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[1] This study proposes a method to reconstruct past spring flood discharge from
continuous and discrete tree ring chronologies, since both have their respective strengths
and weaknesses in northern environments. Ring width or density series provide
uninterrupted records that are indirectly linked to regional discharge through a concomitant
effect of climate on tree growth and streamflow. Conversely, discrete event chronologies
constitute conspicuous records of past high water levels since they are constructed from
trees that are directly damaged by the flood. However, the uncertainty of discrete series
increases toward the past, and their relationships with spring discharge are often nonlinear.
To take advantage of these two sources of information, we introduce a new transfer model
technique on the basis of generalized additive model (GAM) theory. The incorporation of
discrete predictors and the evaluation of the robustness of the nonlinear relationships are
assessed using a jackknife procedure. We exemplify our approach in a reconstruction of
May water supplies to the Caniapiscau hydroelectric reservoir in northern Quebec, Canada.
We used earlywood density measurements as continuous variables and ice-scar dates
around Lake Montausier in the James Bay area as a discrete variable. Strong calibration
(0.57 < 0.61 < 0.75) and validation (0.27 < 0.44 < 0.58) R2 statistics were obtained, thus
highlighting the usefulness of the model. Our reconstruction suggests that, since �1965,
spring floods have become more intense and variable in comparison with the last 150 years.
We argue that a similar procedure can be used in each case where discrete and continuous
tree ring proxies are used together to reconstruct past spring floods.
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1. Introduction
[2] In northern regions, spring flood is a dominant com-

ponent of the hydrological cycle. During that period, lake
water levels and river discharge reach peaks that are rarely
attained during the rest of the year [Church, 1988]. Spring
flood waters may severely disturb riparian ecosystems
[Hupp, 1988; Sigafoos, 1964], alter channel and riverbank
geomorphology [Ettema, 2002; Smith, 1979], and threaten
the communities living alongside. However, in areas like
northern Quebec (Canada) where major hydrogeneration
systems have been constructed, spring floods are of eco-
nomic importance: The annual infilling of the large reser-
voirs that feed the power plants is largely dependent on
spring water supplies.

[3] An efficient water resources planning program should
be based on an understanding of the decadal to centennial
trends and patterns of hydrological variability [Intergovern-
mental Panel on Climate Change, 2007; Kundzewicz et al.,
2007]. However, in many remote areas such as northern
Quebec, long-term hydrological series that encompass a

large spectrum of the natural variability are nonexistent;
the longest time series cover at most the last three to four
decades. In such cases, natural proxies can be used to
lengthen the existing records. Among the various proxies
used to retrieve paleohydrological information, tree ring
series offer an important advantage. They provide the ana-
lyst with annually resolved records that can be directly
used as predictors for streamflow when climate has a con-
comitant (yet indirect) effect on both variables [Loaiciga
et al., 1993]. On that basis, ring-width chronologies have
been highly successful at reconstructing past hydrological
conditions in areas of the world, such as semiarid parts of
the United States [Hidalgo et al., 2000; Meko et al.,
1995, 2001; Smith and Stockton, 1981; Stockton and
Fritts, 1971; Stockton and Jacoby, 1976; Woodhouse and
Lukas, 2006], where water deficit is the main factor limit-
ing tree growth.

[4] The calibration of such an indirect statistical relation-
ship between ring widths and streamflow is risky in boreal
environments. First, water is not a limiting factor in these
areas as it remains available for trees throughout the grow-
ing season. Second, and of utmost importance, for the
reconstruction of spring flood events, ring widths integrate
all of the environmental components influencing tree
growth, i.e., hydroclimatic conditions, competition, distur-
bances, etc. [Cook and Kairiukstis, 1990]. Because spring
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floods usually occur on much shorter timescales, they often
leave no visible traces in ring-width chronologies.

[5] To circumvent the latter situation, ice-scar chronolo-
gies are often used to document past spring floods in cold
regions. These discontinuous records are constructed from
exposed riparian trees that are frequently damaged by the
direct abrasion of water and/or ice during extreme floods
[Alestalo, 1973; Bégin, 2000a; Hupp, 1988; Schweing-
ruber, 1996; Sigafoos, 1964; Stoffel et al., 2010]. These
marks have been proven to be useful paleoflood indicators
in both lacustrine [Bégin, 1999, 2000a, 2000b; Bégin and
Payette, 1988; Lemay and Bégin, 2008; Lepage and Bégin,
1996; Tardif and Bergeron, 1997] and fluvial environments
[Boucher et al., 2009a; Gottesfeld and Johnson Gottesfeld,
1990; Henoch, 1973; McCord, 1996; Payette, 1980; Smith
and Reynolds, 1983; Bégin, 2000]. However, a major diffi-
culty with such series is that no precise statistical frame-
work exists to quantitatively reconstruct past discharge
using ice scars. An important caveat relates to the uncer-
tainty of these records. For example, the magnitude of a
paleoflood is often estimated using the proportion of living
trees bearing a scar at year t. But how much confidence can
one put in these estimated proportions? Moreover, how
rapidly does that confidence degrade as the number of sur-
vivor trees diminishes back in time? This uncertainty must
be quantified if discrete event series are to be used as prox-
ies to reconstruct past spring flood events.

[6] The objective of the present paper is to propose an al-
ternative approach for spring flood reconstructions in envi-
ronments where trees are not clearly stressed by the lack of
water. This procedure makes use of both continuous and
discrete series simultaneously since each have their respec-
tive strengths and weaknesses in these environments. Con-
tinuous series are uninterrupted through time (each year, a
ring is produced), and thus they can be easily coupled to
annual streamflow observations. We use earlywood density
measurements (wood formed during the late spring/early
summer period) as a continuous paleoflood indicator.
Nevertheless, the hydrological information obtained from
these series remains indirect, as trees sampled to construct
earlywood density chronologies are not in contact with a
naturally fluctuating water body. On the other hand, dis-
crete event series are constructed from trees that are
directly affected by floods. However, these records are dis-
continuous and their uncertainty remains unquantified.

[7] The procedure described herein attempts to include
the uncertainty of discrete tree ring series in the reconstruc-
tion process through the modeling of binomial confidence
intervals. Generalized additive models (GAM) [Hastie and
Tibshirani, 1990], which represent a generalization of the
multiple linear regression (MLR) approach, are used as
transfer functions. Despite the fact that GAMs have never
been used in tree ring science, they present numerous advan-
tages for the reconstruction of paleodischarge data because
(1) they allow for the modeling of nonnormal response vari-
ables (discharge data usually follow a gamma distribution
[Bobee and Ashkar, 1991]), and (2) they allow for optimal
modeling of the nonlinear relationships that are frequently
encountered in tree ring research [Graumich and Brubaker,
1986; Woodhouse, 1999]. We first detail the method and
then we apply it in a case study in northern Quebec, with
the objective of reconstructing spring water supplies to the

Caniapiscau reservoir, the head of one of the world’s largest
hydroelectric systems (the La Grande Complex).

2. Statistical Approach
2.1. Generalized Additive (Transfer) Model

[8] Over the last few years, most hydrological recon-
structions from continuous tree ring series have been per-
formed using multiple linear regressions (MLR) [Case and
MacDonald, 2003; Gou et al., 2007; Hidalgo, et al., 2000;
Meko et al., 1995, 2001; Meko and Graybill, 1995; Wood-
house, 2001; Woodhouse et al., 2006]. Let It be the propor-
tion of trees bearing an ice scar at year t around some
random lake (more details will be given in section 2.2.) and
Wt a measure of ring width or ring density. Assuming, for
instance, that both It and Wt are continuous, one could
therefore formulate a MLR model

EðQtÞ ¼ �0 þ �1It þ �2Wt þ "; ð1Þ

where E(Qt) denotes the expected discharge value, � are
least square or maximum likelihood estimates of the pa-
rameters, and " is a white-noise term. Such a linear model
is appropriate in situations where (1) Qt is Gaussian and (2)
the relation between Qt and tree ring series can be best
approximated by a straight line. This might not be a suita-
ble assumption if one is interested in reconstructing past
hydrological conditions from ice-scoured trees found along
water bodies. First, discharge data are usually best modeled
as a gamma rather than a Gaussian distribution [Bobee and
Ashkar, 1991] because the former remains strictly positive
over its full domain. Second, ice-scouring indicators can be
nonlinearly related to regional hydrological conditions.
This nonlinearity is not only of statistical interest ; it char-
acterizes the natural interactions that occur in these
dynamic systems. The most plausible causes for the disrup-
tion of the linear relationships are lagged hydrological
responses between basins of various sizes, complex hydro-
meteorological interactions that govern both the flooding
and ice cover breakup processes, altitudinal variations in
tree densities along shores, and irregular topographies of
the shoreline. All of these situations discourage the system-
atic use of MLRs as a modeling tool for paleohydrological
reconstructions when ice scars are used.

[9] Generalized additive models constitute a generaliza-
tion of the MLR approach. They were first introduced by
Hastie and Tibshirani [1990] and have since become quite
popular in environmental science modeling. The general
idea behind these models is to replace the traditional least-
squares-estimated � parameter of MLRs by some smoothing
function [Hastie and Tibshirani, 1990]. Thus, reformulating
(1) into a GAM would give

g E Qtð Þ½ � ¼ �0 þ f1It þ f2Wt þ "; ð2Þ

where f1 and f2 are smooth terms and g is a link function.
[10] A major advantage of GAMs over MLRs is that the

model structure can now handle, through g, responses of
any exponential family distribution (e.g., binomial, Pois-
son, gamma, etc.). This is a great advantage in paleohydrol-
ogy. The link function enables the modeling of gamma-
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distributed discharge values and makes it possible to relax
the hypothesis of normality that is inherent to MLR models.
Within the GAM framework, it is also possible to model
nonlinear relationships through f1 and f2. Such scatterplot
smoothers do not assume a rigid form for the dependency
between the response and the covariates, and therefore they
add a great deal of flexibility to the model, a crucial advant-
age in our context. Many different scatterplot smoothers
can be used in equation (2) [Hastie and Tibshirani, 1990],
e.g., loess and kernel smoothers, thin plate regression
splines, cubic regression splines, penalized regression
splines [Wood and Augustin, 2002], P-splines [Eilers and
Marx, 1996], and adaptive and tensor product smoothers.

[11] When using GAMs, one seeks to find the best trade-
off between the goodness of fit and the adjustment of a
smoothing function (the so-called ‘‘wiggliness’’) [Hastie
and Tibshirani, 1990; Wood, 2000; Wood and Augustin,
2002]. For example, in order to find the best fit between It,
Wt, and Qt (of size m) using penalized regression splines,
the GAM procedure attempts to minimize

Xm

i¼1

QtðiÞ � �0 � f1 ItðiÞ
� �

� f2 WtðiÞ
� �� �2

þ �1

Z
@2f1

@ItðiÞ
2

 !2

dIt þ �2

Z
@2f2

@WtðiÞ
2

 !2

dWt;

ð3Þ

where �1 and �2 are smoothing parameters that control the
degree of smoothness of the model (and hence its degree of
freedom), and �1

R
@2f1=@ItðiÞ

2
� �2

dIt and �2
R
@2f2=@WtðiÞ

2
� �2

dWt correspond to the penalties that measure the degree of
adjustment [Wood and Augustin, 2002]. A great deal of lit-
erature has focused on how to conveniently approximate �,
but an increasingly recognized strategy [Wood and Augus-
tin, 2002] consists of combining a penalized iteratively
reweighted least squares (P-IRLS) method with a procedure
that attempts to find the value of � that minimizes a general
cross-validation (GCV) score.

2.2. Modeling Uncertainties Around It

[12] Up to this point, we assumed that It was certain and
continuous to better describe the GAM. We will now take a
look at how to include uncertain and discrete It values in
the GAM.

[13] The proportions of ice-scarred trees (It) around a
lake, for each year t, are calculated using the Shroder
[1980] method. Shroder [1980] proposed to count the num-
ber of trees bearing a scar at year t (Rt) and to divide this
quantity by the number of trees available (At) for recording
(i.e., the number of trees with a ring dating from year t). It

therefore provides the dendrochronologist with yearly esti-
mates of past ice-flood magnitudes, since, in the simplest
case, it be can expected that a higher proportion of trees
will be scarred if water levels are higher at year t. However,
evaluating the uncertainty of these estimates is important
for two reasons. The first reason relates to the calibration of
the transfer model. Large uncertainties would signify that,
if more trees were collected within the same population,
the value of these proportions could change dramatically.
Therefore, coupling uncertain proportions to hydrological
variables in a transfer model could lead to the perception of

trends that might not exist if the sampling effort had been
more intense. The second reason relates to the reconstruc-
tion process. Although the data can be calibrated for the
recent past (i.e., where most trees are alive and available
for recording), performing a reconstruction inevitably
forces the dendrochronologist to include precalibration It
values that are less accurately estimated, as very few ‘‘old’’
trees (e.g., living trees that installed on the lakeshore 200
or 300 years ago) will have survived to the present.

[14] To model this source of uncertainty and include it in
the reconstruction process, we propose to construct bino-
mial confidence intervals around the proportion of ice-
scarred trees. It must be noted that ice-scar chronologies of-
ten yield extreme proportions (e.g., proportions obtained
from a very low Rt or At), so the choice of method should
account for that particularity. Many methods exist to calcu-
late binomial confidence intervals ; these methods have
been compared for their coverage probabilities under a
wide range of proportions and sample sizes [Agresti and
Coull, 1998]. From these comparisons, it has been shown
that the Wilson score method guarantees coverage proba-
bilities that remain close to the nominal confidence levels
for all combinations of sample sizes and proportions, even
for extreme proportions (close to 1 or 0) or very small sam-
ple sizes (close to 1). The Wilson score method thus
appears to be a logical choice over other methods (the
Wald method, for example) that yield more conservative
coverage probabilities [Agresti and Coull, 1998].

[15] In order to construct binomial confidence intervals
around It values, we first consider the detection of a scar at
year t on a given tree as a Bernoulli trial with the outcomes
of 0 ¼ ‘‘absence’’ and 1 ¼ ‘‘presence’’ of a scar. Since
there are At available trees, we consider At Bernoulli trials.
Then, we let It ¼ Rt/At (after Shroder [1980]) and hypothe-
size that the most probable values around It follow a bino-
mial distribution of parameter AtðAt 2 N0Þ and ItðIt 2
½0;1�Þ such that

PrðIt ¼ Rt=AtÞ ¼
At

It

� �
It

Rt ð1� ItÞAt�Rt ; ð4Þ

where Rt 2 N½0;At �. We then define the confidence intervals
after Wilson [1927]

It þ
z2
�=2

2At
6z�=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Itð1� ItÞ þ z2

�=2=4At�=At

q( )
= 1þ z2

�=2=At

	 

;

ð5Þ

where z2
�=2 corresponds to the quantile of the standard nor-

mal distribution.
[16] The integration of observed It values along with

their confidence intervals into the GAM transfer function is
achieved through a seven-step algorithm. The algorithm
also includes a jackknife validation procedure [Miller,
1964; Shao and Tu, 1995]. The algorithm is detailed here
and illustrated in Figure 1.

1. For each year t, randomly pick (with replacement) any
value within the bounds of the Wilson confidence interval
calculated using equation (5) and produce a synthetic series
It(1) equal in length to the original It series.
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Figure 1. Illustration of the statistical approach to calibrate and validate the transfer model. It is con-
sidered as an uncertain predictor. For each year t, there are many possible It values. Bars depict the range
of possible It values, as they are expected from a binomial distribution of parameters (At and It). Bar
heights refer to the frequency of occurrence of each case when i values are drawn from the latter distribu-
tion. At each iteration i, a random It value is chosen (gray bars among the possible values (black bars))
and a synthetic It series is computed. The synthetic discrete series is coupled to Wt to predict Qt and the
model is validated using a jackknife procedure. The procedure is repeated i times and at each iteration, a
different synthetic It series is recalculated.
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2. Given It(1), Wt, and Qt, build a training data set of size
m � 1 for calibration by leaving one observation out for
model validation.

3. Fit a GAM using equation (2) with that training data
set.

4. Make a prediction for Qt by substituting Wt and It(1)
values with the corresponding left-out cases (see step 5).

5. Reconstruct Qt using the same GAM by substituting
Wt and It(1) values with those of the preinstrumental period.

6. Repeat steps 2 through 5 m times so that each of the m
cases of the calibration data set are used for validation.

7. Repeat steps 1 through 6 i times using a different syn-
thetic It(1) series at each iteration. i should be as large as
possible (i.e., at least 100).

[17] The latter procedure makes it possible to include
discrete chronologies as predictor variables in a transfer
model to reconstruct spring floods. The discrete variable is
iteratively transformed into a continuous one with yearly
values randomly picked within the bounds of the confi-
dence intervals. The jackknife procedure enables the vali-
dation of the reconstruction model and the construction of
confidence intervals around reconstructed values.

3. Reconstruction of Spring Water Supplies to
the Caniapiscau Reservoir, Northern Quebec

[18] The statistical framework described in section 2 is
now applied to a case study in northern Quebec (Canada).
We use both continuous and discontinuous series to recon-
struct spring water supplies to the Caniapiscau hydroelec-
tric reservoir (Figure 2). Discontinuous series correspond to
the proportion of trees bearing a scar at year t around Lake

Montausier in northern Quebec. Continuous series are ear-
lywood density series obtained from trees living in the
nearby area.

3.1. Water Supplies to the Caniapiscau Reservoir
[19] Harmonized water supplies are used by Hydro-

Quebec for hydrological predictions and water resources
planning [Hydro-Quebec, 2006]. Averaging the daily val-
ues for the 1950–2007 period produces a hydrograph of the
mean daily water supplies to the Caniapiscau reservoir over
the last 58 years (Figure 3). Water supplies to the Caniapis-
cau reservoir are generally very low and stable during win-
ter months (<250 m3 s�1). The reservoir then starts to fill
at the beginning of the spring flood, which generally occurs
in late April or early May. May is clearly a month of
increasing discharges (water supplies increase from �300
to �2500 m3 s�1, on average), owing to the rapid snowmelt
at that time of the year. The highest yearly peaks are nor-
mally attained in late May or early June. The spring flood
then declines, and in August the discharge stabilizes around
1000 m3 s�1.

[20] In this study, May (QMay) and June (QJune) water
supplies (spring flood months) were computed from daily
harmonized water supplies to the Caniapiscau reservoir
[Hydro-Quebec, 2006]. We present a reconstruction of
May water supplies since during that period, ice cover pre-
dominates on the lakes of the area.

[21] Observed water supply fluctuations are depicted in
Figure 4. Inflows to the Caniapiscau reservoir have increased
notably since approximately 1970. A central question
remains, however, Is this increase unprecedented in recent

Figure 2. The LaGrande Hydroelectric Complex in northern Quebec. Black circles represent sites
from which densitometric data was retrieved to reconstruct historical water supplies to the Caniapiscau
reservoir. White circles are sites where densitometric data was not correlated to May water supplies and
therefore not used in the present study. Lake Montausier’s location is shown by a star.

W07516 BOUCHER ET AL.: SPRING FLOOD RECONSTRUCTIONS W07516

5 of 14



centuries? We exploited the hydrological information con-
tained in tree rings to answer this question.

3.2. Tree Ring Data
3.2.1. Discrete Tree Ring Series

[22] Lake Montausier (�11.3 km2; 54�4500300N, 70�090

5700W) is an ungauged high-boreal water body located im-
mediately to the northwest of the Caniapiscau reservoir,
James Bay, northern Quebec (Figures 2 and 5). The Cania-
piscau reservoir is at the head of one of the world’s most
important hydroelectric complexes: the La Grande Rivière
(LG) Hydroelectric Complex. The construction of dams
and the flooding of the reservoir in the mid-1980s greatly
affected Lake Montausier’s hydrological regime, lowering
its water level by about half a meter. The original size of
Lake Montausier’s drainage area remains unknown at the
time of writing because most of its basin was submerged
after �1985. Shoreline vegetation is characterized by the
codominance of black spruce (Picea mariana (Mill. BSP))
and eastern larch (Larix laricina (Du Roi) K. Koch). Ice-
scouring-tolerant shrubs such as green alder [Alnus viridis
ssp crispa (Ait.) Turrill], diamondleaf willow (Salix plani-
folia Pursh), and American dwarf birch (Betula glandulosa
Michx) are omnipresent along Lake Montausier’s shores.

[23] Field sampling on Lake Montausier was conducted
during the first week of June 2004. A total of 134 scar-
bearing black spruce stems were selected. Trunks <10 cm
diameter were not examined. Transversal cross-sections
were taken at the center of each visible scar. Trees were
also cut in multiple sections to ensure that no closed scars
were left unsampled. In the laboratory, cross-sections were
finely sanded and tree rings counted from the last year of
growth (2004) to the center in order to approximate the
date of tree establishment. A total of 304 scars were den-
drochronologically dated, taking care not to replicate

events found at multiple heights on the same tree. For each
of the t years, the number of scars (Rt) was counted along
with the number of trees available (i.e., living) to record
the events (At).
3.2.2. Continuous Tree Ring Series

[24] Earlywood measurements consisted of earlywood
width (EW), minimal earlywood density (Dmin), and
mean earlywood density (ED) measurements, all retrieved
from a dendrochronological network in the James Bay area
(Table 1, Figure 2). The network encompasses the La
Grande Hydroelectric Complex. We retained 13 chronolo-
gies (all black spruce) that correlated (r > 60.1) to May
water supplies (Figure 2). At each site, between 10 and 30
trees were sampled and a densitometric analysis was per-
formed using the method described in Schweingruber
[1978]. Density series were detrended using smoothing
splines with a 30% variance cutoff. The sensitivity [Biondi
and Qeadan, 2008] of these tree ring series is generally low
(less than 0.2 to 0.2). However, the expressed population
signal statistic (EPS) [Briffa and Jones, 1990] is fairly high
(>0.8) in most cases, suggesting that the sampling effort is
adequate.

Figure 3. Mean yearly hydrogaph of water supplies to the Caniapiscau reservoir. The gray zone repre-
sent the fifth and ninety-fifth percentile.

Figure 4. May waters supplies (QMay) to the Caniapiscau
reservoir.

Figure 5. Lake Montausier in early June 2004. Note that
the ice cover has totally disappeared. The outlet is in the
NW direction.
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[25] The original set was reduced to two principal com-
ponents (Wt(1) and Wt(2)), which explains 50% of the var-
iance contained within the tree ring series.

3.3. Modeling Approach and Software
[26] Equation (2) was used to construct the GAM with

the intent of reconstructing QMay over the last 150 years.
Accordingly, since it is understood that May discharges
cannot have a negative value, we modeled QMay as a
gamma variable and represented g as an inverse link func-
tion. All computations were done in the R environment.
Generalized additive models were performed using the
mgcv 1.5.6 package (available at http://cran.r-project.org/
web/packages/mgcv/). In all cases, penalized regression
splines were used as smoothers for It and Wt.

[27] Validation statistics obtained via the jackknife pro-
cedure were the root-mean-square error (RMSE) and the
reduction of error (RE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m � i

Xm�i
j¼1

QMayðjÞ � Q̂MayðjÞ

	 
2
vuut ; ð6Þ

RE ¼ 1�

1
m � i

Xm�i
j¼1

QMayðjÞ � Q̂MayðjÞ

	 
2

1
m � i

Xm�i
j¼1

QMayðjÞ � QMay

	 
2

2
666664

3
777775; ð7Þ

where i represents the number of synthetic series, m corre-
sponds to the number of years in the calibration data set,
j is the iteration number jmax ¼ m � ið Þ;QMayðjÞ; Q̂MayðjÞ;
and QMay, respectively, represent the observed, estimated,
and mean water supplies. Median reconstructed QMay val-
ues are plotted with their 90% confidence interval.

4. Results and Discussion
4.1. Discrete and Continuous Tree Ring Record

[28] Between 1850 and 2000, the proportion of ice-
scarred trees (It) has considerably evolved (Figure 6a).
Overall, observed It values ranged from 0 (minimum) to
0.089 (maximum, A.D. 1963), with a mean value of 0.016
for the whole period. Since �1930, however, It values have
increased notably. Before �1930, the average proportion of
scarred trees was 0.009. Since that time, that proportion has
more than doubled, reaching 0.023 on average, with It >
0.05 values recorded in 1933, 1936, 1946, 1947, 1957,
1958, 1963, 1969, and 1976.

[29] As anticipated, uncertainties around It are larger to-
ward the past because the estimation of proportions relies
on an increasingly smaller number of available trees (At)
(Figure 6a). For example, At decreases from 134 to 124
between 1999 and 1925 and drops to less than 108 before
1900 (Figure 6a). The length of 90% confidence intervals
varies accordingly, changing from 0.04 to 0.07 for the
same periods (Figure 6b). Coverage probabilities for the
Wilson score confidence intervals since 1850 are depicted
on Figure 6c, enabling us to verify that the intervals have
an adequate size (not too large or too narrow). This analysis
shows that the confidence intervals are close to the nominalT
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confidence level (90%), even at the beginning of the chro-
nology, where many It ¼ 0 are found. This suggests that
the Wilson score method is well suited for modeling uncer-
tainties around discrete event chronologies without being
too permissive or too conservative, even for years where no
events are recorded.

[30] The distribution of synthetic It series for each year
within the discrete event chronology allows for a nuanced
interpretation of past ice-scouring activity. The number of
synthetic series falling into each equally incremented
(0.01) It class provides an indication of the ‘‘plausibility’’
of each proportion value (Figure 6a). Darker colors indicate
more certain estimations since they reflect a leptokurtic dis-
tribution of synthetic It values. In Figure 6a, one can easily
observe that the proportion of scarred trees is less precisely
estimated prior to �1900. Further back in time, the raster
image presents an unequivocal period of low It extending
until about 1930. Finally, the post-1930 period corresponds
to a clear rise in the ice scouring activity. After �1985,
however, It values drop substantially, probably as a result

of the modification of the lake’s hydrological regime due to
the damming of its tributaries during the construction of
the Caniapiscau hydroelectrical reservoir.

[31] The first principal component of the density series
(Wt(1)) presents an important low frequency oscillation
component (Figure 6d). Wt(1) fluctuates around zero before
�1900 and drops below that value between 1900 and
�1975. Although the values start rising after 1950, Wt(1)
only becomes positive over the last 25 years. The second
principal component (Wt(2)) has a quite different pattern
(Figure 6e). This series remains positive until �1870 but
falls below zero during the last part of the nineteenth cen-
tury. Wt(2) then oscillates around zero until �2000 and
becomes slightly positive afterward. Additionally, the oscil-
lation character of Wt(2) is of much higher frequency.

4.2. Nonlinear Relationships With QMay

[32] In this section, the relationships between each tree
ring indicator (It, Wt(1), and Wt(2)) and QMay are presented.
The relationships are described for each predictor taken

Figure 6. Discrete and continuous tree ring series used to predict QMay. (a) The ice scar chronology of
Lake Montausier. Observed proportions of scarred trees are represented by circles. The Wilson score
confidence interval corresponds to the bold lines. The number of trees available (At) is represented by
the dashed line while the number of synthetic It series falling in each 0.01. The It class is represented on
the raster image. A gradient from white (0 series) to black (100 series) illustrates the yearly dispersion of
each possible It value. (b and c) The coverage probabilities and length of the confidence intervals. (d and
e) Continuous series are the two first PCs (Wt(1) and Wt(2)) of a network of earlywood density measure-
ments (black circles in Figure 2).
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individually at first. Then, a true GAM is built to evaluate
their additive effect. We compare the performances of our
GAMs with a more traditional MLR equivalent built with
the same input variables. Adjusted R2 values are presented,
and all models were first constructed on the full calibration
data set (i.e., of size m). The results are presented in the
second column of Table 2.

[33] The relationship between It and QMay is highly
nonlinear (Figures 7 and 8a). A GAM (gam.it) fitted on
observed It values such that g E QMay

� �� �
¼ �0 þ f1It þ "

depicts a humped relationship with QMay. For example,
while It � 0.05, the relationship between the proportion of
scarred trees and QMay is clearly positive-linear, meaning
that as long as that critical value is not exceeded, QMay
increases with It in quite a predictable manner. However,
for It > 0.05, this relationship reverses. In other words,
years with an exceptionally high proportion of scarred trees
do not occur during years of high QMay. Instead, they seem
to occur during years of low-to-moderate May discharges.
Nevertheless, gam.it fitted the humped relationship fairly
well (Table 2), with an R2 value of 0.43 and 50% of devi-
ance explained by the variations in It, alone. By compari-
son, if the transfer model had been constructed from a
linear regression approach, it would have been impossible
to fit the parabolic relationship (adjusted R2 ¼ 0.07, p >
0.05). Therefore, the hump-shaped relationship between It

and QMay is an example of a complex interaction that is
well captured within a GAM. This approach seems to be
very efficient in the fitting of the nonlinear relationships
that occur naturally, at spring, in cold-environment lakes. It
is particularly useful in the context of ice flood modeling,
where it is very difficult to have an a priori knowledge of
the form of the ‘‘best fit’’ relationships that exist between
dendrogeomorphological predictors (ice scars) and regional
hydrological variables, as many factors imbricate.

[34] Such a humped relationship, however, suggests that,
when the Caniapiscau water supplies are very low in May,
both a small and a high proportion of scarred trees can be

expected (Figures 7 and 8a). This surprising situation may
be caused by ice jams occurring at Lake Montausier’s out-
let. Ice jams can temporarily raise and maintain the ice-
covered lake level above its usual height, therefore provok-
ing the massive scarification of the vegetation despite the
fact that QMay remains low. Ice jams are very common in
these cold climates. In similar conditions, Boucher et al.
[2009b] estimated that ice jams have occurred once every
four years over the last 150 years. These events are typically
generated in a context of rapid and sudden snow melt trig-
gered by rain-on-snow events [Boucher et al., 2009a]. For
instance, the three years with the highest It values (i.e.,
1958, 1963, and 1969) were all characterized by intense rain
episodes in May. In each of these years, the maximum daily
amount of rain was >25 mm (Environment Canada, 2011,
http://climate.weatheroffice.gc.ca/Welcome_e.html?&), a
situation that can generate serious ice jam problems.

[35] The relationships between Wt(1), Wt(2), and QMay are
much more straightforward. For example, model gam.wt1
of the form g E QMay

� �� �
¼ B0 þ f1ðWtð1ÞÞ þ " fits an expo-

nential positive relationship (Figures 7 and 8b). Since the
EW chronologies are all positively correlated to the first
principal components (PC) (Table 1), Wt(1) probably repre-
sents the positive action of early spring precipitation on
tree growth. Precipitation has a direct effect on cell elonga-
tion [Kozlowski et al., 1991; Zhaner, 1968] and favor cell
growth and turgescence [Catesson, 1990]. Hence, when
water absorption by roots is greater than evaporation
(which is usually the case in spring), the cellular volume
increases, which leads to an earlywood that is larger and
less dense. The adjusted R2 value for this relationship is
0.415, and the gam.wt1 model explains about 48% of the
deviance. Again, the GAM approach performs slightly bet-
ter than the linear regression, which yields an adjusted R2

value of 0.26.
[36] A second model, called gam.wt2 of the form

g E QMay
� �� �

¼ B0 þ f1ðWtð2ÞÞ þ ", enabled us to model the
relationship between the second principal component and

Figure 7. Scatterplots of the relationships between QMay and each tree ring predictor.

Table 2. Comparison of R2, RMSE, and RE Statistics for the GAM and the MLR Modela

GAM MLR (eq)

Model R2
Full R2

c R2
v RMSE RE R2

Full R2
c R2

v RMSE RE

gam.it 0.43 0.22 0.15 503 0.15 0.07 0.03 0 574 -
gam.wt1 0.42 0.35 0.18 501 0.17 0.26 0.22 0.15 501 0.11
gam.wt2 0.49 0.36 0.22 448 0.26 0.37 0.26 0.21 501 0.18
gam.it.wt 0.75 0.61 0.44 398 0.36 0.49 0.40 0.23 488 0.12

aR2
Full was calculated on the full period, R2

c is the average value calculated on the training dataset, and R2
v designates the validation coefficient (linear

comparison between observed and simulated values). The strongest coefficients are in bold.
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QMay (Figures 7 and 8c). The relationship is exponential
negative. Since the Dmin and ED chronologies all correlate
negatively to Wt(2) (Table 2), it is likely that Wt(2) repre-
sents the negative impact of water on wood density. Wood
cells produced during water-abundant conditions are
known to be larger and thin-walled [Catesson, 1990], there-
fore lowering earlywood density. The model fits this nega-
tive relationship quite well, with an adjusted R2 value of
0.49 and about 52% of the deviance explained. A linear
model could also have been used to fit this relationship, but
the adjusted R2 values would have been smaller (0.37).

[37] Combining It, Wt(1), and Wt(2) into a single model
(gam.it.wt) to predict QMay yields even better adjustments
(Table 1). With the three variables together, the model truly
becomes additive and predicts QMay quite well, with an
adjusted R2 of about 0.75 and 81% of deviance explained.

The GAM approach provides a better fit than the MLR
approach since, with the same predictors, the multiple lin-
ear regression yields significant, but unsatisfactory, results
(adjusted R2 ¼ 0.49, p < 0.01).

4.3. Calibration and Validation of the Generalized
Additive Model

[38] The relationships presented in section 4.2 were not
tested on independent data and did not take into account
the uncertainties around observed It values. However, com-
putation of these uncertainties and validation of the rela-
tionships are straightforward using the procedure described
in section 2.2. The latter was used to compare all previ-
ously described models (GAM and MLR). Again, the
results are presented in Table 2. We provide median

Figure 8. Nonlinear relationships between (a) It, (b) Wt(1), and (c) Wt(2), and May water supplies
(QMay) to the Caniapiscau reservoir for the full calibration period (1950–1980, n ¼ 31). Partial residuals
are presented here. They correspond to the Pearson residuals added to the smooth term for each covari-
ate. The smoothed relationship (solid line) is presented with its 95% confidence interval (dashed line).
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calibration and validation adjusted R2(R2
c, R2

v), RMSE,
and RE values for each model.

[39] The GAM approach systematically yields better cal-
ibration and validation statistics than the traditional MLR
approach (Table 2). This suggests that, in general, the rela-
tionships found by the GAM approach are robust and can
be generalized to independent data. However, it is impor-
tant to underline that, when comparing R2

Full to both R2
c

and R2
v, the values drop significantly when It is used either

solely or jointly with Wt to predict QMay. This is an inevita-
ble consequence of our modeling approach. There are two
explanations for that drop. The first is that the calibration
period is quite short, m ¼ 31. Thus, calibration of the
model on a training m � 1 size data set might be more
sensitive to the jackknife procedure described in section 2.
The second is that uncertainties around observed It values
are included within the calibration process. At each itera-
tion i, a new synthetic It series is included and a new GAM
is recalibrated. Each iteration therefore contributes to an
increasing departure from the R2 coefficients of the gam.it
and gam.it.wt models originally computed from the fixed
It series.

[40] For example, reusing gam.it.wt and incorporating
the i ¼ 100 synthetic It series along with the corresponding
Wt(1) and Wt(2) values in each of the m ¼ 31 training data
sets yielded a median adjusted R2 value of 0.61 (Table 1).
The fifth and ninety-fifth percentiles around the median
adjusted R2

c values are 0.57 and 0.75, respectively. Thus,
the incorporation of uncertainties in the estimation of It and
the iterative constitution of a calibration data set resulted in
a more conservative fit. Then, at each iteration, a jackknife
sample was removed and used for model validation. Fol-
lowing that procedure, we created i ¼ 100 jackknife valida-
tion data sets (of size m) that were used to calculate
validation statistics. As expected, the comparison between
observed and simulated values, in each data set, yielded
slightly smaller, although still significant, R2 values. The

median adjusted R2
v was 0.44, and its 90% confidence

interval was between 0.27 and 0.58. Graphical comparison
between the observed and the median simulated QMay val-
ues (Figure 9a) suggests that gam.it.wt may have slightly
overestimated small discharges (e.g., QMay < 1000 m3 s�1)
and underestimated larger ones (QMay > 1000 m3 s�1).
Nonetheless, gam.it.wt appears to be an acceptable model,
as its RMSE coefficient (398.35) is smaller than the stand-
ard deviation of observed QMay values (577.22) and the RE
statistic is positive (0.36), indicating that our model has sig-
nificant predictive skills.

4.4. Reconstruction of QMay Since 1850
[41] Retrospective predictions were performed using

gam.it.wt after replacing It and Wt values with those of the
preinstrumental period. In total, gam.it.wt was recalibrated
j ¼ 3100 times (jmax ¼ mi ¼ 31� 100; see section 2.2),
and at each time, a reconstruction was performed. The
reconstruction presents the median QMay value surrounded
by a 90% confidence interval and extends back to 1850
(Figure 9b).

[42] Three distinct hydrological periods can be distin-
guished. The first period was between 1850 and 1900,
when water supplies were of moderate amplitude. During
that period, mean QMay values oscillated around 913 6 168
m3 s�1 (mean 6 SD). This first phase was followed by a
prolonged low flow period (1901–1965) when QMay values
oscillated around 811 6 135 m3 s�1. Finally, water supplies
rose after 1965. This recent period, which extends to today,
is characterized by higher but also more variable QMay val-
ues. The mean QMay values of this period are around 1190
6 668 m3 s�1. QMay peaks during this period, i.e., 1973,
1976, 1979, 1983, 1986, and 1999, have been unequalled in
magnitude for the last 150 years. Finally, we compared the
mean 1950–2003 QMay to the mean 1850–2003 QMay value.
Since the former is larger than the latter (1111 m3 s�1 ver-
sus 930 m3 s�1), our data suggest that the mean value

Figure 9. (a) Observed versus simulated QMay values. The 1:1 relationship corresponds to the dashed
line. (b) Reconstruction of May water supplies to the Caniapiscau reservoir. The bold line and the gray
shading correspond to the mean 10 year running average and the 90% confidence interval, respectively.
Observations correspond to the dashed line.
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recorded during the instrumental period may overestimate
the average May water supply to the Caniapiscau reservoir.

[43] This is the first continuous spring flood reconstruc-
tion in the area. However, other discontinuous ice scar se-
ries exist in nearby environments such as Corvette Lake
[Lemay and Begin, 2008], Bienville Lake [Bégin, 1999,
2000a, 2000b; Lepage and Bégin, 1996], Clearwater Lake
[Bégin, 2000a, 2000b; Bégin and Payette, 1988], and
Duparquet Lake [Tardif and Bergeron, 1997]. Although
spring floods have never been reconstructed from these
chronologies, some share similarities with the present
study, therefore highlighting the regional character of our
reconstruction. For example, Tardif and Bergeron [1997]
suggested that intermediate water levels occurred during
the 1850–1900 period, according to an analysis of scar
heights around Duparquet Lake in the southern boreal for-
est. An intermediate level of ice flood activity was also
reconstructed for that period in Corvette [Lemay and Begin,
2008] and Bienville [Bégin, 1999; Lepage and Bégin,
1996; Bégin, 2000] lakes in high-boreal and subarctic
Quebec.

[44] The 1900–1965 low flow period was also observed
in these lakes. However, Corvette, Bienville, Clearwater,
and Duparquet lakes all seem to have experienced a period
of higher ice-flooding activity during the 1930s–1940s,
while in our reconstruction, that period is of much smaller
magnitude. It is important to recall that ice flooding in these
very large lakes occurs during years of very high spring
discharge (e.g., high mean flood discharge or high peak dis-
charge). In our study, we focused on reconstructing May
water supplies mostly because Lake Montausier is a very
small water body whose ice flooding activity is responsive
to early spring hydroclimatic conditions. An important ele-
ment to remember is that, at least for the Caniapiscau reser-
voir, the behavior of water supplies in May does not
necessarily influence the magnitude of the rest of the flood
for a given year. For example, we tested how QMay relates
to QJune, flood peak, and flood volume using a correlation
analysis and found no evidence of a significant relationship
(all r < 0.1, p < 0.05) for the 1950–2003 period. Therefore,
it is important to underline that we do not deny the exis-
tence of a high water level phase during the 1930s–1940s.
However, our reconstruction suggests that QMay may not
have been significantly higher during that period, a result
that does not, in itself, reduce the possibility that major
spring floods could have occurred later in the season.

[45] Finally, our reconstruction revealed that the recent
period (after �1965) has been characterized by a rapid
increase in May water supplies, a situation that strongly
suggests that spring floods are tending to occur increasingly
earlier in the Caniapiscau area. To identify the general cli-
matic processes driving these variations, we performed a
standard correlation analysis with key climatic explanatory
variables such as mean May temperature, sum of precipita-
tion (total), and total accumulation of rain during the month
of May (from the Schefferville station, 1957–2003). This
analysis suggests that only mean May temperature is posi-
tively correlated (r ¼ 0.54) to QMay. Thus, we conclude
that QMay is a temperature sensitive variable and that its
evolution through the last 150 years reflect, at least partly,
the evolution of May temperatures in the Caniapiscau res-
ervoir area.

[46] Future research should aim at incorporating the vari-
ous discrete and continuous chronologies available in the
James Bay area in order to perform a first regional analysis
of spring floods. Such an approach could, for example, study
and model the oscillatory nature of tree ring series and their
relationships with low-frequency climatic oscillation indices
that are influential in the area (Arctic Oscillation, North At-
lantic Oscillation). Empirical mode decomposition (EMD)
methods [Lee and Ouarda, 2010] could be an interesting
tool to carry out such an investigation.

5. Conclusions
[47] The acquisition of high-resolution historical infor-

mation on past spring flood discharges in northern environ-
ments is of crucial importance, owing to the economic and
hydrological significance of these events. Because of their
high resolution, tree rings are generally well suited to
retrieve this kind of information. However, in cold environ-
ments, some particularities must be underlined. For exam-
ple, one is very unlikely to find sites where water is the
only factor limiting tree growth. Thus, simply relying on
continuous tree growth parameters such as ring widths or
densities to reconstruct past spring discharges may be haz-
ardous. We strongly believe that, in this context, the reli-
ability of the reconstruction can be improved by including
discontinuous tree ring series constructed from trees that
are directly affected by water level fluctuations. Discrete
indicators such as the proportion of ice-scarred trees around
a lake are conspicuous evidence of past ice floods at the
local scale. Such indicators have remained unexploited for
the quantitative reconstruction of regional spring discharge
beyond the instrumental period, despite the fact that a
longer historical record would be of great interest for the
planning of water resources. Moreover, the uncertainty
associated with these indicators and the nonlinearities of
their relationships with regional discharge have remained
unaddressed until now.

[48] We developed a novel method that makes it possible
to perform spring flood reconstructions in such environ-
ments. We take advantage of both continuous and discon-
tinuous tree ring series, as they have their respective
strengths and weaknesses. The procedure described herein
makes use of computer-intensive techniques in order to (1)
model the uncertainty associated with field-based estima-
tion of ice-scouring indicators’ yearly values (those of It in
particular) ; (2) incorporate this changing uncertainty into
the process of model calibration/reconstruction of past
spring discharges; (3) use a GAM approach to model the
nonlinear relationships that naturally characterize the inter-
actions between tree ring indicators and spring discharges;
(4) evaluate the calibration model’s generalization capabil-
ities using a jackknife procedure; and (5) perform hydro-
logical reconstructions and compute their uncertainties.

[49] We tested our model in a case study in northern
Quebec with the objective of reconstructing May water
supplies to the Caniapiscau reservoir from continuous and
discontinuous tree ring proxies. Satisfying calibration and
verification results were obtained in this preliminary exam-
ple. Although our model could be improved by elongating
the calibration period, we strongly believe that a similar
procedure can be used in other situations where spring
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floods are reconstructed from discrete and continuous tree
ring series. Instead of using ice scars, for example, one
could easily use vessel anomalies [St. George and Nielsen,
2000, 2003; St. George et al., 2002; Yanosky, 1983] as a
discrete tree ring proxy for spring floods. Additionally, our
approach could serve as a basis for a large-scale regional
analysis of spring floods in northern environments, which
would incorporate all available discrete and continuous tree
ring series.
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30, 210–220.

Biondi, F., and F. Qeadan (2008), Inequality in paleorecords, Ecology, 89,
1056–1067.

Bobée, B., and F. Ashkar (1991), The Gamma Family and Derived Distri-
butions Applied in Hydrology, 203 pp., Water Resour. Publ., Littleton,
Colo.
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K. A. Miller, T. Oki, Z. Sen, and I. A. Shiklomanov (2007), Freshwater
resources and their management, in Climate Change: Impacts, Adapta-
tion and Vulnerability: Contribution of Working Group II to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change,
pp. 173–210, Cambridge Univ. Press, Cambridge, U. K.

Lee, T., and T. B. M. J. Ouarda (2010), Long-term prediction of precipita-
tion and hydrologic extremes with nonstationary oscillation processes,
J. Geophys. Res., 115, D13107, doi:10.1029/2009JD012801.
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