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[1] The creation of a contour map of the water table in an unconfined aquifer based on
head measurements is often the first step in any hydrogeological study. Geostatistical
interpolation methods (e.g., kriging) may provide exact interpolated groundwater levels at
the measurement locations but often fail to represent the hydrogeological flow system. A
physically based, numerical groundwater model with spatially variable parameters and
inputs is more adequate in representing a flow system. Because of the difficulty in
parameterization and solving the inverse problem, however, a considerable difference
between calculated and observed heads will often remain. In this study the water‐table
interpolation methodology presented by Fasbender et al. (2008), in which the results of a
kriging interpolation are combined with information from a drainage network and a digital
elevation model (DEM), using the Bayesian data fusion framework, is extended to
incorporate information from a tuned analytic element groundwater model. The resulting
interpolation is exact at the measurement locations whereas the shape of the head contours
is in accordance with the conceptual information incorporated in the groundwater‐flow
model. The Bayesian data fusion methodology is applied to a regional, unconfined aquifer
in central Belgium. A cross‐validation procedure shows that the predictive capability of
the interpolation at unmeasured locations benefits from the Bayesian data fusion of the
three data sources (kriging, DEM, and groundwater model), compared to the individual
data sources or any combination of two data sources.
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1. Introduction

[2] A head contour map provides information about the
flow direction and gradient of an aquifer system and, in the
case of an unconfined aquifer, about the depth of the water
table. Such a contour map is used as starting point to gain
insight in the groundwater flow system, to evaluate migra-
tion of pollutants, to assess vulnerability of an aquifer, and
to create conceptual hydrogeological models.
[3] Head observation data, however, are often scarce and

irregularly distributed over a study area. To obtain a head
contour map based on these data, a number of approaches
are available, ranging in complexity from manually drawing
contour lines over interpolation to groundwater modeling.
[4] The most straightforward method to create a water

table map is to manually create contours on the basis of
observation data. This method has the distinct advantage of
directly incorporating expert knowledge about the hydro-

geological system under study [Kresic, 2006]. A major
drawback of manual interpolation is the inherent subjectivity
of the method since each expert will have a personal inter-
pretation of the available data and hydrogeological infor-
mation. A second drawback is the time‐consuming nature of
the method, especially for large regions and data sets.
[5] The other side of the spectrum of available methods to

produce comprehensive and reliable water table maps is
physically based, numerical groundwater modeling with
spatially distributed parameter and input values. On the
basis of the hydrogeological information implemented
through the conceptual model, a piezometric map is pro-
duced in accordance with the governing groundwater flow
equations and mass balance constraints. The major dis-
advantage of creating such a numerical model to obtain a head
contour map is the large amount of hydrogeological data
required and the time and the effort needed to create and
calibrate the model, whereas, even with a calibrated model,
a certain mismatch remains between observed and simulated
heads. By increasing the number of parameters and applying
optimization algorithms, it is possible to produce one or
even several groundwater models without residuals between
observed and simulated heads. The decrease in model error
is, however, mostly accompanied by a loss of generalization
of the model, the ability to adequately simulate a head at
unmeasured locations [Hill and Tiedeman, 2007]. Numeri-
cal groundwater models are therefore seldom created for
the sole purpose of creating a groundwater contour map.
On the contrary, a contour map is often essential in the
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conceptualization of boundary conditions for a groundwater
model [Reilly, 2001].
[6] To create a water table map from groundwater level

observations, a wide variety of interpolation techniques are
available, including radial basis functions, inverse distance
weighting (IDW), and different kriging variants. Recent
applications of these methods in the context of water table
mapping can be found in work by Procter et al. [2006],
Taany et al. [2009], and Sun et al. [2009]. Although these
methods honor the data at the measurement locations, they
suffer from the same drawbacks, namely, an inadequate
representation of the flow system and the occurrence of
interpolation artifacts. The inadequate representation of the
flow system can be manifested through groundwater levels
being interpolated above topography, the lack of flow con-
vergence near draining rivers, or the occurrence of isolated
groundwater level depressions in the absence of ground-
water extractions. Although these isolated groundwater level
depressions can occur naturally, especially in areas with
high evapotranspiration rates, in humid and temperate cli-
mates, however, isolated groundwater level depressions
generally are only linked to groundwater abstraction.
[7] Depending on the method chosen and the imple-

mentation of the method, interpolation artifacts can cause
both too much smoothing of the surface and abrupt changes
in the interpolated surface. In addition, isolated observations
can be overemphasized in the interpolation process so that
the importance of these observations in the overall inter-
polation is disproportionately large.
[8] In order to overcome these drawbacks several authors

proposed incorporating auxiliary data in the interpolation
process. Kresic [2006] documents the widely used technique
of including dummy points in the interpolation. These arti-
ficial points can represent, for instance, a river stage and are
included in the interpolation process as extra observations.
In doing so the interpolation can be guided as to incorporate a
drainage system. Buchanan and Triantafilis [2009] improved
IDW and ordinary kriging interpolations of groundwater
depth using a multiple linear regression of high‐resolution
geophysical measurements, morphometric information, and
observed groundwater levels.
[9] Since groundwater levels are often related to topog-

raphy in unconfined aquifers [Haitjema and Mitchell‐
Bruker, 2005] and digital elevation models (DEM) are
readily available, DEM information can often be used as an
auxiliary variable in water table interpolation. Desbarats
et al. [2002] provide a good overview of different method-
ologies of incorporating DEM information in a kriging
interpolation. Another approach to improving water table
interpolation is to incorporate groundwater level calculations
on the basis of groundwater‐flow equations. The ground-
water depth calculated using a linear relationship between
groundwater depth and a DEM‐derived quantity, the topo-
graphic index, as implemented in TOPMODEL, is used by
Desbarats et al. [2002] as external drift in kriging ground-
water depths in Ontario, Canada. Tonkin and Larson [2002]
incorporate the Theis equation in the calculation of the drift
term in kriging in order to account for the effect of pumping
on groundwater elevation. Karanovic et al. [2009] extend
this methodology by using drift terms derived from an
analytical element method to include both linear and circular
sinks and sources. Rivest et al. [2008] adopt a similar
approach in which the results of a numerical groundwater

model are used as external drift in the interpolation of a
groundwater head field in an earthen dam. Linde et al. [2007]
use a Bayesian framework to combine self‐potential mea-
surements with groundwater level observations to estimate
the water table elevation.
[10] The Bayesian data fusion framework was recently

used by Fasbender et al. [2008] to combine a kriged
groundwater contour map with information from a DEM
and river network. An empirically derived relationship
between groundwater depth and the topography‐based
penalized distance to the river network is combined with an
ordinary kriging of head observation data. Compared to
ordinary kriging and cokriging, the resulting interpolation
showed an improved accuracy. In addition, the hydro-
geological reality was more closely reflected in the inter-
polated surface, since groundwater flow converged toward
draining rivers and the interpolated head was maintained
below the topography.
[11] In this study the Bayesian data fusion framework for

groundwater head interpolation is extended to implicitly
incorporate conceptual hydrogeological information by
using a solution to the groundwater flow equations under
simplified boundary conditions obtained by the analytic
element method.
[12] The methodology is applied to a regional, uncon-

fined, sandy aquifer in Belgium. The performance of the
interpolation in terms of predictive capability is assessed
using a “leave‐one‐out” cross‐validation procedure in which
the predictive capability of the individual data sources
(kriging, empirical depth‐distance relationship, or ground-
water model) and any combination of two data sources is
compared to an interpolation using all three data sources.

2. Interpolation Methodology

[13] The goal of any interpolation is to estimate a variable
of interest Z0 at an unsampled location x0 based on observa-
tions zS = {z1, z2,…,zm} at locations xS = {x1,x2,…,xm}.
In addition to the direct observations of the variable of
interest, indirect observations y = {y0,y1,…,yn} of secondary
data sources Y at locations {x0,x1, …,xn} can be used to
refine the interpolation. To apply such a fusion of data,
Bayesian approaches have been shown to provide good
results in various fields such as image processing, remote
sensing, and environmental modeling. An overview of these
applications can be found in work by Bogaert and Fasbender
[2007] and Fasbender et al. [2008]. The ensemble Kalman
filter data assimilation technique, which is widely applied in
atmospheric science [Ehrendorfer, 2007], can be considered
to be a special case of empirical Bayesian data fusion
[Cressie and Wikle, 2002].
[14] Within the Bayesian data fusion framework, the

interpolation methodology seeks the posterior probability
density function (pdf) f(z0∣y0), the pdf of variable z at
unsampled location x0, given y0, the secondary information
at location x0. In this study the secondary information
consists of a kriging estimate at x0 based on observations
zS = {z1, z2,…,zm} at locations xS = {x1,x2,…,xm}, an
estimate of z0 by an empirical depth‐distance relationship
and an estimate z0 by an analytical element groundwater
model. This section describes the fusion of the different data
sources while the details of the individual data sources,
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kriging, depth‐distance relationship, and analytical element
method will be discussed in section 3.
[15] The m secondary data sources at x0, Y0 = (Y0,1,…,

Y0,m)′, are related to the variable of interest, Z0, through
an error term E0:

Y0; j ¼ Z0 þ E0; j 8j ¼ 1; . . . ;m:

Under the assumption of mutual independence of the
secondary data sources conditionally to the variable Z0,
Bogaert and Fasbender [2007] show that the posterior
pdf f (z0∣y0) can be written in function of the prior pdf of
z, f (z0) and the conditional pdf’s f (z0∣y0,i) as

f z0jy0ð Þ / 1

f z0ð Þ½ �m�1

Ym
j¼1

f z0jy0; j
� �

: ð1Þ

If f(z0∣zS) denotes the pdf of the variable of interest at
location x0, solely on the basis of observations zS, obtained
through ordinary kriging interpolation of the observation
data, if f (z0∣yDEM(x0)) denotes the pdf of z at location x0
obtained through an empirical depth‐distance relationship
evaluated at x0 and if f (z0∣yGW(x0)) is the pdf of z at x0 from
the estimate of the analytical element groundwater model
for location x0, equation (1) can be written as [cf. Fasbender
et al., 2008]

f z0j zS ; yDEM x0ð Þ; yGW x0ð Þ½ �/ f z0jzSð Þ
f z0ð Þ2 f z0jyDEM x0ð Þ½ � f z0jyGW x0ð Þ½ �:

ð2Þ
Under the assumption that f (z0), f (z0∣zS), f (z0∣yDEM(x0)), and
f (z0∣yGW(x0)) are Gaussian distributed, the posterior pdf f
(z0∣zS,yDEM(x0),yGW(x0)) is also Gaussian. A Gaussian dis-
tribution with mean m and variance s2 is given by

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2��

p exp � 1

2�2
ðx� �Þ2

� �
/ exp � 1

2�2
x2 þ �

�2
x

� �
:

ð3Þ
Replacing the pdf’s on the right‐hand side in equation (2) by
equation (3) results in the equivalence given by equation (3):

f z0jzS; yDEM x0ð Þ; yGW x0ð Þ½ � / exp
1

�2
0

z20 � 2
�0

�2
0

z0

� �
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2�2
k
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�k

�2
k
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� �
� exp � 1

2�2
DEM
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�DEM

�2
DEM
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� �

� exp � 1

2�2
GW
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�GW

�2
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� �
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2

1

�2
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�2
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þ 1
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�
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0

� �
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�
: ð4Þ

In equation (4) m0 and s0
2 denote the mean and variance of the

observed data set, characterizing the prior pdf, mk and sk
2

denote the mean and variance of the kriging interpolation,
mDEM and s2DEM denote the mean and variance of the
empirical depth‐distance relationship, and mGW and s2GW are
the mean and variance of the analytic element groundwater
model.
[16] Since the conditional probability density function

itself is also a Gaussian distribution, the mean and the

variance of this pdf. mBDF and s2BDF, respectively, are
obtained through equivalence from equation (4):

�BDF ¼ �k

�2
k

þ �DEM

�2
DEM

þ �GW

�2
GW

� 2
�0

�2
0

� �
�2
BDF

�2
BDF ¼ 1

�2
k

þ 1

�2
DEM

þ 1

�2
GW

� 2

�2
0

� ��1

:

8>>><
>>>:

ð5Þ

Equation (5) thus provides an elegant and compact formula
to estimate a quantity at unmeasured locations by com-
bining a kriging interpolation with different additional data
sources, which are exhaustively known in space, with the
result of a kriging interpolation.

3. Application

3.1. Study Area

[17] The study area is located in central Belgium where
the geology is dominated by the Brussel Sand Formation
(Figure 1), one of the main aquifers in Belgium for drinking
water production. This Brussel Sand Formation aquifer is of
middle Eocene age and consists of a heterogeneous alter-
ation of calcified and silicified coarse sands [Laga et al.,
2001]. These sands are deposited on top of a clay forma-
tion of early Eocene age, the Kortrijk Formation, which
forms the base of the aquifer in the northern part of the study
area. In the south, the Kortrijk Formation is locally eroded,
and the Brussel Sand Formation is deposited on top of
Paleocene sandy silts (Hannut Formation), Cretaceous chalk
deposits (Gulpen Formation) and, mainly, Paleozoic base-
ment rocks consisting of weathered and fractured shales and
quartzites. On the hilltops, younger sandy formations of
late Eocene (Maldegem Formation) to early Oligocene age
(St. Huibrechts Hern Formation) cover the Brussel Sand
Formation. The St. Huibrechts Hern Formation mainly
consists of glauconiferous fine sands. In the north of the
study area isolated patches of Oligocene clay (Boom
Formation) and Miocene sands (Diest Formation) occur.
The entire study area is covered with an eolian loess
deposit of the Quaternary age; in the northeast of the study
area, these loess deposits are more sandy.
[18] The main river in the study area is the Dijle River,

and many of its tributaries have cut through the Brussel
Sand Formation during the Quaternary. In most of the valley
floors, the Brussel Sand Formation is absent, and the
unconfined aquifer is situated in alluvial deposits of the
rivers on top of the Kortrijk Formation. These alluvial
deposits consist of gravel at the base, covered with an
alteration of silt, sand, and peat. In the river valleys, a
great number of springs drain the aquifer and provide the
base flow for the river Dijle and its tributaries.
[19] The hydraulic conductivity of the Brussel Sand

Formation varies between 6.9 × 10−5 and 2.3 × 10−4 m/s
because of the heterogeneity of the Eocene aquifer
[Bronders and De Smedt, 1991]. Locally, in the alluvial
gravels, higher conductivities are observed with values as
high as 9.3 × 10−4 m/s. Small‐scale sedimentary structures
have been proven to influence permeability [Huysmans
et al., 2008].
[20] Both the Flemish (Puntenlaag grondwatermeetnet,

Databank Ondergrond Vlaanderen (in Dutch), 2009, http://
dov.vlaanderen.be) and Walloon (Diréction Générale des
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Ressources Naturelles et de l’Environnement, Banque de
données 10‐sous, 2009, http://carto1.wallonie.be/10SousInt/
Default.asp) governments have observation wells installed
in the Brussel Sand Formation aquifer to monitor ground-
water level fluctuations and groundwater chemistry. The
176 groundwater head observations from these monitoring
networks are used for water table interpolation. The loca-
tions of the observation wells, the river network, and the
topography are indicated in Figure 2.

3.2. Ordinary Kriging

[21] Since the river Dijle drains toward the north and the
topography declines in that direction, the head observation
data display a clear north‐south trend (Figure 3a). A linear
trend is fitted to the data and is removed from the data
before calculating the experimental variogram (Figure 3b).
The experimental variogram is modeled, by fitting in a least

squares sense, with a Gaussian variogram with a nugget of
11 m2, a sill of 308 m2, and a range of 11,170 m (Figure 3b).
[22] Ordinary kriging with a trend in the y direction, based

on the original data and the experimental variogram, is
performed on a regular grid with grid cell size of 50 m,
having 1140 rows and 1060 columns. In order to incorporate
the anisotropy induced by the presence of the draining
Dijle River the main axis of the search ellipsoid is oriented
N12°E. The radii of the ellipse are 50,000 and 20,000 m
with a maximum number of 75 conditioning data. Kriging is
performed using the Stanford Geostatistical Modeling
Software (S‐GeMS) [Rémy, 2004]. The kriging interpolation
of groundwater head is depicted in Figure 4a, and the
associated variance is depicted in Figure 4b.

3.3. Empirical Depth‐Distance Relationship

[23] In a first attempt to include additional information in
water table spatial mapping within the Bayesian data fusion

Figure 1. Geological map of the study area (based on data from Cools et al. [2006]).
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framework, Fasbender et al. [2008] used a digital elevation
model and the geometry of the river network. In an aquifer
with a draining hydrographic network, water table eleva-
tions are expected to be in close proximity to the ground

surface near the river network. In an unconfined aquifer,
recharge will lead to groundwater mounding in the inter-
fluves. Compared to the rise in elevation of ground level on
the interfluves, this mounding generally is rather low,

Figure 3. (a) North‐south trend identification from observation data and (b) experimental variogram
together with the Gaussian variogram model (nugget, 11 m2; sill, 308 m2; range, 11170 m).

Figure 2. Topography of the study area, river network, and head observation locations.

PEETERS ET AL.: BAYESIAN DATA FUSION FOR WATER TABLE MAP W08532W08532

5 of 11



especially in highly conductive aquifers. Fasbender et al.
[2008] therefore postulate that it is possible to find an
empirical function that relates the DEM value to the
groundwater level at a certain location on the basis of the
distance of the location to the river network. This relation-
ship can be expressed as

Z xið Þ ¼ yDEM xið Þ þ E xið Þ
yDEM xið Þ ¼ DEM xið Þ � g dDEM xið Þ½ �; ð6Þ

where Z(xi) is the water table elevation, yDEM(xi) is the
empirical function, and E(xi) is a zero‐mean random error
with a variance s2DEM. DEM(xi) is the DEM value at loca-
tion xi , dDEM(xi) is the penalized distance of xi to the nearest
point on the river network, and g() is an increasing non-
negative function. The variance s2DEM increases with
increasing dDEM(xi). This reflects a weakening of the cor-
respondence between water table elevation and ground level
elevation as the distance to the river network increases. The
distance calculation between xi and the river network is
penalized by using the slope of the terrain. In areas in which

Figure 4. (a) Kriging interpolation, (b) kriging variance, (c) groundwater levels from the analytic ele-
ment groundwater model, (d) variance of the analytic element groundwater model, (e) groundwater levels
estimated with the empirical depth‐distance relationship, and (f) variance of the empirical depth‐distance
estimated groundwater level.
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the valleys have steep slopes, a relationship between ground
level elevation and water table elevation will not be justi-
fied, even if the Euclidean distance to the river network is
small. In areas with wide valley floors, on the other hand,
water tables will be close to ground level, even if the
Euclidean distance to the river network is large. By incor-
porating the slope in the distance calculation, areas with
high ground level fluctuations will have high dDEM(xi) values
and associated high s2DEM values, ensuring that these areas
get less credit in the Bayesian data fusion (BDF) model.
[24] For each observation location the penalized distance

to the nearest point on the hydrographic network is calcu-
lated together with the depth of the water table (Figure 5).
The depth to the water table clearly increases with increas-
ing penalized distance, especially for relatively small
penalized distances. With higher penalized distance, the
relationship is not readily apparent. A logistic‐like function
g() is fitted on the basis of these observations, and the same
logistic‐like equation is used to model the variance of E(xi).
The choice of a logistic‐like function is motivated as it
allows an increase of depth with increasing distance while
reaching a plateau for larger distances. Using the same type of
equation for the variance s2DEM ensures that with increasing
distance, the variance increases and the influence of the
depth‐distance relationship on the BDF result decreases.
The water table estimate by the empirical depth‐distance
relationship is shown in Figure 4c, and the associated vari-
ance is shown in Figure 4d.

3.4. Analytic Element Groundwater Model

[25] The analytic element method represents aquifer fea-
tures by points, line sinks, and area sinks, which can be head

or discharge specified to model groundwater flow [Strack,
2003]. As the solution to the groundwater flow equations
is obtained by superimposing functions of complex poten-
tials representing the aquifer features, there is no need to
discretize the flow domain or to specify boundary conditions
at the perimeter of the model domain as is needed for finite
difference and finite element models [Strack, 2003]. Addi-
tionally, representing aquifer features by analytic elements
facilitates the numerical implementation of the method
in object‐oriented programming languages [Bakker and
Kelson, 2009]. Seeing the relative ease of implementing
analytic element models, they are popular as a hydrologic
screening tool [Hunt, 2006]. Karanovic et al. [2009] use
solutions of analytic elements as drift terms in kriging
groundwater heads in an area subject to pumping.
[26] In this study an analytic element groundwater model

is created for the Brussel Sand Formation aquifer, using the
TimML code [Bakker and Strack, 2003]. It serves as sec-
ondary information in the Bayesian data fusion. The aquifer
is represented by a single, unconfined layer with a uniform
hydraulic conductivity. The river network shown in Figure 2
is implemented as prescribed head line sinks with a head
elevation derived from the DEM. A constant, uniform
infiltration of 300 mm/yr [Batelaan et al., 2003] is assigned
to the model through a rectangular infiltration area equal to
the area spanned by the bounding box of Figure 2. The base
of the layer is set to −25 m above sea level (asl) and is
assumed to be constant. This is the most simplifying step in
the conceptualization of the groundwater flow system, as it
is known that the base of the aquifer is irregular, slopes
toward the north, and varies between 140 m asl in the
south and −70 m asl in the north of the study area [Cools
et al., 2006]. The value of −25 m asl is chosen to ensure
the base of the aquifer is well below the specified head
values at the line sinks throughout the flow domain.
[27] A sensitivity analysis with regard to the base level of

the aquifer, hydraulic conductivity, and recharge rate is
carried out using UCODE [Poeter et al., 2005]. The com-
posite scaled sensitivity is used to evaluate the parameter
sensitivity and is defined as [Hill and Tiedeman, 2007]

CSS ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

@h
0
i

@b

� �
bj j

� �2s
; ð7Þ

with ∂h′i /∂b the sensitivity of the simulated value h′i asso-
ciated with the ith observation with respect to parameter b.
Using the head observations from section 3.1, the composite
scaled sensitivity of the recharge rate and hydraulic con-
ductivity are 0.33 and 0.32, respectively, whereas the value
for the base of the aquifer is much lower, 8.1 × 10−3.
[28] The analytic element model is automatically cali-

brated by changing the hydraulic conductivity. Recharge
rate is not changed, as changes in this parameter are corre-
lated to changes in the hydraulic conductivity parameter.
The effect of an increase in recharge rate on hydraulic heads
in the aquifer can be countered by increasing the hydraulic
conductivity. In a situation as outlined above with an
unconfined aquifer with a single hydraulic conductivity and
recharge rate, a unique solution to the parameter optimiza-
tion cannot be obtained by simultaneously changing both
parameters [Hill and Tiedeman, 2007]. The final hydraulic
conductivity obtained after calibration is 1.74 × 10−6 m/s.

Figure 5. Graph of groundwater depth DEM(x) − Z(x) as a
function of penalized distance dDEM(x) to the network. Dots
represent the observed pair of values, solid line represents
the fitted nonlinear relationship g(), and dashed lines repre-
sent the 95% symmetric confidence interval based on a
Gaussian distribution.
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As could be expected, this value is an order of magnitude
lower than the values from pumping tests since the base of
the aquifer is underestimated.
[29] As for the empirical depth‐distance relationship, the

estimated groundwater level, yGW(xi), at a location xi can be
related to the unknown, true groundwater level Z(xi) by
addition of an error term E(xi) with a zero mean and a
variance sGW

2 :

Z xið Þ ¼ yGW xið Þ þ E xið Þ: ð8Þ

The variance is chosen to be uniform throughout the model
domain, and in order to reflect the capability of the analytic
element model at simulating groundwater levels, the mean
square error between observed and simulated head is used to
model the variance

�2
GW ¼ 1

N

XN
i¼1

ê2i ; ð9Þ

Figure 6. (a) Bayesian data fusion (BDF) of kriging and digital elevation model (DEM), (b) variance
of BDF of kriging and DEM, (c) BDF of kriging and analytic element model (AEM), (d) variance of
BDF of kriging and AEM, (e) BDF of kriging, DEM, and AEM, and (f) variance of BDF of kriging,
DEM, and AEM.
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where êi is the estimated error at location xi and N is equal to
176. The estimated groundwater level using the calibrated
analytic element model is shown in Figure 4c, and the
associated variance is shown in Figure 4d.
[30] By using more elaborate conceptual models, more

closely reflecting the spatial variability in recharge, hydraulic
conductivity, and the base of the aquifer, it is not unlikely that
the estimated variance will decrease and the influence of the
groundwater model on the final BDF interpolation would
increase. This would, however, be beyond the scope of the
methodology, which aims at providing an interpolation meth-
odology using limited information on the aquifer properties.

3.5. Bayesian Data Fusion

[31] The Bayesian data fusion outlined in section 2 is
applied to the study area. In order to assess and to compare
the influence of the different additional data sources, three
different BDF interpolations are carried out, combining
(1) kriging with the empirical depth‐distance relationship,
(2) kriging with the analytic element groundwater model
(AEM), and, finally, (3) kriging with the empirical depth‐
distance relationship and the analytical element groundwater
model. The former can be implemented by using equation (5).
For the first interpolation, equation (5) simplifies to

�BDF ¼ �k

�2
k

þ �DEM

�2
DEM

� �0

�2
0

� �
�2
BDF

�2
BDF ¼ 1

�2
k

þ 1

�2
DEM

� 1

�2
0

� ��1

:

ð10Þ

A similar equation can be found for the BDF combining
kriging with the analytic element model. The interpolated
head obtained through the different BDF interpolations and
the associated variances are shown in Figure 6.
[32] To assess the predictive capability of the proposed

methodology and to compare the different Bayesian data
fusion results to each other and to the individual secondary
data sources, a leave‐one‐out cross validation as outlined by
Chilès and Delfiner [1999, p. 111] is carried out. For each
observation location x0 groundwater level and associated var-
iance are calculated on the basis of the surrounding observa-
tions, without taking into account the observed groundwater
level at location x0. The obtained results are compared to the
observed groundwater levels by means of scatterplots and by
calculating the root‐mean‐square error (RMSE) and normal-
ized root‐mean‐square error (NRMSE) according to

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

e
_2

i

s

NRMSE ¼ RMSE

maxðhobsÞ �minðhobsÞ ;
ð11Þ

with êi the estimated error at location xi and N the number of
observations hobs . The calculated RMSE and NRMSE are
given in Table 1.
[33] For the kriging interpolation, cross validation con-

sisted of estimating groundwater level and variance at
observation location xi without taking into account the
groundwater level observation at xi. For the cross validation
of the empirical depth‐distance relationship, the relationship
and associated variance are estimated without using the
observation at xi. As such, the analytic element model does
not use the observations to estimate groundwater level. The
calculated groundwater level at location xi is therefore used
as a cross‐validation value. The associated variance, how-
ever, obtained through equation (9) is calculated without
using the groundwater level observation at xi. The cross
validation of the three BDF interpolations at xi is obtained
by plugging the groundwater level values and variance at xi
values from the cross validation of the secondary informa-
tion sources into equations (5) and (10).

4. Discussion

[34] From Figure 4a it is apparent that kriging produces a
smoothly varying water table contour map with depressions
situated in the vicinity of the major rivers (Figure 2). The
variance map (Figure 4b), however, shows the irregular dis-
tribution of observation points and the resulting low variance
in the central area with a high observation density, whereas
the eastern and western borders, regions scarce of data, are
characterized by a high variance. This variance map helps
to explain a number of interpolation artifacts present in
Figure 4a. In regions in the vicinity of (x,y) coordinates
(170000,165000) and (x,y) coordinates (147000,145000),
isolated depressions are interpolated. Such depressions
should only occur in a groundwater level contour map if a
groundwater extraction, by pumping wells or by evaporation
through a pond, is present. In this aquifer system, however,
the depression represents a part of the flow convergence
caused by the draining influence of the river network. In
regions with low data density, like the southeast around (x,y)
coordinates (180000,150000), the search ellipsoid will not
contain enough observation points to produce a reliable
interpolation. The contour lines can therefore locally have a
jagged appearance although a Gaussian variogram model is
used. In a water table interpolation, jagged contour lines
should not appear since groundwater levels are to be con-
sidered a spatially smoothly varying quantity. The cross
validation (Figure 7a) shows that the residuals are centered on
zero, and, although some outlying residuals show a consider-
able departure from zero, the root‐mean‐square error is only
7.24 m and the normalized root‐mean‐square error is 4.99%.
[35] The RMSE and NRMSE of the calibrated analytical

element groundwater model are comparable to the result of
kriging (Table 1). The scatterplot of observed versus cal-
culated values (Figure 7b), however, shows that although
the number of very large residuals is smaller compared to
kriging, the spread of the residuals around zero is larger. In
the groundwater level map (Figure 4c) the difference
between the analytic element groundwater model and kri-
ging is clearly visible. The groundwater map shows the
draining influence near the rivers and the groundwater
mounding due to groundwater recharge in the interfluves.
Although the shape of the water table more closely reflects

Table 1. Root‐Mean‐Square Error and Normalized Root‐Mean‐
Square Error of Cross Validation

Method RMSE (m) NRMSE

Kriging 7.24 4.99
AEM 6.57 4.52
DEM 7.37 5.08
BDF kriging, AEM 5.42 3.73
BDF kriging, DEM 4.91 3.39
BDF kriging, AEM and DEM 4.77 3.29

PEETERS ET AL.: BAYESIAN DATA FUSION FOR WATER TABLE MAP W08532W08532

9 of 11



the hydrogeological information available for the aquifer
system, locally sizeable differences between observed and
calculated groundwater levels exist.
[36] The groundwater level estimated by the empirical

depth‐distance relationship can be considered a subdued
replica of topography. On the interfluves, the contour lines
are irregular, reflecting variations in the DEM, whereas the
groundwater levels at these locations are expected to be
rather smooth and gradually changing. These zones are
assigned a high variance, as they have a large penalized
distance to the river network. In zones with a low relief,
like the alluvial plains and the northern part of the study
area, groundwater levels are estimated close to the ground
surface. The predictive abilities of this empirical model
(Table 1 and Figure 7c) appear to be only slightly lower than
those of kriging interpolation.
[37] The first result of Bayesian data fusion interpolation

is the combination of the kriging interpolation with the
estimate from the empirical depth‐distance relationship, as
already implemented by Fasbender et al. [2008]. In the
areas with low relief smooth contour lines are produced
(Figure 6a), and the drainage network is incorporated into
the interpolation result. On the interfluves, however, the
contour lines are often highly irregular with numerous small
isolated groundwater mounds and depressions. The variance
map (Figure 6b) shows that the zones with high data density
and low relief have low variance values. These values
increase rapidly, however, in zones with considerable relief
and low data density. The scatterplot of cross‐validation
results (Figure 7e) and the RMSE value of 4.91 m (Table 1)
indicate a marked improvement in predictive capability
compared to the individual additional data sources.
[38] The BDF interpolation combining kriging with the

analytic element groundwater model (Figure 6c) shows a

contour map that is similar to the contour map of the ana-
lytic element groundwater model (Figure 4c). The AEM
groundwater model, however, appears to locally over-
estimate the amount of groundwater mounding in the inter-
fluves. This is remediated in zones with high data density,
such as around x,y coordinates (170000,170000), by the
higher weight of the kriging in the interpolation. In zones
with low data density, the effect of the drainage network
on the contour lines of groundwater elevation is clearly
apparent. Where data density is high in the vicinity of a
river, it is possible that kriging dominates the interpolation,
as can be seen near x,y coordinates (145000,150000) and x,y
coordinates (160000,160000). As the AEM groundwater
model is characterized by a uniform variance, the variance
of BDF of the kriging and AEM (Figure 6d) is a scaled
replica of the kriging variance (Figure 4b). The RMSE of
this interpolation, 5.42 m, is slightly higher than the RMSE
of the BDF of kriging and the depth‐distance relationship.
The main reason for the higher RMSE is the presence of
higher residuals for the observations with groundwater
levels above 100 m, whereas for observations below 100 m
the BDF of kriging and AEM has lower residuals.
[39] The ultimate interpolation combines the three data

sources, kriging, depth‐distance relationship, and AEM
groundwater model (Figure 6e). The general shape of the
contour lines is largely influenced by the analytic element
model. Locally, the influence of the other data sources is
apparent, especially in zones with high data density (kriging)
and near the river network (depth‐distance relationship).
The influence of the depth‐distance relationship can also be
seen on the interfluves through the irregularities in the
contour lines, arising from the DEM fluctuations. The
variance of the BDF in Figure 6f benefits clearly from
incorporating the empirical depth‐distance relationship. The

Figure 7. Cross‐validation results. Observed values versus calculated values by (a) kriging, (b) analytic
element (AEM) groundwater model, (c) empirical depth‐distance relationship, (d) BDF of kriging and
AEM, (e) BDF of kriging and DEM, and (f) BDF of kriging, AEM, and DEM.
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cross‐validation results, i.e., both the scatterplot and the
RMSE value, show that the combination of the three data
sources has the highest predictive capabilities.

5. Conclusions

[40] The water table interpolation methodology intro-
duced by Fasbender et al. [2008], based on the Bayesian
data fusion framework [Bogaert and Fasbender, 2007], is
further extended to incorporate conceptual hydrogeological
information through groundwater head calculation based on
an AEM groundwater model.
[41] The methodology is applied to a sandy aquifer in

Belgium using a limited number of head observations. The
Bayesian data fusion methodology is used to combine kri-
ging with an estimate of groundwater level by an empirical
depth‐distance relationship and a groundwater level estimate
from an automatically calibrated analytic element model.
[42] Combining kriging with the empirical depth‐distance

relationships produces reliable results in areas that have low
relief and are close to the river network. The estimate in
zones scarce of data farther away from the river network
benefits from combining the kriging with the analytic ele-
ment groundwater model. Combining the three sources of
data results in a groundwater level interpolation with a high
level of predictive capabilities as shown through the leave‐
one‐out cross validation, albeit the shape of the contour
lines in the interfluves can be debatable because of the
presence of irregularities arising from the contribution of the
depth‐distance relationship.
[43] The interpolation methodology presented and applied

in this paper shows that using different sources of data in
groundwater interpolation within the Bayesian data fusion
framework, even with limited data, makes it possible to
produce an accurate water table contour map incorporating
conceptual hydrogeological information.
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