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This paper presents an empirical model for classifying frozen/unfrozen soils in the entire Bras d’Henri River watershed (167 km2)
near Quebec City (Quebec, Canada). It was developed to produce frozen soil maps under snow cover using RADARSAT-1 fine
mode images and in situ data during three winters. Twelve RADARSAT-1 images were analyzed from fall 2003 to spring 2006 to
discern the intra- and interannual variability of frozen soil characteristics. Regression models were developed for each soil group
(parent material-drainage-soil type) and land cover to establish a threshold for frozen soil from the backscattering coefficients (HH
polarization). Tilled fields showed higher backscattering signal (+3 dB) than the untilled fields. The overall classification accuracy
was 87% for frozen soils and 94% for unfrozen soils. With respect to land use, that is, tilled versus untilled fields, an overall accuracy
of 89% was obtained for the tilled fields and 92% for the untilled fields. Results show that this new mapping approach using
RADARSAT-1 images can provide estimates of surface soil status (frozen/unfrozen) at the watershed scale in agricultural areas.

1. Introduction

Soil freezing is a critical attribute for sustaining agricultural
production. It has a major impact on soil water erosion at
snowmelt [1, 2] and causes winterkill of perennial crops [3].
Soil water erosion and surface runoff are major sources for
transporting water from agricultural land to streams. Soil
sediments adversely affect surface water quality and often
carry phosphorus, ammonia, pathogens, trace elements, and
other contaminants from agricultural sources [4]. In Eastern
Canada, the extent of this diffuse pollution is exacerbated
when significant snowmelt runoff occurs on bare and
erodible frozen agricultural soils located on sloping fields [5].
Environmental conditions in spring can significantly affect
water transport. Early snow accumulation on wet soils may
result in more unfrozen soils [6], or shallowly frozen soils,
that allow higher infiltration of water at spring melt which
consequently decreases runoff [7, 8]. Late snow accumula-
tion on relatively dry soils with cold air temperatures will
allow frost to penetrate deeper below the soil surface. Soils

frozen below a 15-cm depth can impede water infiltration [9]
and generate a greater risk of erosion and snowmelt runoff
at spring thaw. Despite the environmental impacts of frozen
soils, soil temperature is poorly documented in Canada; agri-
cultural lands are not systematically monitored by meteoro-
logical stations. Clearly, soil temperature is a critical attribute
needed in meteorological databases to predict frozen soil
status, to analyze environmental impacts of agricultural
production, and to develop best management practices.

Remote sensing offers promising techniques for monitor-
ing near-surface frozen and unfrozen soil status on broad
geographical scales [10]. In the past, passive microwave
remote sensing was explored. [11] used special sensor
microwave/imager (SSM/I) data to detect soil freeze and
thaw states over snow-free land. Using data from the Nimbus
7 scanning multichannel microwave radiometer (SMMR)
for brightness temperature, [12] shows that frozen ground
can be discerned from unfrozen ground for pasture soils.
Both sensors provide poor spatial resolution (10–50 km),
however, which restricts their use to only very large areas.
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Satellite measurements of thermal radiation (3–14 um) have
been widely used to determine soil surface temperature [13–
15], but these thermal sensors cannot provide data under
cloudy conditions. In addition, since much of the frozen
soil in Eastern Canada is covered by snow, the need to
determine frozen and unfrozen status under snow cover
conditions is obvious. Unlike the thermal infrared or passive
microwave sensors, synthetic aperture radar (SAR) systems
can potentially provide information concerning soil freezing
dynamics under snow cover at high resolution regardless
of cloud cover and time of day and night. The radar
signal predominantly depends on the dielectric constant
of soil which itself is directly related to the water and ice
content, respectively [16]. RADARSAT-1 is a high SAR spatial
resolution (9 m) sensor operating in the C-band (5.3 GHz)
which also covers the watershed level when the soil is dry
and the snow cover is virtually transparent [17]. According
to [18], only 5% of the transmitted signal is diffused into
the snow cover to a 30-cm depth, which corresponds to
a decrease of approximately 0.2 dB in the backscattered
signal. Some specific studies on radar conclude that results
obtained using SAR sensors may provide useful information
on ground moisture and near-surface frozen and unfrozen
bare soil status [17, 19–21]. However, imaging frozen soil on
the watershed scale using RADARSAT-1 remains unexplored.

Active sensors discern frozen soil by detecting variations
in liquid soil water content. These variations are related to
soil dielectric constant values [22–26]. The average dielectric
constant value of dry soil is about 2-3, while that of liquid
water is 80 [27]. The dielectric contrast between soil and air is
low when the soil is dry (∼3), because less energy is diffused
at its surface [23]. The soil dielectric constant increases
proportionally with volumetric liquid water content, which
allows the radar sensor to discern dry soil from wet soil.
Under critical winter conditions, a greater proportion of soil
water freezes which leads to a significant decrease of the
average soil dielectric constant; frozen water has a dielectric
constant of ice (3.2) which is similar to that of dry soil [28–
30]. The opposite phenomenon occurs during spring thaw
when the ice within soil melts, which results in the radar
cross-section increasing by several dB [31–34]. Reflections
occur at interfaces that are related to abrupt changes in
dielectric permittivity, for example, at the frozen/unfrozen
ground interface. Hence, radar can be employed to spatially
distinguish between dry and wet areas as well as between
frozen and unfrozen soil.

Soil properties (i.e., structure, texture, and drainage)
influence the soil water content and consequently its freezing
dynamics. Each soil has its specific latent heat flux that
increases with water content and which requires more heat
loss to freeze [35, 36]. Mineral soils freeze more quickly and
more deeply than organic soils because of their lesser capacity
to store water [37]. The same relation exists between sandy
and clay soils.

Soil moisture is not the only attribute that affects the
radar backscattering signal; vegetative cover and soil surface
roughness also have an effect [38, 39]. Many studies have
evaluated the effects of surface roughness on the radar signal
[23, 40–43]. For example [44] report that surface roughness

effects are more important with greater soil moisture content
and [45] suggest that the effect of roughness may be
considered as being constant within an agricultural area
for some cases. Although surface roughness indices are
affected by many factors, such as crop, soil management, crop
residues, and field orientation, winter conditions preceding
the spring melt in eastern Canada present more stable indices
due to the lack of agricultural activity compared with other
seasons. Consequently, these more stable surface conditions
are favourable to successive radar image acquisitions during
winter.

The objective of this study was to classify the near-
surface agricultural soils as being frozen or unfrozen relative
to changes in the RADARSAT-1 backscattering signal under
dry snow cover. A linear regression model between the
soil surface temperature and the radar backscattering signal
was developed to predict surface temperatures, to classify
RADARSAT-1 images, and to derive frozen soil maps on
the watershed scale. The regression model was assessed
from interactions between in situ ground measurements and
remote sensing data acquired from 12 representative agri-
cultural fields within the Bras d’Henri watershed (167 km2)
during winters from 2003 to 2006.

2. Material and Methods

2.1. Study Area. The Bras d’Henri study site (167 km2) is
a subwatershed of the Beaurivage and Chaudière basins,
located south of Quebec City and the Saint-Lawrence
River (Figure 1). Soil classification and attributes of the
studied area are described in Table 1; they belong mainly
to the podzol (47.6%), gleysol (30.5%), organic (11.1%),
and brunisol (5.7%) order. The drainage classes for the
mineral and organic soils ranged from being well (21.9%),
moderately (16.6%), imperfectly (17.2%), poorly (26.5%),
and very poorly drained (15.2%). The surface texture ranged
from sandy loam to loam, while the family particle-size
classes include soils with sandy, coarse-loamy, fine-silty,
and sandy-skeletal attributes (Table 1). The organic soils
identified in the watershed consist of highly decomposed
humic layers [46]. Soils were generally developed over fluvial
and fluviolacustrine deposits [47].

The cold temperate climate is characterized by a severe
winter with a moderate and subhumid summer. Mean
annual temperature is 4.5◦C–6.6◦C with an average annual
precipitation of 1126 mm and a normal snowfall of 320 cm.
Early snow accumulation may insulate the soil from freezing
depending on local conditions. The freezing period starts
around mid-November and lasts until mid-April. The stud-
ied area has the most intensive livestock production of the
watershed, which generates a surplus of nutrients. Slope
of the fields in the studied area ranges from 0% to 9%,
which increases the risk of surface runoff, soil water erosion,
and the transport of sediments, phosphorus, and other
contaminants (pathogens, herbicides, and trace elements)
from agricultural land to streams [6].

2.2. In Situ Data Measurements. Field observations, includ-
ing soil temperature, soil moisture content, and snowpack
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Figure 1: Location of the 12 study fields within the Bras d’Henri watershed.

characteristics, were measured in 12 fields and are described
in Tables 1 and 2. Field data for analysis were collected
simultaneously with satellite acquisitions. All soil attributes
repeatedly measured on the same field were averaged.
Because the influence of soil moisture on radar signals
under dense vegetation (forest) is weak, these areas were
eliminated from the radar image analysis. Therefore, soil
moisture measurements were considered for only bare soil
and sparsely dispersed vegetation (Figure 2).

The soil temperature was measured at six different depths
(5, 10, 15, 35, and 50 cm below the soil surface) using copper-
constantan thermocouples (Type T, Omega, Standford,
Connecticut). Thermocouples were installed during the fall
and their locations were georeferenced. Air temperature
was measured with a portable thermometer. Each field was
sampled over five temperature profiles, with the minimum
distance between profiles being 45 m. A digital elevation
model (DEM) and detailed soil maps were used to determine
five representative locations within each field.

A time domain reflectometer (TDR) probe was also
installed at 5 cm below the soil surface for dielectric con-
stant measurement [48]. Soil moisture was measured using
TDR technology. An automatic meteorological station was
mounted on a representative field within the monitoring
network. Hourly average air temperature, snow height, and

wind direction were recorded. The snow was considered to
be dry when the air temperature was below 0◦C on the night
preceding a SAR image acquisition.

The effect of soil type and land use (tilled versus un-
tilled) on the radar signal was evaluated relative to the
soil series classification according to [49]. The resultant soil
classification was based on soil properties, with emphasis
on various soil drainage indicators. The Beaurivage sandy
loam soils belong to the moderate-to-rapid soil permeability
class (5–15 cm hr−1), whereas the other soils have moderate-
to-slow permeability (0.5–1.5 cm hr−1). Since the measure-
ments taken by synthetic aperture radar (SAR) instruments
are sensitive to soil moisture, it is hypothesized that the
drainage class of each soil type studied within the watershed
has an impact on the radar backscattering signal. Moreover,
the soil classification at the series level is principally based on
soil drainage and soil water holding capacity, two attributes
highly related to soil moisture content and soil dielectric
constant.

2.3. SAR Data Acquisitions. Twelve RADARSAT-1 SAR im-
ages were acquired during three winter seasons, from fall
2003 to spring 2006. Images were centered on 46◦ 29′ N
and 71◦ 14′ W. RADARSAT-1 was scheduled to acquire C
band (frequency 5.3 GHz corresponding to a wavelength of
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Figure 2: Photographs showing the types of land cover considered in this study: untilled fields (1, 3, 7, 9, and 14), tilled fields (2, 4, 5, 6, 10,
11, and 12).

Table 2: Soil textures and attributes of the 12 fields selected as training/validation sites.

Field no. Organic (%) Sand (%) Silt (%) Clay (%) Texture Altitude (m)

1 4.31 56.7 30.5 12.8 Sandy loam 139.36

2 3.50 55.0 31.6 13.5 Sandy loam 140.03

3 3.35 47.9 38.7 13.4 Loam 180.37

4 5.11 52.3 34.2 13.5 Sandy loam 178.46

5 4.25 47.4 42.0 10.7 Loam 158.06

6 2.68 44.2 43.2 12.5 Loam 157.31

7 3.75 47.6 45.0 7.4 Loam 184.38

9 3.05 52.8 39.7 7.4 Sandy loam 282.81

10 3.75 41.2 45.4 13.3 Loam 292.37

11 42.06 — — — Organic 173.19

12 3.40 69.4 25.4 5.3 Sandy loam 173.67

14 1.82 79.5 17.1 3.4 Loamy sand 131.88

5.6 cm) polarization HH SAR images on ascending orbit in
fine mode (F1F), which corresponded to incidence angles
varying from 36.9◦ to 40.1◦. It has been shown that low
incidence angles (20◦–30◦) reduce the influence of soil
surface roughness [23, 43, 50–52]. However, for this study,
despite its high incidence angle, the fine beam mode of
RADARSAT-1 was selected for its fine spatial resolution (9 m
× 9 m) that offers an advantage for mapping frozen soils
at the field scale. Moreover, the roughness has to remain
unchanged during the acquisition of all images.

The OrthoEngine program of PCI Geomatica (V9.1.5)
was used to geometrically correct each RADARSAT-1 image
registered with intensity (power) backscatter values in 32-
bit real channel. The mathematical modelling was based
on a photogrammetry method [53], and the output images

were resampled to a pixel spacing of 9 m using the bilinear
technique.

A mask was applied to all fields allowing the extraction
of the mean, the minimum, the maximum, and the standard
deviation from image intensity values. Radar data intensity
values were converted to backscattering coefficients (dB)
using (1) and (2) to allow a quantitative comparison of
frozen and unfrozen soil values within the scene

dB = 10 × log10

(
Intensity

)
, (1)

where the intensity (power) is given by

Intensity = σi j = DN ∗DN + A0

Aj
∗ sin

(
Ii j
)

, (2)
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Table 3: Description of the RADARSAT-1 images acquired over the Bras d’Henri watershed during the three winter seasons (2003-2004 to
2005-2006) and the reasons for the use of only 12 radar images in this study.

Winter season Dates of RADARSAT-1 image acquisitions Use (yes/no) Reason

08 November 2003 Yes Dry snow

02 December 2003 Yes Dry snow

26 December 2003 No Wet snow surface coinciding with the

RADARSAT-1 overpass

First 19 January 2004 Yes Dry snow

25 January 2004 No Wet snow surface coinciding with the

RADARSAT-1 overpass

29 February 2004 Yes Dry snow

02 November 2004 Yes Dry snow

06 December 2004 No Acquisition failures due to the

conflicts with other users.

10 January 2005 No Acquisition failures due to the

Second conflicts with other users.

13 January 2005 Yes Dry snow

06 February 2005 No Wet snow surface coinciding with the

RADARSAT-1 overpass

14 February 2005 No Acquisition failures due to the

conflicts with other users.

08 January 2006 Yes Dry snow

01 February 2006 Yes Dry snow

Third
25 February 2006 Yes Dry snow

21 March 2006 Yes Dry snow

14 April 2006 Yes Dry snow

08 May 2006 Yes Dry snow

where σi j is the output backscattering coefficient for line i,
pixel j, DN is the input image value for line i, pixel j, A0 is
the gain offset from the first member of SAR scaling offset
segment (A0SEG), Aj is the expanded gain scaling tabular
value for pixel j, and Ii j is the local incidence angle.

In order to map frozen soils on the watershed scale,
only images that presented dry snow cover conditions were
retained (Table 3). Images taken wherever air temperature
was above the freezing point were discarded due to a wet
snow cover. The backscattering behavior changes for a wet
snow cover, resulting in low values of the backscattering
coefficient for incident angle θ > 20◦. The lower values under
wet snow conditions are due to increased attenuation by the
snow cover when its surface is relatively smooth [54, 55]. The
RADARSAT-1 images were filtered to smooth and wipe off
the noise, reducing the speckle effect. To achieve this task, a 5
× 5 Gaussian filter was applied to all 12 RADARSAT-1 images
[56].

The three assumptions underlying the linear regression
model were verified prior to using the data: (1) residuals were
normally distributed, (2) the residual mean was equal to zero,
and (3) residuals were not autocorrelated

3. Results and Discussion

The effects of land use, air temperature, and snow cover
thickness on frost depth were studied for the 12 fields
selected for monitoring and validation. In the following
sections, the backscattering coefficients of the images are
related to ground data measurements (snow cover thickness,
soil moisture, and frozen soil depth) taking soil type into
account. These relationships were developed for untilled and
tilled fields (Figure 2), during two winters (November 2003
to April 2004 and November 2004 to April 2005) and then
applied to a third winter (January to April 2006).

3.1. Snow Cover and Soil Temperature. The weather records
for the 2004, 2005, and 2006 winter seasons are presented
in Figure 3. In general, the average daily temperature drops
below 0◦C on November and the snowpack initiates on
December. However, the average air temperature does not
stay continuously below 0◦C during the winter Figure 3(a).
The minimum recorded air temperature was −27.5◦C on
January 25, 2004, −27◦C on January 13, 2005, and −17◦C
on February 26, 2006. The daily average snow accumulation



Applied and Environmental Soil Science 7
A

ir
te

m
p

er
at

u
re

(◦
C

)

−30
−25
−20
−15
−10
−5

0
5

10
15

Winter 2003-04 Winter 2004-05 Winter
2005-06

(a)

0

10

20

30

40

50

60

70

Sn
ow

h
ei

gh
t

(c
m

)

(b)

−50

−40

−30

−20

−10

0

Fr
oz

en
de

pt
h

(c
m

)

8-
N

ov
-0

3

2-
D

ec
-0

3

29
-D

ec
-0

3

19
-J

an
-0

4

13
-F

eb
-0

4

21
-A

pr
-0

4

2-
N

ov
-0

4

19
-N

ov
-0

4

10
-J

an
-0

5

6-
Fe

b-
05

11
-M

ar
-0

5

8-
Ja

n
-0

6

26
-F

eb
-0

6

14
-A

pr
-0

6

(c)

Figure 3: Temporal variation for: (a) air temperature, (b) snow
height, and (c) frozen depth (0–50 cm depth).

reached its maximum in different months from year to year
(Figure 3(b)).

During the winter of 2004, it was observed that when the
air temperature dropped below −10◦C, the near-surface soil
layers froze. The first soil type to freeze was the Neubois loam
(fields 5 and 6), while the organic soil (field 11) was the last
(results not shown). Snow accumulation began on December
22 with a snow-cover thickness of about 38 cm. The period of
freezing was preceded by snow accumulation which reached
a maximum of 66 cm in field 2 on February 29, 2004. Because
field 2 was tilled, the frost penetrated deeper in the soil
(30 cm) than in the untilled field 1 (11 cm), which was
covered with hay. The winter of 2005 had less precipitation
and less snow cover (20 cm), while the air temperature was
similar to the winter of 2004. This condition accelerated the
frost penetration into the ground, which reached a depth of
up to 50 cm. The variation in the snow cover (10 to 66 cm)
was compared with the variation of soil surface temperature.
Soil surface temperature was maintained near 0◦C during

σ
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Figure 4: Linear regression models between backscattering coeffi-
cient, σ◦, with ground measured soil temperature (0–5 cm depth)
for tilled fields (triangle) and untilled fields (square).

long periods. Generally, snow cover played an important role
by maintaining heat on the soil surface, even when the air
temperature dropped below −10◦C. Thaw started in mid-
March (Figure 3(c)).

The winter of 2006 was warmer. In March, with the onset
of snowmelt, the shallow unfrozen ground quickly became
saturated up to the surface. Flow occurred overland because
the ground had limited storage capacity (Figure 3(c)).

3.2. Backscattering Coefficients and Ground Soil Measure-
ments. Figure 4 illustrates the relationship between back-
scattering coefficients (σ◦) and the soil temperature for data
acquired during 2004, 2005, and 2006. Since the spatial
resolution of the developed model is approximately 9 m,
the radar signal mean values were compared with the mean
values of the ground soil temperature and the soil moisture
(Figure 5) taken from the same sampling cells. It is assumed
that surface roughness was homogenous for each considered
class (tilled and untilled). Thus, a regression line was fitted
to all points belonging to each class (tilled and untilled)
(Figure 4). For both the tilled and untilled class, the coef-
ficient of determination (R2) was 0.52, which is considered
satisfactory. There is a comparable correlation between σ◦

and soil temperature for surface soil temperatures below
0◦C, which progressively becomes weaker with increasing
surface soil temperature. When the soil temperature is below
0◦C, there is no significant difference in the σ◦ and the
soil temperature relationship for the tilled and the untilled
fields. However, when the soil temperature is above 0◦C,
one can distinguish two relationships wherein the σ◦ for the
tilled fields is higher than that of the untilled fields. This
can be explained by the high sensitivity of the backscattered
signal to soil roughness when soil moisture increased. Given
that the range of observations from this study is −7◦C to
7◦C, soil moisture would have decreased when the soil was
frozen, and thus the soil would have been dry [23, 33].
Consequently, the radar signal would penetrate the soil
with minimal effect on soil roughness. However, when soil
temperature increases, soil moisture content also increases,
and consequently, the backscattered signal increases and can
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Figure 5: Linear regression models between backscattering coef-
ficient, σ◦, with ground measured soil moisture (0–5 cm depth)
for soil drainage types: (a) moderate to good drainage and (b)
poor drainage. Symbols for each field class; tilled (triangle), untilled
(square).

be significantly affected by field surface conditions (tilled
or untilled). This explains the increase in the backscattering
coefficient for the tilled fields.

As presented in Figure 5, a regression analysis was also
performed between σ◦and soil moisture, separately for
two drainage groups (good; moderately to well-drained
soils: poor; poorly drained soils), according to each land
use class (tilled versus untilled fields). The coefficient of
determination (R2) between σ◦ and surface soil moisture
was 0.38 for tilled and 0.34 for untilled fields with good
soil drainage. For the poorly drained soils, the R2 value was
0.29 for tilled and 0.25 for untilled fields (Figure 5). These
correlation coefficients were lower than those previously
reported [57, 58]. Empirical relationships between σ◦ and
near-surface water content show considerable scatter, and the
relationships vary with land use (tilled/untilled). One prob-
able reason for the absence of a good relationship between
σ◦ and near-surface water content is that soils show different
relationships between soil dielectric properties and soil water
content. This is due to differences in particle-size distribution
affecting the partitioning between bound and free water
[59]. Another reason behind the observed discrepancy is the

directional effects of the rows on the SAR return signal which
increases when the row direction is almost perpendicular
to the SAR antenna, as for fields 1, 2, and 12 (Figure 1).
This effect makes the return signal stronger compared with
other fields. The accuracy of the proposed relationship for
estimating soil moisture is considered satisfactory, because
cartographic and measurement errors are common in this
type of analysis. In spite of the large variation in radar and
volumetric moisture content data, the positive correlation
between σ◦ and volumetric soil water content shows that
the backscattered radar signals are related to soil moisture.
Generally, the backscattering coefficient was found to vary
from −8 to −16 dB for volumetric soil moisture content that
ranged from 42% to 12%. For tilled fields, the average of
σ◦ is relatively high (−10 dB) compared with untilled fields
(−12 dB) with a R2 of 0.37.

At first, a decrease of σ◦ (3 dB) was noted between
December 2, 2003, and January 19, 2004, for all fields (data
not shown) when the soil was frozen (air temperature =
−11◦C). The backscattering coefficient decreased by 3 dB
for the Mawcook, sandy loam soils in the untilled field 1.
For the tilled field 2 (same soil type), the backscattering
coefficient decreased by 2 dB where the frost depth increased
from 8 to 50 cm. The decreased backscattering coefficient
over the Bras d’Henri watershed was associated with a
decreased surface soil temperature below 0◦C, and depended
on soil type. On November 2, 2004, a strong backscattering
coefficient, of about −5 dB, was recorded; this increase may
be explained by increased soil moisture content (about 40%)
and amplification as a result of surface roughness. The
portion of the transmitted energy from the soil surface to
the sensor was larger when the soil was wet because of the
strong dielectric differential between water and air. The same
phenomenon occurred again on February 6, 2005, when an
increased backscattering coefficient was also noted (i.e., σ◦=
−5 dB) in most fields except for fields 1, 2, 9, and 14 (results
not shown). In this case, the air temperature was recorded at
2◦C for the satellite pass; the snow cover was between 0 and
9 cm, while the frost depth was about 50 cm. This increase in
the backscattered signal was not associated with the thaw but
rather with an increase in moisture on the soil surface.

3.3. Frozen Soil Mapping Algorithm. The linear regression in
this study was used to identify different values of backscatter-
ing coefficients (σ◦) that can be used to distinguish between
frozen and unfrozen fields for different soil conditions.
Three categories were considered for each soil series, as
follows: tilled frozen soils, untilled frozen soils, and frost-free
soils. The threshold for determining whether a field was
frozen or not was predicted by the σ◦ value corresponding
to the zero temperature from the regression model for each
soil group (i.e., soil series having similar parent material,
family particlesize, and drainage conditions). Thus, the soil
condition (frozen or not) was identified by applying the
predicted σ◦ thresholds for each delineation on the soil
map.

In this temporal study, we assumed that soil surface
roughness was constant over time for each land use type
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Figure 6: Linear regression models describing the variation of soil temperature measured at 5 cm in relation to the backscattering coefficient,
σ◦, according to soil type: (a) Mawcook, sandy loam, (b) Le Bras, loam, (c) Neubois, loam, (d) Beaurivage, sandy loam, (e) Woodbridge,
loam, (f) organic soil, and land use type; tilled fields (©) and untilled fields (•).

(untilled versus tilled fields) during the same winter sea-
son, because the soil surface would not be ploughed nor
naturally modified before spring snowmelt [60]. Under this
assumption, it is possible to consider that for each field,
the backscattering coefficient (σ◦) was related to soil surface
moisture status [31]. In this section, the regression analysis
was performed between the soil temperature at 5 cm and σ◦,
taking the soil series into account.

For the 12 fields under study, the average σ◦ was extracted
and plotted versus the in situ measured soil temperature
(Figure 6). Different simple linear regression models were
performed for different soil types as well as for tilled
and untilled soils. Figure 6 show that σ◦ increased as soil
temperature increased, indicating a positive correlation bet-
ween σ◦ and soil temperature. The soil types under study
gave different R2 values: 0.80 for Mawcook, sandy loam



10 Applied and Environmental Soil Science

71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W

71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W

71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W 71◦200W 71◦150W 71◦100W

46
◦ 2

5
0

 N
46

◦ 3
0

0
 N

46
◦ 2

5
0

 N
46

◦ 3
0

0
 N

46
◦ 2

5
0

 N
46

◦ 3
0

0
 N

December 2, 2003

November 2, 2004

Second winter

November 8, 2003

January 13, 2005

First winter

February 1, 2006January 8, 2006

May 8, 2006April 14, 2006March 21, 2006February 25, 2006

January 19, 2004 February 29, 2004

Third winter

0 6
(km)

0 6
(km)

0 6
(km)

±

±

±

Figure 7: Maps of the frozen/unfrozen soil conditions in the Bras d’Henri watershed (2003–2006) using 12 RADARSAT-1 SAR images.
Green: unfrozen soils, orange: tilled frozen soils, yellow: untilled frozen soils, and white: mask applied for forest area.

(fields 1 and 2), 0.74 for Beaurivage, sandy loam (fields 7
and 12), 0.85 for Neubois, loam (fields 5 and 6), 0.55 for
Woodbridge, loam (fields 9 and 10), 0.35 for Le Bras, loam
(fields 3 and 4), and 0.94 for the organic soil (field 11). A
low coefficient of determination (R2 = 0.20) was determined
for Le Bras, loam, especially in the corn field after harvest
(fields 4). This result can be explained by the interaction
between the radar signal and dried corn residue and stalks
remaining in the field after harvest. The moisture content
of these stalks and residue may have varied throughout the
field and during the fall season, which would increase the
uncertainty of the estimated backscatter values. As the soil
surface temperature decreased below 0◦C, the σ◦ decreased
by 3 to 5 dB depending on soil type. Also, the reader should
note that for each soil type class, σ◦ for the tilled fields
(fields 2, 4, 6, 10, 11, and 12) were always greater, by at
least 2 dB, than σ◦ for the untilled fields. When the soil is
frozen, it has a dielectric constant similar to dry soil. In this
case, the signal penetrates the soil and is less sensitive to soil
surface roughness. However, when the soil is unfrozen under
the snow pack, soil water content increases, and the signal
becomes more sensitive to soil surface roughness.

The regression equations given in Figure 6 identify the
radar backscattering coefficient thresholds, which are used
to differentiate frozen and unfrozen soils. These thresholds
represent the backscattering values that correspond to soil

temperatures below 0◦C (Table 7). Several maps of near-
surface frozen soil conditions (frozen versus unfrozen soils)
for the Bras d’Henri watershed were created for the winter
seasons 2003-2004, 2004-2005, and 2005-2006 (Figure 7).

It should be emphasized that although the models devel-
oped in this study were applied to Bras d’Henri using avail-
able data to demonstrate models usefulness, however, more
data should be acquired to update the developed models.

3.4. Frozen Soil Maps Derived from the Classification Algo-
rithm. The classification algorithm developed in this paper
was applied to the Bras d’Henri watershed (167 km2) to
identify frozen and unfrozen soils for all agricultural fields
distributed over the entire watershed. To visualize the
results, a color scale was used to display the near-surface
frozen/unfrozen soils. Untilled frozen soils are in yellow,
tilled frozen soils in orange, and unfrozen soils in green. A
white mask was applied to cover the forest area that was
excluded from the study (Figure 7). There are notable inter-
annual variations in frozen soil distribution between each
winter season over the Bras d’Henri watershed. Frozen soils
covered a large area in 2004 (85%) and 2005 (74%) but
covered only 35% of the area in 2006 (Table 8).

The minimum soil temperature at 5 cm was recorded as
−7◦C for the untilled Beaurivage soils on February 6, 2005;
the maximum was 13◦C at 1 cm for the tilled organic soils
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Table 4: Classification results of six selected RADARSAT-1 SAR images compared with soil temperature at the 12 training/validation study
fields.

Total
Classification results

Frozen Unfrozen Total Success (%) Omission (%)

Ground observations
Frozen 33 5 38 86.8 13.2

Unfrozen 2 32 34 94.1 5.9

Total 35 37 72 90.3

Commission (%) 5.7 13.5 Kappa = 0.81

Table 5: Classification results of six selected RADARSAT-1 SAR images compared with soil temperature measurements at the 12
training/validation study fields, by land use.

Classification results

Frozen Unfrozen Total Success (%) Omission (%)

Tilled fields

Ground observations
Frozen 17 3 20 85 15

Unfrozen 1 15 16 94 6

Total 18 18 36 89

Commission (%) 6 17 Kappa = 0.78

Untilled fields

Ground observations
Frozen 16 2 18 89 11

Unfrozen 1 17 18 94 6

Total 17 19 36 92

Commission (%) 6 11 Kappa = 0.83

on April 21, 2004. Soil temperatures showed strong variation
near the surface (following changes in air temperature) but
varied less at greater depths. The unfrozen moisture content
increased in frozen soils with increasing soil temperatures at
all depths and, more markedly, after the onset of snowmelt
when soil temperatures increased rapidly (Figure 3).

In general, freezing starts in November and moves
gradually toward the watershed depending on soil type,
snow cover, and air temperature. The soil temperature
decreased gradually as the frozen front progressed. When
air temperature decreased in November, soil temperatures
decreased quite uniformly throughout the unfrozen soil pro-
file, and freezing set in abruptly after the 0◦C isotherm was
encountered. The progress of freezing apparently reflected
the heterogeneity of the soil. At a given negative temperature,
the quantity of unfrozen water varied considerably with
soil type and was greater for soils with a finer texture.
Furthermore, the greater organic matter content of organic
soils (field 11) reduced both their soil heat capacity and soil
thermal conductivity [61]. Also, they retained more water
and the latent heat conductivity of water is greater than air.

This result may be understood as a complex interaction
between thermal and hydraulic conductivities, both of which
decrease with decreasing unfrozen water content. It is also
related to the larger amount of latent heat that is released
from soils with high water content. Soils with low water con-
tent (Beaurivage, loamy sand (field 14)) may be expected to
initially freeze earlier because the release of latent heat is less.
The maps show that the distribution of the frozen areas over

the watershed correlate well with soil type distribution and
the interannual variation of air temperature and snow cover.
The detectability of the freezing onset seems to be sensitive
to land use (i.e., tilled versus untilled fields). On November
2, 2004, freezing had already occurred, particularly in the
tilled fields, because the surface was directly exposed to low
air temperatures, due to the low snow accumulation and
because tillage promoted good drainage, which consequently
accelerated the heat transfer through the porous soil.

When the near-surface frozen extension over the Bras
d’Henri watershed is compared over the three winter seasons
(2003-2004 to 2005-2006), the main difference between them
is snow cover depth; it was substantial during the third winter
season (∼45 cm) but was 30 cm for the first winter and only
17 cm for the second winter. These results show that the
presence of seasonal snow cover during the cold season has
a significant influence on the ground thermal regime. In sea-
sonally frozen ground regions, snow cover can substantially
reduce the seasonal freezing depth. In fact, snow cover plays
an insulating role by maintaining surface soil near the freez-
ing point [62, 63]. Therefore, a frozen soil under a seasonal
snow cover could eventually thaw during winter even though
it may have been frozen before the snow cover occurred.

3.5. Validation of the Classification Algorithm. The empirical
algorithm validation is based on the soil temperature data
of the top 5 cm soil layer for the six RADARSAT-1 images
acquired between January and May 2006. Using the 12 train-
ing/validation fields of the third winter season, confusion
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Table 6: Classification results of six selected RADARSAT-1 SAR images compared with soil temperature at the 12 training/validation study
fields, by acquisition date.

Classification results

Frozen Unfrozen Total Success (%) Omission (%)

January 8, 2006

Ground observations
Frozen 11 1 12 92 8

Unfrozen 0 0 0 100 0

Total 11 1 12 92 8

Commission (%) 0 100 8 Kappa = NA(a)

February 1, 2006

Ground observations
Frozen 7 1 8 88 12

Unfrozen 1 3 4 75 25

Total 8 4 12 83 17

Commission (%) 13 25 17% Kappa = 0.63

February 26, 2006

Ground observations
Frozen 11 1 12 92 8

Unfrozen 0 0 0 100 0

Total 11 1 12 92 8

Commission (%) 0 100 8 Kappa = NA(a)

March 21, 2006

Ground observations
Frozen 4 2 6 67 33

Unfrozen 1 5 6 83 17

Total 5 7 12 75 25

Commission (%) 20 29 25 Kappa = 0.50

April 14, 2006

Ground observations
Frozen 0 0 0 100 0

Unfrozen 0 12 12 100 0

Total 0 12 12 100 0

Commission (%) 0 0 0 Kappa = NA(a)

May 8, 2006

Ground observations
Frozen 0 0 0 100 0

Unfrozen 0 12 12 100 0

Total 0 12 12 100 0

Commission (%) 0 0 0 Kappa = NA(a)

(a)
Because only one class is represented, the Kappa coefficient cannot be calculated (division by zero).

matrices were computed to compare results from the pro-
posed algorithm that classified soils as being frozen with the
in situ soil temperatures. The analysis consisted of examining
and displaying errors of commission and omission and the
overall classification accuracy. From these percentages, a
performance measure known as Kappa was calculated. The
Kappa coefficient (κ) was used to represent the overall clas-
sification agreement [64]. Kappa values range from −1 to 1;
a value of zero indicates that the effect of the classifier equals
chance agreement, and a value of 1 indicates a perfectly effec-
tive classification without a contribution from chance agree-
ment. Any negative value indicates a poor classification in
which chance agreement is more important than the classifi-
cation effect. Therefore, a Kappa value of 0.75 or greater indi-
cates a very good to excellent classification performance [65].

Table 4 contains the full contingency table as evidence of
classification results for all the six SAR images. The overall
classification accuracy was 90% (κ = 0.81) over the Bras

d’Henri watershed. According to classification results, frozen
soils had an average classification accuracy of 87%. The
highest classification accuracy of 94% was obtained for the
unfrozen soils, with only two fields incorrectly classified,
while five fields were incorrectly classified for frozen soils.
It is apparent that the soil attributes measured in the field
were better suited for discerning the near-surface frozen and
unfrozen status. In the next step, classification results were
compared with land use, that is, tilled versus untilled fields
(Table 5). The lowest individual class accuracy of 89% (κ
= 0.78) was obtained for the tilled fields. This result may
be explained by the higher within-class variability resulting
from a greater diversity of tillage practices and orientation
settings where freezing occurred and which would have
increased the backscattering signal.

Table 6 presents the classification results for each RA-
DARSAT-1 image. The best classification accuracy (100%)
was achieved when all fields were thawed (March 2005). On
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Table 7: Radar backscattering coefficient thresholds (dB) used to differentiate frozen from unfrozen soils taking soil and land use type into
account over the Bras d’Henri watershed.

Soil types (field number)
Field type

Tilled Untilled

Mawcook, sandy loam (1, 2) −10.5 −12.9

Le Bras, loam (3, 4) −11.8 −13.1

Neubois, loam (5, 6) −10.8 −13.2

Beaurivage, sandy loam to loamy sand (7, 12, 14) −9.5 −13.0

Woodbridge, loam (9, 10) −9.9 −12.8

Organic soils (11) −9.8 –(a)

(a)
Because the untilled field is not represented.

Table 8: Distribution of frozen/unfrozen soils for the12 radar images acquired during the three winter seasons (2003-2004 to 2005-2006)
over the Bras d’Henri watershed, by land use.

Winter season Date (dd/mm/yyyy) Untilled frozen soils (%) Tilled frozen soils (%) Unfrozen soils (%)

First

08/11/2003 31 34 35

02/12/2003 39 43 18

19/01/2004 47 49 4

29/02/2004 43 52 5

Second
02/11/2004 31 38 31

13/01/2005 39 40 21

Third

08/01/2006 19 21 60

01/02/2006 10 12 78

25/02/2006 24 27 49

21/03/2006 23 29 48

14/04/2006 10 14 76

08/05/2006 9 11 80

March 2006, two out of six frozen fields were classified as
unfrozen. The resulting classification accuracy is equal to
75%.

It is important to note some limitations in applying
the proposed approach. First, the mapping of frozen soil
is mainly realised during winter under the presence of a
snow cover. When the snow is wet, the backscattered signal
cannot penetrate the snow cover, and therefore, we cannot
have reliable information about the soil surface status. Thus,
SAR radar images should be acquired under dry or refrozen
snow cover. Second, the proposed methodology assumes that
roughness parameters will be time invariant. Although this
may be a reasonable assumption within the same season, it is
known that roughness in agricultural fields tends to decrease
over time as a result of weathering and rainfall erosion. Then,
it would be necessary to have an annual map of land use.
Finally, agricultural fields have a periodic row structure that
affects the surface backscattering values.

4. Conclusions and Future Perspectives

In this study, a classification algorithm was developed to
classify the near-surface agricultural soil under snow cover
as being frozen or unfrozen using RADARSAT-1 images.
The developed algorithm is based on linear regression

analysis. Regression models were performed for different soil
types and land uses to identify a soil-freezing threshold.
This threshold was identified by establishing a relationship
between the backscattering coefficient and the soil tempera-
ture measured at 5 cm below the soil surface. The coefficient
of determination obtained for the regression models varies
between 0.2 and 0.96.

The developed algorithm was validated by field measure-
ments using the Kappa index. Results indicate that there is
good association between image-derived surface soil status
(frozen/unfrozen) and measured field soil temperature.
Results of the Kappa index show that accuracy varies between
75% and 100%. Excellent accuracy values were obtained
for untilled agricultural fields. The main discrepancies are
associated with later stages of snowmelt, especially in March,
when the frozen and unfrozen fringe is not stable.

The studied fields were stratified into two land use
classes (tilled and untilled fields). It was found that the
backscattering coefficient from tilled fields was greater than
that from the untilled fields. These results may indicate that
surface roughness, mainly caused by soil ploughing, plays
an important role. Radar signals are probably responsive to
multiple bounces by the near-surface rock fragments when
they penetrate a few centimetres below ground surface, in
addition to the scattering due to surface roughness.
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Important observations were made in the monitoring of
the interannual variations of soil temperature according to
the atmospheric conditions and pedological attributes, and
also in the monitoring of surface status.

The conditions under which the model was developed,
applied, and validated are best suited to its application in
agricultural areas where the vegetation is sparse, snow cover
is dry, and the surface roughness does not change during the
winter. In this study, we consider that soil surface roughness
is constant or slightly altered during the winter season, since
no agricultural activity is undertaken. However, soil surface
roughness can change from year to year due to land use
changes. This does not really affect the algorithm developed
here, because a land use stratification is realised before
applying the classification algorithm.

Of note, for higher soil temperatures than those observed
in this study, soil moisture content may decrease (the
soil may be considered dry), which allows the penetration
of the backscatter signal into the soil; this will decrease
the backscatter coefficient. However, classification between
frozen and unfrozen soils is mainly based on a small range
of soil temperatures around 0◦C.

The new approach developed in this study may be con-
sidered a first step for classifying soil surface frozen/unfrozen
status. Clearly, additional validations should be done for
other similar watersheds. Another problem concerns the
status of the soil surface under wet snow. This weakness is a
limiting factor, because the radar return cannot necessarily
be attributed to effects from the liquid soil water content.
Additional research should concentrate on the retrieval of
soil frozen/unfrozen status which may include the effects of
temporal surface modification. To broaden the applicability
of the model to other watersheds, additional validation work
is needed. In particular, future research should investigate the
application of the model to a broader range of soil types and
moisture conditions. Further, the method developed in this
study is applied for monopolarization C-band radar image
and its applicability for multipolarizations and others radar
frequencies needs to be determined. Multipolarisations SAR
sensors such as RADARSAT-2 (operational since May 2008)
can provide input for classification schemes from different
scattering mechanisms. When data is acquired in polarimet-
ric mode, both the amplitude and phase information of the
SAR signal are retained; the use of this information provides
input for classification algorithms. Hence, it will be possible
to extract information on land use directly from images,
which may make it possible to systematically update land
cover maps and monitor land conditions.
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[14] C. François, C. Ottlé, and L. Prévot, “Analytical parameteriza-
tion of canopy directional emissivity and directional radiance
in the thermal infrared. Application on the retrieval of soil and
foliage temperatures using two directional measurements,”
International Journal of Remote Sensing, vol. 18, no. 12, pp.
2587–2621, 1997.



Applied and Environmental Soil Science 15
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de Télédétection en Agro-Environnement, 1997.

[29] J. B. Way, R. Zimmermann, E. Rignot, K. McDonald, and
R. Oren, “Winter and spring thaw as observed with imaging
radar at BOREAS,” Journal of Geophysical Research, vol. 102,
no. 24, pp. 29673–29684, 1997.
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