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[1] General circulation models (GCMs) are the primary instruments for obtaining projections
of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical
downscaling techniques, have long been used to simulate changes in regional climate systems
over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements
between the various GCMs and between the different downscaling methods designed to
compensate for the mismatch between climate model output and the spatial scale at which
hydrological models are applied. Very little is known, however, about the importance of these
differences once they have been input or assimilated by a nonlinear hydrological model. This
issue is investigated here at the catchment scale using a process-based model of integrated
surface and subsurface hydrologic response driven by outputs from 12 members of a
multimodel climate ensemble. The data set consists of daily values of precipitation and min/
max temperatures obtained by combining four regional climate models and five GCMs. The
regional scenarios were downscaled using a quantile scaling bias-correction technique. The
hydrologic response was simulated for the 690 km2 des Anglais catchment in southwestern
Quebec, Canada. The results show that different hydrological components (river discharge,
aquifer recharge, and soil moisture storage) respond differently to precipitation and
temperature anomalies in the multimodel climate output, with greater variability for annual
discharge compared to recharge and soil moisture storage. We also find that runoff generation
and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in
climate data. Finally, the results show the significant impact of changing sequences of rainy
days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil
moisture spatial variability.
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1. Introduction
[2] There have been many studies in recent years exam-

ining impacts of climate change on water resources over a
range of scales [e.g., Arora and Boer, 2001; Caballero
et al., 2007; Maxwell and Kollet, 2008; Chiew et al.,
2009; Ferguson and Maxwell, 2010; Brolsma et al., 2010]
and the uncertainty in climate projections at global and re-
gional scales [e.g., Giorgi and Raquel, 2000; Pan et al.,
2001; Déqué et al., 2007; de El�ıa et al., 2008; Mujumdar
and Ghosh, 2008; Murphy et al., 2004]. Because different

climate models exhibit varying levels of performance over
different regions and for different climatic variables, one
way to study uncertainty is to consider results from multiple
climate models. This multimodel ensemble approach com-
bines information provided by a collection of different mod-
els of similar structure and complexity [Krishnamurti et al.,
1999; Hagedorn et al., 2005; Luo et al., 2007; Haddeland
et al., 2011]. An implicit assumption of this approach is that
multiple models that encompass different process parame-
terizations and schemes lead to more consistent and reliable
information by reducing the characteristic biases and uncer-
tainties of any individual model [Knutti et al., 2010].

[3] To investigate the range of possible climate change
impacts on available water resources at the catchment
scale, the ensemble of projections can be widened further
by including different greenhouse gas emission scenarios,
by implementing different downscaling techniques, and by
forcing one (or more) hydrological models with the result-
ing atmospheric forcing outputs. In this framework, Wilby
and Harris [2006] used a water balance model (CATCH-
MOD) and a multiple linear regression model to explore
uncertainty in future low flows for the River Thames. In
that study, the ensemble was obtained by combining infor-
mation from four general circulation models (GCMs), two
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emission scenarios, and two statistical downscaling techni-
ques. Similarly, Manning et al. [2009] forced the CATCH-
MOD model with an ensemble of model integrations
represented by 11 regional climate models (RCMs) and
two GCMs. In this case, the regional climate data were fur-
ther downscaled through a stochastic weather generator.
Christensen and Lettenmaier [2007] forced the variable
infiltration capacity macroscale hydrological model (which
in turn forced the Colorado river reservoir model) with an
ensemble of 11 downscaled GCM members for two emis-
sion scenarios. The aim of that study was to evaluate the
influence of the streamflow variability on the water resour-
ces management system of the Colorado river basin. A mul-
timodel approach was also used by Bastola et al. [2011]
through the combination of multiple emission scenarios,
GCMs, and conceptual rainfall-runoff models to quantify
uncertainty in streamflow projections for four study basins in
Ireland. J. Chen et al. [2011] considered the entire cascade of
uncertainties with respect to different features of the hydro-
graph response (average, peak, and low flow values) for a Ca-
nadian watershed. In that study, the overall uncertainty was
accounted for by combining results from an ensemble of six
GCMs, five GCM initial conditions, two emission scenarios,
four downscaling techniques, three hydrological model struc-
tures, and 10 sets of hydrological model parameters. Majone
et al. [2012] analyzed in detail streamflow time series gener-
ated by a semidistributed hydrological model driven in turn
by an ensemble of six RCMs. The focus of their work was to
address water resources management for the Gállego river
basin in Spain under uncertain future climate conditions.
Recently, multiple climate model combinations have also
been considered for quantifying uncertainty in future projec-
tions of subsurface water volumes and fluxes. For example,
Goderniaux et al. [2009] used climate time series generated
by six RCMs to force a detailed surface-subsurface coupled
model to estimate groundwater reserves for a mesoscale ba-
sin in Belgium. Allen et al. [2010] investigated the variability
in recharge fluxes simulated by a one-dimensional (1-D)
model driven with climate time series downscaled from four
GCMs. Eight GCM-RCM combinations downscaled using
three statistical methods were used by Stoll et al. [2011] to
illustrate the range of recharge fluxes and hydraulic head
fluctuations projected by an integrated hydrological model.

[4] Although the previous studies presented strategies for
obtaining reliable projections of water resources availability
considering information from different climate models, they
do not investigate in detail the significance of multimodel
differences on the integrated and distributed hydrological
response at the catchment scale. With studies to date focused
on analyses of a single state variable (e.g., river discharge or
aquifer recharge), the interdependence between hydrological
components in propagating multimodel climate anomalies
over different temporal scales has not been examined. In
addition, there are other facets of multimodel climate outputs
that have been given little attention, such as the influence of
a changing precipitation distribution on the physical mecha-
nisms controlling the catchment response, the importance of
wet spell lengthening on the recharge response, and the
effect of longer dry periods on soil moisture dynamics.

[5] In this context, we present an assessment of the prop-
agation of uncertainties in climate change signals in a
physically based surface-subsurface coupled hydrological

model. The uncertainty originates from 12 ensemble mem-
bers which are derived from combinations of four RCMs
and five GCMs. The climate model simulations contain
uncertainties associated to structural errors as well as natu-
ral variability in the climate system. The RCM scenarios
were further downscaled using a quantile scaling bias-cor-
rection technique that, rather than applying a correction
only to the mean, forces the cumulative distribution func-
tions of the control simulations of daily temperature and
precipitation to match the observed distributions. The same
corrections were then applied to RCM time series for the
future. The hydrologic response of the selected study site,
the des Anglais catchment in southwestern Quebec,
Canada, is highly dependent on the amount and timing of
seasonal snow accumulation and melt [Sulis et al., 2011],
and is thus vulnerable to climate changes in temperature
and precipitation. The model used in this study, the catch-
ment hydrology (CATHY) physically based groundwater-
surface water model [Camporese et al., 2010], generates
detailed output on surface and subsurface water volumes
and is well suited to investigating the propagation of pre-
cipitation and temperature anomalies from multimodel en-
semble members into river discharge, aquifer recharge, and
soil storage response variables.

2. Data and Methods
2.1. Study Site

[6] The des Anglais river basin (Figure 1) has a drainage
area of 690 km2 and an average discharge of 300 � 106 m3

yr�1 at its outlet. It is the largest subcatchment of the trans-
boundary Chateauguay River watershed, and has an eleva-
tion range from 30 to 400 m. Vegetation communities
within the catchment consist of 47% cropland (mainly,
corn and soy), 37% deciduous forest, and 16% coniferous
forest [Lamontagne and Nastev, 2010]. The bedrock con-
sists of Cambrian to Middle Ordovician sedimentary rock
and is overlain by unconsolidated sediments of glacial and
postglacial origin (Wisconsinan period and Champlain sea
event). These sediments are in turn overlain by quaternary
deposits of silty till, compact and dense at the base and
reworked and more permeable above [Tremblay et al.,
2010].

[7] The study area belongs to the Great Lakes and St.
Lawrence climate region, characterized by a semihumid cli-
mate with cold winters and humid summers. The annual
mean temperature is 6.3�C, with monthly variations from
�10�C in January to 20�C in July (Environment Canada,
Canadian Daily Climate Data, 2004, http://climate.weather
office.ec.gc.ca) and frost conditions from mid-November to
the end of March. The average annual precipitation is
958 mm, relatively uniformly distributed within the water-
shed, with snowfall prevalent from December to March
when temperatures are below 0�C.

2.2. Climate-Forcing Data

[8] Climate projections of extreme temperature and total
precipitation for past and future conditions are derived from
two sources. Most of the ensemble members used are those
provided by the North American Regional Climate Change
Assessment Program (NARCCAP), which produces simula-
tions generated by a set of RCMs on a common period and
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domain [Mearns et al., 2009]. For the study site considered
in this work, the NARCCAP archive provides data sets
from four RCMs and four GCMs (the Canadian RCM
(CRCM); the Met Office Hadley Centre’s Hadley Regional
Model 3 (HadRM3); the National Center for Atmospheric
Research (NCAR)/Pennsylvania State University mesoscale
model 5 MM5; the Abdus Salam International Center for
Theoretical Physics’ RCM Version 3 RegCM3; the Cana-
dian Climate Centre CGCM3 model; the Geophysical Fluid
Dynamics Laboratory (GFDL) CM model; the Hadley
Centre HadCM3 model; and the NCAR CCSM3 model). In
addition to the NARCCAP data set, we also considered sim-
ulations obtained by nesting the CRCM model [Music and
Caya, 2007] with both the Meteo France CNRM-CM3
[Gibelin and Déqué, 2003] and Max-Planck Institut of

Meteorology ECHAM5 [Jungclaus et al., 2006] global
models. The list of models, available past and future simula-
tion periods, and RCM/GCM pairings is given in Tables 1
and 2. The simulations of past climate follow historical
greenhouse gas and aerosol concentrations while the future
simulations are based on concentrations from the SRES A2
scenario [Nakicenovic et al., 2000]. To facilitate the com-
parison of climate models, their outputs were regridded to a
common spatial grid of about 50 km resolution (Figure 1)
by using an inverse distance-weighted interpolation method
that considers just the neighboring points whose grid cells
overlap the catchment area. In addition, the same time slice,
i.e., 1971–1995 for the past and 2041–2065 for the future,
was used for all analyses. The comparison of simulated data
(by the RCMs) with observations for the historical period

Figure 1. Topographic map of the des Anglais catchment showing the network of weather stations.
The inset plot shows the centroids of the RCM grid with their Thiessen polygons and the location of the
study area within the Chateauguay river basin.
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was made based on daily data of total precipitation and
extreme temperature from 19 Environment Canada stations
located inside the RCM grid cells (Figure 1).

[9] Uncertainties in climate change predictions at regional
scale stem from the greenhouse gas scenarios, from the use
of different GCMs and/or RCMs (referred to as intermodel
variability), and from the predictions themselves (different
realizations of a given scenario with a given GCM, referred
to as internal model variability or natural climate variabili-
ty). The available multimodel data set provides a good op-
portunity to investigate the relative contributions of some of
these sources of uncertainty and variability. Indeed, it is pos-
sible to evaluate the second and third sources by comparing
(1) the climate change responses of the same RCM forced
by different GCMs; (2) the responses of different RCMs all
forced by common boundary data from a single GCM; and
(3) the responses of the same RCM driven by five ensemble
members representing different initial conditions of the same
GCM (see Table 3). It is important to note that because sam-
ple sizes are rather small, these enable only an approximate
comparison of uncertainties, and should be interpreted as de-
scriptive rather than quantitative. That is, a more detailed
analysis would require data from an experiment set wherein
one (or more) RCMs have been forced by a larger and more
representative sample of GCMs. Examples along this line
are provided by Déqué et al. [2007] and Kaufman and Sain
[2010].

[10] Figures 2 and 3 illustrate the relative seasonal var-
iations between future and past model simulated values of
mean air temperature and total precipitation. The results
are grouped to demonstrate the different sensitivity to
each source of uncertainty. In the case of temperature
(Figure 2), the results show that the spread for each source

is larger during the winter and spring and is relatively
small in the summer and fall. Figure 2 also indicates that
in winter the uncertainty due to internal or natural climate
variability is larger than that arising from the GCM and
RCM formulations and is similar to that in the other sea-
sons, with the exception of spring when GCM uncertainty
can be substantial. RCM uncertainty remains fairly con-
stant through the four seasons, and is somewhat smaller
than the uncertainty due to natural climate variability and
GCM formulation.

[11] In the case of total precipitation (Figure 3), the spread
for each source of uncertainty is substantially larger than that
found for temperature. This reflects the more complex physi-
cal processes and interactions involved in precipitation phe-
nomena, leading to a higher level of natural variability and
higher degrees of uncertainty in model parameterizations of
precipitation. From Figure 3, it is also apparent that this larger
spread leads to stronger intraannual variability, with summer
variations having different magnitude and sign. Moreover,
the three sources of uncertainty seem to contribute about
equally through the seasons, with natural variability being
somewhat less significant in the fall.

2.3. Bias Correction Method

[12] The multimodel data set described in the previous
section provides the possibility to force a hydrological model
with meteorological variables that have already been dynam-
ically downscaled. However, even time series with a high
spatial resolution are still biased. A variety of methods can
be used to account for this systematic mismatch between
observed and simulated climate variables over a considered
control period [Anandhi et al., 2011; Stoll et al., 2011]. In
this study, following the methodology of Mpelasoka and
Chiew [2009], we implemented the daily translation method
that has been shown to perform as well as more sophisticated
statistical downscaling methods [Themeßl et al., 2011] and
to be skillful in other hydrologic impact studies [Wood et al.,
2004; Maurer and Hidalgo, 2008].

[13] In this transfer scheme, a quantile scaling technique
is used to establish a relationship for the control period
between observed and RCM-simulated daily values at the

Table 1. List of Climate Models

Institution RCM GCM Simulation Period

Canadian Centre for Climate Modeling and Analysis, Canada CRCM CGCM 1961–2000/2041–2070
Max Planck Institute for Meteorology, Germany ECHAM5 1961–2000/2041–2070
Météo France-Centre Nationale de Recherches Météorologiques, France CNRM-CM3 1961–2000/2041–2070
International Center for Theoretical Physics, Italy RegCM3 1968–1995/2038–2065
Hadley Center for Climate Prediction and Research, U. K. HadRM3 HadCM3 1968–2000/2038–2070
GFDL, USA GFDL 1971–2000/2041–2070
NCAR, USA MM5I CCSM 1971–2000/2041–2070

Table 2. IDs for the Climate Model Combinations Used in This
Study

ID Combination

1 CRCMþCGCM(1)
2 CRCMþCGCM(2)
3 CRCMþCGCM(3)
4 CRCMþCGCM(4)
5 CRCMþCGCM(5)
6 CRCMþCNRM-CM3
7 CRCMþECHAM5
8 RegCM3þCGCM(4)
9 HadRM3þHadCM3
10 RegCM3þGFDL
11 CRCMþCCSM
12 MM5IþCCSM

Table 3. Summary of the Three Selected Sources of Uncertainty

Source of Uncertainty Data Used

Internal or natural
variability

One RCM forced by different
members of the same GCM

GCM formulation One RCM forced by different GCMs
RCM formulation One GCM driving different RCMs
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different ranks/percentiles defined by interpolating directly
from the empirical cumulative distribution function for
each time series. Then, assuming that the biases are station-
ary in time, this relationship (additively for temperature
and multiplicatively for precipitation) is separately applied
for each of the 12 months to translate the future climate
model data. For the case of precipitation, the quantile scal-
ing technique reads as

Pf
i;j;k¼Pmf

i;j;k

Pobs
j;q

Pmc
j;q

; i¼ 1;2; . . . ;31 ; j¼ 1;2; . . . ;12 ; k ¼ 1;2; . . . ;25

(1)

where Pf and Pmf are the future scaled and the future model
projected precipitation values for day i, month j, and year k
and Pmc and Pobs are the past model simulated and
observed precipitation values for month j and quantile q.
The advantage of this approach over the anomaly (delta)
method is that the future series are independent of each

other, thereby reflecting the differences in variability in
future climate sequences. The series of an ensemble created
using the anomaly method would all be based on the same
observational time series, on which slightly different
correction factors are applied. The main drawback of using
a quantile scaling approach, on the other hand, is that it
excludes a decrease in the number of dry days with respect
to the control period.

2.4. Climate Change Indicators

[14] The projected signal as simulated by the bias-corrected
(using equation (1)) multimodel ensemble data set was first
evaluated in terms of the relative variation between future and
past conditions of the monthly and yearly average values of
mean temperature and total precipitation; the results are
shown in Figures 4 and 5. In the case of temperature, the en-
semble members predict a consistent increase of the yearly
averaged mean temperature ranging from 2.0 to 3.2�C. On a
monthly basis, instead, slightly larger differences were found
between the ensemble members, with some of them projecting

Figure 2. Projected climate change anomalies in seasonal mean temperature for the different sources
of uncertainty described in Table 3. Values are computed as differences between 2041–2065 and 1971–
1995 values.
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a lower temperature increase. This is especially true in late
winter and early spring for the case of CRCMþCNRM-CM3,
CRCMþECHAM5, and RegCM3þCGCM, and in late fall
and early winter for RegCM3þGFDL and MM5IþCCSM. In
the case of total precipitation, the ensemble members project
a consistent increase in the yearly averaged values from 5%to
16%. On a monthly scale, the differences in model projections
vary from month to month, with the largest ones (in terms of
magnitude and direction of the variation) found in late winter
and summer; see for instance, the case of CRCMþCGCM(4)
and CRCMþCCSM in February, and that of RegCM3þ
CGCM and MM5IþCCSM in July.

[15] In addition to the assessment of the average values,
two more indicators describing important facets of climate
change, i.e., changes in annual and monthly extreme values
of temperature and precipitation, were also calculated.
These indicators, initially proposed by Baettig et al. [2007]
for an assessment of climate change at a global scale, are
used here to provide a quick assessment of the agreement
or disagreement between future extreme model projections

for the des Anglais river basin. The indicators are calcu-
lated by determining the probability of occurrence within
the future projections of those events that, within the
control period, have a given frequency (e.g., once in
20 years). Thus, the procedure consists in fitting a cumulative
density function to the data of the control period and into
those projected by the climate models. Then, the exceedance
probability of the quantile corresponding to the 95th (and 5th)
percentile of the control period is calculated under the future
scenario. A sketch of the procedure, which is performed on a
yearly and monthly basis for the mean temperature and the
total precipitation, is shown in Figure 6. For the probability
calculation, temperature data were assumed to be normally
distributed, whereas precipitation data were assumed to be
gamma distributed, with parameters evaluated using maxi-
mum likelihood estimates.

[16] In the case of temperature, values between 0 and 19
in Figure 7 express, relative to the control period, additional
extreme hot years and months over a 20-year future period.
In the case of total precipitation (Figure 8), we calculated

Figure 3. Projected climate change anomalies in seasonal mean precipitation for the different sources
of uncertainty described in Table 3. Values are computed as ratios between 2041–2065 and 1971–1995
values.
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the future additional occurrence of both the driest and wet-
test years and months of the reference period (the low and
high tails of the distribution shown in Figure 6).

[17] Figure 7 shows that annual mean temperature is
predicted to experience a remarkable change. That is, the
hottest year that occurs once in 20 years over the reference
period will be the norm over the future period for all the
ensemble members. In addition, for most of the climate
models extreme monthly temperature events will undergo a
noticeable increase. Despite agreement between models in
terms of sign of the expected variation, Figure 7 also clearly

shows sensible differences (for certain months) in the mag-
nitude of predicted changes. For instance, a warm event that
occurred once in 20 years in the reference period will occur
over the future period from 2 (CRCMþECHAM5) to 15.8
(CRCMþCGCM(2)) additional times in April, or from 2.1
(CRCMþCCSM) to 17.0 (CRCMþCGCM(5)) additional
times in December. Differences between ensemble mem-
bers seem to be damped in the summer months.

[18] Compared to temperature, variations in annual pre-
cipitation are less pronounced. In Figure 8, positive values
indicate more wet events while negative values denote more

Figure 4. Difference between future and past-averaged values of mean temperature. Values are
expressed in degree Celsius.
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dry events. On a yearly basis, all models agree in predicting
a wetter future climate, with the wettest year in 20 years of
the reference period occurring up to eight additional times
(CRCMþCGCM(2)) in the future period. An analysis on a
monthly basis indicates that model projections show a gen-
eral drying in summer (especially in July and August) and
an increase in total precipitation in late fall and winter. In
addition, Figure 8 shows that the precipitation change
patterns vary in several months of the year for the different
ensemble members. For instance, CRCMþCGCM(2) pre-
dicts the occurrence of five additional extremely wet events
in March over 20 years, whereas for the same month

RegCM3þCGCM(4) predicts the occurrence of 4.5 addi-
tional extremely dry events.

[19] The use of indicators based on the calculation of
mean and extreme values demonstrates that marked differ-
ences between ensemble members should be expected.
These differences mainly concern the interannual variabili-
ty of mean temperature and total precipitation. As demon-
strated for other study areas, these differences may produce
substantial impacts on the accumulation and melting dy-
namics of snow in winter and spring [Van Rheenan et al.,
2004] and on the structure of storm and interstorm periods
in summer and fall [Heinrich and Gobiet, 2011]. The

Figure 5. Relative fractional change between future and past-averaged values of total precipitation.
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indicators also show an occurrence of higher temperature
periods along with more wet or dry events.

2.5. Hydrological Model

[20] CATHY is a coupled, physically based, spatially dis-
tributed model for surface-subsurface simulations [Camporese
et al., 2010]. The model is based on resolution of a 1-D diffu-
sion wave approximation of the Saint-Venant equation for
overland and channel routing nested within a solver for the
three-dimensional equation for subsurface flow in variably
saturated porous media (i.e., Richards’ equation). The rout-
ing scheme derives from a discretization of the kinematic
wave equation based on the Muskingum-Cunge or matched
artificial dispersivity method. Surface runoff is propagated
through a 1-D drainage network of rivulets and channels auto-
matically extracted by a digital elevation model (DEM) -based
preprocessor and characterized using hydraulic geometry
scaling relationships. The distinction between overland and
channel flow regimes is made using threshold-type relation-
ships based on, for instance, upstream drainage area criteria
[Montgomery and Foufoula-Georgiou, 1993]. The subsurface
solver is based on Galerkin finite elements in space, a
weighted finite difference scheme in time, and linearization
via Newton or Picard iteration [Paniconi and Putti, 1994].

[21] A boundary condition-switching procedure is used to
partition potential (atmospheric) fluxes into actual fluxes
across the land surface and changes in surface storage. This
scheme resolves the coupling term in the CATHY equations
that represents the interactions between surface and subsur-
face waters. The switching procedure distinguishes four pos-
sible states for a given surface node: ponded, saturated,
unsaturated, and air dry. The distinction between ponded
and saturated states is based on a threshold parameter that
represents the minimum water depth before surface routing
can occur (the threshold would be zero, for instance, for per-
fectly smooth surfaces and higher for increasingly rough
surfaces). An air-dry state is the evaporative analog to rain-
fall saturation in triggering a switch from an atmosphere-
controlled process (and a Neumann boundary condition in
the model) to a soil-limited stage (and a Dirichlet condition).

[22] The model setup for the des Anglais catchment is
described in detail in Sulis et al. [2011]. We used a constant

lateral spatial discretization (�x ¼ �y) of 360 m and a ver-
tical discretization (�z) of 10 layers that are progressively
thicker from top to bottom. The parameterization of the
surface hydraulic geometry (and scaling exponents) and of
the subsurface hydraulic conductivity and other soil proper-
ties was achieved by calibrating and validating the model
against discharge and groundwater level data over a period
of 4 years.

3. Results
[23] The multimodel hydrological responses for the des

Anglais river basin were obtained by running on a daily
time scale the CATHY model with the past atmospheric
data set (1971–1995) and the future data set (2041–2065),
both obtained through the bias correction method described
in the previous section. The analysis examines in detail,
over several temporal scales and for each ensemble mem-
ber indicated in Table 2, the propagation of precipitation
and temperature anomalies into river discharge, aquifer
recharge, and near-surface (0–90 cm depth) soil water-stor-
age responses.

3.1. River Discharge

[24] The sensitivity of river discharge was assessed at the
main outlet of the catchment. Figure 9 shows the relative
annual changes in river discharge for each member of the
ensemble. The changes vary from �18% to 11% with 8 out
of 12 members, predicting reduced runoff for the future pe-
riod. These differences illustrate the complex hydrodynamic
response at the catchment scale that results from temporal
integration of climate variability from month to year. That
is, although on an annual basis climate models experience
broadly the same variations in terms of total precipitation
and mean temperature (see Figures 4 and 5), their differen-
ces (especially, for precipitation) on an intraannual basis
produce yearly variations of river discharge that are not con-
sistent with each other. This is apparent, for instance, in
comparing the CRCMþCGCM(4) and CRCMþECHAM5
results; the increase in total precipitation occurring for both
models with the same magnitude on a seasonal basis seems
to be completely offset by a larger increase in temperature
in the CRCMþCGCM(4) model. The differences between

Figure 6. Illustration of the approach used to calculate the indicators of climate extremes for (left)
temperature and (right) total precipitation.
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simulation results in Figure 9 also illustrate the level of
uncertainty in annual river discharge associated with natural
climate variability (first five bars in the plot). This source of
uncertainty is usually not considered very significant rela-
tive to other sources (such as interscenario and intermodel
uncertainty), but the results obtained here show clearly that
it can be quite important when the catchment response is
strongly controlled by snow accumulation and melt [Deser
et al., 2010].

[25] From an impacts perspective, changes in the tempo-
ral variability and extremes of the hydrological cycle may

be more important than changes in mean behavior. We
adopted a conventional and simple approach based on cli-
mate extreme indicators to provide useful information con-
cerning changes in extremes. Figure 10 shows the percentage
of days in the future climate with a discharge lower than the
first decile of present-day daily discharges. For most of the
members, a value between 10% and 25% was obtained, indi-
cating that the frequency of occurrence of low flows in the
future climate more than doubles for certain members. The
sign of the changes in low-flow occurrence is consistent
among the different members of the ensemble. The same

Figure 7. Temperature-related indicators of climate extremes. Values represent additional number of
hottest months and years in 20 years.
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trend was observed on a monthly basis (results not shown)
over most of the year apart from a stronger increase in low-
flow conditions in summer and late fall for the 4th, 5th, and
11th ensemble members. Note that this behavior is consistent
(especially for the fourth and fifth members) with the informa-
tion portrayed in Figures 7 and 8 using the temperature and
precipitation climate change indicators previously described.

[26] Figure 11 shows the ratio of the 90th percentile of
daily discharge between future and past climate. The value
of the 90th percentile increases for 4 of the 12 ensemble
members. It can be seen that the sign of the changes in this

upper tail of the discharge distribution are consistent with
those in the annual total shown in Figure 9. That is, we
should expect that climate change will not only simply
induce a shift in the mean but also a modification in the shape
of the discharge distribution. This explains why some combi-
nations (2nd, 7th, 10th, and 12th members) exhibit both an
increase in high flow intensity (Figure 11) and an increased
occurrence of low-flow conditions (Figure 10).

[27] Additional insights on the hydrological impacts of
climate change can be gleaned by examining the variation
in the physical mechanisms that control the catchment

Figure 8. Precipitation-related indicators of climate extremes. Values represent additional number of
wettest (positive) or driest (negative) months and years in 20 years.
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response. We examined the runoff generation process over
the summer season (June to August), assessing the varia-
tion of total saturated area and its partitioning between the
Dunne and Horton mechanisms. The analysis was per-
formed on a daily basis by counting the number of times that
each unsaturated surface node became saturated. The dis-
tinction between Dunne and Horton runoff is made by
checking the vertical profile of pressure head. As shown in
Figure 12, most of the models agree in predicting a decrease
in total saturated area, most likely related to the decrease in
net cumulative precipitation falling on the catchment. Larger
differences between ensemble members are seen in predict-
ing the occurrence of Dunne and Horton runoff events: dif-
ferences in the former reflect differences in the monthly
cumulative precipitation values, whereas differences in the
latter follow more closely changes in the precipitation inten-
sity. Indeed, as Hortonian runoff is triggered by precipitation
events that are above a certain threshold (the saturated hy-
draulic conductivity of the soil at the land surface), the
results shown in Figure 12 suggest that the ensemble climate

models are projecting precipitation fields that have sensibly
different distributions. The greater uncertainty in Horton and
Dunne runoff patterns has direct implications for the fre-
quency and strength of future floods, since overland flow is
the primary component of most flood hydrographs.

3.2. Recharge to the Aquifer

[28] Recharge is computed in the CATHY model as the
downward flux of water across the water table. Nodal
recharge values were spatially cumulated and temporally
averaged to obtain mean daily values for the past and future
periods. These daily values were integrated on a yearly ba-
sis and then averaged for each of the past and future simula-
tion periods. Figure 13 shows the relative change in average
annual recharge for the 12 ensemble members. The percent-
age variations range from 4% for CRCMþCGCM(4) to
�15% for HadRM3þHadCM3. It is apparent from this fig-
ure that the infiltration process and the travel time through
the subsurface significantly dampen the precipitation signal.
The ensemble members produce a smoother and more con-
sistent recharge response compared to the river discharge
response shown in Figure 9, with 11 out of 12 members pro-
jecting a decrease in annual groundwater recharge for the
future despite the fact that 4 out of 12 members predicted an
increase in annual total river discharge. Unlike the more
rainfall event-driven stream discharge response, the intraan-
nual variability in annual recharge is mainly driven by sea-
sonal anomalies occurring during the recharge periods for
the St. Lawrence climate region, specifically spring and fall.

[29] It is instructive to examine in more detail the differ-
ences between the two extreme members in Figure 13,
CRCMþCGCM(4) and HadRM3þHadCM3. For these two
climate models, a difference of 5% in annual total precipi-
tation translates to a 20% difference in annual aquifer
recharge. From Figure 5, it is apparent that this effect is
due to the combination of more snowfall in February (and
hence an increase in snowmelt in early spring) for the first
model and less rainfall in September and October for the
second model. In addition, there are significant structural
differences in the precipitation fields generated by the two

Figure 9. Relative change in annual river discharge
between the 2041–2065 and 1971–1995 periods.

Figure 10. Percentage of days in the 2041–2065 period
with a discharge lower than the first decile of daily dis-
charge computed on the control period.

Figure 11. Relative change in the 90th quantile of daily
river discharge between the 2041–2065 and 1971–1995
periods.
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models for late spring (April and May). Figure 14 shows
that for these 2 months CRCMþCGCM(4) projects an
increase in the duration of wet spells, an important factor in
enhancing groundwater recharge. The wet periods were
quantified as consecutive days with significant precipitation
(�1 mm d�1). This threshold excludes very light precipita-
tion and is commonly adopted in analyses of observed data
to account for rain gauge accuracy [Klein-Tank and Konnen,
2003]. From Figure 14, it is clear that the CRCMþCGCM(4)
model projects a lengthening of wet spells (�5 days) while

the HadRM3þHadCM3 model projects an increase of short-
duration rain events (�3 days).

3.3. Soil Water Storage

[30] The multimodel soil water storage responses were
evaluated at the surface (top 5 cm) and at different soil
depths (5–15, 15–45, and 45–90 cm). The daily values simu-
lated over these four vertical sections corresponding to each
land surface grid point were spatially aggregated and tem-
porally averaged to obtain yearly values for the catchment.
The relative variations between past and future climate sim-
ulations for the entire catchment were assessed and the
results plotted in Figure 15. Compared to river discharge at
the catchment outlet and aquifer recharge across the water
table, the water storage responses are more consistent
between past and future climates and between ensemble
members. The percentage future/past variations range from
0.5% to �5%, and the differences between members are
progressively damped as soil depth increases. The annual
variations in the top layer of soil (0–5 cm) are mainly con-
trolled by evaporation losses during the summer season (see
also Sulis et al. [2011]) that are in turn driven by significant
summer temperature variations (see Figure 4). It is also
apparent from Figure 15 that soil moisture anomalies propa-
gate differently across the soil layers for the different en-
semble members. The CATHY model driven by the
CRCMþECHAM5 and MM5IþCCSM models (members 7
and 12, respectively) predicts increased soil water storage
for all layers, while the CRCMþCGCM(2) case does so
only for the 45–90 cm layer. All other simulations show a
decrease in soil water storage, in all layers, for the future pe-
riod. For the deepest soil layer (45–90 cm), the pattern of
relative soil water storage changes for the ensemble of
responses is quite similar to that obtained for the river dis-
charge (compare Figure 9). This suggest that on an annual
scale, precipitation anomalies between ensemble members are
a dominant control on moisture variations in deeper soil
layers. An opposite soil moisture trend is observed at a
monthly scale during the summer months for the topsoil layer
(Figure 16). In this case, the relative increase in total precipita-
tion that occurs early in the year produces a relative increase
in soil water storage for some members at the beginning of

Figure 12. Relative change in average monthly fractions
of Dunne and Horton runoff occurrence, as well as total sat-
urated area, between the 2041–2065 and 1971–1995 summer
periods.

Figure 13. Relative change in annual aquifer recharge
between the 2041–2065 and 1971–1995 periods.
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the summer period that tends to disappear by late summer,
and the relative variations between past and future periods
become more significant as summer progresses. Thus, temper-
ature anomalies between ensemble members this period of the
year play a major role in soil water storage variations.

[31] For the top 5 cm layer, we also analyzed on a daily
scale during the summer season the relation between the
standard deviation and mean soil moisture content. This rela-
tionship is controlled by topographic features, soil attributes,
and climate variations. The classic pattern discussed in the

Figure 14. Frequency histograms of April and May wet period durations for past and future conditions
for climate models (left) 4 (CRCMþCGCM(4)) and (right) 9 (HadRM3þHadCM3). Note that single-
occurrence events are log-plotted as 0.1 instead of 0 for graphical purposes.

Figure 15. Relative change in annual soil water storage between the 2041–2065 and 1971–1995
periods.
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literature for temperate regions (e.g., Teuling et al. [2007];
Lawrence and Hornberger [2007]) can be recognized in
Figure 17. That is, the standard deviation varies according to
a convex-upward pattern for both past and future scenarios
for each ensemble member, with an initial increase in spatial
variability at lower moisture values followed by a strong
decrease at higher values. These plots show that there are
several members that attain a larger range of soil moisture
values and that reach markedly drier conditions in the future
daily values, in particular the CRCMþCGCM (1st, 2nd, and
5th members), the HadRM3þHadCM3 (9th member), and
the CRCMþCCSM (11th member) combinations. Among
these members, HadRM3þHadCM3 and CRCMþCCSM
produce the most significant variations between future and
past soil moisture dynamics, with a clear increase in soil mois-
ture variability predicted for the future scenario. To investigate
these differences in more detail, we compared for the two
extreme cases, CRCMþCGCM(2) and CRCMþCCSM, the
distribution of dry spells under past and future conditions. As
shown in Figure 18, the CRCMþCCSM combination projects
an increase in dry spells (i.e., a higher frequency of long peri-
ods without precipitation) compared to CRCMþCGCM(2).
Under conditions of longer dry spells, near-surface soil mois-
ture is controlled mainly by vertical evaporation fluxes that
tend to decrease soil moisture connectivity and thereby
increase its spatial variability.

4. Conclusions
[32] This paper has investigated uncertainty propagation

of climate model output in catchment-scale hydrologic
response. A multimodel framework with twelve different
combinations of four RCMs and five GCMs was used in
the analysis, and the outputs from this ensemble of climate
model combinations, further downscaled by a quantile scal-
ing bias-correction technique, were input to an integrated,
distributed hydrological model. The quantile scaling tech-
nique forces the cumulative distribution functions of the
control simulations of daily temperature and precipitation
to match the observed distributions. The same corrections
were then applied to the future time series. The response
variables from the hydrological model that were examined
include river discharge, aquifer recharge, and soil water
storage. A study site in southwestern Quebec was selected
for the simulations.

[33] The results show that the different hydrological state
variables respond differently to the precipitation and tem-
perature anomalies in the multimodel climate outputs and
that those response variables that are most closely linked to
changes in the distribution and extremes of precipitation
events, whose evolution at the regional scale is still hard to
predict, are characterized by a higher level of uncertainty.
This was shown for instance in the prediction of high river

Figure 16. Relative change in monthly soil water storage for the summer season in the top 5 cm of soil
between the 2041–2065 and 1971–1995 periods.
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flow conditions and in the analysis of runoff generation
mechanisms. In this latter case, the projection of changes in
precipitation frequency translates into variations in the
occurrence of Hortonian runoff events that are indicators of
a faster catchment response. On the other hand, hydrologi-
cal response variables that are related more to mean precipi-
tation values and temperature changes, in which more
confidence is generally placed, are characterized to a certain
extent by a lower uncertainty. This was evidenced by the

smoother variations and greater consistency (between en-
semble members and between past and future periods) in the
hydrologic response of the catchment with respect to low
flow conditions, soil water storage over different layers, and
recharge fluxes to the aquifer. In the case of recharge, the
results also show the large impact of changes in wet spell du-
ration, where an inversion in the trend between short- and
long-duration events, without a significant variation in total
precipitation, led to divergent responses on a yearly scale

Figure 17. Relationship between daily mean soil moisture content < � > and its standard deviation �
for the top 5 cm soil layer during the summer season for the 1971–1995 (black dots) and 2041–2065 (red
dots) periods. The plot number corresponds to the climate model number within the ensemble.
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between the ensemble members. Moreover, through an anal-
ysis of dry spells during the summer season, it was found
that longer dry periods lead to an increase in soil moisture
spatial variability.

[34] It is important to note that despite the fact that the
implementation of a bias correction method is a standard
procedure in assessing climate change impacts, the assump-
tions underlying each technique (e.g., the correction func-
tions apply to both current and future climate conditions)
have important implications for the projected hydrological
simulations [Teutschbein and Seibert, 2012; Ehret et al.,
2012]. As such, the selected bias correction method adds
another level of uncertainty, which may be of the same
order of magnitude as that related to the choice of the
climate or hydrological model [C. Chen et al., 2011;
Hagemann et al., 2011].

[35] As final remarks, the large differences in the pro-
jected impacts on the hydrological response of the des
Anglais catchment demonstrate that the use of projections
from a single climate model ignores a significant source of
uncertainty and that the use of a multimodel framework is
essential in the definition of appropriate mitigation and ad-
aptation strategies for this study region. In addition, the
large range of hydrological responses underscores the highly
nonlinear relationship between precipitation and temperature
anomalies and the distributed and integrated physical varia-
bles that determine the catchment response. This suggests
that multimodel techniques used in hydrological contexts
can produce more reliable results if climate model weighting
factors are based on both climate (temperature and precipita-
tion) and hydrological (river discharge, groundwater levels,
and soil moisture content) model performances.
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Québec (grant PSR-SIIRI-434), of Seventh Framework Programme of the
European Commission (project CLIMB, grant FP7-ENV-2009-1-244151),
and of the SFB/TR32 project (Patterns in Soil-Vegetation-Atmosphere
Systems: Monitoring, Modeling, and Data Assimilation) funded by the
Deutsche Forschungsgemeinschaft (DFG). The CRCM data has been gen-
erated and supplied by Ouranos. The authors thank Blaise Gauvin-St-Denis
from the Ouranos Consortium, who provided the data from the NARCCAP

archive project. The authors also thank the reviewers for their helpful
comments.

References
Allen, D. M., A. J. Cannon, M. W. Toews, and J. Scibek (2010), Variability

in simulated recharge using different GCMs, Water Resour. Res., 46,
W00F03, doi:10.1029/2009WR008932.

Anandhi, A. A. Frei, D. C. Pierson, E. M. Schneiderman, M. S. Zion,
D. Lounsbury, and A. H. Matonse (2011), Examination of change factor
methodologies for climate change impact assessment, Water Resour.
Res., 47, W03501, doi:10.1029/2010WR009104.

Arora, V. K., and G. J. Boer (2001), Effects of simulated climate change on
the hydrology of major river basins, J. Geophys. Res., 106(D4), 3335–3348.

Baettig, M. B., M. Wild, and D. M. Imboden (2007), A climate change
index: Where climate change may be most prominent in the 21st century,
Geophys. Res. Lett., 34, L01705, doi:10.1029/2006GL028159.

Bastola, S., C. Murphy, and J. Sweeney (2011), The role of hydrological
modelling uncertainties in climate change impact assessments of Irish
river catchments, Adv. Water Resour., 34(5), 562–576.

Brolsma, R. J., M. T. H. van Vliet, and M. F. P. Bierkens (2010), Climate
change impact on a groundwater-influenced hillslope ecosystem, Water
Resour. Res., 46, W11503, doi:10.1029/2009WR008782.

Caballero, Y., S. Voirin-Morel, F. Habets, J. Noilhan, P. LeMoigne,
A. Lehenaff, and A. Boone (2007), Hydrological sensitivity of the Adour-
Garonne river basin to climate change, Water Resour. Res., 43, W07448,
doi:10.1029/2005WR004192.

Camporese, M., C. Paniconi, M. Putti, and S. Orlandini (2010), Surface–
subsurface flow modeling with path-based routing, boundary condition-
based coupling, and assimilation of multisource observation data, Water
Resour. Res., 46, W02512, doi:10.1029/2008WR007536.

Chen, C., J. O. Haerter, S. Hagemann, and C. Piani (2011), On the contribution
of statistical bias correction to the uncertainty in the projected hydrological
cycle, Geophys. Res. Lett., 38, L20403, doi:10.1029/2011GL049318.

Chen, J., F. Brissette, A. Poulin, and R. Leconte (2011), Overall uncertainty
study of the hydrological impacts of climate change for a Canadian water-
shed, Water Resour. Res., 47, W12509, doi:10.1029/2011WR010602.

Chiew, F. H., J. Teng, J. Vaze, D. A. Post, J. M. Perraud, D. G. C. Kirono,
and N. R. Viney (2009), Estimating climate change impact on runoff
across south-east Australia: Method, results and implications of modelling
method, Water Resour. Res., 45, W10414, doi:10.1029/2008WR007338.

Christensen, N. S., and D. P. Lettenmaier (2007), A multimodel ensemble
approach to assessment of climate change impacts on the hydrology and
water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci.,
11, 1417–1434.
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