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[1] Stochastic streamflow generation is generally utilized for planning and management
of water resources systems. For this purpose, a number of parametric and nonparametric
models have been suggested in literature. Among them, temporal and spatial
disaggregation approaches play an important role particularly to make sure that historical
variance‐covariance properties are preserved at various temporal and spatial scales. In this
paper, we review the underlying features of existing nonparametric disaggregation
methods, identify some of their pros and cons, and propose a disaggregation algorithm that
is capable of surmounting some of the shortcomings of the current models. The proposed
models hinge on k‐nearest neighbor resampling, the accurate adjusting procedure, and a
genetic algorithm. The models have been tested and compared to an existing
nonparametric disaggregation approach using data of the Colorado River system. It has
been shown that the model is capable of (1) reproducing the season‐to‐season correlations
including the correlation between the last season of the previous year and the first
season of the current year, (2) minimizing or avoiding the generation of flow patterns
across the year that are literally the same as those of the historical records, and
(3) minimizing or avoiding the generation of negative flows. In addition, it is applicable
to intermittent river regimes.

Citation: Lee, T., J. D. Salas, and J. Prairie (2010), An enhanced nonparametric streamflow disaggregation model with genetic
algorithm, Water Resour. Res., 46, W08545, doi:10.1029/2009WR007761.

1. Introduction

[2] Stochastic generation is generally required for plan-
ning and management of water resources systems. For river
systems involving several sites, the generation model must
be capable of reproducing the relationships among the sites
in addition to the statistical properties at the individual sites.
For this purpose, multivariate models have been proposed in
literature such as multivariate autoregressive moving aver-
age (ARMA) and multivariate periodic ARMA models
[e.g., Salas et al., 1980; Loucks et al., 1981]. These models
have been called parametric models in literature. In addi-
tion, disaggregation models have been developed such as
Y = AX + BV of Valencia and Schaake [1973], where Y is
a vector representing seasonal data, X is a vector of the
corresponding annual data, V is a vector of independent
standard normal noises, and A and B are parameter
matrices. A key requirement of this model is that the sum
of the disaggregated values adds up to X (for all sites). The
foregoing disaggregation model, however, requires esti-
mating a large number of parameters. For this reason, some
parsimonious models have been proposed [e.g., Stedinger
and Vogel, 1984; Santos and Salas, 1992]. More recently,

Koutsoyiannis and Manetas [1996] developed the accurate
adjusting procedure (AAP) that combines a model for the
lower scale (e.g., monthly) and a model for the higher scale
(e.g., yearly) in such a way as to match the generated se-
quences at each time scale.
[3] The literature of stochastic streamflow simulation has

been enriched by the emergence of nonparametric modeling
alternatives such as block bootstrapping [Vogel and Shallcross,
1996] and k‐nearest neighbors resampling (KNNR) [e.g., Lall
and Sharma, 1996; Buishand and Brandsma, 2001]. Alter-
native nonparametric disaggregation methods have also been
proposed such as the method of fragments (MF) [e.g., Porter
and Pink, 1991; Srikanthan and McMahon, 1982; Svanidze,
1980], the nonparametric disaggregation (NPD) of Tarboton
et al. [1998], and the NPD with KNNR (called NPDK) of
Prairie et al. [2007].
[4] There are pros and cons of both parametric and non-

parametric models, and some of these have been reviewed
by Rajagopalan et al. [2009]. Among them, three issues that
are relevant emerge: (1) the preservation of cross‐boundary
correlations (e.g., in temporal disaggregation, the correlation
of the last season of the previous year with the first season of
this year may not be preserved), (2) the generation of neg-
ative quantities, and (3) the generation of flow patterns that
may be repetitive or too close to the historical sequences.
The first two shortcomings may occur in both parametric
and nonparametric approaches, while the third one generally
occurs in nonparametric models.
[5] The issue of cross‐boundary correlation was first

realized byMejia and Rousselle [1976], who discovered that
the Valencia and Schaake (VS) model as originally pro-
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posed did not preserve the correlation of the first season of
the current year with the seasons of the previous year. Mejia
and Rousselle (MR) suggested the additional term needed to
fix this shortcoming in the VS model. An alternative dis-
aggregation model developed by Lane [1978] and incorpo-
rated in the software called LAST essentially hinges on the
MR framework. In addition, a practical way to get around
the referred shortcoming (in both parametric and non-
parametric disaggregation approaches) has been to start
the generation at a season where the correlation with the
previous season is small or not significant. This remedy,
however, is not always sufficient where the correlations are
high every season.
[6] Though measured streamflows are positive quantities,

parametric and nonparametric models may generate nega-
tive values. For example, in parametric models negative
values may occur because of the Gaussian assumption of the
underlying variable in most typical models such as ARMA.
Since hydrologic data are generally skewed, transforming
the data into normal is used to comply with the Gaussian
assumption, but data transformation does not eliminate the
possibility of generating negatives (with some exceptions).
Non‐Gaussian models are also available, e.g., the periodic
gamma autoregressive (PGAR) model [Fernandez and
Salas, 1986], and Todini [1980] suggested using a skewed
noise V in the VS disaggregation model. However, the
PGAR model is only available for single site generation and
Todini’s suggestion is quite limited in the applicable range
of skewness. In nonparametric kernel density‐based models
such as nonparametric model with long‐term dependence
(NPL) [Sharma andO’Neill, 2002] andNPD [Tarboton et al.,
1998], negative values may be generated because Gaussian
kernels are employed. Likewise, in NPDK [Prairie et al.,
2007], negatives may occur because of the constant linear
adjustment utilized. A way to circumvent this problem has
been to drop the negatives or regenerate, but this procedure
may not be adequate if too many negatives are generated.
Another alternative in nonparametric models may be to
employ a boundary kernel [Simonoff, 1996], but such an
alternative has not been applied or implemented in existing
nonparametric disaggregation models.
[7] Resemblance of historical patterns in generated data

generally occurs in nonparametric techniques such as block
bootstrapping [Vogel and Shallcross, 1996], KNNR [Lall
and Sharma, 1996], and NPDK [Prairie et al., 2007].
These approaches generate temporal and spatial flow pat-
terns that are repetitive and close or identical to the historical
ones. Generating the same or similar values and patterns is
not ideal as argued by Maheepala and Perera [1996]. From
a practical standpoint, no major problem arises in generating
the same pattern(s) since the historical characteristics are
reproduced. However, from a statistical (simulation) stand-
point, it is just natural to expect that the generated sequences
vary enough to be different from those observed in the
historical records. In fact, if we had one more year of
seasonal streamflows (beyond the historical record), that
sequence of seasonal values will be different from any
other year of the historical record. To the best knowledge
of the authors, there are no ways to get around the referred
repetition problem in nonparametric models.
[8] The review of literature reveals the need for making

modifications to existing nonparametric disaggregation mod-
els so as to avoid the drawbacks identified above, namely,

(1) the lack of preservation of cross‐boundary correlations,
(2) the generation of negatives, and (3) the repetition of the
same historical patterns across the year for temporal dis-
aggregation or the same patterns for multiple sites in spatial
disaggregation. Thus, we propose appropriate modifica-
tions to existing approaches that will eliminate the referred
shortcomings. In addition, the proposed approach is appli-
cable for intermittent streamflows, which the NPD and
NPDK models cannot adequately simulate. Specifically,
we investigate the NPD and NPDK models, identify their
limitations, and reveal their similarity to AAP. To surmount
their drawbacks, modifications of the NPDK model are
suggested and verified. In addition, a genetic algorithm is
proposed to ameliorate the alluded repetition problem.

2. Review of Two Existing Disaggregation
Approaches

[9] The accurate adjusting procedure (AAP) of Koutsoyiannis
and Manetas [1996] and the nonparametric disaggregation
with KNNR (denoted as NPDK for short) developed by
Prairie et al. [2007] are reviewed herein. First, we define
some notation and useful terms. In stochastic disaggregation,
a higher‐level value is split intomultiple lower‐level values in
such a way as to preserve the statistical characteristics at both
levels. For example, in temporal disaggregation yearly data
are disaggregated into seasonal data, and in spatial disag-
gregation mainstream station data are disaggregated into
data at substations. Lower‐level variables (e.g., seasons) are
denoted asY = (Y1,…, Yd)

Twhere d is the number of seasons
and X denotes the upper‐level (e.g., annual) variable. An
important feature in disaggregation lexicon is the additivity
property, i.e.,

Y1 þ Y2 þ . . .þ Yd ¼ X : ð1Þ

The disaggregation approaches suggested in this paper require
initially choosing a candidate lower‐level variable set. Then
these variables are adjusted to meet additivity. The candidate
lower‐level variables are denoted as ~Y = [~Y1,…, ~Yd]

T and their
sum denoted as ~X . Generally, the notations here are applicable
for temporal and spatial disaggregation. In some cases, we
will also use Yn,t

(s), where s = 1, …, S (S is the number of
sites), n = 1, …, N (N is the number of years of record), and
t = 1, …, d. Furthermore, mZ and sZ represent the mean
and standard deviation of random variable Z and sZ1Z2

represents the covariance between Z1 and Z2. Also the
lower‐case letter y is employed to denote the observed data
of the variable Y.

2.1. Accurate Adjusting Procedure

[10] Koutsoyiannis and Manetas [1996] developed a
scheme for coupling two different models for the lower‐level
and higher‐level variables. Both models are fitted indepen-
dently, and the generation of data may be summarized as
follows:
[11] 1. The higher‐level data X (e.g., yearly) is generated

from a given model (e.g., ARMA).
[12] 2. The d‐dimensional lower‐level data ~Y = [~Y1,

~Y2, …, ~Yd]
T are generated from a lower‐level model (e.g.,

periodic ARMA (PARMA)) independently from the gen-
eration of the higher‐level data.
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[13] 3. The sum ~X =
Pd

�¼1
~Yt is determined and its

distance from the generated data X is calculated as D =��X − ~X
��/s(X) where s(X) is the standard deviation of X.

[14] 4. If D > ", where " is the tolerance level (0.1–1),
regenerate the data set ~Y. Otherwise, the lower‐level data
are adjusted to meet additivity. The three adjustments are as
follows:

linearð ÞY� ¼ ~Y� þ �� X � ~X
� �

; � ¼ 1; . . . ; d ð2Þ

proportionalð ÞY� ¼ ~Y� X=~X
� �

; � ¼ 1; . . . ; d; ð3Þ

powerð ÞY� ¼ ~Y� X=~X
� ��� =��

; � ¼ 1; . . . ; d; ð4Þ

where lt = s(Yt, X)/s
2(X), ht = m(Yt)/m(X), s(Yt, X) =

Cov(Yt, X), and m(Z) is the mean of the variable Z.
[15] 5. The steps 1–4 are repeated until all the higher‐

level data are disaggregated.
[16] The linear adjustment (equation (2)) preserves the

mean and the variance‐covariance matrix of the lower‐level
variables [Koutsoyiannis and Manetas, 1996]. However,
negatives may be generated and higher‐order statistics such
as skewness may be biased. Therefore, the linear adjustment
is applicable where the lower‐level variables exhibit small
skewness. In addition, Koutsoyiannis [1994] showed that
the proportional adjustment (equation (3)) is appropriate
for lower‐level variables that are independent with gamma
marginals having the same scale parameter and different
shape parameters. Simulation experiments showed that the
assumption of independence may be relaxed. Furthermore,
proportional adjustment is useful for intermittent data. If a
lower‐level value is zero, the proportional adjustment does
not change the zero unlike the linear adjustment. The power
adjustment (equation (4)) is a generalization of the propor-
tional adjustment, but many trials are required to meet addi-
tivity [Koutsoyiannis and Manetas, 1996]. The linear and
proportional adjustments are employed here in our paper
using a different modeling framework.

2.2. Nonparametric Disaggregation Model

[17] Tarboton et al. [1998] developed a nonparametric
disaggregation (NPD) approach. It employs the nonpara-
metric conditional density estimate f (Y∣X ). The coordinates
of the lower‐level variable vector Y are rotated into a new
vector space Z = (Z1, …, Zd)

T by

Z ¼ RY; ð5Þ

where R is a d × d rotation matrix, which is obtained
from the Gram Schmidt Orthonormalization [Lay, 1997].
The rotation estimation procedure guarantees that the last
coordinate of Z is aligned perpendicular to the hyperplane in
equation (1). Thus, the last element of the rotated variable Zd
is

Zd ¼ X=
ffiffiffi
d

p
: ð6Þ

The essence of the NPD model for generating the Y
values is first generating the Zs and then backrotating from

equation (5) so that Y = R−1Z = RTZ where R−1 = RT for
standard basis.
[18] Tarboton et al. [1998] used the multivariate kernel

density estimate to generate Z1, …, Zd−1 and Zd is ob-
tained from equation (6) where X has been previously
generated (separately) from a given model. Since using the
d‐dimensional multivariate density estimate is cumber-
some, Prairie et al. [2007] employed KNNR to generate
the Z variables instead of generating from a multivariate
density estimate. Their disaggregation generation procedure
(NPDK) is summarized as follows:
[19] 1. Estimate the R matrix and obtain zi = (zi,1,…, zi,d),

i = 1, …, N (N is the record length, e.g., number of years
for temporal disaggregation) from the historical data using
equation (5).
[20] 2. The higher‐level data X is generated from a

specified model. Then, set Zd = X/
ffiffiffi
d

p
(equation (6)).

[21] 3. The k‐nearest neighbors are obtained from the
distances between Zd and zi,d, i = 1, …, N, and the k‐closest
values are chosen. The k‐neighbors are assigned weights
as,

wm ¼ 1=mPk
j¼1

1=j

;m ¼ 1; 2; . . . ; k; ð7Þ

where k =
ffiffiffiffi
N

p
[Prairie et al., 2007]. Subsequently, one of

the k‐neighbors is selected by random generation from the
discrete weighted distribution obtained from equation (7).
Assume that the ‘th value, i.e., the ‘th row (from i = 1,…, N)
is selected.
[22] 4. Then the d ‐ 1 elements of Z (i.e., Z1, Z2, …, Zd−1)

are taken from z‘ of step 1, i.e., Z1 = z‘,1, Z2 = z‘,2,…, Zd−1 =
z‘,d−1. Therefore, Z = (z‘,1, z‘,2, …, z‘,d−1, Zd).
[23] 5. The Z vector is back‐rotated into the original space

by Y = RTZ.
[24] 6. Steps 2–5 are repeated until the generation length

is met.

2.3. Further Examination of the NPD

[25] Without loss of generality, the NPD procedure is
investigated for a two‐dimensional case. Following Lay
[1997], it may be shown that

R ¼ 1=
ffiffiffi
2

p �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

: ð8Þ

Then Z becomes

Z ¼ RY ¼ 1=
ffiffiffi
2

p �1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

y1
y2

� �
¼ y1=

ffiffiffi
2

p � y2=
ffiffiffi
2

p
y1=

ffiffiffi
2

p þ y2=
ffiffiffi
2

p
� �

:

ð9Þ

Then back rotation is performed considering that Z2 = X/
ffiffiffi
2

p
,

which gives

Y ¼ RTZ ¼ 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p

�1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
 !

y1=
ffiffiffi
2

p � y2=
ffiffiffi
2

p

X=
ffiffiffi
2

p
 !

¼ y1 þ X � xð Þ=2
y2 þ X � xð Þ=2

� �
; ð10Þ
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where x = y1 + y2 is the historical higher‐level value.
Equation (10) shows that the NPD procedure distributes the
difference between X (generated) and x (historical) equally
among the lower‐level values. This analysis has been per-
formed for higher values of d with the same results (not
included here).
[26] The foregoing analysis of NPD reveals the strong

similarity between NPD and the linear adjustment of
AAP, which suggests that a simpler NPD procedure may
be devised as (1) given the generated higher‐level value X,
find from the historical lower‐level data the set y = (y1,…, yd)
whose sum is close to X employing KNNR, and (2) the
selected lower‐level data are adjusted as

Y* ¼
y1 þ X � xð Þ=d
y2 þ X � xð Þ=d

..

.

yd þ X � xð Þ=d

0
BBB@

1
CCCA: ð11Þ

This simpler procedure gives the same result as that of Prairie
et al. [2007]. However, additional modifications are needed
to avoid (1) the lack of preservation of cross‐boundary cor-
relations, (2) the generation of negatives, and (3) the repeti-
tion of temporal and spatial historical flow patterns.

3. Model Description

[27] The analysis presented in section 2 showed that the
NPDK disaggregation procedure of Prairie et al. [2007]
performs a linear adjustment with a constant scaling factor
lt = 1/d (equation (11)) for all lower levels (t = 1, …, d)
in a similar fashion as the linear adjustment (2) of AAP
[Koutsoyiannis and Manetas, 1996]. The difference is that
NPDK uses KNNR to find a close set of lower‐level gen-
erated data whose sum is close to the higher‐level value
while AAP employs a repetition process. Another difference
is the scaling factors utilized. From the investigation of the
two disaggregation models above, we propose a disaggre-
gation algorithm that will be able to surmount the short-
comings of both. In addition, the proposed approach will
be applicable to intermittent river regimes. The procedure
proposed in this paper hinges on using parts of AAP and
NPD approaches with substantial modifications as summa-
rized below. First, KNNR is employed to find the candidate
lower‐level values, whose sum is close to the (previously)
generated higher‐level value. Then the adjusting procedure
is applied to meet additivity. One modification is to include
the value of the last season of the previous year in selecting
the lower‐level sequence. Also to avoid generating the same
historical pattern in a year, we employ a genetic algorithm
(GA) mixture for the lower‐level variables as in the work of
Lee [2008]. Furthermore, the appropriate adjustment will be
utilized so that the method will be applicable to intermittent
flows.

3.1. Proposed Nonparametric Disaggregation:
The KLA and KPA Approaches

[28] The proposed procedure starts by generating the
higher‐level variable X, then separately (independently)
employs KNNR to generate the lower‐level sequence (e.g.,
seasonal data) so that their sum is close to X. The final step

is to adjust the disaggregated values to meet additivity. For
easy reference, the suggested nonparametric disaggregation
based on KNNR with linear adjustment is called KLA and
that with proportional adjustment is called KPA. We will
describe the procedure with focus on temporal disaggre-
gation (e.g., annual to seasonal). The procedure is also
applicable to spatial disaggregation, which is described in
section 3.3.
[29] The specific steps of the proposed temporal disag-

gregation procedure are as follows:
[30] 1. Fit a model to the historical annual data xi such as

ARMA [e.g., Salas et al., 1980], shifting mean [Sveinsson
et al., 2003], KNN bootstrapping [Lall and Sharma, 1996],
the modified KNN [Prairie et al., 2006], and KNN with
gamma kernel (KGK) [Salas and Lee, 2010]. Then generate
an annual series Xn, n = 1, …, NG, where NG is the gener-
ation length.
[31] 2. Consider the first generated annual value X1 and

determine the distances Di between X1 and the historical
annual data xi, i = 1, …, N (N is the historical record length)
as

Di ¼ X1 � xij j; i ¼ 1; . . . ;N ð12Þ

and arrange the distances from the smallest to largest one.
[32] 3. Determine the number of nearest neighbors k as

k =
ffiffiffiffi
N

p
, the corresponding weights w1, w2, …, wk from

equation (7) and the cumulative weights cwm =
Pm

r¼1wr,
m = 1, …, k. Then take one among the k values of Di by
random generation using the cumulative weight distribution
cwm, m = 1, …, k. Assume the selected one corresponds to
the ‘th year (in the array of the historical seasonal data yi,t),
then the values y‘,t, t = 1, …, d are the candidate generated
data, i.e., ~Y1 = {~Y1,1, …, ~Y1,d} = {y‘,1, …, y‘,d} and ~X1 =Pd

�¼1
~Y1,t =

Pd
�¼1y‘,t is the corresponding annual value.

The logic is that the seasonal sequences whose sums are
closer to X1 have a higher probability to be chosen according
to the weights from equation (7). The GA mixture may be
applied to mix the candidate data ~Y1 with another data set
whose sum is close to X1. However, for sake of clarity, this
additional step is explained separately in section 3.2.
[33] 4. The selected seasonal data set ~Y1 = {~Y1,1, …, ~Y1,d}

are adjusted with a linear or proportional adjusting procedure
to obtain the generated lower‐level data setY1 = {Y1,1,…, Y1,d}
so that their sum is equal to X1 of step 2. For example, for
linear adjustment equation (2) gives Y1,t = ~Y1,t + lt(X1 − ~X 1),
where lt = s(y1,tx1)/s

2(x1). Likewise, for proportional
adjustment, equation (3) gives Y1,t = ~Y1,t(X1/~X 1).
[34] 5. The next year Xn generated in step 1 is now con-

sidered (e.g., v = 2), andwewant to generate the corresponding
seasonal values. In order to take into account the effect of the
last season of the previous year, we use the weighted distances

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 X� � xið Þ2 þ 82 Y��1;d � yi�1;d

� �2q
; i ¼ 2; . . . ;N ; ð13Þ

where Yn−1,d is the generated value of the last season of the
previous year and yi−1,d is the historical value of the last season
of the previous year (respect to year i). The scaling factors 81
and 82 are determined by 81 = 1/s2(xi) and 82 = 1/s2( yi,d),
respectively. Including the additional term to obtain Di in
(13) preserves the relation between the last season of the
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previous year and the first season of the current year. Then,
from the k smallest values of Di, one is selected at random
using the weights as in step 3. This selection will lead to the
candidate generated seasonal data ~Yn = {~Yn,1, …, ~Yn,d} =
{yn,1, …, yn,d}. This sequence may be mixed using the GA
(section 3.2) and then adjusted to obtain the generated
seasonal data Yn = {Yn,1, …, Yn,d}. This step is repeated
until the generation length NG is met.
[35] A few remarks are in order. Referring to equation (13)

alternatively, one may include other lagged seasons beyond
the last season of the previous year. However, such an
alternative may degrade the important relation between Xn
and xi in equation (13). Also the scaling factors 81 and 82
may be determined by the adaptive Metropolis algorithm
suggested by Mehrotra and Sharma [2006]. The foregoing
alternatives have not been tested in the current paper. In
addition, we used the heuristic method for determining the
number of nearest neighbors, i.e., k =

ffiffiffiffi
N

p
, as suggested by

Lall and Sharma [1996]. It has performed well in previous
applications [e.g., Yates et al., 2003]. Alternatively, one may
also use the generalized cross validation method for deter-
mining k. The variability of the resampled sequences is
related to k. If k is too small, the generated values will be too
similar to the historical values, which is undesirable because

one would expect the generated sequences, while main-
taining the historical statistics, to be different from the his-
torical values.

3.2. Mixing With Genetic Algorithm

[36] The disaggregation model suggested above produces
repetitive patterns of generated data across the year. This
occurs because in the KNNR selection procedure (steps 3
and 5, section 3.1), the entire seasonal sequence for the year
is selected as a block. This shortcoming was previously
discussed by Porter and Pink [1991] and Lee and Salas
[2008]. Seasonal repetition is not desirable because it con-
tradicts the stochastic nature of hydrological processes, i.e.,
a variety of seasonal patterns occurs throughout the year and
one would expect the generated seasonal sequence of the
hydrologic variable at hand to differ from those observed in
the historical record. Lee [2008] suggested a mixing pro-
cedure based on GA in the context of multisite simulation to
overcome this problem. Here we apply the concept of mixing
in the context of the proposed disaggregation approach to
avoid generating patterns identical to the historical ones.
Using GA one may apply three processes: reproduction,
crossover, and mutation. In our disaggregation procedure,
we will only use the crossover process to avoid further
changes in the generated data because GA may have some
effect on the season‐to‐season correlations. First, the under-
lying concepts are explained, and then a summarized proce-
dure is given.
[37] Recall that in steps 3 and 5 above (section 3.1) we

obtained the generated seasonal data denoted by ~Yn = {~Yn,1,
…, ~Yn,d} and its corresponding annual data ~Xn =

Pd
�¼1

~Yn,t.
We will rename these variables as ~Yn

1 = {~Y n,1
1 , …, ~Y n,d

1 } and
~X n
1 because for purposes of mixing we need to generate

another seasonal data set as in step 3 or 5, whose annual
value is similar to Xn

1. Let us denote the second candidate
by ~Y n

2 = {~Y n,1
2 , …, ~Y n,d

2 }. The crossover mixing process
of GA is performed with either random or competition
selection.
[38] Random selection chooses one of two values for the

lower‐level data (i.e., ~Y n,t
1 or ~Y n,t

2 ) as

~Y�;� ¼ ~Y
1
�;� if u� < p; ð14Þ

otherwise ~Yn,t = ~Y n,t
2 , where p is a given probability and ut

is a uniform (0,1) random number. Choosing p > 0.5 will
give preference to selecting ~Y n,t

1 . One may also vary p with
the season t.
[39] Competition selection of the generated data may be

employed for improving the reproduction of the historical
season‐to‐season correlations. For example, if the intent is
to increase the lag‐1 correlations, one must choose ~Y n,t

1 if

~Y
1
�;� � �̂�

�̂�
� y�;��1 � �̂��1

�̂��1

" #
>

~Y
2
�;� � �̂�

�̂�
� y�;��1 � �̂��1

�̂��1

" #
;

ð15Þ

otherwise ~Y n,t
2 is chosen where �̂t and �̂t are the sample

mean and standard deviation, respectively, for season t.
One may also combine the criteria (14) and (15) such that
~Y n,t
1 is selected if either (14) or (15) is met, otherwise ~Y n,t

2 is
chosen. Through testing these two alternatives, i.e., random

Figure 1. Schematic of part of the Colorado River system
where sites numbered 20, 21, 22, 24, and 27 are shown.
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selection based on (14) and competition selection based on
(15), it is clear that both have some effect on the seasonal
correlations. The general pattern is that using random
selection with constant p underestimates the seasonal cor-
relations for some seasons as p increases. Conversely,
competition selection has the opposite effect. Therefore,
our experiments suggest that a proper combination of the
two approaches can achieve quite good results in reprodu-
cing the seasonal correlations. One may also obtain good
results based on random selection only by varying p (across
the year). Either way, one must perform extensive trial and
error to find acceptable correlations. This issue is discussed
further in section 4.
[40] The summarized GA procedure is described here

assuming that in step 5 above, we obtained the generated
seasonal data ~Yn = {~Yn,1, …, ~Yn,d} and the corresponding
annual data ~Xn. The specific steps are (1) redefine the gen-
erated data sets as ~Yn

1 and ~X n
1, respectively. (2) A second

seasonal data set is generated using KNNR that is close to Xn
1.

For this purpose, we find the distancesDi =
��Xn

1 − xi
��, i = 1,…,

N and they are ordered from the smallest to largest one.
(3) We use k and the cumulative weight probabilities of
equation (7) as in step 3 above. Among the k smallest dis-
tances, one is selected at random using the referred weight
probabilities. Thus, the year that corresponds to the selected

distance defines the seasonal data that is taken from the
historical data array. Then the second candidate seasonal
sequence is ~Y n

2 = {~Y n,1
2 ,…, ~Y n,d

2 } whose annual total is close
to Xn

1. (4) The two data sets ~Yn
1 and ~Yn

2 are mixed with GA to
create the new seasonal data set, say ~Yn

GA. For this purpose,
we use the random selection criterion (14), the competition
selection criterion (15), or a combination of the two. As noted
above, the proposed disaggregation models with linear and
proportional adjustments have been denoted as KLA and
KPA, respectively. To distinguish where the addition of the
genetic algorithm is made, they are identified as KLAG and
KPAG disaggregation approaches, respectively.

3.3. Nonparametric Procedure for Spatial
Disaggregation

[41] The procedure for spatial disaggregation is similar to
that for temporal disaggregation, but for ease of the reader,
we summarize it assuming that we wish to disaggregate
the yearly streamflows at a key station (say downstream)
into yearly streamflows at d substations (upstream). Let the
annual variable at the key station be denoted by Xn and the
corresponding variables at substations by Yn

(s), s = 1, …, d,
where s represents the station and d is the total number of
stations. Thus, under the foregoing assumptions equation (1)
applies, i.e., Yn

(1) + Yn
(2) + … + Yn

(d) = Xn.

Table 1. Basic Monthly Statistics for the Colorado River at Lees Ferry, Site 20a

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Yearly

Mean 580.89 480.82 382.53 356.61 393.78 645.20 1199.95 3037.20 4054.34 2190.44 1083.17 671.37 15076.31
Standard deviation 272.01 141.53 95.86 78.63 97.58 211.39 512.46 1146.76 1572.35 1012.25 423.97 309.70 4365.30
Skewness 1.641 1.215 1.223 0.590 1.419 1.081 0.961 0.2713 0.4266 1.1327 0.9464 1.9532 0.1402
Lag‐1 correlation 0.558 0.758 0.826 0.703 0.552 0.482 0.470 0.5923 0.6251 0.8311 0.7815 0.6373 0.283
(sy/sx)

2b (%) 0.388 0.105 0.048 0.032 0.050 0.234 1.378 6.901 12.974 5.377 0.943 0.503 100

aUnits for the mean and the standard deviation are in 1000 acre‐feet (1 acre‐foot = 1.2335 × 103 m3).
bThe ratio of the standard deviation of monthly data over that of the yearly data is represented by sy/sx.

Figure 2. Box plots of the monthly statistics of the Colorado
River at site 20 estimated from the generated (disaggre-
gated) data based on the NPDK model and corresponding
historical statistics (cross marks and dash‐dotted line). The
units for max and min are in acre‐feet (1 acre‐foot =
1.2335 × 103 m3).

Figure 3. Box plots of the monthly statistics of the Colorado
River at site 20 estimated from the generated (disaggre-
gated) data based on the KLA model and corresponding
historical statistics (cross marks and dash‐dotted line).
The units for max and min are in acre‐feet.
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[42] The specific steps of the proposed spatial disaggre-
gation procedure are as follows:
[43] 1. Fit a model to the historical key station data xi,

i = 1,…, N (N is historical record length). Then generate the
series Xn, n = 1, …, NG, where NG is generation length.
[44] 2. Consider Xn and determine the distances Di =

∣Xn − xi∣, i = 1,…, N and arrange them from the smallest to
the largest one. Determine the number of nearest neighbors
k =

ffiffiffiffi
N

p
and take one among the k values of Di by random

generation using the cumulative weight distribution as in
equation (7). Assuming the selected one corresponds to the
‘th year, the values of the historical data of the substations
for year ‘ are the candidate generated data, i.e., ~Yn = {~Y n

(1),
…, ~Y n

(d)} = {y‘
(1),…, y‘

(d)} and ~Xn =
Pd

s¼1
~Y n
(s). If GAmixture

is desired, follow steps 1–4 as in section 3.2, otherwise skip
to step 3.
[45] 3. The disaggregated data at the substations ~Yn = {~Y n

(1),
…, ~Y n

(d)} are adjusted with linear or proportional relation as in
equation (2) or (3), respectively, to obtain the generated data
at substations Yn = {Yn

(1),…, Yn
(d)} so that their sum is equal

to Xn of step 2.
[46] 4. Repeat steps 2–4 for all n = 1, …, NG.
[47] It must be noted that the foregoing procedure

assumes that the sum of the flows of the substations must be
equal to the flow at the key station. Otherwise, two options
can be followed. Either create an artificial substation so that
the sum of the flows at substations plus that of the artificial
station is equal to the key station flows (thus the algorithm
above applies) or modify the procedure above by using some
type of spatial adjustment (e.g., refer to the work of Sveinsson
et al. [2009]).

4. Data Description, Model Assessment,
and Applications

[48] The proposed models are verified using data of the
Colorado River system. The Colorado is a major river system

in the western United States, and the Bureau of Reclamation
uses 29 gaging sites within the system for long‐term planning
studies. Relevant information on the Colorado River system
can be found in the work of Lee and Salas [2006]. We
illustrate the proposed nonparametric disaggregation models
based on site 20 of the Colorado River at Lees Ferry station
(referred to as site 4 in the work of Prairie et al. [2007]) for
application of temporal disaggregation and sites 21 (Paria
River at Lees Ferry, AZ), 22 (Little Colorado River near
Cameron, AZ), 24 (Virgin River at Littlefield, AZ), and 27
(Bill Williams River below Alamo Dam, AZ) for application
of spatial disaggregation. The locations of the sites used in
this study are shown in Figure 1. The historical gaged data
have been naturalized [Prairie and Callejo, 2005], and part of
the data has been extended using linear regression and non-
parametric bootstrapping [Lee and Salas, 2006] so that all
sites have data for the period 1906–2003. The complete data
set may be found at the Web site http://www.usbr.gov/lc/
region/g4000/NaturalFlow/index.html. Because the Colorado
River management model runs with data in English units, the
streamflow data employed in our study is based on acre‐feet
(1 acre‐foot = 1.2335 × 103 m3).
[49] One hundred samples are generated from each model

with the same length as the historical data (98 years). Var-
ious basic statistics are estimated from the historical and
generated data to verify the model performance such as
mean, standard deviation, skewness, maximum, minimum,
and lag‐1 correlations at the seasonal and yearly time scales.
Box plots are employed to display the variability of the
generated statistics. The end line of the box (interquartile
range) indicates the 25 and 75 percentiles, while the cross
lines above the box on the whisker denotes the 90 percentile
and the maximum and the cross lines below the box denotes
the 10 percentile and the minimum. The dash‐dotted line
connecting the cross marks represents historical statistics.
The cross or serial relations in the generated data are

Figure 4. Box plots of the monthly statistics of the Colorado
River at site 20 estimated from the generated (disaggregated)
data based on the KPAmodel and corresponding historical sta-
tistics (cross marks and dash‐dotted line). The units for max
and min are in acre‐feet.

Figure 5. Box plots of the monthly lag‐1 correlations and
minimums of the Colorado River at site 20 derived from the
generated (disaggregated) data based on the models (left)
KLAG and (right) KPAG. The historical values are also
shown (cross marks and dash‐dotted line). The units for
max and min are in acre‐feet.
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checked using scatterplots. Furthermore, operational statis-
tics such as maximum drought and surplus amounts and
lengths and storage capacity based on water demand levels
that are fractions of the historical mean (0.7–1.0) were also
compared.

4.1. Temporal Disaggregation

[50] For temporal disaggregation, yearly and monthly
data of the Colorado River at site 20 have been used to
validate the performance of the proposed model and com-
pared to that of the NPDK model of Prairie et al. [2007].
The basic monthly and yearly statistics of the historical data
are shown in Table 1. The last row shows the ratios of the
monthly variances divided by the variance of the yearly
data. They indicate that the wet months (MJJ) contribute
most of the yearly variance while the contribution of the dry
months is much smaller. The KGK model developed by
Salas and Lee [2010] was employed for the yearly data
generation. In turn these data were disaggregated using the
models suggested in this paper and the existing NPDK
model. Overall five types of models were tested: (1) non-
parametric disaggregation model with KNN (NPDK);
(2) disaggregation with KNN and linear adjustment, KLA;
(3) KLA with genetic algorithm, KLAG; (4) disaggregation
with KNN and proportional adjustment, KPA; and (5) KPA
with genetic algorithm, KPAG. From the five models, var-
ious test statistics were estimated and compared. The com-
parison of the historical and generated annual statistics (not
shown) indicated that the KGK model reproduced the his-

torical basic statistics, surplus, and storage capacity statics
quite well (indicated by the historical statistic falling within
the interquartile range), although some overestimation was
noted in the drought statistics.
[51] First, the monthly statistics of the historical and

generated data from models NPDK and KLA were com-
pared. The monthly means and standard deviations are
well reproduced by both models (not shown). The monthly
skewnesses, lag‐1 correlations, maximums, and minimums
are shown in Figures 2 (NPDK) and 3 (KLA). Figure 2
for the NPDK model shows some underestimation of the
monthly skewness for several months, which is also reflected
in the minimum flows for the samemonths. Likewise, Figure 2
shows a significant underestimation of the correlation of
October of the current year with September of the previous
year since NPDK has no structure linking this year with the
previous year. This shortcoming has been fixed by adding
one more term in the value selection (13). The improvement
of the lag‐1 correlations is clearly shown in Figures 3 and 4
for the KLA and KPA models, respectively. Also Figure 5
shows the results of the monthly lag‐1 correlations and
minimum for the KLAG and KPAG models (models with
GA mixing where p = 0.5 in (14)). In these cases one may
note that while the lag‐1 correlation for the first month has
been greatly improved with respect to that of NPDK
(Figure 2), some underestimation of the correlations occurs
for other months. The effect of the parameter p in (14) for
the GA mixture was further examined. We varied the value
of p and compared the effects on the lag‐1 correlations and
found that a small value of p such as 0.05 or 0.10 yield

Figure 6. Scatterplots of the flows of the Colorado River at site 20 for the months of May (horizontal)
and June (vertical) for the historical data (triangles) and generated data (gray circles) obtained from the
models (a) NPDK, (b) KLA, (c) KPLG, and (d) KPAG. The units are in acre‐feet.

LEE ET AL.: AN ENHANCED NPD WITH GA W08545W08545

8 of 14



reasonable reproduction of the lag‐1 monthly correlations
and still provide a good mixing of the data. Alternatively, as
pointed out in section 3.2 above, one could obtain very good
reproduction of seasonal correlations either by varying the
parameter p with the season or combining the two methods
of GA mixing, i.e., random selection and competition (this
issue is further discussed below).
[52] Negatives may be generated by the NPDK model as

shown in Figure 2. The low flow months (DJFM) are highly
affected resulting in negative values. This occurs because
NPDK uses the linear adjustment (11) where the difference
between the generated annual value and the summation of
the selected monthly values is distributed equally among the
months without considering the variability of the individual
months (Table 1.) Thus, the high flowmonths are not affected
much from the adjustments while the low flow months are
highly affected and result in higher variability. This is the
main reason for the bias produced by the NPDK model. In
contrast theKLAmodel does not produce any negative values
as shown in Figure 3 since the difference of the historical and
generated yearly values are distributed considering the con-
tribution of monthly covariances (as in equation (2)). Our
experience shows that linear adjustments are not convenient
where the data are highly skewed because negative values
may occur even with KLA. In addition, Figure 4 shows
that the minimum values are better preserved with the KPA
model. This model guarantees that no negative values are
generated (unless negative values occur in the historical data).
Note that some underestimations of the minimum flows may

still occur with the KLA and KLAGmodels (Figures 3 and 5)
especially for June and July although with less chance of
generating negative values. On the other hand, the KPA and
KPAG models show better preservation of the minimum
values (Figures 4 and 5).
[53] The scatterplot in Figure 6 displays the relationship

between the flows for May (horizontal) and June (vertical)
obtained for the historical and generated data based on
models NPDK, KLA, KLAG, and KPAG. Figure 6a shows
that the generated data are always extremely close to the
historical values for the NPDK model, which indicates the
repetitious data pattern generated by NPDK. Figure 6b also
reveals the directional patterns of the data generated based
on KLA model and occurs for data generated based on KPA
model (not shown). For both KLA and KPA models, the
variations of generated flows are more desirable (wider)
than those obtained by NPDK model but still the pattern is
directional. On the other hand, the introduction of GA
mixture produces generated data with wider spread as shown
in Figure 6c for model KLAG and Figure 6d for KPAG. As
mentioned in section 3.2, the underestimation of the lag‐1
cross correlation in applying GA can be remedied by either
(1) varying each month the crossover probability p of the
random selection (14) or (2) employing the combination of
the random and competition selections. On the basis of both
methods 1 and 2, we searched the optimal p value (i.e., as
close as possible to the historical lag‐1 cross correlation) by
trial and error. The results of methods 1 and 2 are shown in
Figures 7 (left) and 7 (right), respectively. The lag‐1 corre-

Figure 7. (a and b) Lag‐1 correlations and (c and d) scatterplots between flows of May and June of
KLAG for Colorado River station 20 for (left) method 1 random selection as in (16) with varying p
and (right) method 2 combination of random selection (14) and competition (15). The crossover proba-
bilities used for each month are method 1, p = [0, 0, 0, 0.05, 0.1, 0.1, 0.1, 0.3, 0.5, 0.1, 0.1, 0.1] and
method 2, p = [0.8, 0.8, 0.8, 0.4, 0.5, 0.5, 0.05, 0.05, 0.05, 0.5, 0.5, 0.5]. The units for the scatterplots
are in acre‐feet.
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lations using KLAG are shown in Figures 7a and 7b and a
scatterplot for May (horizontal) and June (vertical) flows are
shown in Figures 7c and 7d. The lag‐1 correlations of all
months are well preserved in both cases. The generated values
are properly distributed (Figures 7c and 7d). Less spread is
observed in Figure 7d than in Figure 7c because for the
months in question the p values for method 2 were smaller
than those used for method 1.
[54] The densities of the historical and generated monthly

data estimated with a normal kernel and the asymptotic
optimal bandwidth [Simonoff, 1996] are shown in Figure 8 for
February for models NPDK (a), KLA (b), and KLAG (c). For
the NPDK model, the density around the mode is somewhat
underestimated while it is overestimated in the low flow
range. Slight underestimation is also observed for the KLAG
model near the mode caused by the GA mixture. The density
estimates for the other months are reasonably well preserved
for all models.
[55] The ratios of drought, surplus, and storage statistics

obtained from the monthly historical and generated data for
the various models were also compared. To some extent, the
behavior of those statistics depends on the generated yearly
data. As mentioned above the alternative disaggregation
models are based on the same yearly generated data (from
the KGK model). For illustration, Figure 9 shows the KPA
model box plots obtained for the various statistics for water
demand levels that are fractions of the historical mean (0.7–
1.0). It shows that generally the historical statistics are well
reproduced. Some underestimation of the drought statistics

for threshold levels 0.8 and 0.9 occurs but the results are
reasonable for thresholds 0.7 and 1.0. Likewise, for the
storage capacity some overestimation occurs for levels 0.8
and 0.9, but the results are reasonable for 0.7 and 1.0. There
are not many differences in the results obtained for the other
models (not shown).

4.2. Spatial Disaggregation

[56] To demonstrate spatial disaggregation, we use the
tributary sites of the Lower Colorado River system (sites 21,
22, 24, and 27). Two of these sites (22 and 27) are intermittent
so the group selected is a combination of nonintermittent and
intermittent flow sites. These data are highly skewed, not only
at the monthly but also at the yearly scales (Table 2). For this
application, we created an index station that is the sum of the
flows at the referred four sites. Table 2 shows that site 21 has
the lowest contribution of variance (only about 0.07%) with
respect to the variance of the total flow at the index station.
The yearly data of the index station was generated using the
KGK model [Salas and Lee, 2010]. From the yearly data, the
monthly data of the index station were obtained applying
the nonparametric temporal disaggregation with proportional
adjustment and GAmixing (KPAG). Then the monthly flows
at the index station were spatially disaggregated to obtain the
monthly flows at the referred four sites. Both the NPDK and
KPA models were compared for the spatial disaggregation
step.
[57] We compared the monthly statistics of the four sites

after spatial disaggregation of the monthly flows at the index
station using both models. Figure 10 shows the box plots
obtained for the monthly means and minimums for site 21.
Significant biases are observed in the referred statistics for
theNPDKmodel. Such biases especially occur for the smaller
streams (e.g., site 21) where the means and standard devia-
tions are much smaller than for the other sites 22, 24, and 27
(Table 2). Also, a significant number of negatives are gen-
erated as shown in the plot for minimum flows in Figure 10.
On the other hand, the monthly means for site 21 are well
preserved by the KPA model and no negatives are generated
although during the dry months some negative biases are
observed but the results are realistic. Also the other basic
statistics obtained from NPDK are significantly biased for
site 21. However, for sites 22, 24, and 27, the key basic
statistics obtained from both NPDK and KPA models are
comparable except that a significant number of negatives are
generated by the NPDK model. Likewise, the monthly cross
correlations between flows at sites 21 and the other sites are
not well reproduced for many months by the NPDK model.
For example, the monthly correlations between sites 21–22
and 21–24 are shown in Figure 11 for both NPDK and KPA
models. In general, the correlations are well reproduced by
the KPA model but for many months the correlations are
either significantly underestimated or overestimated by the
NPDK model. However, the cross correlations between sites
22–24, 22–27, and 24–27 are reasonably well reproduced by
both models. We also compared the yearly basic statistics
derived from the monthly flows for the four sites. Again for
site 21 the annual statistics are not reproduced by NPDK
model. The results for the other sites are comparable and
reasonably well reproduced, although for site 27 significant
underestimation of the standard deviation, skewness, and
maximum occurs using both models.

Figure 8. Kernel density estimates using normal kernel for
the month of February of the Colorado River at site 20
obtained from the generated data based on models (a) NPDK,
(b) KLA, and (c) KLAG and from the historical data (cross
marks and dash‐dotted line). The units for the density are in
1/acre‐feet.
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[58] Furthermore, drought, surplus, and storage capacity
statistics estimated based on monthly and annual flows were
also compared for water demand levels in the range 0.7–1.0.
Box plots of the ratios of the statistics obtained from gen-
erated data divided by the corresponding historical statistics
were used for comparison. For example, Figures 12 and 13
show for the yearly data the box plots obtained for site 21
based on the NPDK and KPA models, respectively. As
occurred with other monthly and yearly statistics for site 21,
the results from the NPDK model are poor especially for
the maximum surplus amount, which is significantly over-
estimated. The results for the other sites are quite reasonable
and comparable for both models except for site 27 where
significant underestimation for the drought and surplus
amounts and storage capacity were obtained.

5. Summary and Conclusions

[59] For several decades, stochastic disaggregation has
been a valuable tool for generating hydrologic data. It has
been useful for temporal and spatial disaggregation. For
this purpose, parametric and nonparametric disaggregation
approaches have been suggested in literature. From reviewing
the existing nonparametric disaggregation models and
uncovering their pros and cons, we suggest improved dis-
aggregation models that overcome some of the shortcomings
of the existing models. The proposed disaggregation models

hinge on generating the higher‐level variable X (e.g., annual
data) based on any parametric or nonparametric model, then
independently applyingKNNR for generating the lower‐level
sequence Y (e.g., seasonal data) in such a way that their sum is
close to the generated data X. Then the lower‐level values are
adjusted to meet additivity. For this purpose, linear and pro-
portional adjustments may be applied. In addition, genetic
algorithmmixing was suggested to avoid generating the same
historical pattern in a year or in space as the case may be.
We recommend the proportional adjustment models (KPA or
KPAG) in the case where data without negative values are
highly skewed, such as the tributary streams of the Lower
Colorado River system. On the other hand, we recommend
the linear adjustment models (KLA or KLAG) in the case of

Figure 9. Box plots of ratios of drought, surplus, and storage statistics (for demand threshold levels 0.7–
1.0) derived from the generated monthly data over the corresponding historical statistic for the Colorado
River at site 20. The generated data were based on the KPA model. Departures from the horizontal line at
ratio equal to 1 suggest some degree of bias. Max Def Leng, maximum deficit length; Max Def Amt,
maximum deficit amount; Max Sur Leng, maximum surplus length; Max Sur Amt, maximum surplus
amount; StrCap, storage capacity.

Table 2. Basic Yearly Statistics for the Colorado River Basin at
Sites 21, 22, 24, and 27a

Site 21 Site 22 Site 24 Site 27 Index Site

Mean 21.12 180.41 169.97 98.19 469.69
Standard deviation 8.31 140.40 88.27 125.02 314.34
Skewness 0.839 2.008 1.677 2.673 1.98
Lag‐1 correlation 0.146 −0.038 0.061 0.061 0.01
(sy/sx)

2b (%) 0.070 19.950 7.885 15.818 100

aUnits for the mean and the standard deviation are in 1000 acre‐feet
(1 acre‐foot = 1.2335 × 103 m3).

bThe ratio of the standard deviation of monthly data over that of the
yearly data is represented by sy/sx.

LEE ET AL.: AN ENHANCED NPD WITH GA W08545W08545

11 of 14



data with small skewness and/or negative values, such as for
intervening flows of the Colorado River system.
[60] The proposed models for temporal and spatial dis-

aggregation have been tested and applied using data of the
Colorado River system. The applications indicate that
the suggested modeling procedure gives reasonable and
improved results compared to existing nonparametric dis-
aggregation approaches. In particular the proposed models
overcome the drawbacks mentioned in the paper by Prairie
et al. [2007], such as the inability to capture the correlation
between the first month of the current year and the last

month of the previous year (for temporal disaggregation)
and the proper preservation of extrema (minimum and
maximum). The former is overcome by including the var-
iable of the last month of the previous year in the KNNR
selection and the latter is accomplished by using the concept
of accurate adjusting. In addition, the proposed disaggre-
gation models have the ability to model jointly intermittent
and nonintermittent variables using proportional adjust-
ment. Furthermore, more variable flow patterns can be
obtained using the genetic algorithm mixture. A drawback
employing this algorithm is the possible underestimation or

Figure 10. Box plots of monthly means and minimums obtained from the generated (monthly) data for
site 21 of the Colorado River based on models (a) NPDK and (b) KPA and from the historical data (cross
marks and dash‐dotted line). The units are in acre‐feet.

Figure 11. Box plots of the monthly lag‐0 cross‐correlations between sites 21–22 and 21–24 of the
Colorado River obtained from the generated data based on models NPDK and KPA and from the historical
data (cross marks and dash‐dotted line).
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Figure 12. As in Figure 9, except that site 21 is employed and the applied model is NPDK to produce
the figure.

Figure 13. As in Figure 12, except that the applied model is KPA to produce the figure.
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overestimation of temporal or spatial correlations (as the
case may be). However, we showed that by trial and error
one can reproduce such correlations quite well.

[61] Acknowledgments. The authors wish to acknowledge the finan-
cial support of the Bureau of Reclamation Lower Colorado Region, Contract
“Development of Stochastic Hydrology for the Colorado River System.”
Special thanks to D. Frevert, B. Lane, and T. Fulp for their technical assis-
tance and support throughout the study. The comments of three anonymous
reviewers and the editor and associate editor improved an earlier version of
the manuscript extensively.

References
Buishand, T. A., and T. Brandsma (2001), Multisite simulation of daily

precipitation and temperature in the Rhine basin by nearest‐neighbor
resampling, Water Resour. Res., 37, 2761–2776, doi:10.1029/
2001WR000291.

Fernandez, B., and J. D. Salas (1986), Periodic gamma autoregressive pro-
cesses for operational hydrology, Water Resour. Res., 22, 1385–1396,
doi:10.1029/WR022i010p01385.

Koutsoyiannis, D. (1994), A stochastic disaggregation method for design
storm and flood synthesis, J. Hydrol., 156, 193–225.

Koutsoyiannis, D., and A. Manetas (1996), Simple disaggregation by accu-
rate adjusting procedures, Water Resour. Res., 32, 2105–2117,
doi:10.1029/96WR00488.

Lall, U., and A. Sharma (1996), A nearest neighbor bootstrap for resam-
pling hydrologic time series, Water Resour. Res., 32, 679–693,
doi:10.1029/95WR02966.

Lane,W. L. (1978),Applied Stochastic Techniques (LASTComputer Package):
User Manual, Bureau of Reclam., Denver, Colo.

Lay, D. C. (1997), Linear Algebra and Its Applications, 2nd ed., 486 pp.,
Addison‐Wesley, Reading, Mass.

Lee, T., and J. D. Salas (2006), Record extension of monthly flows for the
Colorado River system, 155 pp., Bur. of Reclam., U.S. Dept. of the Inter.
(Available at http://www.usbr.gov/lc/region/g4000/NaturalFlow/Final.
RecordExtensionReport.2006.pdf.)

Lee, T., and J. D. Salas (2008), Periodic stochastic model for simulating
intermittent monthly streamflows of the Colorado River system, paper
presented at World Environmental & Water Resources Congress 2008,
Honolulu, Hawaii, 12–16 May.

Lee, T. S. (2008), Stochastic simulation of hydrologic data based on non-
parametric approaches, Ph.D. dissertation, 346 pp., Colo. State Univ.,
Fort Collins, Colo.

Loucks, D. P., J. R. Stedinger, and D. A. Haith (1981), Water Resources
Systems Planning and Analysis, 559 pp., Prentice‐Hall, Englewood
Cliffs, N. J.

Maheepala, S., and B. J. C. Perera (1996), Monthly hydrologic data gener-
ation by disaggregation, J. Hydrol., 178, 277–291.

Mehrotra, R., and A. Sharma (2006), Conditional resampling of hydrologic
time series using multiple predictor variables: A K‐nearest neighbour
approach, Adv. Water Resour., 29, 987–999.

Mejia, J. M., and J. Rousselle (1976), Disaggregation models in hydrol-
ogy revisited, Water Resour. Res., 12, 185–186, doi:10.1029/
WR012i002p00185.

Porter, J. W., and B. J. Pink (1991), A method of synthetic fragments for
disaggregation in stochastic data generation, paper presented at Interna-
tional Hydrology and Water Resources Symposium 1991, Inst. of Eng.,
Perth, West. Aust., Australia, 2–4 Oct.

Prairie, J. R., B. Rajagopalan, T. J. Fulp, and E. A. Zagona (2006), Mod-
ified K‐NN model for stochastic streamflow simulation, J. Hydrol. Eng.,
11, 371–378.

Prairie, J., and R. Callejo (2005), Natural flow and salt computation
methods, 122 pp., Bur. of Reclam., U.S. Dept. of the Inter., Salt Lake
City, Utah.

Prairie, J., B. Rajagopalan, U. Lall, and T. Fulp (2007), A stochastic non-
parametric technique for space‐time disaggregation of streamflows,
Water Resour. Res., 43, W03432, doi:10.1029/2005WR004721.

Rajagopalan, B., J. Salas, and U. Lall (2009), Stochastic methods for
modeling precipitation and streamflow, in Advances in Data‐Based
Approaches for Hydrologic Modeling and Forecasting, edited by
B. Sivakumar and R. Berndtsson, World Sci., Singapore.

Salas, J. D., and T. Lee (2010), Non‐parametric simulation of single site
seasonal streamflows, J. Hydrol. Eng., 15, 284–296.

Salas, J. D., J. W. Delleur, V. Yevjevich, and W. L. Lane (1980), Applied
Modeling of Hydrologic Time Series, 484 pp., Water Resour. Publ.,
Littleton, Colo.

Santos, E. G., and J. D. Salas (1992), Stepwise disaggregation scheme for
synthetic hydrology, J. Hydraul. Eng., 118, 765–784.

Sharma, A., and R. O’Neill (2002), A nonparametric approach for repre-
senting interannual dependence in monthly streamflow sequences, Water
Resour. Res., 38(7), 1100, doi:10.1029/2001WR000953.

Simonoff, J. S. (1996), Smoothing Methods in Statistics, 353 pp., Springer,
New York.

Srikanthan, R., and T. A. McMahon (1982), Stochastic generation of
monthly streamflows, J. Hydraul. Div. Am. Soc. Civ. Eng., 108, 419–441.

Stedinger, J. R., and R. M. Vogel (1984), Disaggregation procedures for
generating serially correlated flow vectors, Water Resour. Res., 20,
47–56, doi:10.1029/WR020i001p00047.

Svanidze, G. G. (1980), Mathematical Modeling of Hydrologic Systems,
Water Resour. Publ., Fort Collins, Colo.

Sveinsson, O. G. B., J. D. Salas, D. C. Boes, and R. A. Pielke (2003), Mod-
eling the dynamics of long‐term variability of hydroclimatic processes,
J. Hydrometeorol., 4(3), 489–505.

Sveinsson, O. G. B., T. S. Lee, J. D. Salas, W. L. Lane, and D. K. Frevert
(2009), Developments on Stochastic Analysis, Modeling, and Simulation
(SAMS 2009), in Great Rivers, Proc. World Environ. Water Resour.
Congr., edited by S. Starrett, 1–10.

Tarboton, D. G., A. Sharma, and U. Lall (1998), Disaggregation procedures
for stochastic hydrology based on nonparametric density estimation,
Water Resour. Res., 34, 107–119, doi:10.1029/97WR02429.

Todini, E. (1980), The preservation of skewness in linear disaggregation
schemes, J. Hydrol., 47, 199–214.

Valencia, D., and J. C. Schaake (1973), Disaggregation processes in sto-
chastic hydrology, Water Resour. Res., 9, 580–585, doi:10.1029/
WR009i003p00580.

Vogel, R. M., and A. L. Shallcross (1996), The moving blocks boot-
strap versus parametric time series models, Water Resour. Res., 32,
1875–1882, doi:10.1029/96WR00928.

Yates, D., S. Gangopadhyay, B. Rajagopalan, and K. Strzepek (2003), A
technique for generating regional climate scenarios using a nearest‐
neighbor algorithm, Water Resour. Res., 39(7), 1199, doi:10.1029/
2002WR001769.

T. Lee, INRS‐ETE, 490 de la Couronne, Quebec, QC G1K 9A9, Canada.
(tae_sam.lee@ete.inrs.ca)
J. Prairie, Bureau of Reclamation, 421 UCB, University of Colorado,

Boulder, CO 80309, USA.
J. D. Salas, Department of Civil and Environmental Engineering, B208

Engineering Bldg., Colorado State University, Fort Collins, CO 80523‐
1372, USA.

LEE ET AL.: AN ENHANCED NPD WITH GA W08545W08545

14 of 14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


