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[1] This article presents a new approach to model yearly hydrographs with daily or
weekly streamflow measurements. The method considers yearly hydrographs as a sample
of functions to be modeled nonparametrically in a Bayesian setting. The functional data
analysis framework provides great flexibility to reproduce the features of yearly
hydrographs, while the Bayesian probabilistic model ensures statistical coherence between
the flood variables and the shapes of flood events. The proposed methodology is applied
to two samples of hydrographs from two watersheds in the province of Quebec.
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1. Introduction

[2] Statistical modeling of hydrographs is important for
many engineering purposes, in particular for energy plan-
ning and the design of power plants. Hydrographs are
studied in these decision-making contexts to ensure good
water management and human population safety. For ex-
ample, modeling of extreme hydrographs is necessary for
the construction of dams, which need to contain and
evacuate large quantities of water. In this context, synthetic
hydrographs, which preserve a realistic shape but simulta-
neously have extreme flood volumes and/or flood peaks, are
of interest for engineering planning. A good model to
simulate extreme hydrographs thus needs to reproduce
hydrographs with the aforementioned characteristics. In a
water management context, hydrograph modeling has to be
able to fulfill two main purposes. The first of these is to
obtain a reference hydrograph for a given river, while the
second consists in generating synthetic hydrographs that can
occur with a given probability. It is difficult to construct a
reference hydrograph since key features of different yearly
hydrographs for a given river will happen at different times
of the year and these features will often vary regarding their
shapes (see Figures 1 and 2). For the purpose of generating
hydrographs, a good model needs to be flexible enough to
encompass a large variety of shapes which can be encoun-
tered in practice, since water management decisions depend
heavily on these shapes. Several techniques have been set
forth to model and simulate hydrographs. Some of these
focus on flood events while others attempt to capture the
stochastic process, which governs water flow. The former
methods usually model flood variables statistically, con-
struct a design-flood hydrograph separately and combine
the two levels of modeling to simulate hydrographs. The
latter methods are based on a time series analysis and are

most often used to simulate a diversity of possible hydro-
graphs for a given time horizon.
[3] In the present paper, we propose a novel approach to

model yearly hydrographs. Our method considers yearly
hydrographs as a sample of functions to be modeled non-
parametrically in a Bayesian setting. As will be shown, this
functional data analysis framework offers the required
flexibility to reproduce the characteristics of yearly hydro-
graphs, but also provides a probabilistic model which
ensures coherence between the flood variables and the
shapes of flood events. Before exposing our new method-
ology, we will indicate the difficulties of conducting a
statistical analysis of hydrographs and present the solutions
that have been put forward in the literature.
[4] Figure 1 illustrates four yearly hydrographs with daily

measurements, while the same four yearly hydrographs with
weekly measurements are shown in Figure 2. All these
hydrographs come from the same basin in northern Quebec.
The first observation corresponds to the first measurement
taken at the beginning of January, while the last observation
corresponds to the last measurement at the end of Decem-
ber. The spring flood, mainly governed by snowmelting, is
present on each of the four hydrographs and starts roughly
around the 100th day of each year; autumn floods, governed
by heavy rainfall, are also present and occur roughly
between days 250 and 325. The four spring floods show a
wide variety of shapes, intensity and duration; the time at
which the flood peak happens, indicated by a vertical line,
also varies between the different years. These differences
are due to the climatic conditions and the amount of
accumulated snow which vary from one year to the next;
the presence of late spring liquid precipitations also affects
the spring flood events and might cause secondary peaks. It
is interesting to contrast the hydrographs of Figures 1 and 2
regarding some of their main characteristics. The hydro-
graphs of Figure 2, with weekly time increments, are
obviously smoother than the ones represented in Figure 1
(daily time increments), which causes the flood peaks to be
flatter in Figure 2, especially for the hydrograph illustrated
in Figure 2a. It is important to note that the main flood
structures in Figure 1 can also be seen in Figure 2, although
attenuated in certain cases. We thus see that complex
structures are present for hydrographs with both daily and
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weekly time increments. An adequate hydrograph model
therefore needs to capture these structures.
[5] Flood peak, flood volume and flood duration are

considered to be the main variables that summarize flood
events and they are usually studied statistically through
univariate or bivariate flood frequency analysis [Yue et al.,
1999; Javelle et al., 2002]. It is clear that studying the
statistical distributions of these three variables is of
major importance, but as pointed out by Yue et al. [2002],
it is not enough to fully describe flood events because of
the impact of their shapes in a water management situation.
The approach often adopted in practice is to do a flood
frequency analysis and proceed to calculate return periods
for the different flood variables. Separately, one of the
following construction methods is used to create a reference
flood hydrograph and it is then adjusted to have the
properties with the desired return periods.
[6] A comprehensive review of the different methods to

construct a design-flood hydrograph is given by Yue et al.
[2002] and the interested reader is referred to the article for
further details. Adopting the four categories listed by Yue
et al., the construction methods are the traditional unit
hydrograph (TUH) methods, the synthetic unit hydrograph
(SUH) methods, the typical hydrograph (TH) methods and
the statistical (S) methods. The TUH and SUH methods
are based on hydrological principles. The TUH methods
assume that the runoff response to rainfall is time invariant
and that this response is linear as a function of rainfall. The
SUH methods are based on empirical relationships that

appear to exist between the parameters of a unit hydrograph
and the physical characteristics of a drainage basin. A
substantial number of articles have been devoted to the
TUH methods [Sherman, 1932; Doodge, 1959; Chow,
1964; Chow et al., 1988; Pilgrim and Cordery, 1993; Yue
and Hashino, 2000] and will not be discussed further here;
the same applies to the SUH methods [Snyder, 1938; U.S.
Soil Conservation Service US-SCS, 1985]. In fact, these
approaches are not designed to produce realistic synthetic
hydrographs for basins in northern regions like Quebec
where major floods are not the result of rainfall but mainly
come from snowmelting at the onset of spring. It is
precisely for this reason that engineers in northern countries
have relied on the TH methods.
[7] The TH methods [Nezhikhovsky, 1971; Sokolov et al.,

1976] are widely used by practitioners. In this approach, a
typical flood hydrograph, usually the one with the highest
peak or the largest volume, is chosen from a river’s sample
of flood hydrographs. Each water flow value of the chosen
flood hydrograph is then multiplied by a constant in order to
get a flood peak and/or a flood volume corresponding to a
given return period. This method considers the flood of the
hydrograph as a function but it relies on a single historical
realization. Therefore it does not use all the information
available in the sample of historical flood hydrographs.
[8] The S methods, which include the approach put

forward by Yue et al. [2002], consist of modeling the shape
of each flood event by a probability density function,
usually a gamma or a beta distribution. Yue et al. pursue

Figure 1. Four yearly hydrographs with daily measurements. On each plot, the vertical line indicates
the day at which the annual peak occurred. (a) 1971 hydrograph; (b) 1982 hydrograph; (c) 1984
hydrograph; (d) 1986 hydrograph.
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this methodology further by studying shape variables of the
adjusted beta distributions to the flood hydrographs. The
shape variables, namely the shape mean and the shape
standard deviation, are then considered as independent
random variables and are each statistically modeled by a
lognormal distribution. This enables the authors to consider
return periods for the two shape variables. While incorpo-
rating a better probabilistic component to the problem by
modeling the shape of flood events by two variables which
are analyzed in a probabilistic framework, it seems to us that
it is necessary to go further by considering hydrographs and
their flood events as complex functions, and not restrict the
shape of a flood to a model containing only two parameters.
[9] Finally, modeling techniques based on time series are

mostly used to generate a wide range of hydrographs which
are considered to be statistically probable scenarios. Because
of the complexity of the underlying processes, the time
series models often need to include numerous parameters to
capture the observed statistical properties of hydrographs.
Periodic autoregressive moving average (PARMA) models
[Salas et al., 1980; Salas et al., 1982; Vecchia et al., 1983;
Rasmussen et al., 1996] or PARMAX models [Perreault
and Latraverse, 2001; Ouhib, 2005], which include explan-
atory variables, seem to be able to reproduce observed
properties of hydrographs. However, the period of these
models is usually taken to be the time increment of the
series, therefore leading to an excessively large number of
parameters for daily or weekly data. Furthermore, these
methods cannot simulate hydrographs with fixed flood

volumes and/or flood peaks because of their stochastic
nature.
[10] Statistical modeling of hydrographs is a complex

multivariate problem since the objective is to reproduce the
characteristics of a sample of functions. Yearly hydro-
graphs, and their flood events, constitute complex function-
al data and should therefore be analyzed statistically in a
functional data analysis framework [Ramsay and Silverman,
2005]. For instance, it should be clear that the flood events
illustrated in Figure 1 could not be reproduced by only one
beta or gamma distribution since these distributions are
unimodal functions. One could complexify the S methods
by using a mixture of probability distribution functions
[Titterington et al., 1985] but even this approach seems
unsatisfactory for the task at hand. Moreover, the S approach
lacks cohesion since the flood characteristics such as the
peak and volume are studied through flood frequency
analysis, while the flood event shapes are modeled sepa-
rately using a probability distribution function. The new
method proposed in this paper brings forward an integrated
approach in which hydrographs are modeled as functions in
a probabilistic framework. This ensures statistical coher-
ence between important characteristics of hydrographs, like
flood peaks and flood volumes, and the shapes of the
hydrographs.
[11] In the next section, the tools of functional data

analysis which we use in this study are put forward. We
first describe an approach based on landmark registration to
make the individual hydrographs of a given river similar on

Figure 2. Four yearly hydrographs with weekly measurements. On each plot, the vertical line indicates
the week at which the annual peak occurred. (a) 1971 hydrograph; (b) 1982 hydrograph; (c) 1984
hydrograph; (d) 1986 hydrograph.
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the time domain. We then set up a general nonparametric
regression framework based on regression spline functions;
this framework offers the modeling power and flexibility,
which are necessary to capture the different shapes of
hydrographs. The Bayesian probabilistic model is exposed
in section 3 and the methodology is applied to the data in
section 4.

2. Functional Data Analysis Context

[12] Functional data analysis is often concerned with
modeling longitudinal data, that is data formed by a
collection of repeated measurements of a response variable
on a certain experimental unit or individual. Longitudinal
data are frequently encountered in the life sciences where it
is often the case that a response variable is studied on
several individuals through time. Some examples are
growth curves, the effect of a treatment as a function of
time on patients, etc. In analogy with longitudinal data, we
consider each year as an experimental unit for which we
have repeated water flow measurements.
[13] We have, for each experimental unit i, the following

observations:

xi;1; yi;1
� �

; . . . ; xi; j; yi; j
� �

; . . . ; xi;ni ; yi;ni
� �

;

where xi, j can be an explanatory variable or the time at
which the response variable yi, j has been measured. We
assume that xi, j is a deterministic variable, while yi, j is the
random variable to be modeled. In our modeling context,
xi, j is the time at which the water flow yi,j is measured for
the year i; furthermore, we have xi, j = xj and ni = n for every
i since the measurements in our case are always taken at the
same time increments, either every day (n = 365) or every
week (n = 52). Our data for year i are therefore of the
following form:

x1; yi;1
� �

; . . . ; xj; yi;j
� �

; . . . ; xn; yi;n
� �

;

where i = 1,. . ., N and N represents the number of yearly
hydrographs in our sample.
[14] As will be seen in section 2.2, each observed yearly

hydrograph can be modeled with a nonparametric model.
This is not the course we pursue in the present paper
because we want to tackle another important issue, namely
to obtain a hydrograph which is representative of a sample
of hydrographs originating from a given river; in other
words, we seek to model the underlying average process of
a sample of hydrographs, which we refer to as a represen-
tative or reference hydrograph.

2.1. Landmark Registration

[15] The average of the four yearly hydrographs shown in
Figure 1 (daily flow) is given in Figure 3a, while Figure 3c
gives the average of the yearly hydrographs of Figure 2
(weekly flow). It is clear that the mean hydrographs do not
have flood events representative of those illustrated in
Figures 1 and 2. For most rivers in northern Quebec, the
average of observed hydrographs, whether for daily or
weekly measurements, cannot be used as a reference hydro-
graph. This average can be useful for volume analyses since
it is indicative of the mean water flow during a certain

period of the year, but it is not indicative of peak flows or of
flood events shapes.
[16] In order to model a reference hydrograph, we use

landmark registration which has been studied by Kneip and
Gasser [1988, 1992] in a statistical context. The key idea
behind registration is to transform the independent variable
x in the present context, in order to make the yearly
hydrographs similar on the domain of the transformed
variable. For our purposes, this comes down to performing
a time transformation such that the yearly hydrographs have
important features occurring at simultaneous times; for
example, it is possible to perform time registration which
makes all the flood peaks of the yearly hydrographs happen
at the same time of the year. Specifically, landmark regis-
tration consists in identifying salient features of a sample of
functions and using these landmarks to execute the regis-
tration. We want to go from the original time x to a
registered time t, and therefore from the observations (xj,
yi,j) to the registered observations (ti,j, yi,j), where ti,j = gi(xj)
and gi(�) is the registration function for year i. We note that
the registration function should, at least intuitively, contain
information on the climatic conditions of a given year i, a
possibility which we are currently studying.
[17] For the transformations to be one-to-one, the regis-

tration functions need to be monotonically increasing.
Furthermore, we constrain the functions to transform the
times at which important features happen to specified times.
We thus have a sequence of constraints of the following
form:

ti;n ¼ gi xnð Þ ¼ tn ; ð1Þ

where xv represents the time at which the landmark v
occurs for year i and tv is the specified time at which the
landmark v happens, for all years, in the transformed time
domain.
[18] The registration functions can be modeled by several

methods: a Taylor expansion approximation [Angers et al.,
2004], interpolating splines [Kneip and Gasser, 1992] or an
approach such as the one suggested by Ramsay and Li
[1998]. Here we consider each function to be made up of
linear parts Lp(x) and we then have

gi xð Þ ¼
XP
p¼1

Lp xð ÞIDp
xð Þ ¼

XP
p¼1

cp;0 þ cp;1x
� �

IDp
xð Þ; ð2Þ

where Dp is the domain for which the linear function Lp(x)
is nonzero, IDp

(x) = 1 for x 2 Dp and 0 otherwise, and P
represents the number of parts of the registration function.
This simple model possesses an exact solution when the
continuity of the registration function is imposed; it also
satisfies the monotonicity criterion as long as the landmarks
are events that occur in the same sequence every year.
Furthermore, this type of registration function generally
performs well for preserving flood event volumes [Merleau
et al., 2005].
[19] We will now illustrate the use of landmark registra-

tion to obtain a reference hydrograph for the hydrographs
shown in Figures 1 and 2. We choose the four following
events as landmarks: the first measurement of the year, the
peak of the spring flood, the peak of the fall flood and the
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last measurement of the year. We then have the following
constraints for the registration function of year i:

gi Lxð Þ ¼ Lx; gi xsð Þ ¼ ts; gi xfð Þ ¼ tf ; gi Uxð Þ ¼ Ux; ð3Þ

where Lx and Ux are, respectively, the lower and upper
bounds of the domain of x; xs and xf are the times, for year i,
at which the peak of the spring flood and the peak of the fall
flood, respectively, happened; and ts and tf are the
specified times at which the spring flood peak and the
fall flood peak are fixed to occur in the domain of the
synchronous time t. We fix ts and tf to be the median
values of the observed xs and xf. Figure 4a shows the
registration function for the yearly hydrograph given in
Figure 2b (weekly flow). Figure 4b illustrates the effect of
the registration function on the observed hydrograph. From
the constraints given in equation (3), the registration
function given in equation (2) is made up of three linear
parts. The slope of a given part, cp,1, determines if the
corresponding section of the hydrograph is stretched (cp,1 > 1)
or contracted (cp,1 < 1). In Figure 4, the middle section is
stretched, while the first and last sections are contracted.
[20] Figure 3b shows the average obtained after the

registration for the hydrographs of Figure 1 (daily flow),
and Figure 3d shows the average of the registered hydro-
graphs of Figure 2 (weekly flow). If we compare the
average registered hydrographs with their observed counter-
parts, it is clear that registration makes the average hydro-
graph more representative of a sample of hydrographs. The

spring floods in Figures 3b and 3d are much better defined
and closer to the observed ones than those illustrated in
Figures 3a and 3c. Furthermore, the peak value of the
average spring floods, after registration, is the real average
of the four observed hydrographs because of the way the
registration is performed. We also notice the presence of
secondary spring flood peaks in Figures 3b and 3d, which
can also be seen in Figures 1 and 2.

2.2. Nonparametric Regression With Spline Functions

[21] In our functional data analysis context, we assume
that

yi; j ¼ hi ti; j
� �

þ ei; j; ð4Þ

where hi(ti, j) is a continuous function evaluated at ti, j and
ei, j is an error term. We therefore go from the data points
(ti, j, yi, j) (j = 1,. . ., n) to a functional representation: (t, hi(t)),
for t 2 Dt = [Lt, Ut] where Lt and Ut represent, respectively,
the lower and upper bounds of the t domain. In the present
paper, we seek to model the average process which
underlies yearly hydrographs and we therefore assume that
hi(�) = h(�) for all i.
[22] Several methods exist to estimate the function h(�):

kernel methods [Hastie and Tibshirani, 1990], Fourier
series, spline based methods [Ramsay and Silverman,
2005], wavelet methods [Ogden, 1997], etc. We choose to
work with regression polynomial spline functions as a basis
to evaluate the functions of interest because this type of

Figure 3. Daily measurements: (a) average of four observed hydrographs, (b) average of the same four
hydrographs after registration. Weekly measurements: (c) average of four observed hydrographs, (d)
average of the same four hydrographs after registration.
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