). This ratio
ranged from 9 to 56% for OK (Table 4 (a)) and fr@6 to 39% for SGS (Table 4 (b)).
Contaminant contents for As - P1, PCP - P1 and PEEDIP1 from OK had a strong spatial
dependence since the ratio (Nugget / Sill) is teas 25%. However, for PCP - P2 and PCDD/F
- P2, this ratio was moderate with values betweearl 75%. For SGS, this ratio ranged from
30 to 39%, indicating that the spatial dependentéhe contents was moderate for each

contaminant in both P1 and P2.
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In contaminated site characterization, geosta#istinethods have been used to estimate the
volumes of soils whose concentration exceeds datgy criterion, to calculate the probabilities
of exceeding regulatory criteria and to evaluate uhcertainty of these estimations (Boudreault

et al., 2016).

In the present study, soil volumes contaminated\byPCP and PCDD/F were estimated from
three interpolation methods (TP, IDW, OK) versusSS@r both P1 and P2, except for As - P2
because the contamination was proven to be noteexisActually, these interpolation methods

were chosen since they are the most commonly wsestimate volumes of contaminated sites.

Table 5 presents the volume of soils contaminayeddy PCP or PCDD/F calculated using these
methods. Table 5 (a) shows the volume of soil comtated with values between cut-off 3 and
cut-off 4 whereas Table 5 (b) shows the volumeodf@ntaminated with values that are above
cut-off 4. According to the guide we referred the tmanagement of these soils is different
depending on the cut-off value considered. In faeyjond the cut-off 4 defined in Table 1, soils
must be managed as dangerous residual materidigated to reach one of the cut-offs 1, 2, 3
or 4. Nowadays, the only available option for teenediation of these sites dealing with mixed
contamination includes thermal treatment to destoganic contaminants (PCP, PCDD/F)
followed by immobilization of inorganic contaminant (As, Cr, Cu) through
stabilization/solidification or landfilling (Kumpiee et al., 2016, Metahngt al., 2017). The cost
of managing volumes of contaminated soils exceetliagut-offs 4 is very expensive compared
to volumes of contaminated soils between the ditt-® and cut-offs 4. A good estimation of
volumes of contaminated soils allows for deciditgi areas to be excavated and/or treated.
Consequently, the cost of treatment can be acdyrastimated. Results presented in Table 5

showed that PCDD/F contamination in P1 is the nposblematic in this case, with volumes
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ranging from 26 to 45 ffor P1 when the cut-off is between 750 and 5,090TEQ.kg" and
from 6.65 to 8.55 mwhen the cut-off is greater than 5,000 ng TEQ.kGhese results also
showed that the contamination tends to decreasedejpth (volume of contaminated soils less
important in P2 compared with P1). These resultslimexplained by the fate and transport of
metals, PCP and PCDD/F when they are releasedetcemiironment, due to the different
physical and chemical properties of these contamtsnand their different degree of affinity for
the intrinsic components of soils (Guemétal., 2017). Besides, the results showed similarities
in the estimations of the amounts of contaminatel$ ®btained by OK and SGS for PCP and
PCDD/F unlike the other interpolation methods. kwleOK is considered as a better estimator
of the mean and is more advanced than other irlipo methods such as TP and IDW (@ui
al., 2016), since kriging considers two sets of distsn(the distance between two sample
locations and the distance between a locationtefest and a sample location) (ktaal., 2014,
Hou et al., 2017). However, the estimations of volume of scbntaminated by As was proven
to be different depending on the method used, mgrfiom 0.30 to 0.90 fhand this can be
explained by a very strong variation in the corgewit As, which is often smoothed by the OK
method. This smoothing effect can be observed wiwenparing kriged map of As, PCP and
PCDD/F with the simulated map in the depth P1 (8mpntary Fig. 1). Both interpolations
methods TP and IDW gave different volume estimatitman OK and SGS considering the
limitations of each of these methods. Even if TBnetion method is considered as a very
simple method since it takes into account the gurdéa sample as block content, it neglects an
extremely important factor which is the supporteetf(Armstrong et al., 1997), which often
leads to an underestimation or an overestimatioconfaminated soil volumes. Considering the

IDW method, it is one of the most used spatial rpiéation methods due to its fast

20



implementation, ease of use and straightforwarmerpnetation (Bhuniat al., 2016). However, it

is indifferent to the geometric configuration oktbbservation sites. Indeed, only the distance
with respect to the point counts, which resultthm overweighting of the data groups. Unlike the
OK in the case of regionalized variables, this rodtlallows the estimation of the variable
studied at each point of the considered field fritlv@ experimental data, the variogram and
provides a variance of the error of the associasumate (Juangt al., 2004). If the baseline
conditions of the random function are met, OK alivays be a better estimator of the mean than
the other methods previously described (&wal., 2016). Numerous studies have demonstrated
the performance of kriging compared to IDW for magpsoil properties (Kravchenkand
Bullock, 1999, Muelleret al., 2004). However, OK tends to smooth out local itetaf the
spatial variation in contaminant concentration.sTisi the reason why these linear interpolation
methods do not allow the calculation of probal@$tiof exceedance of contamination thresholds.
Indeed, smooth interpolated maps of soil contarmonanight cause unnecessary remediation of
clean areas or overlook health hazards in contasdnareas. This smoothing effect has been
clearly demonstrated in the study of Zawadzkial. (2008), which was conducted for
reassessment of soil contamination with lead. Adgiogr to their results, the lead content maps
showed that kriged values were smoothed from timgeaeof 1-286 mg.k§ to the range of
1-90 mg.kg, unlike simulated map who reproduced better thegeaof variability of lead
contents in soils. In this case, non-linear methautsh as indicator kriging or simulations can
and should be used. Indeed, the interpolatorsstm@agors of the mean. Therefore, they are not
suitable for reproducing the upper and lower quesitiWhile a simulation is a possible
realization of the contaminant contents on the istudield, which reproduces the spatial

variability of the studied phenomenon while resperthe histogram and the variogram of the
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measured contents. Applying a concentration thidsttoa conditional simulation provides an
unbiased estimator of contaminant levels aboved#imed threshold (Boudreaudt al., 2016).
This is why SGS is the most appropriate methods®e im order to estimate the volumes of

contaminated soil.
3.4 Risk assessment

The SGS interest lies in the fact of calculatingrge number of scenarios, allowing a reasoning
in probabilities. In each estimated mesh, we havastogram of the possible values (equi-
probable), whose average converges towards théngri@y calculating point by point, the
proportion of realization exceeds a certain cut-88 a result, it produces a map estimating the
probability of exceeding the risk cut-offs, whichllvbe used for risk assessment and decision-
making. Actually, Fig. 4 illustrates the post-treant of surfaces whose PCDD/F concentrations
exceed the cut-off 3 (750 ng TEQ/kg) and the ctidof5,000 ng TEQ/kg) for both P1 and P2.
Fig. 4a proved that in the case where the PCDDHe@utrations exceed cut-off 3, the P50
shows reasonable surfaces to be treated were éstima330 rhfor P1 and 116 fifor P2, with

a 90% confidence interval between 310 and 346omPCDD/F-P1 and between 86 and 148 m
for PCDD/F-P2. However, when PCDD/F concentratiexseed cut-off 4, it is expected to treat
an area of approximately 49°ranly for P1 with a 90% confidence interval betw@nand 73

m? (Fig. 4b). This information is critical for decisianakers to determine which contaminated
areas can be disposed directly in a sanitary |Ihr{dfeas between cut-off 3 and cut-off 4), and
which areas require treatment by thermal desorptomlestroy organic contaminants (PCP,
PCDD/F) followed by solidification/stabilization afiorganic contaminants (As, Cr, Cu — areas

exceeding cut-off 4) or landfilling (areas exceet-aff 3).
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Once defined, these risk curves will be used tesssshe financial risks associated with the
rehabilitation of this site. These risks will betiesmted by applying a cost function to

geostatistical estimates of soil volumes to betéi@nd their accuracy. Then, a sorting scheme
has to be defined considering that only the bl@ti@®ving concentrations of contaminants above

the cut-offs will be sent to a treatment channedbdve disposed in landfills.

4 CONCLUSION

Nowadays, soil characterization is a major chakefoy the rehabilitation of contaminated sites.
In fact, an erroneous interpretation of the stdteantamination of a site may have serious
consequences such as health issues and/or finéoasak. This study aims to show the relevance
of the geostatistics application in the case ofigtdal soils contaminated by both organic (PCP

and PCDD/F) and inorganic (As, Cr, Cu) contaminants

The exploratory analysis of the experimental daiagithe geostatistical tool revealed a perfect
correlation between (As-Cr), (As-Cu) and (Cr-Cu)Af, which slightly decreased with depth
and a good level of correlation between PCP and[®EDRor P1, which decreased by 50.9% in
P2. Experimental variograms showed a nugget efégated to the heterogeneity of contaminant

levels in the studied site.

In this project, a comparative study of two conuaml interpolation methods versus

geostatistical OK and SGS methods was conducteddier to evaluate the performance of each
of these methods in estimating volumes of contatathaoils. The TP and IDW methods are
interpolation methods that predict the value ofaanponly on the basis of the values of the
points in the neighborhood and do not take intaantthe spatial structure of the data. For this

reason, OK always remains a better estimator ofrtean comparing to both other methods of
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interpolation if the variable under study showspat®l correlation. However, OK provides a
smoothed image of reality while also not allowihg tcalculation of probabilities of exceeding
regulatory cut-offs of contamination. SGS had bpmved to be the most suitable method for
estimating volumes of soils contaminated with A§&PPand PCDD/F, and to quantify the
uncertainty of estimates associated with the vokiroelculations. These estimates will be
relevant to select the most appropriate treatmrentir case and to accurately assess the financial

risk of this rehabilitation project.

Sample density by SGS depends on the samplingaackallocated budget. In the case of mixed
contamination by organic (PCP, PCDD/F) and inorgdAs, Cr, Cu) compounds, the choice of
the number of samples and the geostatistical apprisaoften guided by the budget allocated to
the analysis of PCDD/F. The industrials are oftaedd to adopt other approaches than SGS like

TP, to minimize the number of samples and to atlwdcostly analyzes of organic contaminants.

Supplemental research will be done to optimizeldication and the number of sampling holes
during a sampling campaign in order to reduce tst of PCDD/F analysis and to establish the
best strategy for the rehabilitation of these sittesould also be interesting to combine GIS with
multivariate data analysis in this case of contatiam, because GIS and PCA represent
powerful tools in decision-making on future invgstions, risk assessments and remediation of

contaminated sites.
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Tablel Cut-offs defined for the estimation of soil contamination
rehabilitation scenario

Contaminants As Cr Cu PCP PCDD/F
(mgkg”)  (mgkg")  (mgkg")  (mgkg’) (g TEQkg?)

Cut-off 1 6 85 40 0.1 -

Cut-off 2 30 250 100 05 15

Cut-off 3 50 800 500 5 750

Cut-off 4 250 4,000 2,500 74 5,000




Table2 Soil parameters measured in the sample X;; Y1, P1 of soil S3

Soil Values
Parameters

CEC (mq100 g 8.5
pH in water at 25°C 7.4
Organic Matter (%) 0.5
Elements (mg.kg™)

Ca 3,524
P 0.017
K 0.107
Na 0.017
Al 416
Fe 387
Contaminants (mg.kg™)

As 9

Cr 22
Cu 23
PCP 0.09
PCDD/F (ng TEQ.kQ) 340
Textural class Silt loam
Clay (%) 14
Sand (%) 17
Silt (%) 69

X: Easting; Y: Northing; Depth P1 (0 to 0.15m); S3: Name of studied soil



Table3 Descriptive statistics of investigated data of As, Cr, Cu PCP and
PCDD/F contents measured in contaminated soils

Contaminants Depth  Min Max Mean CV’
As(mg.kg™) P1 8.85 86.4 233 154
P2 6.02 25.1 106  4.40
Cr (mg.kg™h) P1 20.9 66.1 332 970
P2 18.5 31.7 231 320
Cu (mg.kg™) P1 21.1 87.6 405 157
P2 17.7 415 236  6.10
PCP (mg.kg™) P1 0.02 79.9 789 165
P2 0.01 112 571 222
PCDD/F (ng TEQ.kg ™) P1 2905 12620 3410  0.99
P2 29.5 1,716 663 0.89

"CV : Coefficient of Variation



Table4 Variogram models of As, PCP and PCDD/F: (a) OK method, (b) SGS

method
(@
Contaminant - Depth  Model Nugget effect  Sill Nugget/Sill  Range
(Co) (CotC) Co (CotC) (a)
As-P1 Spherical  25.1 273 0.09 9.75
PCP - P1 Spherical  23.5 256 0.09 5.39
PCDD/F - P1 Spherical  1.22 7.44 0.16 3.59
PCP - P2 Spherica 107 330 0.32 15.6
PCDD/F - P2 Spherical  1.66 2.97 0.56 3.86
(b)
Contaminant - Depth M odel Nugget effect  Sill Nugget/Sill  Range
(Co) (CotC) Co (CotC) (&
As-P1 Spherica  0.225 0.708 0.31 4.65
PCP - P1 Spherical  0.149 0.440 0.38 3.79
PCDD/F - P1 Spherical  0.149 0.393 0.39 3.48
PCP - P2 Spherical  0.152 0.506 0.30 4.05

PCDD/F - P2 Spherical  0.170 0.476 0.36 331




Table5 Volumesof contaminated soil estimated with TP. IDW. OK and SGS. with values (a) between cut-off 3 and cut-off 4.
or (b) > cut-off 4

(a)

Volume of contaminated TP IDW OK SGS P(50) SGSP(90)
soils (m°)

As-P1 0.90 0.45 0.30 0.75 0.00

PCP - P1 9.25 13.6 151 16.9 13.3

PCP - P2 1.05 7.20 7.50 8.25 5.70
PCDD/F - P1 26.0 35.0 43.8 44.5 44.7
PCDD/F - P2 15.3 10.9 11.1 17.7 135

(b)

Volume of contaminated TP IDW OK SGS P(50) SGSP(90)
soils (M)

As-P1 0.00 0.00 0.00 0.00 0.00
PCP- P1 1.35 0.15 0.15 0.00 0.00
PCP- P2 1.05 0.15 0.15 0.00 0.00
PCDD/F - P1 6.75 8.55 7.80 7.35 5.10

PCDD/F - P2 0.00 0.00 0.00 0.00 0.00
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HIGHLIGHTS

Fate and behavior of PCP, PCDD/F, As, Cr and Cu on an treated wood storage
site

Mapping the spatial distribution of (in-)organic contaminants on an industrial site
Comparison of interpolation and SGS method to assess volume of contaminated
soils

SGS was the most suitable method for risk assessment of contaminated soil



