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In this paper, a new hybrid despeckling method, based on Undecimated Dual-Tree Complex Wavelet Transform 4 
(UDT-CWT) using maximum a posteriori (MAP) estimator and non-local Principal Component Analysis (PCA)-5 
based filtering with local pixel grouping (LPG-PCA), was proposed. To achieve a heterogeneous-adaptive speckle 6 
reduction, SAR image is classified into three classes of point targets, details, or homogeneous areas. The 7 
despeckling is done for each pixel based on its class of information. Logarithm transform was applied to the SAR 8 
image to convert the multiplicative speckle into additive noise. Our proposed method contains two principal steps. 9 
In the first step, denoising was done in the complex wavelet domain via MAP estimator. After performing UDT-10 
CWT, the noise-free complex wavelet coefficients of the log-transformed SAR image were modeled as a two-state 11 
Gaussian mixture model. Furthermore, the additive noise in the complex wavelet domain was considered as a zero-12 
mean Gaussian distribution. In the second step, after applying inverse UDT-CWT, an iterative LPG-PCA method 13 
was used to smooth the homogeneous areas and enhance the details. The proposed method was compared with 14 
some state-of the-art despeckling methods. The experimental results showed that the proposed method leads to a 15 
better speckle reduction in homogeneous areas while preserving details. 16 
 17 
Index Terms—Gaussian mixture model, homomorphic transformation, non-local filtering, undecimated dual-tree complex 18 
wavelet transform. 19 
 20 

I. INTRODUCTION 21 
    Synthetic Aperture Radar (SAR) images are inherently affected by a signal-dependent granular noise-like phenomenon 22 
called speckle, which is the nature of all coherent systems. The presence of speckle in the SAR images decreases the 23 
performance of various pattern recognition applications such as classification, change detection, and biomass estimation. 24 
Hence, a primary preprocessing step, namely despeckling, is needed to suppress the speckle phenomena. 25 
    As yet, various spatial domain filters have been proposed in the literature for reducing the speckle in SAR images; 26 
among others, Lee [1], Frost [2], and Kuan [3] are the most popular and frequently used filters. Although these methods 27 
have a decent ability to smooth flat areas, they suffer from many problems. 28 
For example, they are sensitive to the size and shape of the used kernel. 29 
    Multi-Resolution Analysis (MRA) method, introduced in the early 1990s, can overcome the before mentioned 30 
disadvantages of spatial filters. Wavelet transform, with all its variation and further developments, has been extensively 31 
used for denoising images that corrupted with Additive White Gaussian Noise (AWGN) and speckle. However, speckle 32 
in SAR images has multiplicative nature and should be converted to an additive one. For this propose, the first solution 33 
is using the logarithm transform (homomorphic filtering) and the second one is conducted by rewriting the observed 34 
signal as a sum of signal and signal dependent noise (non-homomorphic filtering) [4]–[6]. However, denoising in the 35 
wavelet domain can be done by thresholding the wavelet coefficients or by employing the Bayesian theory. The 36 
performance of speckle reduction methods based on Bayesian theory is highly dependent on the appropriate probability 37 
distribution function (PDF) that was used as a prior model for describing the noise-free wavelet coefficients. In [7], Mallat 38 
described that the distribution of wavelet coefficients is non-Gaussian, symmetric, and sharply peaked around zero with 39 
heavy tails. To capture this heavy-tailed property, various PDFs, e.g., Cauchy [8], [9], bivariate Cauchy [10], Gaussian 40 
mixture [11], [12], and Laplace mixture [13], [14] PDFs within the MAP, MMSE, and MMAE estimators in the Wavelet, 41 
Dual-Tree Complex Wavelet, Contourlet, Directionlet, and Lapped Domains have been used in the literature. However, 42 
these methods may have some limitations, such as presented ringing effect near edges or isolated patterns in homogeneous 43 
areas, which make the despeckling results visually annoying. 44 
    Recently, with the advent of non-local means filtering (NLM) [15] for reducing the additive Gaussian noise, this idea 45 
was extended to suppress the speckle from SAR images [16]–[25], as well as Polarimetric SAR image despeckling [26], 46 
[27]. Besides these non-local despeckling approaches, some despeckling methods based on neural networks [28]–[30] 47 
and total variation [31], [32] were also presented in the literature. 48 
    As mentioned in [33], a suitable SAR speckle reduction method must satisfy the following characteristics: 1) reduce 49 
speckle in homogeneous areas; 2) preserve details of SAR image such as edges, texture, point targets, and urban areas; 3) 50 
radiometric preservation; and 4) artifact-free. In this article, we proposed a novel hybrid heterogeneous-adaptive speckle 51 
reduction method based on complex wavelet shrinkage and non-local Principal Component Analysis (PCA)-based 52 
filtering. Since the classic wavelet transform has some limitations and suffers from several fundamental shortcomings 53 
such as the lack of shift invariance and poor directional selectivity [34], we utilized the Undecimated Dual-Tree Complex 54 
Wavelet Transform (UDT-CWT) [35] that is shift invariant and isolate edges with different orientations in different 55 
subbands. Also, we used non-local PCA-based denoising with local pixel grouping (LPG-PCA) [36] in our proposed 56 
method. First, by some predefined kernels, three classes of heterogeneity, e.g., point targets, details (contain lines and 57 
edges), or homogeneous areas are extracted from the SAR image. After that, our proposed method starts with two principal 58 
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steps. In the first step, despeckling was done in the complex wavelet domain within maximum a posteriori (MAP) 59 
estimator. In the second step, by employing an iterative LPG-PCA method, the flat areas were completely smoothed, and 60 
the details were enhanced. 61 
 62 

II. PROPOSED DESPECKLING METHOD 63 
    If 𝑆 is theoretically noise-free SAR image (or reflectivity) and 𝜂 is fully developed speckle, then the model of observed 64 
SAR image 𝐼 can be expressed as 𝐼 =  𝑆 ⋅ 𝜂 [33]. From this equation, we can find that speckle is multiplicative 65 
phenomenon in nature. To convert this multiplicative noise into an additive one, we can take a logarithm transform from 66 
both sides of this equation and we have 67 
 68 

𝑍 = 𝑋 + 𝑁 (1) 69 
 70 
where 𝑍, 𝑋, and 𝑁 are the logarithm transform of 𝐼, 𝑆 and 𝜂, respectively. In the next subsections, we describe how to 71 
classify the SAR image into various classes of heterogeneity, and explain how to use these classes to better suppress the 72 
speckle from a SAR image. 73 
 74 

A. Classification Strategy 75 
    To achieve a heterogeneous-adaptive speckle reduction, many methods have been proposed in the literature [4]–[6], 76 
[12], [14], [20], [23]. In this article, we used the ratio detector to classify SAR image. In this method, each pixel was 77 
classified into three classes of heterogeneity such as point targets, details, or homogeneous areas. To this end, we proposed 78 
to use common ratio detectors [37]. The kernels that are used to identify the point targets, lines, and edges are shown in 79 
Fig. 1. To decrease the computational cost, we used predefined fixed-size 11 × 11 kernels. The ratio detector to point 80 
targets detection can be computed as 𝑅𝑝𝑡  =  𝑅2/ 𝑅1 where 𝑅1 and 𝑅2 represent the average of values in dark and white 81 
pixels in the defined kernel, respectively. If 𝑅𝑝𝑡  is smaller (or equal) than the threshold 𝑇𝑝𝑡, the pixel will be assigned as 82 
point target. In the case of edges and lines detection, the ratio detector can be defined as 83 
 84 

𝑅𝑒−𝑙 = {
𝑅1/𝑅2   𝑖𝑓   𝑅1/𝑅2 ≤ 1
𝑅2/𝑅1   𝑖𝑓   𝑅2/𝑅1 ≤ 1

 (2) 85 

 86 
After computing 𝑅𝑒−𝑙  for each direction, the minimum value of 𝑅𝑒−𝑙  will be considered as the direction of the interested 87 
pixel. It should be noted that the different kernels were used to identify the lines (Fig. 1b) and the edges (Fig. 1c). After 88 
that, the edges and lines maps will be fused together to achieve fusion map as 89 
 90 

map𝑓 = √(map𝑒
2 + map𝑙

2)/2 (3) 91 
 92 
where map𝑒, map𝑙, and map𝑓   represent the edges, lines, and fused maps, respectively. In the last stage, the mapf has to 93 
be normalized between [0, 1]. The final details map can be computed as map𝑓 < 𝑇𝑑  , where 𝑇𝑑 is a threshold. It should 94 
be noted that choosing a small 𝑇𝑝𝑡 or 𝑇𝑑 can cause fewer point targets and details detection, respectively. While larger 95 
thresholds can find more pixels as point targets and details. For this reason, 𝑇𝑝𝑡  and 𝑇𝑑  should be chosen based on the 96 
content of the SAR image. To achieve better classification result, we performed a light low-pass Gaussian filter on the 97 
SAR image before applying the classification strategy. Also, to remove the false detected details, especially in the case 98 
of single-look SAR image, by employing a local 3 × 3 window, we will remove the neighbors that contain details fewer 99 
than 4 pixels. Fig. 2 shows a single-look real SAR data named Toronto. Moreover, this figure represents point targets and 100 
details maps. After classifying the SAR image into three classes, the speckle suppression is done based on each class 101 
information. To save the point targets, they will be completely excluded from the despeckling process and, at the end, 102 
they will be back to their original locations. 103 
 104 

 105 
Fig. 1. Kernels for pixel classification. (a) Point target. (b) Line. (c) Edge. 106 
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 107 
Fig. 2. Classification result. (a) Real SAR image. (b) Point targets map. (c) Final details map. 108 

 109 
B. Step 1 110 

    In this step, the homogeneous areas were despeckled in the complex wavelet domain, and also a light despeckling was 111 
performed on the detected details. In (1), we assume that the signal and noise components are independent random 112 
variables and N is considered as an additive noise. Because the UDT-CWT is a linear transformation, after applying it to 113 
(1) to up to scale j, the noisy complex wavelet coefficients y at each scale can be written as 𝑦𝑗

𝑖 = 𝑤𝑗
𝑖 + 𝑛𝑗

𝑖 where 𝑤 and 𝑛 114 
are the noise-free coefficients and the noise component, respectively. Also, subscript 𝑖 denotes the orientations 115 
±15°, ±45°, ±75°. For the sake of clarity, we omitted 𝑗 and 𝑖. Our goal here is to estimate w from the noisy observation 116 
𝑦. For this purpose, we used the MAP estimator. The Bayesian MAP estimator can be written as 117 
 118 

𝑤̂(𝑦) = arg max
𝑤̂

[𝑝𝑛(𝑦 − 𝑛)𝑝𝑤(𝑤)] (4) 119 

 120 
where 𝑝𝑛(𝑦 − 𝑛) and 𝑝𝑤(𝑤) are the noise component and the noise-free complex wavelet coefficients, respectively. In 121 
the proposed method, the noise component in the complex wavelet domain assumed to be zero mean Gaussian PDF with 122 
the standard deviation 𝜎𝑛. By considering this assumption, if 𝑝𝑤(𝑤) is assumed to be a zero-mean Gaussian density with 123 
standard deviation 𝜎𝑛, then the estimator can be written as 𝑤̂(𝑦) = (𝜎2/𝜎2 + 𝜎𝑛

2). 𝑦 [38]. In this equation, 𝜎𝑛  is unknown 124 
and it can be estimated by a robust median estimator from subband HH in the first and second scales of the complex 125 
wavelet coefficients as 𝜎̂𝑛 = (𝐷1 + 𝐷2)/2 [39], where 𝐷𝑖  can be computed as 𝐷𝑖 = median(|𝐻𝐻𝑖|)/0.6745, 𝑖 =  1, 2 126 
[40]. As mentioned before, a proper speckle reduction filtering has to flat the homogeneous areas while preserving the 127 
image features and their corresponding spatial information. To this end, an additional parameter, namely smoothing factor 128 
(𝐶), is multiplied into 𝜎̂𝑛. Here, we introduce two types of 𝐶 factors: 𝐶ℎ  for homogeneous class and 𝐶𝑑  for details class. 129 
These two parameters have to be tuned according to the content of the image. In low signal-to-noise ratio images, e.g., 130 
single-look SAR image, 𝐶ℎ might have a large value. However, if 𝐶ℎ  is too large, the image will be over-smoothed. In 131 
contrast, by increasing the number of looks, speckle in the SAR image decreases. Hence, we can choose a lower value 132 
for 𝐶ℎ. Based on our experiments, for the homogeneous class, the 𝐶ℎ  is in the range between one and three. However, for 133 
details class, 𝐶𝑑   must be chosen below one, in order to preserve the details and perform light noise reduction on them. 134 
    In this paper, we will employ a two-state Gaussian mixture PDF for modeling 𝑝𝑤(𝑤) as 135 
 136 

𝑝𝑤(𝑤) = 𝛼1𝑝1(𝑤) + 𝛼2𝑝2(𝑤) = 𝛼1.
1

𝜎1
2√2

exp (−
𝑤2

2𝜎1
2) + 𝛼2.

1

𝜎2
2√2

exp (−
𝑤2

2𝜎2
2) (5) 137 

 138 
 139 
where 𝜎1 and 𝜎2 denote the standard deviation of Gaussian components 1 and 2, respectively, whereas 𝛼1 and 𝛼2 represent 140 
their corresponding weights. In (5), 𝜎1, 𝜎2, 𝛼1 and 𝛼2 are unknown and should be estimated. For this purpose, we will use 141 
the iterative local Expectation-Maximization algorithm as descried in [12]. Computing the unknown parameters locally 142 
can increase the performance of the despeckling. If the window size is too big, the estimated parameters were closed to 143 
their global value. Based on our experimental results, we used a fixed-size 15 × 15 neighborhood for computing the 144 
parameters of the Gaussian mixture PDF. Because we use mixture PDF, we must use the averaged version of the MAP 145 
estimator (AMAP) [41] to estimate 𝑤̂ from 𝑦. The AMAP estimator can be expressed as 146 
 147 

𝑤̂(𝑦) =
∑ 𝛼𝑖𝑝𝑖𝑤̂𝑖

2
𝑖=1

∑ 𝛼𝑖𝑝𝑖
2
𝑖=1

 (6) 148 

 149 
In the case of Gaussian noise, 𝑤̂ is equal to 𝑤̂𝑖 = (𝜎𝑖

2/𝜎𝑖
2 + 𝜎𝑛

2). 𝑦, 𝑖 = 1,2. Because 𝑦 is the sum of 𝑤 and independent 150 
Gaussian noise, the PDF of 𝑦 is the convolution of two independent Gaussian PDFs with variance 𝜎𝑖

2
 and 𝜎𝑛

2, respectively. 151 

Therefore, 𝑝𝑖  is a Gaussian PDF with variance 𝜎𝑖
2 + 𝜎𝑛

2
 as 1/√2𝜋(𝜎𝑖

2 + 𝜎𝑛
2) exp(−𝑦2/2(𝜎𝑖

2 + 𝜎𝑛
2) ). Substituting 𝑤̂𝑖  and 152 

𝑝𝑖  into (6) yields the following estimator: 153 
 154 

𝑤̂(𝑦) =
(∑ 𝛼𝑖 exp(−𝑦2/2(𝜎𝑛

2+𝜎𝑖
2))2

𝑖=1 𝜎𝑖
2)/√2𝜋(𝜎𝑛

2+𝜎𝑖
2)

3

(∑ 𝛼𝑖 exp(−𝑦2/2(𝜎𝑛
2+𝜎𝑖

2))2
𝑖=1 )/√2𝜋(𝜎𝑛

2+𝜎𝑖
2)

. 𝑦 (7) 155 

 156 
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After denoising the all complex wavelet coefficients based on (7), the inverse UDT-CWT is applied. 157 
 158 

C. Step 2 159 
After despeckling the SAR image in the complex wavelet domain, we proposed to use the LPG-PCA method developed 160 
in [36]. Using the LPG-PCA method can efficiently decrease the undesired artifact that may appear in the homogeneous 161 
areas, as well as enhance the details. In this subsection, we will briefly describe the LPG-PCA method. For more details, 162 
we refer the readers to [36]. Since the remaining noise after taking inverse UDT-CWT is still additive in the log-163 
transformed domain, by considering (1), the noise 𝑁 and the noise-free data 𝑋 assumed uncorrelated. Hence, the 164 
covariance matrix of 𝑍 can be calculated as Σ𝑍 = Σ𝑋 + Σ𝑁, where Σ𝑁  is equivalent to the noise variance (𝜎2). The variance 165 
of the log-transformed speckle can be computed as ψ(1, L) and 0.25 × ψ(1, L) in the intensity and square root intensity 166 
SAR images, respectively, where L represents the number of looks and ψ(1, L) denotes the first-order Polygamma function 167 
of L [42]. In this article, L is computed using an unsupervised method proposed in [43]. Like the smoothing factor defined 168 
in previous subsection, for reaching the better denoising result, we will multiply 𝜎2

 into a positive constant θ. Similar to 169 
the smoothing factor, θ can control the level of noise reduction in the second step of the proposed algorithm. A large θ 170 
causes over-smoothing, while a small θ may not be able to reduce the noise in the SAR image. Based on our experiments, 171 
this parameter could be chosen above 1. In the LPG-PCA method, for a given pixel to be denoised, we considered an M 172 
×M variable block centered on it in which contains all the components within the window, and denoted by  = [𝑧1, . . . , 𝑧𝑚]𝑇

 173 
,𝑚 =  𝑀2 . In a variable block, we have 𝑧 = 𝑥 + 𝑛, where 𝑥 = [𝑥1, . . . , 𝑥𝑚]𝑇 , 𝑛 = [𝑛1, . . . , 𝑛𝑚]𝑇

 . To calculating the 174 
PCA in order to estimate the x, we considered an S × S(S >M) training block around desired pixel. Here, we used a 41 × 175 
41 training block, as well as a 7 × 7 variable block. In this method, selecting and grouping the training samples that are 176 
similar to the central M ×M block is done based on block matching method. The matrix that contains the grouped patches 177 
can be written as 𝑍 = [𝑧1,  𝑧2, . . . ,  𝑧𝑛], where 𝑧𝑘 , 𝑘 =  1, . . . , 𝑛 and 𝑛 =  (𝑆 − 𝑀 + 1)2

 is the 𝑘th column vector of 𝑍. In 178 
the next step, we should centralize the 𝑍 (e.g., 𝑍̅) as 𝑧̅𝑘 = 𝑧𝑘 − 𝐸(𝑧𝑘), where E(.) represents the expectation operation. 179 
After that, the PCA transform is applied on 𝑍̅ and we have Σ𝑍 = 𝑃Λ𝑧̅𝑃𝑇 , where Σ𝑍, 𝑃, and Λ𝑧̅  denote the covariance 180 
matrix of the 𝑍̅, eigenvector, and diagonal eigenvalue matrixes, respectively. By applying 𝑃 to the 𝑍̅, we have 𝑌̅𝑁 = 𝑃𝑇𝑍̅. 181 
Now, the Linear Minimum Mean Square Error (LMMSE) criterion is employed to reduce the noise component in 𝑌̅𝑁  and 182 

obtain 𝑌̂̅ matrix. Finally, by reverse PCA transform and adding the mean values back, 𝑋̂ is obtained. 183 
   Actually, most of the noise were removed in step 1 and step 2. However, we can iterate step 2 one more time to achieve 184 
a better denoising result. It should be noted that in the next iteration, 𝜎2 must be updated as 185 
 186 

𝜎𝑖𝑡𝑒𝑟+1
2 = |𝜎𝑖𝑡𝑒𝑟

2 − 𝐸 [(𝑋̂𝑖𝑡𝑒𝑟 − 𝑋̂𝑖𝑡𝑒𝑟−1)
2

]| 187 
 188 
where 𝜎𝑖𝑡𝑒𝑟+1

2
 is the variance of log-transformed speckle in the next iteration, 𝑋̂𝑖𝑡𝑒𝑟−1 is the estimated log-transformed SAR 189 

image in the previous iteration, and 𝐸[. ] denotes the expectation. It should be noticed here that to prevent the over-190 
smoothing, we multiplied θ into 𝜎2

 only in the first iteration. A block diagram of our proposed despeckling algorithm is 191 
also shown in Fig. 3. It should be noted that due to the use of the logarithmic transformation, the mean of the log-192 
transformed speckle field is biased [44] and it is not equal to zero. Therefore, this biased mean should be corrected by 193 
subtracting the mean value of the log-transformed speckle from the output image of “step 2.” 194 

 195 
Fig. 3. The workflow of the proposed despeckling method. 196 

 197 
III. EXPERIMENTAL RESULTS 198 

    This section presents the results of the performance analysis of the proposed speckle reduction method based on 199 
benchmarking data developed in [45] and two real SAR images (TerraSAR-X from Toronto, and AIRSAR over San 200 
Francisco). For comparison, we used several state-of-the-art despeckling methods. The first one is the iterative 201 
Probabilistic Patch-Based (PPB) [16] despeckling method. The iterative PPB method uses 𝛼 = 0.92, 𝑇 = 0.2, 21 × 21 202 
search window with a patch size of 7 × 7 and 25 iterations. Moreover, the SARBM3D [17] and FANS [18] despeckling 203 
methods were employed. The source codes of the PPB, SARBM3D, and FANS methods are available at [46], [47], and 204 
[48], respectively. For the proposed algorithm, four levels of complex wavelet decomposition were considered. Also, 𝑇𝑝𝑡  205 
and 𝑇𝑑   were equal to 0.25 and 0.65, for benchmarking datasets, as well as 0.5 and 0.78 for Toronto image and 0.5 and 206 
0.85 for San Francisco image, respectively. Furthermore, 𝐶ℎ  , 𝐶𝑑, and θ are considered as 0.3, 1, and 1.5 for benchmarking 207 
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datasets; in addition, these parameters are equal to 0.1, 3, and 1.8 for Toronto image, as well as 0.1, 1, and 1.3 for San 208 
Francisco image, respectively. 209 
 210 

A. Performance Evaluation Using Benchmarking Data 211 
    The benchmarking datasets used in this subsection were available at [49]. In this article, we only used some objective 212 
indicators proposed in [45] for single-look simulated Homogeneous, Digital Elevation Model (DEM), Squares, Corner, 213 
and Building reference datasets and we do not discuss how these datasets were generated or how to compute these 214 
indicators. For this reason, we refer the readers to [45] for more information. The refined version of Equivalent Number 215 
of Looks, referred as ENL*, was considered for Homogeneous image to evaluate the speckle suppression in homogeneous 216 
areas. The coefficient of variation (Cx ) and Despeckling Gain (DG) were used for measuring the texture preservation and 217 
SNR improvement for DEM image. Figure of Merit (FOM) is employed as edge-preserving measuring indicator for 218 
Squares image. The contrast values CNN and CBG are used for evaluating the radiometric preservation through the filtering 219 
process in Corner image. CDR and Building Smearing (BS), which respectively measure the radiometric precision and 220 
distortion of radiometric building profile in the range direction, were used for Building image. In the ideal case, the 221 
computed values for ENL*, DG, and FOM should be a large value; also, computed values for Cx , CNN , CBG, CDR, and 222 
BS should be close to their clean values. As pointed out in [45], the goal of using these measuring datasets is not to find 223 
which method is better than others or which is the best one; nevertheless, it is to gain an insight about the ability and 224 
limitations of despeckling methods. Table I demonstrates the computed indicators for the PPB, SARBM3D, FANS, and 225 
the proposed method. All the results reported in Table I were obtained by averaging the despeckling results over eight 226 
independent single-look images of the same scene. Also, Fig. 4 represents clean, noisy, and despeckled images of each 227 
dataset. In Homogeneous image, our proposed method showed its ability to smooth flat areas. By the visual inspection, 228 
we can find that all methods generated some artifacts, especially in the SARBM3D and FANS outputs. In the DEM image, 229 
SARBM3D gained the nearest value to clean Cx ; also the best value for DG indicator was obtained by SARBM3D over 230 
5 dB, followed by the FANS method. In the case of edge preserving, the PPB and SARBM3D methods have similar 231 
results and were the best. However, appearance of artifacts in flat areas is not deniable in all methods, especially in 232 
theSARBM3D and FANS results. In the case of corner reflector, the best strategy is to avoid perform any filtering on the 233 
detected corner reflector. By investigating the CNN and CBG values, we can find that our proposed method follows this 234 
strategy, as shown in Fig 4. Also, the SARBM3D and FANS methods provide acceptable results, except the PPB method 235 
which has lower CNN and CBG values. At the end, by investigating the CDR and BS values, we can find that our proposed 236 
method has good performance to preserved building features. 237 
 238 
 239 
 240 
 241 
 242 
 243 
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 244 
Fig. 4. From top to bottom, Homogeneous, DEM (256 × 256 zoomed area), Squares, Corner (128 × 128 zoomed area), and Building images, 245 

respectively. From left to right, clean, noisy, PPB, SARBM3D, FANS, and proposed method despeckling results, respectively. 246 
 247 

TABLE I 248 
PERFORMANCE COMPARISON ON THE BENCHMARKING DATASETS 249 

 Clean PPB SARBM3D FANS Proposed 

Hom. ENL* 510.36 141.01 111.91 161.15 339.90 

DEM 
Cx 2.40 2.71 2.43 2.55 2.85 

DG Inf 3.68 5.32 4.99 3.64 

Squ. FOM 0.926 0.819 0.818 0.799 0.797 

Cor. 
CNN 7.75 3.71 7.39 7.05 7.75 

CBG 36.56 32.70 35.45 35.37 37.14 

Build. 
CDR 65.90 64.90 65.91 65.66 64.44 

BS 0.00 3.13 1.46 3.51 0.58 

 250 
 251 

B. Performance Evaluation Using Real SAR Data 252 
    The two real SAR images used in this subsection for performance evaluation are TerraSAR-X image of Toronto, 253 
Canada, 1-meter resolution, and AIRSAR L-band from San Francisco, USA, 10-meter resolution. These SAR datasets 254 
are in amplitude format for HH and VV polarization, respectively. The number of looks (L) of these datasets is considered 255 
to be about one and four for Toronto and San Francisco images, respectively. These datasets are presented in Fig. 5. To 256 
make a quantitative comparison, some numerical non-referenced indexes were used in this subsection, including 257 
Equivalent Number of Looks (ENL), Edge-Preservation Degree based on Ratio of Average (EPDROA), and Mean of 258 
Ratio image (MoR). The ENL is widely used to evaluate the speckle suppression in homogeneous areas. For the SAR 259 
image in amplitude format, the ENL can be computed as (4/𝜋 − 1)  ×  (𝜇/𝜎)2

 [44], where 𝜇 and 𝜎 are mean and standard 260 
deviation values computed from a homogeneous area. The higher value of ENL represents the much speckle suppression. 261 
The EPD-ROA indicator can be computed as [50] 262 
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 263 

𝐸𝑃𝐷 − 𝑅𝑂𝐴 =
∑ |𝐼𝑆1(𝑖)/𝐼𝑆2(𝑖)|𝑁

𝑖=1

∑ |𝐼𝐼1(𝑖)/𝐼𝐼2(𝑖)|𝑁
𝑖=1

 264 

 265 
where 𝐼𝑆1 and 𝐼𝑆2  represent the adjacent pixel values of the despeckled image along horizontal or vertical direction, 266 
whereas 𝐼𝐼1  and 𝐼𝐼2  denote the corresponding adjacent pixel values of speckled image, respectively. In the ideal case, the 267 
EPD-ROA index is close to one and its value closer to one shows better edge preservation ability. The MoR between the 268 
SAR image before and after despeckling indicates the capability of the despeckling method for radiometric preservation, 269 
and in the ideal case, it should be equal to one. The results of despeckling of these two datasets are shown in Fig. 5. Also, 270 
Table II shows the computed values for various despeckling methods, regarding ENL and EPD-ROA in both horizontal 271 
and vertical directions and MoR. Among all despeckling methods, our proposed method achieves the better results, in 272 
terms of speckle reduction in homogeneous areas, while preserving the point targets and details. Also, Fig. 6 represents 273 
the zoomed area of Toronto image. By visual comparison of these figures, we can find that the SARBM3D method can 274 
preserve the details at the expense of poor speckle reduction in flat areas. The performance of the FANS method is better 275 
than the SARBM3D method, but it is still not the best. As the PPB method has effective speckle suppression and details 276 
preserving, it smoothed out some point targets, due to using a non-local approach, as can be seen from Fig. 6. Based on 277 
this figure, we observe that the proposed method has the best point targets preserving, while at the same time, the 278 
homogeneous areas are smooth and details are preserved. Also, with the analysis of MoR values, we can say that our 279 
proposed method has good ability to avoid radiometric distortion. As a result, we can say that our proposed method has 280 
a worthy performance in speckle suppression in homogeneous areas, while it preserves the point targets and details. 281 
    To evaluate the computational complexity of the despeckling methods, all the despeckling codes were executed on a 282 
PC with Intel Core i3-3220 CPU, 3.30 GHz, and 8 GB RAM. Also, the Toronto image (320 × 320) is employed for 283 
execution time comparison. The execution time of the methods was approximately around 108, 35, 4, and 92 s for the 284 
PPB, SARBM3D, FANS, and the proposed method, respectively. The FANS method have the fastest execution time, due 285 
to using variable-size search area, as well as probabilistic early termination approach and employing look-up tables. 286 
Although the PPB and the proposed method use non-local approach, their execution time is acceptable. However, the 287 
SARBM3D method is faster than the PPB and the proposed method. It should be noted that the proposed algorithm can 288 
achieve a better tradeoff between speckle reduction in homogeneous areas while preserving details and performing no-289 
filtering on the point targets among others. 290 
 291 

 292 
Fig. 5. Results obtained from real SAR images (first row, Toronto (L=1) and second row, San Francisco (L=4)). From left to right, real SAR image, 293 

PPB, SARBM3D, FANS, and proposed method despeckling results, respectively. 294 
 295 

 296 
Fig. 6. The zoomed area images. From left to right, real SAR image, PPB, SARBM3D, FANS, and proposed method, respectively. 297 

 298 
TABLE II 299 

ENL, EPD-ROA, AND MOR VALUES 300 
Results with Toronto 
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Despeckling 

Methods 

ENL EPD-ROA 
MoR 

Zone 2 Zone 1 H V 

PPB 30.933 19.148 0.6693 0.6858 0.863 

SAR-BM3D 6.375 5.534 0.6726 0.6893 0.873 

FANS 20.166 15.175 0.6640 0.6816 0.856 

Proposed 45.894 47.842 0.6775 0.6948 0.995 

Results with San Francisco 

Despeckling 

Methods 

ENL EPD-ROA 
MoR 

Zone 2 Zone 1 H V 

PPB 111.224 73.959 0.9441 0.9368 0.959 

SAR-BM3D 24.008 13.514 0.9457 0.9311 0.955 

FANS 73.507 27.970 0.9359 0.9171 0.952 

Proposed 239.617 291.722 0.9617 0.9473 0.964 

 301 
 302 

IV. CONCLUSION 303 
    This paper proposed a hybrid speckle reduction method for SAR images. The idea in this article was to combine the 304 
complex wavelet shrinkage and non-local filtering. Also, to achieve a heterogeneous-adaptive despeckling, a 305 
classification stage was added to the algorithm. Experimental results showed that the proposed method provides both 306 
effective speckle reduction in homogeneous areas and details preservation altogether. However, due to using UDT-CWT 307 
and non-local approach, our proposed method is relatively time-consuming. Furthermore, a few parameters in our method 308 
have to be optimally tuned to achieve the best results, which will be the subject of further research works on advanced 309 
optimization approaches. 310 
 311 
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