Dépôt numérique

Effects of climate change and episodic heat events on cyanobacteria in a eutrophic polymictic lake.


Téléchargements par mois depuis la dernière année

Plus de statistiques...

Bartosiewicz, Maciej, Przytulska, Anna, Deshpande, Bethany N., Antoniades, Dermot, Cortes, Alicia, MacIntyre, Sally, Lehmann, Moritz F. et Laurion, Isabelle ORCID: https://orcid.org/0000-0001-8694-3330 (2019). Effects of climate change and episodic heat events on cyanobacteria in a eutrophic polymictic lake. Science of The Total Environment , vol. 693 . p. 133414. DOI: 10.1016/j.scitotenv.2019.07.220.

[thumbnail of P3559.pdf]
Disponible sous licence Creative Commons Attribution Non-commercial No Derivatives.

Télécharger (1MB) | Prévisualisation


Mixing regime and CO₂ availability may control cyanobacterial blooms in polymictic lakes, but the underlying mechanisms still remain unclear. We integrated detailed results from a natural experiment comprising an average-wet year (2011) and one with heat waves (2012), a long-term meteorological dataset (1960–2010), historical phosphorus concentrations and sedimentary pigment records, to determine the mechanistic controls of cyanobacterial blooms in a eutrophic polymictic lake. Intense warming in 2012 was associated with: 1) increased stability of the water column with buoyancy frequencies exceeding 40 cph at the surface, 2) high phytoplankton biomass in spring (up to 125 mg WW L ⁻¹), 3) reduced downward transport of heat and 4) depleted epilimnetic CO₂ concentrations. CO₂ depletion was maintained by intense uptake by phytoplankton (influx up to 30 mmol m⁻² d⁻¹) in combination with reduced, internal and external, carbon inputs during dry, stratified periods. These synergistic effects triggered bloom of buoyant cyanobacteria (up to 300 mg WW L⁻¹) in the hot year. Complementary evidence from polynomial regression modelling using historical data and pigment record revealed that warming explains 78% of the observed trends in cyanobacterial biomass, whereas historical phosphorus concentration only 10% thereof. Together the results from the natural experiment and the long-term record indicate that effects of hotter and drier climate are likely to increase water column stratification and decrease CO₂ availability in eutrophic polymictic lakes. This combination will catalyze blooms of buoyant cyanobacteria.

Type de document: Article
Mots-clés libres: harmful blooms; carbon dioxide; climate warming; eutrophication; buoyant cyanobacteria; stratification; heat waves
Centre: Centre Eau Terre Environnement
Date de dépôt: 29 nov. 2019 14:24
Dernière modification: 11 févr. 2022 14:08
URI: https://espace.inrs.ca/id/eprint/9571

Actions (Identification requise)

Modifier la notice Modifier la notice