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[1] An outstanding issue of hydrological modeling is the adequate treatment of
uncertainties in model calibration and prediction. The current paradigm is that the major
sources of uncertainties, namely input, output and model uncertainty should be accounted
for directly, instead of assuming they can be safely lumped into the output uncertainties.
In this paper, Bayesian analysis is used to calibrate the conceptual hydrologic monthly
model GR2M taking into account input, output, structural and initial state uncertainty
through error models and priors. Calibration is performed under different error
assumptions to study the influence of the initial state uncertainty, the consequences of
large input errors, the impact of error assumptions on calibrated parameter posterior
distributions and the definition of error models. It is shown how such an analysis can be
used to separate, a posteriori, the different sources of errors, and in particular, to identify
structural errors from data errors.
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1. Introduction

[2] Uncertainty analysis currently enjoys a considerable
amount of attention in hydrology [Beven, 2006a]. The
recent literature hosts spirited debates about the value of
uncertainty analysis methods [Todini and Mantovan, 2007;
Beven et al., 2007; Mantovan and Todini, 2006], discus-
sions about the necessity of validating such methods [Hall
et al., 2007] and also about the very definition of the word
uncertainty [Montanari, 2007]. With this renewal of interest
in uncertainty analysis, it is legitimate to raise the question
of how uncertainty estimates may undermine the confidence
of stakeholders in science when, for example, bounds are
large. Not presenting the uncertainty estimates is certainly
not worthy of a scientific approach and, as pointed out by
Beven [2006b], may be, as well, a sure way of undermining
the hydrological sciences. Once one recognizes the neces-
sity of uncertainty analysis, one is forced to admit that its
application requires more rigor and consistency [Hall et al.,
2007]. The efforts needed for uncertainty assessment are
certainly important from an operational point of view, when
one has to present results to stakeholder, but is also crucial
when one wants to assess overall model performance.
[3] The requirement for rigor and consistency can be

achieved through Bayesian analysis. Within a Bayesian
uncertainty assessment framework, a ‘‘generalized’’ model
is put forward that grafts error models accounting for the
various sources of uncertainties to the hydrological model
itself. As the hydrological model encompasses our best
understanding of hydrological processes occurring on a
given watershed, error models should integrate and sub-

stantiate our knowledge of uncertainties affecting input and
output data as well as those affecting the modeling process
(structural uncertainties). The outcome of the calibration
procedure, namely the posterior distribution of model param-
eters and, consequently, the predictive uncertainty [Todini
and Mantovan, 2007] is conditioned by the error models and
priors. Hence the overall ‘‘performance’’or ‘‘reliability’’ of
uncertainty assessment (which determine acceptability of
model results [Beven, 2006b]) hinges upon our ability to
define as precisely as possible adequate error models.
[4] In a previous paper [Huard and Mailhot, 2006], a

Bayesian framework inspired by the work of Kavetski et al.
[2003] was used to calibrate ‘‘abc’’, a simple linear hydro-
logical model [Fiering, 1967]. The linearity of the model and
normality constraints on the error models allowed the deri-
vation of an analytical solution to the parameter posterior
distribution, allowing a better understanding of issues related
to input errors. Linearity and normality constraints, however,
made the resolution method unfit for common usage.
[5] In this paper, the framework is extended by taking

explicitly into account structural and initial state uncertain-
ties. The parameter posterior distribution is evaluated using
Markov Chain Monte Carlo (MCMC) sampling [Kavetski et
al., 2006a, 2006b; Kuczera and Parent, 1998], thus remov-
ing linearity and normality constraints. A procedure is
presented where error models and priors describing input,
output, initial conditions and structural uncertainties are
grafted to the hydrological model which is then calibrated.
This approach enables the examination of issues related to:
1) the influence of initial state uncertainty (Under what
conditions is it critical?), 2) overconditioning due to input
error assumptions (What does calibration mean in this
context?), 3) lumping of structural and output errors (When
can it be done? What are the advantages?), 4) definition of
error models (What are their impact on the posterior
parameter distribution?) and 5) separation of model errors
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from data errors (How is it done? How can it be used?). The
first four issues are examined through simple examples
using deliberately crude error model assumptions and the
fifth one by a case study where more care is given to the
specification of realistic error models.
[6] Although this Bayesian uncertainty assessment frame-

work is general and could be theoretically applied to any
model, the numerical cost of evaluating the parameter
posterior distribution is significant and grows with the
length of the data series used for calibration. Hence given
the available computational resources, its application to
daily or hourly models appears unwieldy. The method
employed in the paper should hence be considered as a
formal exercise, rather than an operational solution to the
calibration of hydrological models (for such methods, see
Moradkhani et al. [2005]; Vrugt et al. [2005]; Kavetski et al.
[2003]; Kennedy and O’Hagan [2001] and Beven and
Binley [1992]). In this spirit, the model chosen to illustrate
the issues presented above is the parsimonious monthly
model GR2M [Mouelhi et al., 2006]. GR2M’s nonlinear
components make it sensitive to input errors [Paturel et al.,
1995], and hence relevant in an uncertainty analysis context.
With only two free parameters, the posterior parameter
distribution can be easily visualized and interpreted.
[7] The model and data used for simulations are described

in more detail in section 3, after the basic theoretical back-
ground and hypotheses underlying the proposed Bayesian
uncertainty framework are explained in section 2. Section 4
discusses basic calibration and validation issues related to
multiple sources of errors using simple error models. Section 5
presents a more realistic case study with carefully defined
error models, along with a brief analysis of the results,
including the a posteriori separation of the different types of
errors. A brief discussion about the extension to daily model
is included followed by the conclusion (section 6).
[8] This paper relies heavily on the theory and methods

of Bayesian analysis. The authors suggest the textbooks of
Gelman et al. [1995] for an application focused point of
view and Jaynes and Bretthorst [2003] for more theoretical
discussions on the foundations of probability theory.

2. Bayesian Uncertainty Framework

[9] This section introduces the proposed Bayesian uncer-
tainty framework and derives equations to perform the
calibration and validation of models in presence of multiple
sources of uncertainties.

2.1. Basic Concept

[10] In a Bayesian calibration, the objective is to find
the posterior distribution for the parameters q knowing the
input data series ~x and output data series ~y as well as the
model M:

p qj~x;~y;Mð Þ: ð1Þ

[11] Solving equation (1) may be very simple or extremely
complex, depending on the modeler’s assumptions about
the sources of uncertainty that affect the calibration process.
In hydrological modeling, many different sources of uncer-
tainties must be tackled simultaneously. Indeed, according
to Beven [2006b] ‘‘. . . we have unknown errors in input and
boundary conditions that get processed non-linearly through

a model that has structural errors and which is then
compared with observations that have unknown measure-
ment and commensurability error characteristics.’’ Although
accounting for all these sources of errors realistically is a
conceptual and technical challenge, not doing so can have
undesirable consequences on modeling performance and
the reliability of predictions [Oudin et al., 2006; Andréassian
et al., 2004; Kavetski et al., 2003; Andréassian et al., 2001;
Nandakumar and Mein, 1997; Paturel et al., 1995;Michaud
and Sorooshian, 1994; Xu and Vandewiele, 1994; Troutman,
1982]. In the following, a Bayesian approach is used to
account for four different sources of uncertainty: the igno-
rance of the initial conditions, input data error, output data
error and structural (model) error.
[12] To describe the effect of those four types of uncer-

tainties on calibration and validation, conceptual true vari-
ables describing the initial condition f0, the true input series
x and the true output series y are introduced in equation (1)
as latent variables (idealized true variables (x, y) are what
would be observed in the absence of data errors). Latent
variables (or parameters) are variables useful to state a
problem but whose effect is integrated out of the posterior
of interest [Jaynes and Bretthorst, 2003]. Equation (1) then
becomes

p qj~x;~y;Mð Þ ¼
ZZZ

p q; x; y;f0j~x;~y;Mð Þ dx dy df0; ð2Þ

where it is assumed that the integrals span the admissible
domain of each variable. Using these conceptual true
values, hypotheses concerning the nature of errors can be
translated probabilistically and equation (2) brought under a
form where it can be solved computationally. Schematically,
the inference process is displayed in Figure 1: input and
output data are linked to their respective true values by the
input and output error models, and those true input and
output variables are linked together by a structural error
model, itself dependent on the model parameters and initial
conditions.

2.2. Hypotheses, Priors and Error Models

[13] The first step is to use Bayes’ theorem on equation
(2) so that data is conditioned on the true variables:

p qj~x;~y;Mð Þ ¼
ZZZ

p ~x;~yjq; x; y;f0;Mð Þ

� p q; x; y;f0jMð Þ dx dy df0 �
1

p ~x;~yð Þ : ð3Þ

[14] Since the normalization constant p(~x, ~y) introduced
by Bayes’ theorem is of little relevance to the calibration
process, it will be neglected in the following, with the
equality relation replaced by proportionality sign.
[15] For the next step, two hypotheses are made: 1. data

errors cannot be inferred from the initial conditions, the
model parameters or the model, and 2. input and output
errors are conditionally independent given the true input and
true output [Kavetski et al., 2003]. The first hypothesis is
significant, in that it defines data error models as entities
independent from the model simulations. Note however that
data errors are only meaningful with respect to the true
variables, themselves dependent on the model’s spatial and
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temporal scales. Input and output error models are hence
defined only on the basis of the experimental protocol,
apparatus leading to data acquisition and the relation
between the observed variables and the true variables.
Formally,

p ~x;~yjq; x; y;f0;Mð Þ ¼ p ~x;~yjx; yð Þ ¼ p ~xjxð Þ p ~yjyð Þ; ð4Þ

where p(~xjx) is a statistical distribution defining the
probability of measuring an input series ~x knowing the true
input series x. Similarly, p(~yjy) is a statistical distribution
defining the probability of measuring ~y knowing the true
output series y. In the following, these particular distributions
will be referred to as the input error model and the output
error model, and denoted specifically by pin and pout as
reminder of their meaning. The exact shape of these error
models is up to the modeler and should capture the main
sources of data uncertainty. Defining realistic error models is
a difficult task since data errors typically combine both
measurement errors and commensurability errors (the
difference between the variable the model expects and what
is actually measured in the field) in ways that are site specific.
[16] Using assumption (4), equation (3) becomes:

p qj~x;~y;Mð Þ /
ZZZ

pin ~xjxð Þ pout ~yjyð Þ

� p yjq; x;f0;Mð Þ p q; x;f0jMð Þ dx dy df0; ð5Þ

where p(yjq, x, f0, M) is a statistical distribution
describing the probability of a true output series y knowing
the simulated output series by �M(q, x, f0). In other words,
this distribution describes the difference between model
simulation and true output: the model error. It will hence be
referred to as the structural error model, and denoted by
pstr(yjby) � p(yjq, x, f0, M) to shorten the notation.
[17] The last step consists in splitting the prior p(q, x,

f0jM) into two independent priors px(xjM) pq,f0
(q,

f0jM), where p is used, here and in the following, to
denote priors (the subscript is dropped when there is no
ambiguity about which prior is meant). While this

separation is not mandatory, defining a joint multivariate
prior distribution for the true input series, model parameters
and state variables seems to be of a marginal interest given
the length of the data series generally used in hydrology
[Mantovan and Todini, 2006]. Equation (5) can then be
written as

p qj~x;~yð Þ /
ZZZ

pin ~xjxð Þ pout ~yjyð Þ pstr yjbyð Þ

� p xð Þp q;f0ð Þ dx dy df0;

where references to M were removed since the model is
always assumed known.
[18] Note that although p(q, f0) and p(x) are both priors,

there is a notable difference between the two. Whereas q,
f0 are inferred from the whole data set, the inference on a
given true value xi is based mostly on ~xi as well as ~yj	i

through inferred parameters. If the errors are assumed large
(vague input and output error models), then there is very
little information in the data about xi and the prior plays a
major role in the inferential process [Gull, 1989]. The prior
for the true input must hence be chosen with care, and
modelers should avoid using abusively vague priors
[Kavetski et al., 2006a; Huard and Mailhot, 2006].
[19] It is worthwhile to underline the conceptual differ-

ences between the different types of outputs that are defined
in this Bayesian framework: simulations (by) are the model
outputs computed from inferred true inputs and parameters,
output measurements (~y) are experimentally measured out-
puts, and true outputs (y) are the idealized true values that
would be measured if no measurement and commensura-
bility errors were present. Another useful output that will be
discussed later is the simulated output measurement (~Y ), the
output measurement predicted by the output error model
given the inferred true output. In practice, different applica-
tions will require the use of different types of output. In water
resource management contexts, decision makers will rather
be interested in the inferred true outputs than the simulated
outputs. In a model validation context however, field meas-
urements should be compared to simulated output measure-
ments to avoid mixing structural errors with measurement
errors. Note that in many modeling studies, simulations are
implicitly interpreted as the true values and compared directly
with observations to assess model performance, with the
ensuing risk of misinterpreting results.

2.3. Resolution Method

[20] In general, equation (6) has no analytical solution.
One exception is when the model is linear with respect to
the input variables and the error models as well as the true
input prior p(x) have a Gaussian shape. This particular case
was studied by Huard and Mailhot [2006] using the ‘‘abc’’
model. However, typical hydrological models are nonlinear,
equation (6) cannot be integrated analytically and a different
resolution method is needed. Unfortunately, numerical
integration methods such as quadratures become inefficient
for more than three or four dimensions, due to the curse of
dimensionality: the computational cost increases exponen-
tially with the dimension of the problem [Novak and Ritter,
1997]. Quadrature methods are thus inappropriate for this
kind of application where the integral spans hundreds of
dimensions (one for each true input and true output). In

Figure 1. Inference process based on the theoretical
uncertainty framework. Experimental input and output data
are indicated by tilded variables ~x, ~y, and conceptual true
values by non tilded variables: true input series x; true
output series y; model parameters q and initial model state
f0. The input, output and structural error models are
indicated by pin, pout and pstr respectively, p(q, f0) denotes
the prior for the model parameters and the initial state, and
p(x) stands for the prior for the true input series.

ð6Þ
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other words, the posterior probability cannot be evaluated
directly. This is a frequent problem in Bayesian analysis,
and a common solution is to sample parameters from the
posterior distribution (6) using Monte Carlo Markov Chain
(MCMC) algorithms [Huang and Liang, 2006; Kavetski et
al., 2006b; Bates and Campbell, 2001; Kuczera and Parent,
1998; Gelman et al., 1995; Neal, 1993]. In this case the
Metropolis algorithm is used, by which the parameter space
is explored by making random steps. These steps are
selected such that the distribution of the sampled parameters
approaches the posterior distribution after a sufficient
number of random steps (see Chib and Greenberg [1995]
for an introduction to MCMC theory and more particularly
Metropolis sampling). Hence to solve equation (6), one
samples (q, x, y, f0)

i N times from p(q, x, y, f0j~x, ~y), and
for N large enough (convergence can be assessed by
different criteria [Gelman et al., 1995]), the empirical
distribution of the samples reproduces the probability
distribution (superscripts i indicate sampled values). The
integration over the latent variables is then performed by
marginalizing over x, y and f0, that is, by considering the
sampled qi independently from the latent variables.

2.4. Prediction and Validation

[21] Hall et al. [2007] suggest that ‘‘without validation,
calibration is worthless and so is uncertainty estimation.[. . .]
Validation is also needed [. . .] because the data do not contain
full information about how the catchment will respond in the
future. The same argument applies to uncertainty estima-
tion.’’ In other words, validation checks not only how the
calibrated model performs outside the calibration period, but
also if the error model assumptions hold.
[22] In a split-sample calibration/validation, a data series

is split in a calibration series (~x, ~y) and a validation series
(~x+, ~y+). Calibration is performed under a set of assumptions
defining the error models and priors, under which the
posterior distribution p(qj~x, ~y) for the parameters is com-
puted. In validation, parameters can be seen as a source of
uncertainty and thus treated as latent variables. Validation
uses the entire posterior parameter distribution along with
input ~x+ to infer the probable distribution of output measure-
ments ~Y+, which can compared with the real observations ~y+
to validate the model and the calibration assumptions:

p ~Yþj~xþ; ~x;~y
� �

¼
ZZZ

p ~Yþ; q;f; xþ; yþj~xþ; ~x;~y
� �

dxþ dyþ df dq

¼
ZZZ

pout
~Yþjyþ
� �

pstr yþjbyþ� �
� pin ~xþjxþð Þ p xþð Þp q;fj~x;~yð Þ dxþ dyþ df dq: ð7Þ

[23] The simulated output measurements ~Y+
i can then be

compared with the observed outputs ~y+ to assess the global
efficiency of the model, that is, the combined accuracy of
the model, error models and priors.

3. Model and Data

3.1. GR2M

[24] Simulations in this paper use the parsimonious
hydrological lumped monthly model GR2M [Mouelhi et
al., 2006], an improved version of the model developed by
Edijatno and Michel [1989] and Kabouya [1990]. Despite

having only two free parameters, the model has been shown
to perform well when compared to similar monthly models;
on a benchmark test consisting of 410 basins throughout the
world, GR2M shows the best performance among nine
models, some of them counting five free parameters
[Mouelhi et al., 2006].
[25] The two free parameters of GR2M are q1, the soil

moisture storage maximum capacity, and q2, the water
exchange term with neighboring catchments. The internal
state variables consist of a soil moisture accounting store (S)
and a quadratic reservoir (R). The model is forced by
monthly rainfall (r) and potential evapotranspiration (e) and
returns a monthly flow by. Readers should note that q1, the
soil moisture store capacity, controls the model’s response
to rain event, and to a certain extent, the variability of the
simulated flow. As q1 increases, the simulated flow depends
less on the current rainfall and more on the store level, itself
dependent on past rainfall. For small q1, more rainfall is
directed as excess rainfall and instantaneously routed as
output flow. In other words, q1 controls the model’s low-
pass filter behavior (its ‘‘memory’’ of past events). In the
following, the GR2M model is denoted by by = M(q, x, f),
with model parameters q = {q1, q2}, input series x = {r, e}
and internal state variables f = {R, S}.
[26] Sensitivity analyzes have determined that GR2M is

sensitive to white noise errors on rainfall, but comparatively
robust to random errors on potential evapotranspiration (PE)
[Paturel et al., 1995]. That is, the Nash-Sutcliffe efficiency
(NSE) decreases rapidly as the magnitude of random errors
over rainfall increases, but much more slowly in the case of
random errors over PE. Although the study of Paturel et al.
[1995] dates back to a previous version of GR2M, a similar
analysis was carried out and the same conclusions hold for
the current version.

3.2. MOPEX Data Sets

[27] The data used in this study is taken from the MOdel
Parameter Estimation eXperiment (MOPEX) [Schaake et
al., 2006]. The database contains daily streamflow, rainfall,
potential evapotranspiration, minimum and maximum
temperatures. The rainfall data is produced by Maurer et
al. [2002] and is the result of gridding point rainfall
estimates from the United States, Canada and Mexico. The
rainfall point estimates are daily totals taken from the
National Oceanic and Atmospheric Administration (NOAA)
Cooperative Observer (Co-op) stations. They are gridded
using the synergraphic mapping system (SYMAP) [Shepard,
1984] as implemented by Widmann and Bretherton [2000].
The gridded data is then scaled to correct for complex
topography in sparsly instrumented areas using long-term
monthly averages from the Parameter-Elevation Regres-
sions on Independent Slopes Model (PRISM) [Daly et al.,
1994, 1997]. The data is not corrected, however, for
systematic gauge errors [Maurer et al., 2002], which can
significantly decrease the measured amount of rainfall.
[28] Generally speaking, the major sources of systematic

errors in rainfall measurements are wind-induced under-
catch, wetting losses and evaporation losses. The under-
catch due to wind has been estimated to vary from 2% to
20% for liquid precipitations to over 100% for solid
precipitation, wetting losses from 3% up to 10% and
evaporation losses are generally below 2% [Metcalfe et
al., 1997; Yang et al., 1999]. These estimates are highly
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dependent on the type of gauge, the local climatology,
altitude, topography and the apparatus calibration.
[29] Another source of error is the ‘‘representativeness’’

of the data (commensurability). Lumped conceptual hydro-
logical model assume the input variable is related to the
areal rainfall over the entire catchment, whereas point
rainfall estimates are often used [Habib et al., 2001]. In
the MOPEX database, the aerial adjustment is achieved by
the spatial interpolation and catchment integration. How-
ever, it is difficult to discuss even roughly the relation
between the MOPEX estimated rainfall and the ‘‘true’’
aerial rainfall, due to the complex manipulations separating
the raw point data from the reanalysis results. Unless
uncertainty estimates are provided, this is a setback to the
use of reanalysis data for applications where uncertainty
assessment is crucial.
[30] As for evapotranspiration, the MOPEX values are

derived from the NOAA Evaporation Atlas [Farnsworth et
al., 1982]. More specifically, they are computed by fitting a
Fourier series with only an annual cycle to evaporation pan
monthly averages. These averages were obtained by
gridding the Evaporation Atlas maps with a resolution of
1/6�. The parameters of the series were then computed on
this grid and averaged over each basin to estimate the basin
average annual evapotranspiration cycle.
[31] Since interannual random white noise PE errors do

not seem to perturb hydrological models [Andréassian et
al., 2004; Paturel et al., 1995], our concern is mostly with
systematic or cyclic intraannual errors. One such cyclic
source of error could be soil moisture availability. Indeed,
PE strongly depends on the amount of moisture in the
topsoil layer, a dependence that is not taken into account by
the MOPEX estimates. If the soil moisture has a strong
cyclic component (high in spring, low in September for
instance), the resulting PE may show an intraannual
variability not captured by pan evaporation estimates, with
potentially detrimental influence on model simulation.
[32] Finally, MOPEX streamflow series are provided by

the United States Geological Survey (USGS). Daily stream-
flows are taken at gauges unaffected by upstream regulation
and where long time series are available. Stage measure-
ments are converted into streamflow estimates through
rating curves. Stage measurement errors are of the order
of 3 mm while single discharge measurement errors typi-
cally range around 5–10%, depending on the protocol
(number of vertical velocity profiles, depth of measure-
ments) and apparatus (velocimeter, Doppler profiler)
[Hirsch and Costa, 2004]. Moreover, rating curves are not
static and may vary due to changes in bed roughness,
accumulation of debris following a flood, vegetation

growth, presence of ice, streambed scour and fill processes,
bank erosion, etc [Fenton and Keller, 2001]. Some of these
factors are accounted for by frequent updates to rating
curves.
[33] The simulations presented in section 4 are run for all

eight stations presented in Table 1 (although only results
from the Chunky River watershed are shown). The basins
chosen cover relatively dry to humid conditions found in the
continental U.S.A. In the paper, units are systematically
millimeters (mm) for rainfall (aerial) and monthly discharge
(aerial).

4. Step by Step Bayesian Model Calibration

[34] Realistic calibration of a hydrological model in
presence of data and model uncertainties using Bayesian
analysis poses numerous conceptual and technical issues
[Kavetski et al., 2006b]. Among those, defining sensible
error models and priors, integrating latent variables, validat-
ing the calibrated model and leveraging realism versus
complexity are themost challenging. In a realistic calibration,
many different issues are mingled and it is difficult to grasp
how they interact and consequently, how to interpret the
results. The objective of the current section is to isolate
calibration issues in specific stand-alone examples, helpful in
understanding the effects of calibration assumptions.
[35] The first issue discussed is the initial state uncertainty

and its relevance in different calibration contexts. Then the
first case is presented, an application of Bayesian analysis
where only output errors are considered, highlighting the
conceptual difference between simulations and measure-
ments. The second case shows a calibration where errors
are assumed to be only on input data, and discusses how the
input error assumption impacts the very definition of model
performance. The third case introduces structural errors and
discusses their lumping with output errors. From these three
cases follows a brief analysis of the effect of error models
assumptions on the posterior parameters distribution.
[36] It should be noted that although the figures only

show the case of the Chunky river watershed, identical
simulations were run for all eight basins presented in table 1
with comparable results.

4.1. Initial State Uncertainty

[37] In GR2M, the internal state of the system is defined
by the level of two reservoirs. Since they are conceptual
reservoirs, their level cannot be measured experimentally
and there is, a priori, no way to define exactly their initial
values. A convenient solution to this problem is to warm-up
the model, i.e., to set the internal state to arbitrary values

Table 1. Properties of the Eight Watersheds Used in the Studya

Code Basin Name Area, km2
Mean Monthly Rainfall,

mm
Mean Monthly PE,

mm
Mean Monthly Flow,

mm

05471500 South Skunk River near Oskaloosa, IA 4235 69.3 82.3 17.8
05570000 Spoon River at Seville, IL 4237 75.3 84.3 20.9
01562000 Raystown Branch Juniata River at Saxton, PA 1958 78.8 65.4 35.2
03011020 Allegheny River at Salamanca NY 4165 86.8 59.4 48.2
03303000 Blue River near White Cloud, IN 736 93.8 73.4 68.2
01321000 Sacandaga River near Hope NY 1272 102.9 57.6 64.7
02475500 Chunky River near Chunky, MS 956 117.2 87.9 38.5
03443000 French Broad River at Blantyre, NC 767 161.2 70.1 99.1

aAll stations span between 53 and 54 years of uninterrupted data with no null rainfall at the monthly scale. Rainfall, PE and flow data are areal values.
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and let the model run for a fixed period [Shelton, 1985]. The
rationale behind this strategy is that the effect of the initial
state f0 on the simulated flow decreases rapidly. Indeed, at
time t the internal state ft depends on ft�1 and on xt, the
current input. By induction this is equivalent to saying it
depends on f0, x1, x2, . . ., xt. Hence if t is large enough, the
effect of f0 becomes negligible compared with the effect of
the input series x. The question then is, how long should
this warm-up period be to minimize the effect of the initial
state uncertainty without sacrificing too much data? For
some catchments, rainfall data was logged long before flow
measurements began, so the period where only rainfall data
is available can be used as a warm-up period without
concern about data expenditure. However, when this is not
the case and only short rainfall and flow series are available,
it may be worthwhile to minimize the warm-up period.
[38] An estimate of a sensible warm-up period can be

found by artificially perturbing the internal state and
measuring how fast it converges back to its unperturbed
state (Figure 2). For GR2M, the rate of convergence
depends closely on q1, the soil moisture store capacity;
for large store capacity, the dependence of the model to its
past state (its ‘‘memory’’) is stronger and internal state
perturbations have a prolonged effect (�12 months). For
small store capacities, the model has a short memory and
perturbations vanish after as few as three months. Based
on simulations on a number of catchments from the
MOPEX database and different parameter sets, it was
found that perturbations vanish with an average half-life
of around 1.5 months. Warming-up the model during one
year [Paturel et al., 1995] hence leaves ample time to the
internal state to reach its ‘‘steady’’ state. In the simulations
shown in cases 1, 2 and 3, a warm-up period of two years
was used since data availability is not an issue.
[39] Using Bayesian analysis, the warm-up period can

be avoided entirely. The solution is to define a prior for
the initial state p(f0) and consider f0 a latent variable, as
in equation (6). The effect of f0 on simulations can then be
integrated out and parameters calibrated without sacrificing
the first months to warm-up the model. Simulations (not
presented here for brevity) suggest that the advantages of
such an approach over the warm-up strategy depend on the
relative information content [Wagener et al., 2003] of the
warm-up period. This information content (loosely defined
as the diversity of hydrological conditions) is itself

dependent on the length of the time series, the presence of
extreme events and the prior for the initial conditions. For
example, if a long calibration series is available, the relative
information content of the first months is low compared to
the rest of the series and using those first months in the
calibration has only a weak effect on the parameter
distribution. However, if those first months contain a very
large flood, the like of which is not observed during the rest
of the calibration series, then including them in the
calibration series may have a significant effect on the
posterior parameter distribution. Finally, if a vague prior for
the initial state is defined, then the uncertainty over flow
simulations for the first few months is dominated by the
initial state uncertainty rather than the parameter uncer-
tainty, and only a weak inference can be conducted on the
model’s parameters. Therefore integrating the initial state
uncertainty is advantageous only if a reasonably informative
prior about the initial state can be defined.

4.2. Case 1: Assuming Output Errors Only

[40] In this first case, equation (6) is applied under the
assumption that inputs are exact, or more pragmatically, that
the effect of input errors can be safely lumped into output
errors. This case is similar to a classical calibration, except
that while a standard calibration aims at finding a unique set
of parameters optimizing an objective function, a Bayesian
analysis provides a parameter posterior probability distribu-
tion. Another difference is that objective functions can take
any shape [Gupta et al., 1998], whereas output error models
are limited to formal statistical distributions (positive,
piecewise continuous functions whose integral equals
one). In this example, the calibration assumptions are given
formally by:

pin ~xjxð Þ ¼ d ~x� xð Þ ð8aÞ

pstr yjbyð Þ ¼ d y� byð Þ ð8bÞ

pout ~yjyð Þ ¼ L ~yjm ¼ ln y;soutð Þ ð8cÞ

p q;f0ð Þ ¼ U q1j0; 1000ð Þ � U q2j0; 2ð Þ � d f0 � bf0

� �
ð8dÞ

where d stands for the Dirac delta, L for the lognormal
probability density function (pdf, see equation (A3)) and U
for the uniform pdf. The hypothesis motivating the choice
of a lognormal distribution to model output errors is that
streamflow errors are roughly proportional to the value they
affect: errors are multiplicative rather than additive [Yapo et
al., 1996] (see Appendix A3 for details). This is a
reasonable assumption if one considers that stage errors
are transformed into discharge errors by a concave stage-
discharge relationship (later explained in section 5.3). Note
that the prior for the true input p(x) is not defined here since
it is just a constant (assumption (8a) implies that x = ~x). The
prior for the model parameters is given by a uniform prior
over intervals covering a broad range of watershed behavior.
Initial conditions f0 are fixed to bf0 by warming-up the
model for a period of 24 months.

Figure 2. Once perturbed (thin lines), the internal state
variable S describing the level (mm) of the soil moisture
store returns to its unperturbed state (thick line). The other
internal variable R (level of the routing store) displays a
similar behavior. The figure shows results obtained with a
large store capacity (q1 = 1000), i.e., a long memory.
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[41] Plugging the error model assumptions (8a)–(8d) into
equation (6) and using the properties of the Dirac delta
function to solve the three integrals yields a posterior
distribution with a simple expression:

p qj~x;~yð Þ / pout ~yjbyð Þp qð Þ; ð9Þ

where by = M(q, ~x, bf0) and p(q) = U(q1j0, 1000) � U(q2j0,
2). With all integrals solved, equation (9) can be computed
directly and there is no explicit need to use MCMC
sampling. Nevertheless for the sake of the demonstration,
100000 values of q are drawn from the posterior
distribution (9), half of which is discarded to remove
transient samples. The shape parameter of the output error
model is set to sout = .2 (corresponding roughly to a 20%
error on flow), and the calibration data (~x, ~y) consists of
20 years of monthly rainfall, PE and flow from the Chunky
River watershed (see Table 1).
[42] Figure 3 shows the results on a five years period. The

lower plot shows the series of rainfall measurements from
the MOPEX database. The middle plot shows the contoured
probability density of the simulated flow along with the
flow measurements from the MOPEX (full line). That is, the
simulated flow byi is computed for each qi sampled, and a
contour plot is drawn from the simulated flow histogram.
Note that the variability of the simulated flow does not
capture at all the variability seen in the observed flow. At
first sight, it would appear that the parameter uncertainty is

insufficient to account for the flow uncertainty. Although
specifying a vaguer output error model (setting sout to some
higher value) would increase the parameter uncertainty, it is
not the real issue here and is not advisable either [Refsgaard
et al., 2006]. Indeed, the difference in variability is mainly
due to the fact that the plot compares two conceptually
different variables: the measured flow ~y and the true flow y
(equal in this case to the simulated flow by). To be
meaningful, the plot must compare measured flow and
simulated flow measurements. These simulated flow
measurements (~Y ) are computed by drawing random
variates from the output error model ~Y i � pout(~Y jby i) withbyi computed for each qi sampled from the posterior (9). The
upper graph of Figure 3 shows a contour plot of the
probability density of simulated flow measurements com-
pared with flow measurements (full line). It can be seen that
the simulated measured flow captures better the variability
of the observed flow series.
[43] This conceptual difference between model simula-

tion and measurements has more profound implications
than capturing the simulation variability. Indeed, depend-
ing on the output error model chosen, it may lead to
apparent paradoxes. For instance, if the output error
model assumes that flow measurements systematically
underestimate the true value, the flow simulated from
the calibrated parameters will systematically overestimate
the flow measurements. Therefore a measure of calibra-
tion efficiency from a direct comparison of flow measure-

Figure 3. Case 1. Result of a calibration of the Chunky River watershed performed assuming that only
output errors are present. The lower graph shows rainfall observations. The middle graph shows the pdf
(contour plot) of the flow simulated using the parameters sampled during calibration compared with flow
observations (full line). The upper graph shows the pdf of simulated flow measurements, including both
parameter uncertainty and an explicit output observation error. Although calibration is performed over
20 years of data, only a subset of five years is shown here to avoid cluttering the figure. The scales on the
right indicate the value of the pdf.
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ments and flow simulations would be meaningless and
misleading. This conceptual difference between simula-
tions and measurements has already been noted in Kal-
man filtering theory [Burgers et al., 1998] and in the
Bayesian recursive parameter calibration context [Thiemann
et al., 2001].

4.3. Case 2: Assuming Input Errors

[44] The second case deals with the opposite situation,
namely that outputs are assumed exact and precipitations
uncertain. Although this is a rather peculiar situation, it
illustrates some potential benefits and setbacks associated
with taking input errors into account. Formally, the under-
lying hypotheses are given by:

pin ~xjxð Þ ¼ L ~rjm ¼ ln r;sin ¼ :2ð Þ d ~e� eð Þ ð10aÞ

p xð Þ ¼ W rja;k;m;sð Þ ð10bÞ

pout ~yjyð Þ ¼ d ~y� yð Þ; ð10cÞ

where W stands for the exponentiated Weibull pdf (see
equation (A5)). The parameters of the exponentiated
Weibull distribution (a, k, m, s) are estimated by fitting
an historical rainfall series of 20 years, prior to the
calibration period, from the same catchment the model is
calibrated on. The exponentiated Weibull was chosen
because it adequately captures the total monthly rainfall
distribution over many catchments compared to other
common semi-infinite distributions (see Appendix A4).
The structural error model and the prior for the parameters and
internal state are identical to those of case 1 (equations (8b)
and (8d)).
[45] To solve this case using MCMC sampling, the Dirac

delta of the output error model is approximated by a
lognormal distribution with a small shape parameter, that

is, equation (8c) with sout  0. The integral over x must be
performed in this case by Metropolis sampling of the
following posterior

p q; xj~x;~yð Þ / pout ~yjbyð Þ pin ~xjxð Þp xð Þp qð Þ: ð11Þ

[46] The sampler now explores a space formed by the two
model parameters q and the 20 � 12 = 240 true input values
x. However, as the shape parameter sout approaches zero, it
becomes increasingly difficult to explore the x-space
because the values with a non-zero probability lie in a
vanishingly small 240-dimensional volume, making random
jumps very unlikely to be accepted by the Metropolis
algorithm. With sout = .02, 3.0 � 107 samples had to be
generated to obtain an approximately stable parameter
distribution. That is, a change in the burn-in period has no
effect on the mean of the distribution, but still has a small
influence on its shape, even after ten million iterations. Ideally,
after a given number of iterations, the shape of the distribution
should show no dependence to the burn-in length.
[47] The calibration results are presented in Figure 4. The

lower graph shows the probability density function (pdf) of
the inferred true rainfall, while the upper graph shows the
pdf of the simulated measured rain: true rain corrupted by
random measurement errors drawn from the input error
model. The simulated flow is not shown since it is, by
definition, identical to the observed flow.
[48] There are two observations that deserve to be high-

lighted. First, by assuming the measured flow is exact, the
true rain x is constrained to values that reproduce exactly
the measured output. In other words, equation (11) infers
the value of the true rain, based on the knowledge of the
measured flow. Although this may seem artificial, some
interesting observations can be derived from such an
analysis. Indeed, in a case not shown here, a clear annual
trend in the ratio true rain/measured rain was noted; during
the summer months, the true rain systematically under-

Figure 4. Case 2. Results of calibration of the Chunky River watershed under the assumption that only
input errors are present. The lower graph shows a five years subset of the measured rainfall series (full
line) used to calibrate the model, and a pdf (contour plot) of the sampled true rain. The upper graph shows
the pdf of simulated rain measurements, including an explicit rain observation error. The scales on the
right indicate the value of the pdf.
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estimated the measured rain, suggesting that there was too
much water input. Also, indeed, increasing the summer PE
in those cases improved the overall model efficiency.
[49] The second observation is related to the assessment

of model efficiency, often measured in hydrology by the
Nash-Sutcliffe Efficiency criterion (NSE) (although Schaefli
and Gupta [2007] point out that NSE does not provide a
reliable basis for comparing results of different case
studies). In this particular case, there is no difference
between simulated and measured flow, and the NSE
reaches, by design, its maximum value, 100%. Obviously,
any efficiency measure based on the concordance of
measured and simulated output will yield exceedingly
good, yet meaningless results. In this particular case, the
efficiency of the model should rather be measured by the
concordance between measured inputs and simulated inputs
(or rather simulated input measurements) since this really is
the quantity ‘‘predicted’’ by the model.

4.4. Case 3: Lumping Output and Structural Errors

[50] The last few years have seen an increasing number of
strategies designed to account for structural errors in cali-
bration or prediction [Refsgaard et al., 2006], taking
advantage of Bayesian model averaging [Ajami et al.,
2007], ensembles simulations [Vrugt et al., 2005] or
Gaussian processes [Kennedy and O’Hagan, 2001]. These
methods capture the uncertainty related to the model either
by running a number of different models (model averaging
and ensemble simulations), or by describing the model error
by a mixture of functions (Gaussian processes). The
proposed framework is not a replacement for those
methods, but rather a way to include formally a probabilistic
description of structural errors into the calibration and
prediction process.
[51] Indeed, the common practice in hydrological mod-

eling is to define an objective function which relates
simulated values to observed ones, and assumes that uncer-
tainties on input data are negligible. This objective function,

even if it is not clearly stated, lumps together output and
structural errors. This embedding of the structural error
model into a ‘‘simple’’ objective function can lead to
inconsistent results (e.g., residuals do not comply with the
assumed output distribution). In this example, a structural
error model is formally lumped with an output error model,
yielding a response error model to be incorporated to the
calibration process. Input errors are considered as well and
the parameters posterior distribution is estimated.
[52] Given output and structural error models, a response

error model pres lumping both output and structural errors
can be defined simply as

pres ~yjbyð Þ �
Z

pout ~yjyð Þ pstr yjbyð Þ dy: ð12Þ

[53] In some cases, this integral can be solved analytically,
greatly reducing the numerical cost of sampling over the true
output variables. Indeed, replacing the integration over y in
the right hand side of equation (6) by equality (12) yields

p qj~x;~yð Þ /
Z

pin ~xjxð Þ pres ~yjbyð Þp xð Þ dx � p qð Þ; ð13Þ

which can be solved by sampling only the parameters q and
true input values x from

p q; xj~x;~yð Þ / pin ~xjxð Þ pres ~yjbyð Þp xð Þp qð Þ ð14Þ

and marginalizing over x.
[54] As an example, this third case assumes that both pout and

pstr are expressed in terms of the lognormal distributions:

pout ~yjyð Þ ¼ L ~yj ln y;soutð Þ ð15aÞ

pstr yjbyð Þ ¼ L yj lnby;sstrð Þ: ð15bÞ

Figure 5. Case 3. Results from a calibration of the Chunky River watershed accounting for input,
output and structural errors. The lower plot shows the pdf of simulated rain measurements (contour plot),
compared with rainfall observations (full line), and the upper plot the pdf simulated flow measurement
probability density (contour plot) compared with the observed flow series (full line). The scales on the
right indicates the value of the pdf.
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[55] The lognormal distribution is chosen both for its
simplicity and because it is heteroscedastic, a typical feature
for hydrologic model residuals [Xu, 2001; Yapo et al.,
1996]. Inserting (15a), (15b) into (12) and performing the
integration yields

pres ~yjbyð Þ ¼ L ~yj lnby; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
str þ s2

out

q� �
; ð16Þ

a lognormal distribution lumping both output and structural
errors. Again, the integration of the output and structural
error models is by no means mandatory, and is done here
out of optimization considerations. Given ample computing
resources, the analytical integrability of the output and
structural error models is not an issue.
[56] Using the response error model (16) with sout = .05

and sstr = .1, the input error model (10a) with sin = .1 and
priors (10b), (8d), 1.0 � 106 samples (q, x) are drawn from
equation (14) using MCMC sampling and the first half is
discarded. The lower graph of Figure 5 shows the simulated
rain measurement probability density and the upper graph
the simulated flow measurement probability density.
Although this example has no pretense to realism, the
overall calibration results appear satisfying, both for the
inferred rain and flow. One thing deserving improvement
though is the uncertainty over high flows, apparently
overestimated by the response error model.
[57] This example shows that from a conceptual point of

view, taking structural uncertainty into account is relatively
simple: define a structural error model and integrate, ana-
lytically or numerically, over the true output series y.
However, as Bayesians know too well, specifying a prior
or an error model is not difficult, but specifying a good one
is. The situation is further complicated since the proposed
definition of structural errors (y � by) combines two types of
structural errors: model inadequacies and the inherent
stochasticity of the process (due to explaining variables
not taken into account). Theoretically, with a long ‘‘error
free’’ data set, it would possible to identify both types of
structural errors, rectify the model to remove the inadequa-

cies and describe probabilistically the remaining random-
ness of the process. Without such a perfect data set however,
the expertise of hydrologists seems the best way to define
sensible structural error models.
[58] To validate the model and error models, the proce-

dure detailed in section 2.4 is applied and the results shown
in Figure 6. Although the error models are rather crude, the
resulting uncertainty for the flow (contour plot) appears
consistent with the flow observations (full line).

4.5. Impact of Error Models on Posterior
Parameter Distribution

[59] Values of calibrated parameters and their associated
uncertainties are conditioned by the choice of the errors
models. To illustrate this, the parameters calibrated from the
three cases discussed above (with identical calibration data
sets) are shown in Figure 7. The sensitivity of parameters on
error model assumptions can be explained by noting that

Figure 6. Validation of the model calibrated in case 3. The lower graph shows the pdf of the simulated
measured rain ~X+ (contour plot) along with the observed rainfall (full line). The upper graph shows the
pdf of the simulated measured flow ~Y+ (contour plot) compared with the observed flow series (full line)
for the validation period. The scales on the right indicate the value of the pdf.

Figure 7. Parameter distributions sampled in the three
cases presented. Parameter q1 describes the capacity (mm)
of the soil accounting store and q2 the water exchange
coefficient. As q2 decreases, more water is lost to
neighboring catchments. The NSE parameter is computed
by optimizing the NSE criteria computed over the square
root transformed flow.
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parameters are estimated through the inferred true input and
output values, which depend directly on the error models. In
other words, the parameter distribution is inseparable from
the choice of error models, and calibration results can only
be understood by looking at the entire set of assumptions.
[60] A feature of Figure 7 deserving to be highlighted is

that lumping all sources of errors on the output (Case 1)
yields a larger value for q1 (the moisture store capacity) than
when input errors are accounted for (Case 2 and 3). By
increasing this parameter, the model reduces the potential
for excess rainfall and, at the same time, the flow variability.
In other words, calibration selects parameters that enhance
the low-pass filter behavior of the model and reduce its
sensitivity to input error.
[61] Finally, readers may wonder about the significant

difference between the parameters estimated with NSE and
those obtained from case 1, since both methods assume that
only the outputs are corrupted. The authors explanation for
this difference is that it is largely due to the difference in
heteroscedasticity assumed by the two methods. Generally
speaking, a heteroscedastic error model tolerates large errors
on large flows and estimates parameters that simulate well
the low flows. On the other side, a homoscedastic error
model considers all errors equal and estimates parameters
that somehow capture the average behavior. For GR2M, this
average behavior is obtained by a higher exchange coeffi-
cient q2 (less water is lost to neighboring catchments,
increasing the base flow) and a higher soil moisture capacity
q1, reducing the model’s sensitivity to rainfall. In Figure 7,
the NSE parameters are estimated by maximizing the NSE
criterion computed on the flows square root [Xu and
Vandewiele, 1994], which is akin to a heteroscedasticity
assumption [Sorooshian and Dracup, 1980]. However,
this square root heteroscedasticity is weaker than the
lognormal heteroscedasticity assumed by the output error
model (Case 1), explaining why the NSE parameters are
shifted to the upper right. If the parameters are estimated
again by an NSE criterion computed this time directly on the
flows (homoscedasticity assumption), one obtains an even
greater shift with q̂ = (453, 0.88). This artificial favoritism of
a low-pass filter behavior may have serious impacts if the
model is used in a predictive mode as it can lead to
underestimation of peak flows, as well as the associated
uncertainties on these estimates.
[62] One may suggest that shifts in parameters could

possibly be traced back to distinct model failures. For
instance, the large difference in the soil moisture capacity
could be explained by the lack of an interception process in
the model [Savenije, 2004] or an incorrect direct runoff
parameterization. Although the compensation mechanisms
of parameters for un- or mis-accounted sources of errors are
interesting in their own right, it is not clear at this point
whether such shifts can provide more than cursory evidence
to identify structural inadequacies. Moreover, for hydro-
logical models counting dozens of parameters, such an
analysis would lose much of its intuitiveness.

5. Case Study

[63] The objective of this section is to demonstrate the
use of the Bayesian uncertainty framework under more
realistic calibration assumptions. For each source of error,
hypotheses are formulated in probabilistic terms and error

models constructed on the basis of these hypotheses.
Although the GR2M model may be too rudimentary for
this application to be really realistic, it shows what can be
done in terms of error models, and serves as a test case
before tackling more complex daily models. In the follow-
ing sections, error models and priors are defined and the
simulation setup is presented. Results are then discussed,
along with the necessary modifications for an extension to
daily models.

5.1. Rainfall Error Model

[64] The rainfall error model is inspired by Weerts and El
Serafy [2006] who describe hourly rainfall errors by a
normal distribution with a variance sdr

2 that has both a
proportional component (15%) and fixed one (.2 mm):

sdr ¼ 0:15r þ 0:2mm;

where r stands for rainfall (mm). The fixed component is
due to the finite resolution of rain gauges (for example the
volume of the tipping bucket). For this application, the fixed
component is set at .254 mm (.01 in), the default volume for
tipping bucket gauges [Habib et al., 2001]. It is assumed that
this error affects hourly measurements, so that once scaled to
monthly values, the standard variation due to the finite
resolution of the gauge is estimated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30 � 24

p
� .254 mm

 7 mm. The proportional component roughly represents
commensurability (aerial representativity) errors and mea-
surements errors such as evaporation and wetting losses as
well as wind-induced undercatch. Once aggregated to
monthly values, the proportional component reduces to
about 7% (see Appendix B). Since these measurement
errors cause an underestimation of the true rainfall, the
rainfall input error model is assumed to be also biased by
around 7% [Metcalfe et al., 1997]; that is, it is assumed
that rainfall measurements are on average 93% of the true
rainfall.
[65] One should note that the smallest error standard devi-

ation (7 mm) is of the order of the smallest monthly precip-
itation. Hence there is a normalization issue due to the fact that
for small rainfalls, the normal distribution assigns non zero
probability to negative rainfall. To deal with this problem, a
truncated normal distribution NT (see equation (A1)) is used
instead of a standard normal distribution. Formally, the
input error model is defined as:

pin ~rjrð Þ ¼ NT ~rj:93r; :07r þ 7 mm; 0;1ð Þ: ð17Þ

5.2. PE Error Model

[66] The error model for PE is based primarily on the
assumption that white noise error on PE have only a weak
influence on model performance [Paturel et al., 1995]. It is
also based on the authors observation that PE computations
performed with the McGuinness-Bordne model [McGuinness
and Bordne, 1972] yields values similar within a multi-
plicative factor to MOPEX PE series (results not shown
here for the sake of brevity). In other words, the relevant
uncertainty seems to be related mostly to intrannual rather
than interannual variability. Therefore it is assumed here
that the true PE (e) is obtained by multiplying the MOPEX
PE series (~e) by a unique multiplier (�): e = �~e, thus
rescaling the PE series. This hypothesis enormously
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simplifies computations as it replaces an integration over N
true PE values by an integration over only one multiplier �.
Since the multiplier along with measured PE completely
determine the conceptual true PE, there is no need for a
genuine PE error model. However, a prior for the
multiplier still has to be defined:

p �ð Þ ¼ L �j0; :5ð Þ: ð18Þ

[67] The lognormal is chosen because it is the most
general hypothesis in terms of entropy (see Appendix A3)
that can be made for a positive variable of fixed mean and
variance. The hyperparameters are set such that the multi-
plicative factor has a median of 1 and a standard variation of
about .5.

5.3. Output Error Model

[68] The output error model describes the probability of
an error on the flow knowing the conceptual true flow.
Flows ~y are commonly obtained from stage measurements ~h
and a rating curve (stage-discharge) relationship ~y = f(~h),
defined from previous simultaneous stage and discharge
measurements. The analysis of discharge errors has received
substantial attention [Shiklomanov et al., 2006; Schmidt,
2002; Pelletier, 1988; Herschy, 1985; Dymond and
Christian, 1982] and multiple methods have been proposed
to define the nature and structure of discharge errors. In the
following, a simplified approach is chosen in order to
reduce the complexity of the output error model.
[69] Discharge errors originate from many different sour-

ces: stage measurement errors, single discharge measure-
ments, rating curve sampling errors (a limited amount of
data is available to fit the curve) and the effect of explaining
variables other than stage (river slope, bed roughness,
presence of ice, vegetation growth, etc). Although it is
possible to describe different source of errors independently
[Dymond and Christian, 1982], it requires a considerable
amount of information about single discharge measurements

(number and type of velocity vertical profiles, apparatus,
etc) and may be too complex in the case of aggregated
monthly discharges. To reduce the complexity of the error
model, it is assumed that all sources of errors can be lumped
into a single term: a stage measurement error dh. Stage
errors can then be converted into discharge errors, dy  f 0dh,
where f(h) is the function relating stage h to discharge y.
Visually, this error structure seems to capture the variability
of stage-discharge measurements (see Figure 8).
[70] The rating curve f is defined using stage-discharge

data, courtesy of the USGS (waterdata.usgs.gov/nwis).
Following the suggestion of Fenton and Keller [2001], it
is fitted by a polynomial computed over the square root of
the flow. In many instance, a single curve does not capture
reliably the behavior over the entire range, so piecewise
polynomials are used. In the particular case of the Chunky
river shown in Figure 8, two piecewise polynomials of order
3 were used:

y ¼ f hð Þ �
X3

i¼0
ai

ffiffiffiffi
hi

p
h � hkX3

i¼0
bi

ffiffiffiffi
hi

p
h > hk

;

8<: ð19Þ

where hk is the position of the kink separating both
polynomials.
[71] Formally, the output error model is based on the

assumption that daily discharge errors are normally distrib-
uted with a variance dependent on stage:

syd ¼ 10 mmþ :02hð Þ f 0 hð Þ: ð20Þ

[72] Although the numerical parameters of 10 mm and
2% were chosen empirically to capture the variability
observed in the data (see Figure 8), they agree reasonably
well with physically realistic values. Indeed, the accuracy of
a stage mesurement has been estimated at 9 mm [Schmidt
and Garcia, 2003] (although it is more commonly estimated
at 3 mm [Hirsch and Costa, 2004]). The accuracy of single
discharges is known to vary between 5% and 10% [Hirsch
and Costa, 2004], which correspond in the case of the
Chunky river to stage accuracies between 1.2% and 2.4%.
[73] To link the daily discharge error model with GR2M

monthly flows, the total monthly discharge is converted into
an average daily discharge. Assuming that daily errors can
be approximated by a first-order autoregressive process with
a fixed variance syd

2 and correlation between successive
measurement given by f, then the variance of the mean over
n samples is given by

s2
y ¼

s2
yd

n

1þ f
1� f

1� 2f 1� fnð Þ
n 1� f2
� � !

: ð21Þ

[74] Setting n = 30 and f = .8 in equation (21) yields a
standard variation of sy  0.5syd for the monthly average
daily streamflow error, with syd given by equation (20).
Note that since the daily variance syd is not constant but
depends on the stage h, equation (21) constitutes an
approximation. However, the intramonthly variability of
the stage is sufficiently low for this approximation to hold
(see Appendix B). The value of f = .8 is chosen to reflect

Figure 8. Daily output (discharge) error model for the
Chunky River watershed. Dots indicate stage-discharge
measurements taken by the USGS since 1938. The black
line is a piecewise polynomial fit of the stage-discharge
relation. The light gray area indicates the span of the first
standard deviation (68% confidence) of the discharge error
model and the darker gray the second deviation (95%
confidence) for daily measurements. The rectangle in the
lower-left corner shows the boundaries of the close-up view
at the right.
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the belief that daily streamflow errors are moderately
correlated over a span of about one week.
[75] Summing up, the output error model is defined by a

normal distribution centered on the true discharge with a
variance depending on the stage associated to the mean daily
discharge and the derivative of the rating curve at that point:

sy ¼ 5 mmþ :01hð Þ f 0 hð Þ: ð22Þ

5.4. Structural Error Model

[76] Model residuals are often found to be heteroscedas-
tic, auto-correlated and non-normal [Yang et al., 2007; Xu,
2001]. Although it is custom to use Box Cox or similar
transformations to stabilize the variance and reduce
heteroscedasticity, using transformed variables may have
undesirable consequences on model calibration [Schaefli et
al., 2007]. Hence we follow Beven and Freer [2001]
suggestion that residuals could be described by multi-
plicative autoregressive process and define the structural
error model by a multivariate lognormal distribution, with
covariance matrix S chosen to reproduce an autoregressive
process of order one [Sorooshian and Dracup, 1980]. The
log likelihood of such a distribution is given

L yjm ¼ by; r ¼ :6;s ¼ :15 mmð Þ

with L defined by equation (A4) in Appendix (A3). The
hyperparameters of the structural error model correspond
roughly to a relative error of 15% and a moderate auto-
correlation (for daily models, the auto-correlation is some-
times found to be around .9 [Høbye and Rosbjerg, 1999]).

5.5. Priors

[77] The prior for the initial conditions is defined by
fitting a bivariate normal distribution (see equation (A2)) to
a series of ‘‘historical’’ internal states. This series of internal
state is computed by running GR2M over 20 years of data
prior to the calibration period using different sets of param-
eters. These parameter sets are chosen randomly around the
classical estimate (minimizing NSE on the square root of
discharges). The mean mf and covariance matrix Sf of the
internal variables series are then computed and used as
hyperparameters for the bivariate normal, thus defining the
prior for the initial model state:

p f0ð Þ ¼ N f0jmf;Sf

� �
: ð23Þ

[78] The prior for the parameter is chosen to be a uniform
distribution and is defined by

p qð Þ ¼ U q1j0; 1000ð Þ � U q2j0; 2ð Þ: ð24Þ

[79] One reason for this choice is simplicity; with 20
years of calibration data, the prior for the parameter is not
expected to play a significant role. The other motivation for
a uniform distribution is to enable a fair comparison
between the SLS and the Bayesian results.
[80] The prior for the true rainfall p(r) is defined as in

equation (10b), that is, by an exponentiated Weibull
distribution whose parameters are estimated by maximizing

the likelihood of an ‘‘historical’’ precipitation series
spanning 20 years prior to the calibration period (see
section 4.3). The importance of this prior must not be
underestimated, as it plays an important role in the inference
process [Huard and Mailhot, 2006]. One way to improve
the accuracy of this prior could be to define seasonal priors,
i.e., different prior for each season or month when strong
climatic seasonalities are expected.

5.6. Simulation Setup

[81] The posterior distribution is now given by:

p qj~r;~e;~yð Þ ¼
ZZZ

p q; r; y; �;f0j~r;~e;~yð Þ dr dy d����� df0

¼
ZZZ

pin ~rjrð Þpout ~yjyð Þpstr yjbyð Þ

� p qð Þp f0ð Þp rð Þp �����ð Þ dr dy d����� df0 ð25Þ

derived under hypotheses similar to those presented in
section 2.2. The integrand on the right hand side of equation
(25) is again sampled using Markov Chain Metropolis using
2.0 � 106 iterations and discarding the first half. Validation
is performed using the procedure described in section 2.4
with the same error models used in calibration.

5.7. Results and Analysis

[82] The results of the calibration and validation of the
Chunky watershed are now presented. Figure 9 shows
contour plots of the posterior pdf for simulated flow, true
flow and simulated flow measurements, along with the
inferred true rain and simulated rain measurements (the
plots show the last five of the twenty years series used
for calibration to avoid cluttering the graph). Note that
while the true flow and simulated flow measurements are
very similar, the distribution of the simulated rain meas-
urements shows more dispersion than the pdf for the true
rain. Also, the agreement between true flow and observed
flow (full line) appears very good. Both observations are
direct consequences of the fact that the error models
assume small flow errors and large rainfall errors. As
discussed in section 4.3, the true rainfall is strongly
conditioned on the observed flow, and model performance
should not be judged on the agreement between output
observations and simulations.
[83] A clearer picture of the different errors is presented

in Figure 10, showing the posterior pdf for the rainfall errors
(~r � r), structural errors (y � by) and output errors (~y � y).
As discussed earlier, the output errors are the smallest since
the output error model assumes relatively small measure-
ment errors. Rainfall errors are almost always negative,
reflecting the assumption that rainfall measurements under-
estimate the true value. Structural errors, on the other hand,
are mostly positive, a feature that is not imposed by the
structural error model. One possible explanation could be
the underestimation of overland flow by the model, reduc-
ing the amount of instant runoff during particularly rainy
periods.
[84] This separation of errors into distinct components,

especially the identification of structural errors, is expected
to have useful applications both as a diagnostic tool to
identify model deficiencies and as a measure of model
performance. Indeed, model performance in calibration
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could be estimated, irrespective of data error, by measuring
the dispersion and autocorrelation of the posterior structural
error distribution. In terms of diagnosis, analyzing depen-
dencies between structural errors and environmental factors
might also reveal variables that are relevant to the modeling
process but unaccounted for by the model. One should be
careful, however, with conclusions drawn from inferred
error series. Indeed, with inferred error series as long as
data series, the influence of error model assumptions
(statistical distribution, hyperparameters) on inferred errors
is bound to be significant. Again, this calls for further
research on the definition of accurate error models as well
as their validation.
[85] Figure 11 shows the probability distribution for the

model parameters, compared to the parameters estimated by

minimizing the NSE criteria computed on the flows square
root (a variation of the standard least squares (SLS)). When
superposed with the parameter distributions of Figure 7, the
mode of the sampled parameters fall in between those of
cases 1 and 3, but the dispersion is larger.
[86] Figure 12 shows the model simulations during the

validation period compared with the SLS estimate
(dashed line). Although there is not much difference
between the SLS prediction and the modes of the
Bayesian distributions, the uncertainty assessment appears
reasonable in the sense that observed flows fall within
the high density regions of the pdf. It shall be enlight-
ening to pursue this type of investigation for daily or
hourly models to see whether larger differences in pre-
diction accuracy exist between standard optimization and
a Bayesian analysis.

Figure 9. Calibration results for the Chunky River watershed using realistic priors and error model
assumptions. Pdfs for each variable are shown as contour plots while observations are indicated by full
lines. In the upper graph, the dashed line shows the flow simulated by parameters fitted using a least squares
criteria (NSE) on the square root of the flows. The scales on the right indicate the value of the pdf.
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5.8. Extension to Daily Models

[87] There is a certain contradiction of purpose in
applying an elaborate uncertainty assessment method to a
simple two parameter monthly model. On the one hand,
this choice makes the application of the method and
interpretation of the results certainly simpler than with
complex daily models. On the other hand, the added value
of uncertainty assessment is lower because simple monthly
models are expected to be less sensitive to input errors
than their daily or hourly counterpart. To apply the method
to daily models, however, a number of issues have to be
addressed.
[88] The prior for the true input, for instance, has to deal

gracefully with null rainfall. One possibility would be to use
statistical distributions that have both continuous and dis-
crete components. The Tweedy distribution is one of those,
designed to yield a finite probability to null values and a
probability density on the positive domain [Dunn and
Smyth, 2005]. Another issue that will have to be dealt with
is the proper description of autocorrelations in the rainfall,
flow and structural error series. Instead of being a liability,
the dependence between errors is an asset for a modeler
because it reduces the effective number of degrees of
freedom in the calibration problem. Hence from an
inferential point of view, error autocorrelation is a useful
feature and should be considered more carefully. Whats-
more, reducing the effective number of degrees of freedom
might help overcoming the main practical challenge,
namely the increasing dimensionality of the problem.
Indeed, as the number of dimensions increases, so do the
number of samples necessary for the posterior distributions
to reach convergence. The approach taken in this paper is

adequate for monthly series, but it is not yet clear how well
it will scale for daily series, two order of magnitudes longer.

6. Conclusion

[89] In calibrating hydrological models to empirical data,
hydrologists face the challenge of identifying model param-
eters that reasonably reproduce a watershed’s behavior. As
this behavior is quantified by a limited set of field obser-
vations corrupted by errors, hydrologists run the risk of
fitting the model to the noise instead of the real process.
Accounting for this noise, however, requires assumptions
about its nature, that is, a plausible description of input and
output errors. Moreover, the model itself does not emulate
all the processes that actually occur in reality, introducing
discrepancies between input and output that also need to be

Figure 10. Inferred posterior pdf for the three main sources of errors: input (rainfall) errors (mm),
structural or model errors (mm), and output (flow) errors (mm). The graphs show the last five years of the
calibration period. The scales on the right indicate the value of the pdf.

Figure 11. Parameters sampled during calibration under
realistic error model assumptions. The cross indicates the
optimal parameters found by maximizing the NSE criteria.
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described. In this paper, Bayesian analysis is used to merge
hypotheses about input, output and model errors into the
calibration and validation of a model. Using the parsimo-
nious monthly hydrological model GR2M, simulations are
run to answer a number of questions about the assessment
of multiple sources of uncertainties.
[90] The first question concerned the effect of the initial

state uncertainty on calibration efficiency. Simulations show
that for GR2M, the initial state uncertainty lasts only a few
months, after which the internal state reaches a ‘‘steady
state’’. Hence for long time series, accounting for initial
state uncertainty has only marginal effects. Input uncertainty,
however, plays a far more important role. In fact, when
input errors are considered large and output errors small,
model calibration proceeds in ‘‘reverse’’, conditioning the
input on the output. This results in simulations reproducing
almost perfectly the output observations, rendering tradi-
tional efficiency measures (NSE) meaningless. Moreover,
calibrated parameters are completely different from those
obtained under an ‘‘output error only’’ hypothesis. This
emphasizes how important it is to analyze parameter dis-
tributions only in the light of the error model assumptions.
[91] In a calibration where multiple sources of uncertain-

ties are accounted for, validation plays the sensitive role of
assessing the hydrological model efficiency as well as the
accuracy and validity of the error model assumptions. With
so many factors influencing predictions, it is difficult to
identify possible causes of failure just from the comparison
between output observations and simulations. By looking
directly at the inferred pdf for the input, output and
structural error series, however, model failures or error
model inadequacies are easier to detect and diagnosis easier
to perform. Moreover, analyzing structural error series
might provide the means to evaluate model performance,
without interference from data quality issues.
[92] The obvious interest in accounting explicitly for

different sources of uncertainty affecting hydrological mod-
eling must be weighted against the interest of stakeholders

in realistic uncertainty assessment and the efforts required to
specify accurate error models. Data model errors should
reflect as accurately as possible the errors introduced in the
acquisition of data. Ideally, those error models would evolve
with changes in the gauge station network (number, location
and type of stations) and changes in rating curves following
new discharge measurements. Structural error models ap-
pear yet more difficult to define rigorously, and progress
might only be made through the prior/posterior Bayesian
learning process. Hopefully, the knowledge gained from the
next experiments in model calibration and the rapid increase
in computing power will eventually make uncertainty as-
sessment a routine exercise and an integral part of hydro-
logical modeling.

Appendix A: Probabilistic Distributions

A1. Truncated Normal Distribution

[93] Assuming variable x is distributed normally but
bounded to the interval [a, b], then the probability density
function of x is given by

NT xjm;s; a; bð Þ ¼
f x�m

s

� �
F b�m

s

� �
� F a�m

s

� � ; ðA1Þ

where f and F stand for the probability density function and
cumulative density function of the standard normal
distribution.

A2. Multivariate Normal Distribution

[94] The probability density function of the multivariate
normal distribution is given by

N xjm;Sð Þ ¼ 1

j2pSj exp � x� mð ÞTS�1 x� mð Þ=2
n o

ðA2Þ

where m is the vector mean and S the covariance matrix.

Figure 12. Flows simulated during the validation period. The lower graph shows a contour plot of the
simulated rain measurements density, with actual measurements indicated by a full line. The upper plot
displays the pdf of simulated flow measurements (contour plot), obtained by running the model over the
parameters sampled during calibration and adding structural and measurement noise. The dashed line
shows the flows estimated by the SLS method and the full line indicates flow observations. The scales on
the right indicate the value of the pdf.
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A3. Lognormal Distribution

[95] Assuming y is normally distributed with mean m and
variance s2 and x = exp(y), then x has a lognormal
distribution with a probability density function given by

L xjm;sð Þ ¼ 1ffiffiffiffiffiffi
2p

p
sx

e
� ln xð Þ�mð Þ2

2s2 : ðA3Þ

[96] A rationale for the use of the lognormal in science is
given by Limpert et al. [2001], along with some of its
properties. For instance, the lognormal is the distribution
maximizing entropy on the semi-infinite interval given a
fixed mean and variance [Goodman, 1987]. It is also the
limiting distribution of the product of random variates, and
hence, ideally suited to model multiplicative errors.
[97] If y is generated by an auto-regressive process of

order one: yi = r yi�1 + �i with � � N(0, s) for i = 1, 2, . . ., n
and xi = exp(mi + yi), then the log likelihood of x is given by

L xjm; r; sð Þ ¼ � n

2
ln 2pð Þ � 1

2
ln

s2n

1� r2
�
Xn
i¼1

ln xi

� 1

2s2

�
1� r2
� �

ln x1 � m1ð Þ2

þ
Xn
i¼2

ln xi � mið Þ � r ln xi�1 � mi�1ð Þ½ �2
�
: ðA4Þ

A4. Exponentiated Weibull Distribution

[98] The exponentiated Weibull distribution, introduced
by Mudholkar and Hutson [1996] has the following pdf:

W xja; k;m;sð Þ ¼ ak
s

zk�1e�zk 1� e�zk
h ia�1

; z ¼ x� m
s

ðA5Þ

with z > 0 and k > 0. It is a generalization of the Weibull
distribution, with an additional shape parameter a. The
Weibull distribution is frequently used in hydrology to
model rainfall characteristics [Zhang and Singh, 2007;
Sharma, 1996; Wilks, 1989].

Appendix B: Aggregation of Proportional Daily
Errors

[99] Given a daily series di with i = 1, . . ., n with
proportional errors ddi = fddi, one wishes to determine the
corresponding proportionality factor fm for aggregated
monthly values m =

Pn
i¼1 di, such that

f 2mm
2 ¼

Xn
i¼1

f 2d d
2
i : ðB1Þ

[100] Isolating fm and taking the expectation on both sides
of equation (B1) yields

E fm½ � ¼ fdE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 d

2
i

p
m

" #
: ðB2Þ

[101] This equation shows that the monthly proportional-
ity factor increases with the intramonthly variability of the
series, in other words, that errors on large daily events
strongly contribute to the error on the monthly totals. For
example, using daily rainfall series from the Chunky wa-
tershed, taking fd = .15 yields a monthly proportionality
factor fm  .07. With a daily rainfall equal to its mean value,
i.e., no variability in the series, equation (B2) reduces
to fm = fd/

ffiffiffi
n

p
and fm  .03.
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