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[1] Flood quantile estimation is of great importance for several types of engineering
studies and policy decisions. However, practitioners must often deal with the limited
availability of data and with short-length observation series. Thus, the information must be
used optimally. During the last decades, to make better use of available data, inferential
methodology has evolved from annual maxima modeling to peaks over a threshold. To
mitigate the lack of data, peaks over a threshold are sometimes combined with additional
information, mostly regional or historical information. However, the most important
information for the practitioner remains the data available at the target site. In this study, a
model that allows inference on the whole time series is introduced. In particular, the
proposed model takes into account the dependence between successive extreme
observations using an appropriate extremal dependence structure. Results show that this
model leads to more accurate flood peak quantile estimates than conventional estimators.
In addition, as the time dependence is taken into account, inferences on other flood
characteristics can be performed. An illustration is given with flood duration data. Our
analysis shows that the accuracy of the proposed models to estimate flood duration is
related to specific catchment characteristics. Some suggestions to increase the flood
duration predictions are presented.
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1. Introduction

[2] Estimation of extreme flood events is important for
several engineering design and risk management activities.
This is a considerable task as the amount of data available is
often limited. Thus, to increase the precision and the quality of
the estimates, several authors resorted to the use of other
sources of information. For example, Chebana and Ouarda
[2008], Ribatet et al. [2007a], Kjeldsen and Jones [2006,
2007], and Cunderlik and Ouarda [2006] used information
from other homogeneous gauging stations. Werritty et al.
[2006] and Reis and Stedinger [2005] used historical informa-
tion to improve inferences. Incorporation of additional infor-
mation in the estimation procedure is attractive but it should
not bemore prominent than the original target site data [Ribatet
et al., 2007b]. Before looking for other sources of information,
it seems reasonable to use efficiently the data available at the
target site. Most often, practitioners possess initially the whole
time series rather than only the extreme observations. In
particular, the reduction of a time series to a sample of annual
maxima (AM) represents a loss of information.

[3] In this perspective, the peaks over threshold (POT)
[Ashkar and Rousselle, 1987; Madsen and Rosbjerg, 1997]
approach is less wasteful as more than one event per year
can be inferred. However, the declustering method used to
identify independent events is quite subjective. Further-
more, even though a ‘‘quasi automatic’’ procedure was
recently introduced by Ferro and Segers [2003], there is
still a waste of information as only cluster maxima are used.
[4] Coles et al. [1994] and Smith et al. [1997] proposed

an approach based on Markov chain models that uses all
exceedances and accounts for temporal dependence be-
tween successive observations. Finally, the entire informa-
tion available within the time series is taken into account.
More recently, Fawcett and Walshaw [2006] gave an
illustrative application of the Markov chain model to
extreme wind speed modeling.
[5] In the present study, extreme flood events are of

interest. The performance of the Markov chain model is
compared to the conventional POT approach. The data
analyzed consist of a collection of 50 French gauging
stations. These stations constituted a subset of the data set
formed by Renard et al. [2008] to examine stationarity of
hydrological extremes in France. The area under study
ranges from 2�W to 7�E and from 45�N to 51�N. The
drainage areas vary from 72 to 38300 km2 with a median
value of 792 km2. Daily observations were recorded from
39 to 105 years, with a mean value of 60 years. For the
remainder of this article, the quantile benchmark values are
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derived from the maximum likelihood estimates on the
whole times series using a conventional POT analysis.
[6] The paper is organized as follows: section 2 introduces

the theoretical aspects for the Markov chain model, while
section 3 checks the relevance of the Markovian model
hypothesis. Sections 4 and 5 analyze the performance of the
Markovian model to estimate the flood peaks and durations
respectively. Finally, some conclusions and perspectives are
presented in section 6.

2. Markov Chain Model for Cluster Exceedances

[7] In this section, the extremal Markov chain model is
presented. In the remainder of this article, it is assumed that
the flow Yt at time t depends on the value Yt�1 at time t � 1.
In this flexible formulation, Yt represents the streamflow at
any time scale t. In hydrology, the daily time scale is often
used. In this case Yt represents the daily streamflow for day
t. However, the model remains valid for any time scale, e.g.,
hourly scale. The dependence between two consecutive
observations is modeled by a first-order Markov chain.
Before introducing the theoretical aspects of the model, it
is worth justifying and describing the main advantages of
the proposed approach.
[8] It is now well known that the univariate extreme value

theory (EVT) is relevant when modeling either AM or POT
data series. Nevertheless, its extension to the multivariate
case is surprisingly rarely applied in practice. Recently the
use of the multivariate framework to treat hydrological
extreme events has been receiving additional attention.
Several applications made use of bivariate distributions
and copulas to jointly model the various components of
extreme hydrological events, for instance flood peak, vol-
ume and duration [Yue et al., 2001; Zhang and Singh,
2006], drought magnitude, volume and duration [Ashkar
et al., 1998; Ouarda et al., 2008], and storm intensity and
duration [Salvadori and De Michele, 2004]. The adoption of
the multivariate framework to treat extreme hydrological
events was motivated by the fact that single-variable hy-
drological analysis provides limited understanding and
assessment of the true behavior of hydrological phenomena
which are often characterized by a set of correlated random
variables. Recent research is starting to focus on the
development of regional multivariate modeling tools
[Chebana and Ouarda, 2007]. A common element in all
research dealing with the use of multivariate tools for the
analysis of extreme hydrological events is the attempt to
maximize the use of all available hydrological information
to improve inference concerning rare events.
[9] The present work aims to motivate the use of the

multivariate EVT (MEVT). In our application, the multi-
variate results are used to model the dependence between a
set of lagged values in a times series. Consequently,
compared to the AM or the POT approaches, the amount
of observations used in the inference procedure is clearly
larger. For instance, while only cluster maxima are used in a
POT analysis, all exceedances are inferred using a Markov-
ian model. In this sense, the proposed approach lies between
POT analysis and conventional time series analysis. Indeed,
time series analysis is interested in the dependence structure
for the whole time series including low streamflow values,
while the proposed approach focuses on the dependence

structure between successive extreme observations. POT
modeling, on the other hand, leads to the loss of a
significant part of extreme values as only (independent)
flood peaks are considered.

2.1. Likelihood Function

[10] Let Y1, . . ., Yn be a stationary first-order Markov chain
with a joint distribution function of two consecutive obser-
vations F(y1, y2), and F(y) its marginal distribution. Thus,
the likelihood function L evaluated at the n first daily
streamflow values (y1, . . ., yn) is

L y1; . . . ; ynð Þ ¼ f y1ð Þ
Yn
i¼2

f yijyi�1ð Þ ¼
Qn

i¼2 f yi; yi�1ð ÞQn�1
i¼2 f yið Þ

ð1Þ

where f(yi) is the marginal density, f(yijyi�1) is the
conditional density, and f(yi, yi�1) is the joint density of
the i � 1 and i daily observations.
[11] To model all exceedances above a sufficiently large

threshold u, the joint and marginal densities must be known.
Standard univariate EVT arguments [Coles, 2001] justify
the use of a generalized Pareto distribution (GPD) for f(yi),
e.g., a term of the denominator in equation (1). As a
consequence, the marginal distribution is defined by

F yð Þ ¼ 1� l 1þ x
y� u

s

� ��1=x
; y � u ð2Þ

where 1 + x(y � u)/s > 0, l = Pr[Y � u], s and x are
respectively the scale and shape parameters. Similarly,
MEVT arguments [Resnick, 1987] justify the use of a
bivariate extreme value distribution for f(yi, yi�1), e.g., a
term of the numerator in equation (1). Thus, the joint
distribution is defined by

F y1; y2ð Þ ¼ exp �V z1; z2ð Þ½ 	; y1 � u; y2 � u ð3Þ

where V is a homogeneous function of order �1, e.g., V(nz1,
nz2) = n�1V(z1, z2), satisfying V(z1,1) = z1

�1 and V(1, z2) =
z2
�1, and zi = �1/log F(yi), i = 1, 2.
[12] Unlike the univariate case, there is no finite param-

etrization for the V functions. Thus, it is common to use
specific parametric families for V such as the logistic
[Gumbel, 1960], the asymmetric logistic [Tawn, 1988], the
negative logistic [Galambos, 1975], or the asymmetric
negative logistic [Joe, 1990] models. Some details for these
parametrizations are reported in Appendix A. These models,
as all models of the form (3) are asymptotically dependent,
that is [Coles et al., 1999],

c ¼ lim
w!1

c wð Þ ¼ limw!1 Pr F Y2ð Þ > wjF Y1ð Þ > w½ 	 > 0 ð4Þ

c ¼ lim
w!1

c wð Þ ¼ limw!1

2 log 1� wð Þ
log Pr F Y1ð Þ > w;F Y2ð Þ > w½ 	 � 1 ¼ 1

ð5Þ

[13] Other parametric families exist to consider simulta-
neously asymptotically dependent and independent cases
[Bortot and Tawn, 1998]. However, apart from a few
particular cases (see section 3), the data analyzed here
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seems to belong to the asymptotically dependent class.
Consequently, in this work, only asymptotically dependent
models are considered, i.e., of the form (1)–(3).

2.2. Inference

[14] The Markov chain model is fitted using maximum
censored likelihood estimation [Ledford and Tawn, 1996].
The contribution Ln(y1, y2) of a two consecutive daily
streamflow values y1, y2 to the numerator of equation (1)
is given by

Ln y1; y2ð Þ ¼

exp �V z1; z2ð Þ½ 	 V1 z1; z2ð ÞV2 z1; z2ð Þ � V12 z1; z2ð Þ½ 	K1K2; if y1 > u; y2 > u

exp �V z1; z2ð Þ½ 	V1 z1; z2ð ÞK1; if y1 > u; y2 � u

exp �V z1; z2ð Þ½ 	V2 z1; z2ð ÞK2; if y1 � u; y2 > u

exp �V z1; z2ð Þ½ 	; if y1 � u; y2 � u

8>>>>>>>>>>><
>>>>>>>>>>>:

where Kj = �ljs
�1tj

1+xzj
2 exp(1/zj), tj = [1 + x(yj � u)/s]+

�1/x

and Vj, V12 are respectively the partial derivative with
respect to the component j and the mixed partial derivative.
The contribution Ld(yj) of a daily streamflow yj to the
denominator of equation (1) is given by

Ld yj
	 


¼
s�1l 1þ x yj � u

	 

=s

� ��1=x�1

þ ; if yj > u;

1� l; otherwise

8<
: ð7Þ

Finally, the log likelihood is given by

log L y1; . . . ; ynð Þ ¼
Xn
i¼2

logLn yi�1; yið Þ �
Xn�1

i¼2

logLd yið Þ ð8Þ

2.3. Return Levels

[15] Most often, the main objective of an extreme value
analysis is quantile estimation. As for the POT approach,
return level estimates can be computed. However, as all
exceedances are inferred, this is done in a different way as
the dependence between successive observations must be
taken into account. For a stationary sequence Y1, Y2, . . ., Yn

with a marginal distribution function F, Lindgren and
Rootzen [1987] have shown that

Pr max Y1; Y2; . . . ; Ynf g � y½ 	 � F yð Þnq ð9Þ

where q 2 [0, 1] is the extremal index and can be interpreted
as the reciprocal of the mean cluster size [Leadbetter, 1983];
that is, q = 0.5 means that extreme (enough) events are
expected to occur by pair. q = 1 (q ! 0) corresponds to the
independent (perfect dependent) case.
[16] As a consequence, the quantile QT corresponding to

the T-year return period is obtained by equating equation (9)

to 1 � 1/T and solving for T. By definition, QT is the
observation that is expected to be exceeded once every T
years, i.e.,

QT ¼ u� sx�1 1� l�1 1� 1� 1=Tð Þ1= nqð Þ
h in o�x

� �
ð10Þ

It is worth emphasizing equation (9) as it has a large impact
on both theoretical and practical aspects. Indeed, for the AM

approach, equation (9) is replaced by

Pr max Y1; Y2; . . . ; Ynf g � y½ 	 � G yð Þ ð11Þ

where G is the distribution function of the random variable
Mn = max{Y1, Y2, . . ., Yn}, that is a generalized extreme
value distribution. In particular, equations (9) and (11)
differ as the first one is fitted to the whole set of
observations Yi, while the latter is fitted to the AM ones.
By definition, the number nY of the Yi observations is much
larger than the size nM of the AM data set. Especially, for
daily data, nY = 365 nM.
[17] From equation (10), the extremal index q must be

known to obtain quantile estimates. The methodology
applied in this study is similar to the one suggested by
Fawcett and Walshaw [2006]. Once the Markovian model is
fitted, 100 Markov chains of length 2000 were generated.
For each chain, the extremal index is estimated using the
estimator proposed by Ferro and Segers [2003] to avoid
issues related to the choice of declustering parameter. In
particular, the extremal index q is estimated using the
following equations:

q̂ uð Þ ¼

max 1;
2
PN�1

i¼1 Ti � 1ð Þ
h i2
N � 1ð Þ

PN�1
i¼1 T 2

i

0
B@

1
CA; if max Ti : 1 � i � N � 1f g � 2

max 1;
2
PN�1

i¼1 Ti

� �2
N � 1ð Þ

PN�1
i¼1 Ti � 1ð Þ Ti � 2ð Þ

0
B@

1
CA; otherwise

8>>>>>>>>><
>>>>>>>>>:

where N is the number of observations exceeding the
threshold u, Ti is the interexceedance time, e.g., Ti = Si+1 �
Si and Si is the ith exceedance time.
[18] Lastly, the extremal index related to a fitted Markov

chain model is estimated using the sample mean of the 100
extremal index estimations. Figure 1 represents the histo-
gram of these 100 extremal index estimations. In this study,
as a large number of time series is involved, the number and
length of the simulated Markov chains may be too small to
lead to the most accurate extremal index estimations; but

ð6Þ

ð12Þ
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avoid intractable CPU times. If less sites are considered, it is
preferable to increase these two values.
[19] A preliminary study (not presented here) has shown

that, for quantile estimation, this procedure was more
accurate than estimating q using the estimator of Leadbetter
[1983]. This confirms the conclusions drawn by Fawcett
[2005] for extreme wind speed data.

3. Extreme Value Dependence Structure
Assessment

[20] Prior to performing any estimations, it is necessary to
test whether: (1) the first-order Markov chain assumption

and (2) the extreme value dependence structure (equation (3))
are appropriate to model successive observations above the
threshold u. Figures 2 and 3 illustrate the autocorrelation
functions and the scatterplots between two consecutive
observations for two different gauging stations. As the partial
autocorrelation coefficient at lag 1 is large, Figures 2 and 3
(left plots) corroborate the first hypothesis. However, some
partial autocorrelation coefficients are significant beyond
lag 1. This may suggest that a higher-order model may be
more appropriate but does not necessarily mean that a first-
order assumption is completely flawed. Simplex plots
[Coles and Tawn, 1991] can be used to assess the suitability
of a second-order assumption over a first-order one. For
instance, if the points of the simplex plot are grouped in a
cluster of points on the interior, this suggests that a second-
order Markov chain might be more appropriate, though this
doesn’t necessarily imply that the first-order assumption
will completely fail. On the other hand, if the points tend to
lie toward the edge of the plot, pairwise dependence is
implied. For our application, it seems that a first-order
model seems to be valid, except for the three slowest
dynamic catchments. Figure 4 consists of simplex plots
for the stations K0523010, K4470010 and E6470910. These
three simplex plots lead to three different conclusions:
(1) the left plot advocates the use of the first-order assump-
tion, (2) the middle plot suggests that a second-order
Markov chain might be more appropriate and (3) the right
plot clearly promotes the use of a second-order assumption.
The middle plot corresponds to the three slowest dynamic
catchments as stated above while the right plot is specific as
station E6470910 has a major runoff contribution coming
from groundwater flow.
[21] Though it is an important stage because of its

consequences on quantile estimates [Ledford and Tawn,
1996; Bortot and Coles, 2000], verifying the second hy-
pothesis is a considerable task. An overwhelming depen-
dence between consecutive observations at finite levels is
not sufficient as it does not give any information about the
dependence relationship at asymptotic levels. For instance,
the overwhelming dependence at lag 1 (Figures 2 and 3,

Figure 1. Histogram of the extremal index estimations
from the 100 simulated Markov chains of length 2000.

Figure 2. (left) Autocorrelation plot and (right) scatterplot of the time series at lag 1 for station
E6470910.
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