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[1] Pipe breaks are used as indicators of the structural state of pipe network. The
approach used considers times to failure between pipe breaks as random variables. Pipe
lifespan is divided into two periods, the first one characterized by time-dependent hazard
functions (nonexponential period) and the second one characterized by constant hazard
functions (exponential period). Closed-form expressions have been derived for probability
density functions of occurrence of breaks for all break orders as well as expressions for the
time evolution of the average number of pipe breaks per unit time. An optimal
replacement criterion is defined on a pipe-to-pipe basis based on a cost function using
conditional probabilities to estimate the expected future costs. Minimization of this cost
function leads to a replacement criterion involving hazard functions. When applied to
models with constant hazard functions, this criterion identifies a critical pipe break order at
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1. Introduction

[2] Many studies have been realized and published in
recent years that reveal the importance of underground
infrastructure deterioration [American Water Works Associ-
ation (AWWA), 1994; Siddiqui and Mirza, 1996; Desbiens,
1997; Villeneuve et al., 1998]. Important investments will be
necessary in order to improve the overall structural state of
these infrastructures. For example, Villeneuve et al. [1998]
estimated at around 8 billion Canadian dollars the necessary
investments to maintain at its present level the average
structural state of water and sewer networks in the province
of Quebec over a 20-year period.
[3] The actual situation is the result of the lack of care

given to these infrastructures over the years. As obvious it
appeared that the structural state of their underground
infrastructures was deteriorating, many municipalities now
recognize the importance to develop methodologies and
strategies in order to assist water managers in their replace-
ment/rehabilitation decision making process [Sægrov et al.,
1999; Malandain et al., 1998]. The overall objective is to
use the readily available information on the structural state
and develop methodologies that optimally use this informa-
tion to plan interventions on the network. Planning the
interventions in order to minimize related costs and main-
tain a structural state that will ensure an adequate service to
the customers is one way to optimally use the information
[O’Day et al., 1986; Le Gauffre, 1998; Sægrov et al., 1999;
Engelhardt et al., 2000].
[4] However, this task is complex since very little infor-

mation is available to characterize the structural state. For
water pipe networks, the usual indicator of the structural
state is the number of pipe breaks. Although valuable, this

indicator is an indirect one and must be used with caution.
For example, in most municipalities, the number of pipe
breaks recorded corresponds to cases where water has
reached the surface and has been detected. Depending on
the type of soil and the proximity of the sewer network,
important leaks can remain undetected for long periods of
time. Also, operational constraints can have an immediate
impact on pipe breaks. For example, a water manager
reported that he obtained a short-term diminution of 20%
of the annual number of breaks by simply reducing by a few
percent the pressure in some parts of the network. What this
means is that pipe breaks are the result of the deterioration
of the structural state of pipes but that the effective time of
occurrence of breaks depends on variables and parameters
that are also related to the structural and operational stress
applied on pipes [Makar, 1999; Makar et al., 2001].
[5] The time of occurrence and the location of pipe breaks

are the usual available data. Although simple to obtain and
record, only few municipalities possess long recorded pipe
breaks. Many municipalities have recently begun to system-
atically record their histories of pipe breaks. The scarcity of
data, combined with the fact that they are usually incomplete
(incomplete data, inaccurate locations, approximate date of
occurrence) make the modeling exercise difficult and special
effort must be made to adapt models to the actual municipal
reality [Mailhot et al., 2000; Pelletier et al., 2003].
[6] From a practical point of view, one of the problems

water managers are facing is to know when they should
replace a pipe. Having observed a given number of pipe
breaks on a given street, should they wait or should they
proceed and replace the pipes? Shamir and Howard [1979]
were among the first to define a methodology to estimate the
optimal time for pipe replacement. Following Shamir and
Howard, many other authors have used similar approaches
[e.g., Walski and Pelliccia, 1982; Kleiner et al., 1998a,
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1998b; Kleiner and Rajani, 1999]. Shamir and Howard
coupled a simple model describing the evolution of average
pipe breaks as a function of time with a cost function. This
function takes into account the expected maintenance cost
and the replacement cost. The optimal time of replacement is
defined as the optimal point where increasing discounted
maintenance costs due to structural deterioration become
larger than discounted replacement costs. From an opera-
tional perspective, this approach is interesting since it
defines, based on a model describing the evolution of pipe
breaks and on economic parameters (e.g., replacement costs,
maintenance costs, etc.), an optimal replacement time.
[7] Shamir and Howard’s approach is however based on a

description of an average ageing behaviour of pipes. This
approach only considers the evolution over time of the
average number of pipe breaks. Although interesting, it is
inapplicable on an individual pipe basis since it does not
take into account the historical data of each pipe.
[8] Other approaches have been proposed since then.

Gustafson and Clancy [1999b] used Monte Carlo simula-
tions to define what they called the economic loss of
replacement. Considering a given pipe break record, this
economic loss corresponds to the difference between the cost
of replacing a pipe segment after the nth break and the
minimal cost knowing the complete pipe break record. The
proposed economic decision criterion is to replace water
mains at the break order that minimizes this economic loss
function averaged over all possible pipe break histories.
[9] This paper addresses the following question: how to

formally extend Shamir and Howard’s approach for an
application on an individual pipe basis that takes into
account the historical break record of each pipe? Probability
density functions (pfd) of the times between breaks should be
considered. This modeling scheme has been considered by
Eisenbeis et al. [1999], Mailhot et al. [2000] and Gustafson
and Clancy [1999a]. The first part of the paper focuses on the
definition of a general framework for the description of the
probability of occurrence of pipe breaks using this modeling
scheme. Probability density functions (pdfs) are defined to
describe the distribution of time between consecutive breaks.
A general class of models is considered for which low order
breaks are described by nonexponential pdfs while high
order breaks are described by exponential pdfs. Closed-form
expressions are derived for this class of models. One simple
case is also considered from which the expression of the
average number of breaks is derived and corresponds to the
exponential form used by Shamir and Howard.
[10] The second part of the paper presents the economic

analysis. An economical function is developed based on a
given pipe break history. Minimization of the cost function
leads to the definition of an optimal time to replacement
based on the historical record of a pipe segment. The
application of these criteria to the class of models with
exponential pdfs for high order breaks shows that, in that
case, the optimal time to replacement is achieved through
the identification of an optimal break order. This is illus-
trated with an example.

2. Modeling Water Main Breaks: A Literature
Review

[11] We briefly present in this section three approaches
currently used to describe ageing processes of water pipes

(this review is not exhaustive; for a complete review, see,
for example, Elnaboulsi and Alexandre [1996] and Pelletier
[2000]). The three approaches are the aggregated models
[Shamir and Howard, 1979; Kleiner and Rajani, 1999], the
survival cohort model [Herz, 1996a, 1996b], and statistical
models using pdf to describe the time between successive
breaks [e.g., Eisenbeis et al., 1999; Brémond, 1998; Mailhot
et al., 2000]. The variables used to describe the evolution of
the structural state evolution are somewhat different from
one approach to another.

2.1. Aggregated Models

[12] These models describe the evolution of the average
break rates as a function of time. Mainly, two expressions
have been proposed, a linear and an exponential ones
[Shamir and Howard, 1979; Kleiner and Rajani, 1999],
which have the following forms:

Ni tð Þ ¼ Ni t0ð Þ þ Ai t � t0ð Þ

Ni tð Þ ¼ Ni t0ð Þ exp Ai t � t0ð Þ½ �
ð1Þ

where Ni (t) is the number of breaks per unit length, per unit
time (usually a year) at time t for pipe i, Ni(t0) is the number
of breaks per unit length, per unit time at time t = t0 for pipe
i and Ai is the breakage rate growth for pipe i. Using data to
estimate parameters Ni(t0) and Ai, it is important to realize
that expressions in (1) give the average number of breaks
per unit length, per unit time. The exponential expression
has been reported to give better results than the linear
expression [Shamir and Howard, 1979; Walski and Pellicia,
1982; Kleiner and Rajani, 1999]. Pipes can be grouped in
classes with the same characteristics (type of material,
diameter, installation periods, etc.) and parameter values
estimated for each of these classes [Kleiner and Rajani,
1999]. This simple approach gives no information about the
probability of occurrence of breaks or the pdfs of times
between successive breaks.
[13] It is noteworthy to mention that Constantine et al.

[1996] have proposed a power law to describe the evolution
of the average number of breaks as a function of time:

N tð Þ ¼ a tb ð2Þ

Parameters a and b vary for different pipe classes.
Application of this expression to parts of the Melbourne
(Australia) network led to values of b very close to 2.

2.2. Cohort Survival Model

[14] Inspired from demographic models, Herz [1996a,
1996b] has proposed the cohort survival model, which
assumes that the current pipe lifespan can be considered
as a random variable. The cohort survival model is then not
a pipe breaks model but a model assessing directly the
evolution of pipe life-time. A distribution was also proposed
by this author to represent pipe lifespans, since then called
the Herz’s distribution [Herz, 1996a, 1996b]. In his example
using Stuttgart’s network [Herz, 1996b], parameter values
were estimated for different types of material. Starting with
the 1990 pipe stock, the model was used to compare two
infrastructure renewal strategies over a 60-year period. The
first strategy was based on pipe replacement while the
second considered a combination of pipe replacement and
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rehabilitation. Simulations have shown that the second
strategy would be less expensive than the one based on
pipe replacement alone. Although interesting, it is important
to note that Herz’s approach does not use pipe breaks as an
indicator of the structural state. By considering pipe lifespan
as a random variable, this approach assumes that pipe
replacements historically occur at the end of the useful
lifespan. Therefore it cannot be used to define a criteria that
would lead to the selection of pipes that should be replaced
[Eisenbeis et al., 1999].

2.3. Statistical Models Using pdfs to Describe the Time
Between Pipe Breaks

[15] This approach is based on the observation that the
time between successive breaks on a given pipe segment
becomes shorter as the break order increases and that the
number of breaks already observed is the main variable that
affects the probability of occurrence of future breaks [e.g.,
Clark et al., 1982, 1988; Andreou et al., 1987]. The number
of pipe breaks is an indicator of the structural state of a pipe
or surrounding pipes and some spatial and time correlations
exist among pipe breaks. The time-to-failure between suc-
cessive breaks is then represented as a statistical variable
and different distributions are used for different break
orders. For a given pipe, as we will see in section 3.4, the
probability of break occurrences is a function of the pipe
break record. An economical analysis on an individual pipe
basis is thus possible.
[16] This modeling approach was used by many authors.

Eisenbeis [1994], for example, considered the data of two
networks in France. His results clearly show that different
distributions must be used to describe the pdfs of the time
between pipe breaks of different orders. He showed that the
time between the installation and the first break and
between the first and second breaks are well described by
Weibull distributions while higher break orders are best
described by exponential distributions. In a later publica-
tion, Eisenbeis et al. [1999] reported the application of a
similar model to three networks, one in Norway and two in
France. A proportional hazard model was used to identify
the most significant factors that influence the time to failure
and the failure rate. The number of previous failures was
identified as the most important and used as a ‘‘stratification
variable’’: the data set was split into different subsets
according to the number of previous breaks and analyses
were performed on these subsets. For other examples of
application and validation of this approach, see Mailhot et
al. [2000], Pelletier et al. [2003], Le Gat and Eisenbeis
[2000], Le Gauffre [1998], and Brémond [1998].
[17] Among recent studies, it is interesting to mention the

one by Gustafson and Clancy [1999a]. Using data from the
City of Saskatoon (Canada), these authors used a model
where the pdf for the time between the installation and the
first break is described by a generalized gamma distribution.
Exponential distributions were used for subsequent breaks
up to the 11th break order. Their results also indicate that the
mean time between breaks was almost constant after the
occurrence of the 5th break.
[18] Survival analysis is usually used to statistically

estimate distribution parameters of pipe break models
[Kalbfleisch and Prentice, 1980]. This statistical method
allows the possibility to account for right-censored data.

Data stratification of time between breaks is done according
to the number of breaks and survival analysis is performed
on each data subset. Mailhot et al. [2000] extended this
approach to consider the case usually encountered where the
installation time is prior to the period of recorded pipe
breaks. In that case, it is impossible to know if the first
observed pipe break is really the first one occurring.
[19] While the different case studies reported in the

literature seems to demonstrate the validity of this type of
approach, very few studies have analysed model parameter
uncertainties. Mailhot et al. [2000] compared results
obtained using different distributions in order to determine
which one was more appropriate considering the available
data. It was shown, for example, that the use of a Weibull
distribution to describe the probability of the time-to-failure
between the first and second pipe breaks could not be
statistically justified when compared to a model using an
exponential distribution.

3. A General Framework for Water Main
Breaks Modeling

3.1. Description

[20] The modeling approach adopted, as described here-
after, is the one where the time between breaks of succes-
sive orders are random variables described by pdfs. These
pdfs correspond to the probability of occurrence of the jth
break as a function of the time elapsed since the occurrence
of the ( j � 1)th break. According to this approach, one must
specify the types of distributions used for each break order
and parameter values associated with these distributions.
[21] In the following development, we assume that the

ageing process of a pipe can be divided into two distinct
periods. The first one, called the nonexponential period, is
characterized by the fact that distributions used to describe
pdfs of the time between breaks are not of the exponential
type. This occurs in the early stages of the pipe life. In
contrast, pdfs used in the second period, called the expo-
nential period, to characterize distributions of times between
breaks of that period are of the exponential type. A critical
break order, the mth break order, delimitates these two
periods. Thus the last nonexponential pdf is used to describe
times from the (m � 1)th break to the mth break while the
first exponential pdf is used to characterize the mth to the
(m + 1)th break (Figure 1).
[22] This representation is coherent with previous studies

[see, e.g., Eisenbeis, 1994; Andreou et al., 1987; Gustafson
and Clancy, 1999a]. No specific distribution is assumed for
all pdfs used in the nonexponential period. Weibull distri-
butions, as proposed by Eisenbeis [1994] and Mailhot et al.
[2000], or generalized gamma distributions, as proposed by
Gustafson and Clancy [1999a] can be used. Time between
breaks for orders higher than the mth break are all described
by exponential distributions with parameters lj where j is

Figure 1. Schematic representation of nonexponential and
exponential periods.
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the break order. The pdf for exponential distributions has
the following form:

fj tð Þ ¼ lj exp �lj t � tj�1

� �� �
ð3Þ

tj�1 is the time of occurrence of the j � 1 th break. The use
of exponential distributions implies that the hazard function
is independent of time and is given by lj for the jth break
order (see Cox and Oakes [1994] for a definition of the
hazard function). A constant hazard function means that the
system has ‘‘no memory’’ as to when happened the last
break and it thus follows a Poisson process.

3.2. Pdf of Occurrence of the jth Break

[23] We first estimate the pdf describing the probability of
occurrence of the jth break at time t, fj(t) for pipe segments
of length ‘. In a general case, for the jth break, the
probability density function is given by the following
expression:

fj tð Þ ¼
Z t

0

du fj�1 uð Þ fj t � uð Þ ð4Þ

In this expression tj is the time of occurrence of the j th
break and f j is the pdf of the time between the ( j � 1)th and
the jth breaks. Expression (4) shows that the function fj (t)
is obtained by the convolution of f(j�1) and f j. Using the
convolution theorem [Doetsch, 1971; Schiff, 1999], we can
show that:

jj sð Þ ¼
Yj
i¼1

Fj sð Þ ð5Þ

jj and Fj are the Laplace transforms of fj and fj respectively.
This expression is general and applies to whatever pdfs used
to describe the times between different breaks order.
Suppose now that time t = tm corresponds to the time of
occurrence of the mth break and assuming that t > tm, the
Laplace transform of the exponential pdf is simply
[Doetsch, 1971; Schiff, 1999]:

Fj sð Þ ¼ lj

sþ lj

ð6Þ

After substitution in Equation (5), the inverse Laplace
transform of the resulting expression is easily computed and
the final expression for fj (t) is:

fj tjtmð Þ ¼
Xj

i¼mþ1

hmi; j exp �li t � tmð Þ½ � ð7Þ

with:

hmi;j ¼

Qj
k¼mþ1

lk

Qj
i0¼mþ1
i0 6¼j

li0 � lið Þ
ð8Þ

Equations (7) and (8) give the pdf for time of occurrence of
the jth break as a function of the parameters of exponential

distributions associated with the different break orders
considering that the mth break has occurred at time tm. The
pdf for times of occurrence of the jth break with j > m from
t = 0, the installation time of the pipe, is given by:

fj tð Þ ¼
Z t

0

dtmfm tmð Þfj tjtmð Þ ð9Þ

This is obtained by integrating the product of the pdfs of
having the jth break at time t, assuming that the mth break
has occurred at t = tm, fj(tjtm), and the pdf that the mth break
has occurred at t = tm, fm (tm), over all possible values of
time tm. Using expression (7) for fj(tjtm), we then have for
j > m:

fj tð Þ ¼
Xj

i¼mþ1

hmi; j Ii tð Þ ð10Þ

where:

Ii tð Þ ¼
Z t

0

dtmf tmð Þ exp �li t � tmð Þ½ � ð11Þ

In general, there will be no closed form for fm(tm) when
m > 1. This function will be the result of a multiple integral
similar to the one appearing in equation (4). Integration is
performed over all possible values of times of occurrence
from the first to the mth order. Considering the usual
distributions used to describe time of occurrence of the first
or the second breaks, there will be no analytical solution to
integrals on the right hand side of equation (11). However,
for m = 1 or m = 2, numerical integration can be easily be
performed. Figure 2 gives examples of pdfs for m = 1 and
with a Weibull distribution for times of occurrence of the

Figure 2. Probability density function of the time of
occurrence for the first break, second break (shaded dashed
curve), fourth break (thin dashed curve) and tenth break
(thick curve) in the case of a model with a Weibull
distribution for the first break and exponential distributions
for subsequent breaks. Hazard functions are assumed linear
with break orders for the exponential period (equation 13).
Values of k, p, l0 and a are 0.02, 1.2, 0.05 and 0.08,
respectively.
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first break. The Weibull pdf is given by [Kalbfleisch and
Prentice, 1980]:

f1 tð Þ ¼ fw tð Þ ¼ k p k tð Þ p�1ð Þ
exp � k tð Þp½ � ð12Þ

In this example, parameters lj describing hazard functions
for the exponential period are linearly related to break
orders:

lj ¼ l0 þ a j� m� 1ð Þ j > m ð13Þ

The parameter a defines the slope of the linear relationship
between the break order and l values. This model with a
Weibull distribution for the first break order and exponential
distributions with hazard functions linearly related to the
break order (equation 13) will be referred, from now on, as
the Weibull-exp. model.

3.3. Average Number of Pipe Breaks as a Function
of Time

[24] The average number of pipe breaks per unit time, per
unit length, for a pipe segment of length ‘ at time t is given
by:

N tð Þ ¼ 1

l

X1
k¼1

fk tð Þ ð14Þ

In the general case, using equation (10) for the pdfs of the
times between successive pipe breaks during the exponen-
tial period, we have:

N tð Þ ¼ 1

l

Xm
j¼1

fj tð Þ þ
X1
j¼mþ1

Xj

i¼mþ1

hmi; j Ii tð Þ
( )

ð15Þ

If we consider the average number of breaks during the
finite interval [t, t0], we integrate the last equation and
obtain:

N t; t0ð Þ ¼ 1

l

Xm
j¼1

Z t0

t

d~t fj
~tð Þ þ

X1
j¼mþ1

Xj

i¼mþ1

hmi; j

Z t0

t

d~t Ii ~tð Þ
( )

ð16Þ

We assume, in the following development, that the pipe
segment is in the exponential period, meaning that the mth
break has already occurred at time tm. The function
describing the evolution of the average number of breaks
over time takes a simple form, in the case where the
parameters associated with the different exponential dis-
tributions are related to break orders, as prescribed by
equation (13). To derive this relationship, we first define
yj(tjtm), the probability that ( j � m) breaks have occurred
during the interval [tm, t]. Since the hazard function is
independent of time during the exponential period, it means
that the probability of occurrence of a ( j + 1)th break during
the interval [t,t + dt] is given by yj(t) lj+1dt. The ‘‘balance
equation’’ for yj(t) leads to the following equation:

dyj tjtmð Þ
dt

þ ljþ1 yj tjtmð Þ ¼ lj yj�1 tjtmð Þ ð17Þ

with:

dym tjtmð Þ
dt

þ lmþ1 ym tjtmð Þ ¼ 0 ð18Þ

According to the definition of fj, we have for j � m:

fj tjtmð Þ ¼ lj yj�1 tjtmð Þ ð19Þ

Multiplying equation (18) by lj+1/‘ and taking the sum over
j from (m + 1) to 1 on both sides, we find:

dN tjtmð Þ
dt

¼ 1

l

X1
i¼mþ1

liþ1 � lið Þ fi tð Þ ð20Þ

where

N tjtmð Þ ¼ 1

l

X1
i¼mþ1

fi tjtmð Þ ð21Þ

N(tjtm) is the average number of pipe breaks per unit time,
per unit length to occur at time t considering that the mth
break has occurred at t = tm. Now, using the expression (13)
to describe the parameter dependency on the break order
during the exponential period, we find, after substitution in
equation (20) and using initial condition N(tmjtm) = lm + 1/l:

N tjtmð Þ ¼ lmþ1

l
exp a t � tmð Þ½ � ð22Þ

This is an interesting result since it shows that an exponential
increase in the average number of breaks as a function of
time can be obtained, if exponential distributions are used to
describe the times between successive breaks at different
orders, and if the hazard function is related linearly with the
break order. In that case, the argument of the exponential
corresponds to the slope of the relationship between the
hazard function and the break order (parameter a).
[25] The average number of breaks per unit time, per unit

length, at time t considering the contribution from both the
nonexponential and exponential periods is given by:

N tð Þ ¼ 1

l

Xm
i¼1

fi tð Þ þ
Z t

0

dtmfm tmð ÞN tjtmð Þ

8<
:

9=
; ð23Þ

where fi(t) is the pdf describing the occurrence of the ith
break. The sum on the right hand side accounts for the
contribution of the 1st to the mth break, while the integral
corresponds to the contribution from break orders j > m. If
we use equation (22) for N(tjtm), we find, for large values of
t while neglecting the contribution from the nonexponential
period:

N tð Þ 
 ~lmþ1 exp a tð Þ ð24Þ

with

~lmþ1 ¼
lmþ1

l

Z 1

0

dtmfm tmð Þ exp �a tmð Þ ð25Þ

Equation (25) shows that the average number of breaks at
time t will be well described, for large values of t, by an
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exponential function, as long as the hazard function linearly
increases with the break order in the exponential period.
The average number of breaks per year can be obtained by
the integration of expression (24) and we have:

~N tð Þ ¼
~lmþ1

a
exp a tð Þ exp að Þ � 1½ � 
 ~lmþ1 exp a tð Þ ð26Þ

~N (t) is the average number of breaks per unit length that
will occur during year t and the approximation used to
derive the right hand term is valid for a � 1. Equation (26)
has been used by many authors to describe the evolution of
the average annual number of pipe breaks as a function of
time [e.g., Shamir and Howard, 1979; Walski and Pellicia,
1982; Kleiner and Rajani, 1999]. The last development is
interesting since it shows that, for the exponential period, a
linear relationship between hazard functions and break
orders will result in an exponential dependence over time of
the average number of breaks per year.
[26] If we consider the case m = 1, we have

N t; t0ð Þ ¼ 1

l

Zt0
t

dt00f1 t00ð Þ þ l2

l

Zt0
t

dt00I1 t00ð Þ exp a t00ð Þ ð27Þ

If we use the Weibull pdf to describe the times of
occurrence of first breaks, the numerical integration of the
second integral on the right hand side can be easily
performed.

3.4. Conditional Probability of Break Occurrences

[27] We now consider the situation where, at time t0, k
breaks have already been observed on a pipe segment at
times {t1, t2, . . ., tk} (Figure 3). What is then the probability
to observe a (k + n)th break during the interval [t, t + dt] (t >
t0)? We define fk+n (tjk; t0) as the pdf of occurrence of the
(k + n)th break during the interval [t, t + dt] considering that
k breaks have already occurred at times {t1, t2, . . ., tk}
during the period [0, t0]. For the case n = 1, this is given by
the following conditional probability:

fkþ1 tjk; t0ð Þ ¼ fkþ1 t � tkð Þ
Fkþ1 t0 � tkð Þ ð28Þ

Fk+1(t
0 � tk) is the survivor function [Cox and Oakes, 1994].

For the general case with n > 1, we have:

fkþn tjk; t0ð Þ ¼
R t0
t
dtkþ1 fkþ1 tkþ1 � tkð Þfkþn tjtkþ1ð Þ

Fkþ1 t0 � tkð Þ ð29Þ

If k � m, we can use equation (10) for fk+n (t
0jtk+1) and after

integration, we have for n > 1:

fkþn tjk; t0ð Þ ¼ lkþ1

Xkþn

i¼kþ2

hkþ1
i;kþn

li � lkþ1ð Þ
� exp �lkþ1 t � t0ð Þ½ � � exp �li t � t0ð Þ½ �f g ð30Þ

For n = 1, the corresponding equation is

fkþ1 tjk; t0ð Þ ¼ lkþ1 exp �lkþ1 t � t0ð Þ½ � ð31Þ

These equations can be integrated to obtain the probability
of occurrence of the (k + n)th break during the interval [t, t00]
conditional on the appearance of k breaks during the interval
[0, t0], fk+n (t, t

00jk, t0) and we find for n = 1:

fkþ1 t; t00jk; t0ð Þ ¼ exp �lkþ1 t � t0ð Þ½ � � exp �lkþ1 t00 � t0ð Þ½ �
ð32Þ

and for n > 1:

fkþn t; t00jk; t0ð Þ ¼ lkþ1

Xkþn

i¼kþ2

hkþ1
i;kþn

li � lkþ1ð Þ exp �lkþ1 t � t0ð Þ½ �f½

� exp �lkþ1 t00 � t0ð Þ½ �g � lkþ1

li

� exp �li t � t0ð Þ½ �f � exp �li t
00 � t0ð Þ½ �g� ð33Þ

Figure 4 gives some example of these pdfs for different n
values conditional on the occurrence of a break during the
period [0, t0] (k = 1).

3.5. Average Number of Breaks Conditional on a
Given Historical Record

[28] The average number of breaks per unit time and unit
length at time t considering that k breaks have occurred
during the period [0, t0] (t0 < t) at times {t1, . . . tk} for a pipe
segment of length ‘, N(tjk, t0), is given by:

N tjk; t0ð Þ ¼ 1

l

X1
n¼1

fkþn tjk; t0ð Þ ð34Þ

Again the equation for the average number of breaks takes a
simple form when we consider a linear dependence of l’s as

Figure 3. Schematic representation of the time axis with
the different characteristic times used for the derivation of
conditional probabilities.

Figure 4. Examples of conditional probability of occur-
rence of breaks using the Weibull-exp. model. Time t0 has
been set at 10 years and t00 = t + 1.

HWC 2 - 6 MAILHOT ET AL.: OPTIMAL REPLACEMENT OF WATER PIPES



a function of break orders (equation 13). To derive this
expression, valid for j > k � m and t > t0, we use a set of
equations similar to (20) and (21). The solution is then:

N t j k; t0ð Þ ¼ lkþ1

l
exp a t � t0ð Þ½ � 8 t > t0 ð35Þ

N(tjk;t0) dt is the average number of pipe breaks during the
interval [t, t + dt] conditional on the occurrence of k breaks
before time t0 (t0 > tm). Equation (35) shows that the
conditional probability of occurrence of breaks is still
described by an exponential relationship with a coefficient
equal to the hazard function associated with the (k + 1)th
break.

4. Economical Analysis of Pipe
Replacement Timing

4.1. Definition of the Minimum Cost Replacement
Timing (MCRT)

[29] Shamir and Howard [1979] proposed a methodology
to estimate the optimal replacement time of pipes. They
defined the Minimum Cost Replacement Timing (MCRT)
for which the estimation is based on an economical analysis
where maintenance and replacement costs as well as
discount rates are considered. We adopted, in the following
development, the terminology used by Kleiner et al.
[1998a].
[30] The life cycle of a pipe is represented as periodic

replacements between which pipes get older until the next
replacement. The period between two replacements is called
a cycle. Figure 5 presents the corresponding stream of costs.
Four different times are considered in the following devel-
opment: the pipe installation time, t0, the present time, tp,
the time at which costs are discounted, ta, the time when the
first replacement occurs Tf. We also define the time interval
between subsequent replacements Tc. The steady-state
approach is used when replacements occur periodically at
times Tf, Tf + Tc, . . ., Tf + n Tc, . . . [Kleiner et al., 1998a].
Pipe characteristics and the evolution of pipe break number
are assumed identical for all cycles. Maintenance costs
increase between replacements due to the increase in the
average number of breaks. Taking t0 = 0 as the installation

time and the beginning of the cycle, we have, for the total
cost per unit length for one cycle, discounted at the
beginning of the cycle, Ctot(Tc), which is given by:

Ctot Tcð Þ ¼ Cre
�rTc þ Cb

ZTc
0

dt N tð Þ e�rt ð36Þ

Cr and Cb are respectively the pipe replacement cost per unit
length and the cost of a single repair. The continuous
discount rate is r and N (t) is as before the average number
of breaks per unit time, per unit length, at time t. Pipe
indices have been omitted for simplicity. The total cost,
discounted at the beginning of the cycle (t = 0) for an
infinite series of pipe replacements, Cinf(Tc), is given by:

Cinf Tcð Þ ¼
X1
m¼0

Ctot Tcð Þ e�mrTc ð37Þ

The value of Tc that minimizes the total cost Cinf is defined
as T**. It corresponds to the optimal time period between
successive replacements and therefore between the installa-
tion time and the first replacement. For r 6¼ 0 and Tc 6¼ 0,
T** can be found, in the general case, by solving the
following equation:

N T**ð Þ 1� e�rT**
� �

� r c T**ð Þ ¼ r
Cr

Cb

ð38Þ

where N(T**) is the average number of breaks at time T**
and c(T**) is given by:

c T**ð Þ ¼
ZT**
0

dt N tð Þ e�rt ð39Þ

If an exponential form (equation 1) is used to describe the
evolution of the average number of pipe breaks over time,
substitution in equation (38) leads to an expression similar
to equation (5) of Kleiner et al. [1998a]. Figure 6 shows a
graph of T** as a function of the ratio Cr/Cb for different
values of r in the case of the Weibull-exp. model described

Figure 5. Stream of costs for a given pipe.
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previously. The average number of breaks will vary for
different types of pipes depending on material, diameter,
installation period and therefore different variables should
be specified for different homogeneous sets of pipes. We
have omitted this dependency for simplicity.
[31] For the general case where we want to minimize the

total cost from the present time to infinity, discounted to
time ta, the total cost Ctot is given by the following
equation:

Ctot Tf
� �

¼ Cr e
�r Tf �tað Þ

þCb

ZTf
tp

dt N tð Þe�r t�tað Þ þ Cinf T**ð Þ e�r Tf �tað Þ ð40Þ

This equation is minimized according to Tf and the
corresponding value is defined as T*. A look at this last
equation shows that T* does not depend on tp since the
dependence of Ctot on this variable is included in a term that
is independent of Tf. Also, it does not depend on ta. This
nondependence of T* on ta and tp is valid whatever the
functional form of N(t). If we consider an exponential form
for N(t) (equation 1), the value of T*, is given by

T* ¼ t0 þ
1

Ai

ln r
Cr þ Cinf T**ð Þ

CbNi t0ð Þ

� �
ð41Þ

The value T* is called the Minimum Cost Replacement
Timing (MCRT) and corresponds to the time when
projected maintenance cost will exceed replacement cost.
Equation (41) confirms that T* does not depend on ta and tp.
The nondependence of T* on tp is due to the fact that no
specific information on the structural state of the pipe
segment at time tp is taken into account in this type of
analysis. This approach is, in some sense, a generic
approach based on an average ageing behaviour. Since
T** is the time period between replacements, we have

T** ¼ T*� t0 ð42Þ

All the valuable information is already included in T**. The
time remaining until the first replacement, Tr, is simply
given by:

Tr ¼ T*� tp ð43Þ

Walski and Pellicia [1982] have extended this approach to
include two correction factors. One correction factor, the
‘‘previous break factor’’, accounts for the effect of previous
breaks on the predicted break rate and the ‘‘pipe-size
factor’’ accounts for the impact of the pipe size on the
breakage rate. The model used is thus similar to the one of
Shamir and Howard except for these multiplicative factors.

4.2. Optimal Replacement Timing Taking Into Account
the Actual Pipe Break Record

[32] We first considerC1(Tf ;{ti}k), the total cost from t = 0
(installation time) to the replacement time, Tf, (one cycle of
the stream of costs) for a pipe segment of length ‘ which had
k failures at time t1, t2, . . ., tk during that period and for given
values of r, Cb and Cr . This cost is given by:

C1 Tf ; tif gk
� �

¼ Cr lð Þe�rTf þ Cb

Xk
i¼1

e�r ti ð44Þ

This is the actual cost associated with the pipe break record
for one cycle. Cr is actually a function of pipe segment
length ‘. The probability of occurrence of the sequence of
pipe breaks is estimated through the model describing
probability distributions of time between successive breaks.
Using the Weibull-exp. model, we can estimate the
maintenance cost pdf. Figure 7 presents this pdf for: r =
0.05 year�1, Cr (‘)/Cb = 50 and Tf = 72 years. The minimal
maintenance cost occurs when no pipe break is reported
during the period from installation to replacement. For
reasons of clarity, the peak at C/Cb = 0 has been omitted.
Only some cost ranges are allowed for a given number of
breaks and, depending on the values of r and Tf, it is possible
to have discontinuous distributions (see appendix A). Only
one of these ‘‘forbidden’’ ranges of cost values is seen on
Figure 7, namely the one defined by �0; e� r Tf ½:

Figure 6. Optimal period between pipe replacements as a
function of Cr/Cb for different values of the discount rate r.

Figure 7. Maintenance cost distribution using the Wei-
bull-exp. model with hazard functions linearly related to the
break order for the exponential period. Values of l0, p, r,
and Tf are 0.04 breaks/year, 0.1 year �1, 0.05 year �1, and
49.1 years, respectively.
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[33] When the total cost (equation 44) is averaged over all
the possible break histories that can occur during the period
[0, Tf], an average cost is estimated that corresponds to
equation (36). This average cost is showed in Figure 8. The
estimation of a MCRT, as defined in the previous section, is
therefore based on the minimization of this average cost.
[34] Going back to equation (44) and considering a pipe

segment of length ‘ which had k breaks from installation to
time t0, the total cost at time t0 can be estimated considering
the average number of breaks at time t > t0, N(tjk;t0).Without
loss of generality, we assume in the following that ta = t0 = 0.
If we average total costs over all possible break sequences
from time t0 to infinity, we have:

Ctot Tf ; l
� �

¼ Cr lð Þe�rTf þ Cb

Xk
i¼1

e�r ti

þ Cb

ZTf
t0

dt N tjk ; t0; lð Þ e�rt þ Cinf e�rTf ð45Þ

[35] The dependence of parameters on pipe segment
length has been explicitly written. The different terms on
the right hand side are related to: (1) the cost of the first
replacement at time Tf, (2) the costs of maintenance for k
breaks that occurred before time t0, (3) the total cost of
maintenance from the present time to the first replacement,
estimated from the average number of breaks expected for
t > t0 and (4) the total cost from the time of the first
replacement to infinity, Cinf, discounted at time t = 0. Cinf is
obtained by averaging Ctot(tf ; l) over all possible sequences
of breaks from t = 0 to infinity. It will depend on the
criterion used to define the replacement time for each cycle.
Thus we must find the value of Tf that minimizes equation
(45) and deriving this equation with respect to Tf, we find,
using the Leibnitz rule for derivation:

N Tf jk ; t0; l
� �

¼ r Cr lð Þ þ Cinf½ �
Cb

ð46Þ

For a given historical pipe break record, k pipe breaks at
times {ti}, and a functional form of the average number of
pipe breaks conditional on this historical record, the last
expression defines the time of the first replacement, Tf.
Replacement will effectively occur when the estimated
replacement time estimated from (46) is equal to the present
time (Tf = t0). The term of the left hand side of equation (46),
when Tf = t0, corresponds to the probability of occurrence of
a (k + 1)th break at t0, conditional on the nonoccurrence of
this break order during the preceding period [tk, t

0]. This is
simply the hazard function associated with the (k + 1)th
break. We thus have:

hkþ1 Tf
� �

¼ r ½Cr lð Þ þ Cinf �
Cb

ð47Þ

where hk+1(tf) is the hazard function associated with the (k +
1) th break order. The last equation defines the criterion for
determining the optimal time of replacement based on a
historical record for a given pipe. However, the value of Cinf

depends on this criterion. The exact value of the right hand
side of equation (47) must be found recursively and optimal
values of Ctot(tf ; l) and Cinf are obtained when the value of
Cinf used to define the criterion, equation (47), is equal to
the value of Cinf estimated when this last criterion is used
and the total cost is averaged over all possible pipe break
sequences from the time of installation to infinity. An
example of application is given in the following section for
the class of models with an exponential period.

4.3. Application to the Model With an
Exponential Period

[36] We suppose in the following that replacement occurs
when a pipe is in the exponential period of its ageing
process. In that case, hazard functions are constant with
time and depend only on break orders. Assuming that:

lj � ljþ1 8 j > m ð48Þ

This condition means that the replacement will occur when
the k’th break order occurs for which the associated hazard
function satisfies the equation:

lk 0 <
r Cr lð Þ þ Cinf½ �

Cb

< lk 0þ1 ð49Þ

Using equation (13) for lk0 , we then have for k0:

k 0 ¼ int
1

a
r Cr lð Þ þ Cinf½ �

Cb

� l0

� �� �
þ m ð50Þ

The expression ‘‘int{x}’’ means that we consider only the
integer part of the real value of x. This expression defines
the break order at which the replacement should take place.
For a given pipe, replacement time, Tf, corresponds to the
time when the k’th break occurs. The corresponding total
cost for that pipe at the replacement time is:

Ctot Tf
� �

¼ Cr lð Þ e�rTf þ Cb

Xk 0
i¼1

e�r ti ð51Þ

The value of k0 is given by (50). With this approach, optimal
replacement is defined by an optimal break order at which

Figure 8. Average total cost for one cycle (diamonds) and
for the complete stream of costs (squares) as a function of
the pipe break order at which replacement is made.
Parameter values are identical to those of Figure 10.
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replacement should take place. Replacement time will then
be different for different pipes depending on their historical
break records. The distribution of the occurrence time of the
k’th break is given by equation (10).
[37] Figure 8 presents the estimated average total cost for

one cycle and the value for the total stream of costs for the
Weibull-exp. model with a value of Cr(l)/Cb of 10 and r =
0.05 year�1 as a function of the critical break order at which
the replacement is done. As can be observed on this graph,
the minimal cost value for one cycle is obtained for k0 = 7,
while the minimal cost for the complete stream of costs is
obtained at k0 = 8. The values of Cinf and k0 obtained satisfy
equation (50). However the total cost variation around the
minimal value is small and not very sensitive to the critical
break order.
[38] Estimation of some optimal replacement break orders

was done using some parameter values reported in literature
[e.g., see Shamir and Howard, 1979; Kleiner and Rajani,
1999; Villeneuve et al., 1998; Chevalier, 1996] and Table 1
suggests ranges for these parameter values. Exponential
functions defined by parameters N(0) and A were used to
describe the evolution over time of the average number of
pipe breaks. The exponential form was assimilated to a
model with exponential pdfs for time-to-failure and hazard
functions linearly related to break orders. According to the
analysis presented in section 3.3, values for A and N(0)
correspond to the values of a and l0 in equation (13).
Table 2 gives some examples of the optimal break orders,
the corresponding average period between replacements, the
average numbers of breaks at replacement year estimated
for different sets of parameter values. Figure 9 presents the
evolution of the optimal break order as a function of the
ratio Cr/Cb for four sets of values of (A/r, N(0)/r) taken
among the possible values defined in Table 1. As can be
seen, the relation is nearly linear and the slope of the
relation is close to r/A as suggested by equation (50). This
means that, for a given Cr/Cb, N(0) and r, the number of

breaks over a given period of time will increase as A
increases thus favouring an earlier replacement. Also, as
intuitively expected, the critical break order will increase as
the replacement cost increases compared to the repair cost.
Finally, it is observed that an increase in the ratio N(0)/r
leads to an increase in the number of pipe breaks and repair
costs and consequently, this means a larger value of the
critical break order as shown on Figure 9.
[39] The comparison of the total costs estimated using the

proposed approach and the Shamir and Howard’s approach
shows that a substantial reduction in cost is obtained when a
replacement criterion based on break order is used. The
average time period between replacements is larger than the
MCRT obtained with the Shamir and Howard’s approach.
Figure 10 presents the total cost distribution obtained when
the following set of parameter values is used: A = 0.12
year�1, N(0) = 0.07 break/year, r = 0.06 year �1 and Cr (‘)/
Cb = 40. Simulations were performed using exponential
pdfs with hazard functions linearly related to break order.
The total cost distribution was estimated by generating
sequences of pipe breaks. Pipe replacements were made
according to the replacement criterion presented previously
and the total cost of each realisation was estimated. Many
replacement cycles were considered. The optimal time
period between pipe replacements is 40.9 years, the optimal
break order is 27 and the average number of breaks during
the replacement year is 4 breaks/year (see Table 2). The
solid vertical line corresponds to the distribution mean. The
average cost obtained using Shamir and Howard’s approach

Figure 9. Critical break order as a function of Cr/Cb for
four sets of values of (A/r, N(0)/r).

Table 1. Proposed Ranges of Values for Parameters Used to

Estimate Optimal Replacement Time

Parameters Proposed Ranges

Annual growth rate of breaks - A (year �1) [0.01, 0.19]
Discount rate r (year �1) [0.04, 0.15]
Number of breaks per km in year

t0, N (t0) (km
�1 year �1)a

[0.01, 0.1]

Cost of repairing a break Cb (US $) [500, 4850]
Cost of replacing 1 km of pipe Cr (US $) [32 800, 492 100]

aWe assume that t0 is the time of installation.

Table 2. Examples of Values of the Optimal Replacement Break Order for Different Parameter Values

Parameter Values
Optimal

Replacement
Break Orders

Average Period
Between

Replacements,
years

Average
breakage Rate at
the Replacement

Year,
breaks/year

Percentage of
Reduction of the Total
Cost When Compared
to Shamir and Howard’s

Approach
A,

year �1
N (0),

breaks/year
r,

year �1
Cr

(‘)/Cb

0.08 0.01 0.12 120 180 167 14.9 2.6
0.09 0.04 0.1 100 112 77.5 10.6 9.7
0.1 0.04 0.06 80 53 65.3 6 24.8
0.12 0.07 0.06 40 27 40.9 4 21.6
0.19 0.1 0.04 20 10 21.8 2.6 27.5
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is also presented (dash vertical line). Figure 11 presents the
probability that the critical pipe break order appears during
the given year. Finally, Figure 12 shows the average number
of pipe breaks per year as a function of time. As can be
seen, an exponential increase is observed during the early
years followed by a period where the slope decreases and a
maximum is reached at around the 27th year. In fact, as time
goes by, replacements are more likely to occur and
consequently, the increase in the average number of pipe
breaks stabilizes.

5. Summary and Conclusion

[40] The structural state of underground infrastructures is
difficult to assess. One useful indicator of the structural state

of water mains is their historical pipe break record. Even if
it is an indirect indicator, useful information can be
extracted from these data since pipe breaks are usually
correlated in space and time. The occurrence of pipe breaks
can thus be interpreted as a sign of faster deterioration of the
structural state.
[41] A framework has previously been proposed to sta-

tistically model break occurrences from break record data.
According to this, time-to-failure between successive pipe
breaks are statistical variables and are represented by pdfs.
More specifically, previous studies have showed that time-
to-failure between the installation and the first pipe break
and between the first and the second pipe breaks can be
described by pdf with nonconstant hazard functions. Time-
to-failure between higher break orders, on the other hand,
are well described by constant hazard functions. The evolu-
tion of the structural state of pipes is therefore characterized
by two periods. The first one, called the nonexponential
period, where times to failure are described by pdfs different
from exponential distributions and a second one, corre-
sponding to high order breaks where pdfs are exponential.
[42] The use of exponential distributions makes possible

the derivation of a number of analytical expressions. Pdfs
for the occurrence of the jth break as a function of time were
derived as well as the expression for the time evolution of
the average number of breaks. Expressions for cases where
low order breaks are described by nonexponential distribu-
tions were also derived and can be estimated using
numerical integration methods. Conditional pdf and the
average number of pipe breaks as a function of time were
also derived based on a given historical pipe break record.
[43] The special case where hazard functions for the

exponential period are linearly related to break orders was
further analysed. It was showed that the resulting function
describing the time evolution of the average number of pipe
breaks per unit time is exponential. Many authors have used
this type of function to describe the time evolution of the
average number of pipe breaks. Assuming that the pdfs are
exponential and that the nonexponential period is limited to
the first and second break orders, this analysis suggests that

Figure 10. Probability that the total cost value is in the
interval [x, x + dx] with dx = (Cr/Cb + k0)/500. A model with
exponential pdfs is used with l values linearly related to
break orders (l0 = 0.07 and a = 0.12). Values of Cr/Cb and r
are 40 and 0.05 year �1, respectively, and the corresponding
k0 value is 27. The thin line corresponds to the distribution
average, while the dotted line corresponds to the optimal
total cost obtained from Shamir and Howard’s approach.

Figure 11. Probability that the first replacement occurs
during a given year. Parameter values are identical to the
ones used for Figure 10. The thin line corresponds to the
average value of the first replacement year.

Figure 12. Average number of breaks per year as a
function of time. Parameter values are identical to the ones
used for Figure 10.
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hazard functions are somehow linearly related to break
orders at the beginning of the exponential period. As
suggested by Gustafson and Clancy [1999a], it seems
likely that hazard functions will be constant after a given
number of breaks, leading to a constant average number of
breaks per unit time.
[44] One important goal in the development of a model

assessing the time evolution of probability of occurrence of
pipe breaks is to assist network managers when he has to
decide whether or not he should replace a pipe segment.
Although many factors have to be taken into consideration,
it is crucial to see if the knowledge extracted from the
adopted modeling scheme can be fruitfully use to take a
decision. From an operational point of view, given a pipe
break record on a pipe segment, the model relates future
probability of pipe break occurrence to the historical record.
Using a framework similar to the one defined by Shamir and
Howard, a general expression was derived based on the
expected occurrence of pipe breaks given an observed pipe
break record. Minimization of the total cost over the
complete stream of costs leads to a criterion defining the
optimal replacement time and involving the hazard func-
tions associated to different break orders.
[45] Application of this criterion to the case where

replacements occur during the exponential period leads to
a replacement criterion based on break orders. Indeed, a
minimal total cost is obtained when replacement is done
after the occurrence of a critical break order defined by
equation (50). Using parameter values from the literature, it
was showed that minimal total costs obtained with this
criterion were smaller than the ones obtained using the
Shamir and Howard’s approach.
[46] The examples of section 4.3 have showed that an

optimal pipe replacement time will generally exist, even if
seems unrealistic in some cases, when the average number
of breaks per unit time follows an exponential form. This is
so because the number of pipe breaks increases indefinitely
and will, at some time, exceed replacement costs. However,
following Gustafson and Clancy [1999a], it may be more
reasonable to think that hazard functions will reach a
constant value after a number of breaks have occurred. In
some situations, no critical pipe break order can be
identified. From a strict economical point of view, this
would mean that it is better not to replace the pipe segment
but repair pipe breaks as they occur even if this means
digging the same hole year after year ! This is an unrealistic
solution and it demonstrates that, even if an economical
analysis is important, other constraints must be integrated in
the decision making process along with criteria related to
network reliability. These aspects need to be examined in
future works.
[47] Among the topics that would also need to be further

investigated, the impact of pipe segment length on the
identification of an optimal replacement time is an impor-
tant one. In the analysis presented herein, a pipe segment of
length ‘ was considered. Statistical modeling of pipe breaks
was performed and the model parameters calibrated for pipe
segments of length ‘. Replacement costs were assumed to
be length-dependent and the replacement criterion depen-
dent on pipe segment length through the ratio Cr/Cb.
However, it would be important to better describe and
integrate into the model spatial correlations between breaks.

[48] The issue of uncertainties related to this type of model
is also of primary importance from an operational point of
view. One fundamental question remains: can we expect to
define an adequate ‘‘optimal replacement strategy’’ consid-
ering the scarce available data and the use of a simplified
model with large uncertainties on the parameter values? Very
few studies if none have addressed these issues. It is clear
that further studies are necessary to precise the accuracy of
the pipe break models, to identify sensitive parameters and
also to account for the variability of some economical
parameters (for example the continuous discount rate).

Appendix A

[49] The range of possible maintenance costs if one break
occurs during the interval [0, Tf] is:

Cbe
�rTf < C < Cb ðA1Þ

The maximal and minimal values correspond respectively to
the situations when pipe break occurs at t = 0 and at Tf. We
define:

C1 ¼ Cbe
�rTf ðA2Þ

More generally, if k pipe breaks occur during the period [0,
Tf], the range of possible maintenance costs is given by:

k C1 < C < k Cb ðA3Þ

Figure A1 shows a possible configuration of maintenance
cost ranges. This configuration is obtained for C1 = 0.75 Cb.
A maintenance cost of zero is possible and corresponds to the
case where no break occurs during the period [0, Tf]. As can
be seen from Figure A1, it is possible to have ranges of
unallowed maintenance cost values. Since C1 > 0 (unless Tf
goes to infinity), maintenance cost values included in ] 0,C1 [
are impossible. Furthermore, if 2 C1 > Cb, then the values
within the interval ] Cb, 2 C1 [ are not allowed. If we set 2
C1 = Cb and find T1, the value of Tf that satisfies this last
equation, we find:

T2 ¼ � 1

r
ln

1

2

� �
ðA4Þ

The inequality 2C1 > Cb is satisfied when Tf < T2. More
generally, a forbidden range of maintenance cost values
] (k � 1) Cb, k C1 [ will be possible, if we have Tf < Tk with:

Tk ¼ � 1

r
ln

k � 1

k

� �
ðA5Þ

As can be seen from Figure A1, ranges of forbidden values
get smaller as we increase k so that a critical k can be defined
for which no more forbidden ranges of maintenance cost

Figure A1. Example of a configuration of possible
maintenance cost values. In this example C1 = 3/4 Cb.
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values are possible. Since for r = 0.05 year�1 (see Table 2),
we have T2 = 13.9 years, it is unlikely that forbidden ranges
other than the one between 0 and C1 will occur.

Notation

Ai breakage rate growth for pipe i.
C cost.
Cb cost of a single break repair.

Cinf (Tc) total cost, discounted at the beginning of the
cycle (t = 0) for an infinite series of pipe
replacements.

Cr (l) cost of pipe replacement for a pipe segment of
length ‘.

Ctot (Tc) total cost per unit length, discounted at the
beginning of the cycle.

C1(Tf ;{ti}k) total cost from the installation time to
replacement, Tf, for a pipe that had k failures
at time t1, t2, . . ., tk during that period for a
given r, Cb and Cr.

fj (t) probability density function of time between
the ( j�1)th and the jth break.

fW (t) Weibull probability density function.
Fj (s) Laplace transform of function fj(t).
Fj (t) survivor function associated with the jth

break.
hj (t) hazard function associated with the jth break

order.
‘ pipe segment length.
m number of breaks during the nonexponential

period or break order of the last break of the
nonexponential period.

N (t) average number of breaks per unit length per
unit time.

N(t, t0) average number of breaks per unit length
during period [t, t0].

N(tjtm) average number of breaks per unit length per
unit time considering that the mth break has
occurred at time tm.

N(tjk; t0) average number of breaks per unit length, per
unit time, considering that k breaks have
occurred during the period [0, t0].

~N (t) average number of breaks per unit length
occurring during year t.

p ‘‘scale’’ parameter of the Weibull distribution.
r continuous discount rate.
s dummy variable used for the Laplace trans-

form.
t time.
t0 ending time of the recorded pipe break period.
t0 installation time of a pipe.
ta time at which the costs are discounted.
tj time of occurrence of the jth recorded break.
tm time of the mth break defining the end of the

nonexponential period.
tp present time.
Tc time period between successive replacements.
Tf time of the first pipe replacement.
T* Minimum Cost Replacement Time (MCRT).

T** time that minimizes the total cost from the
installation time to infinity.

a slope of the linear relationship between hazard
values and break orders.

k ‘‘shape’’ parameter of the Weibull dis-
tribution.

lj parameter of the exponential distribution
used to describe time between the ( j�1)th
and the jth break.

fj (t) probability density function of occurrence
of the jth break.

fj (tjtm) probability density function of occurrence
of the jth break if the mth break has
occurred at time tm.

fk+n (tjk; t0) probability density function of occurrence
of the (k + n)th break if k breaks have
occurred during the period [0, t0] (t > t0).

fk+n (t, t
00jk; t0) probability of occurrence of the (k + n)th

break during the period [t, t00] if k breaks
have occurred during the period [0, t0]
(t > t0).

jj (s) Laplace transform of function fj(t).
yj (tjtm) probability that ( j � m) breaks occurred

during the period [tm, t] if the mth break
has occurred at time tm.
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Walski, T. M., and A. Pelliccia, Economic analysis of water main breaks,
Am. Water Works Assoc. J., 74(3), 140–147, 1982.

����������������������������
A. Mailhot, A. Poulin, and J.-P. Villeneuve, Institut National de la

Recherche Scientifique, INRS-ETE, 2800, rue Einstein, C. P. 7500, Sainte-
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