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1. Introduction

[2] The design of hydraulic structures requires the deter-
mination of a given return period flood. This estimation
should be as accurate as possible in order to optimize the
construction costs. The classical approach to determine a
value corresponding to a non exceeding probability is based
on the frequency analysis. However if the available data
length is too short the frequency analysis application is
limited by the huge uncertainty obtained in extrapolating to
high frequencies. A more recent approach consists in
generating a precipitation record of a given length with a
stochastic rainfall model. This synthetic rainfall is used as
input for a rainfall-runoff model (physically-based or con-
ceptual). A statistical analysis of the output, namely the
obtained generated flow record, allows to determine the
requested design value with the empirical distribution with-
out using extrapolation [Favre, 1997]. Such a rainfall model
is punctual and allows to reproduce the precipitation only at
a given location. However the spatial variability of precip-
itation is significant even for small watersheds.
[3] In order to study rainfall on a whole region, it is

necessary to develop models that can be used at multiple
sites and may be calibrated from a network of rain gauges.
In principle, it is possible to apply a fully continuous
spatial-temporal model, such as the one developed by
Northrop [1996], and to derive properties of the model at
a discrete collection of points in space. In practice, however,
this is complicated because such models are difficult to
calibrate, especially in countries like Switzerland where one
has strong orographic effects on rainfall generation process.

[4] An alternative approach consists in developing mod-
els that are discrete in the spatial dimension, and express the
between-site interactions in a manner which reflects the
underlying spatial-temporal structure of rainfall. Such mod-
els are called multisite. Generally the inter-site relationships
in these models should depend on the distance between the
examined sites and on topography, and should preserve the
structure of single-site models for their marginal processes
at each site.
[5] Cowpertwait [1994] generalizes the Neyman-Scott

model for rainfall at a single site, in which storms arrive
in a Poisson process, each storm generating a cluster of rain
cells, every cell having a random duration and intensity. The
model is generalized by allowing each cell to be one of n
types. The duration of each cell is an exponential random
variable that has expectation dependent on the cell type. The
distribution of cell intensity is also dependent on the cell
type, so that the generalized model provides a correlation
between the intensities and durations of the rain cells.
[6] Cowpertwait [1995] presents and fits a relatively

simple stochastic spatial-temporal model of rainfall in
which the arrival times of rain cells occur in a clustered
point processes. In the x-y plane, rain cells are represented
as discs; each disc having a random radius; the locations of
the disc centers are given by a two-dimensional Poisson
process. Multisite second order properties are derived and
used to fit the model to hourly rainfall data taken from six
sites in the Thames basin, UK.
[7] Kakou [1997] develops multisite models which are

generalizations of those proposed by Cox and Isham [1994].
The basic concept is that there is a master point process of
storm or rain cell origins which is decomposed into a number
of subprocesses, each one corresponding to a different site.
[8] The main difficulty with the above models lies in their

estimation of parameters. The fitting is highly complex, and
parameters are supposed to be constant without strong
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physical justification. Moreover radar measures are used to
calibrate the models. Until now, in Switzerland only three
radars are available. These new measurement techniques
give more a qualitative insight into precipitation than a
quantitative one, because of the orography (hidden precip-
itation) amongst other reasons. Therefore models which
depend on radar-derived parameter estimates cannot be
effectively applied in mountainous regions. Hopefully in
the future radars will give a more insight into the precip-
itation process and will change the modeling substantially.
[9] We propose a model for two sites based on the

Neyman-Scott process. We make the assumption that there
is a master process giving rise to the storm at a given
station. The correlation between the rainfall series is
obtained by generating bivariate correlated random variates.
[10] Section 2 presents the Neyman-Scott Rectangular

Pulses Model for a single site. Section 3 outlines the main
statistical tools used to build the rainfall model. Section 4 is
devoted to the model development. This model is calibrated
and validated in section 5. Section 6 provides the major
conclusions and the planned improvements.

2. Neyman-Scott Rectangular Pulses Model

[11] The Neyman-Scott is a clustered point process model
in time. This process is used to reproduce the rainfall in the
following way: each rainfall event is originated by a
triggering mechanism, the origin of the event (representing,
for example, the arrival of a mid-latitude atmospheric front
or more generally, a storm), that primes several elementary
precipitation cells. The Neyman-Scott model is described by
three independent elementary stochastic processes: (1) a
process that defines the storms origin, (2) a process that
determines the number of rain cells generated by each
storm, and (3) a process that defines the cells origin. Storm
origins are governed by a Poisson process with parameter l
(Neyman-Scott is a cluster Poisson process). At a point on
the ground the storm is conceptualized as a random number
C of rain cells. The distribution for C could be either
geometric or Poisson. The cell origins are independently
separated from the storm origin by distances which are
exponentially distributed with parameter b, no cell origins
being located at the storm origin. A rectangular pulse is
associated independently with each cell origin, its duration
and depth being independent. They are assumed to be
exponentially distributed with parameter h and 1/mX, respec-
tively. Figure 1 shows a schematic depiction of this process.
[12] The precipitation intensity at time t, Y(t), is given by

the sum of the intensities of the individual cells active at time t

Y tð Þ ¼
Z 1

u¼0

Xt�u uð ÞdN t � uð Þ; ð1Þ

where Xu(k) is the random depth of the pulse originating at
time u, measured a time k later and where {N(t)} counts
occurrences in the Poisson process of pulse origins. An
estimation method of the five parameters based on the
method of moments has been proposed by Favre [1998] and
produced unbiased estimators.
[13] Finally the Neyman-Scott model is generally used to

generate series of rainfall at hourly time steps. It has been
used rarely for below 1 hour temporal resolution [e.g.,
Calenda and Napolitano, 1999]. Practical applications of
the model demonstrate that NSRPM is able to reproduce the

extremes of precipitation [Entekhabi et al., 1989, Figure 2;
Velghe et al., 1994].

3. Statistical Tools

[14] This section presents bivariate random vectors gen-
erators used for the multisite model building, namely for the
exponential and geometric distributions.

3.1. Bivariate Exponential Variates

[15] The bivariate distribution used in our approach
should be mathematically tractable, easy to generate and
be able to reproduce all kinds of positive dependence. The
bivariate distributions of Lawrence and Lewis [1983] are
particularly flexible in that sense. In their article, they
introduce some models for constructing pairs of dependent
exponential random variables as random-coefficient linear
functions of pairs of independent exponential random
variables. The Lawrence and Lewis models offer the fol-
lowing advantages: (1) their construction is very simple; (2)
they require only two independent exponential random
variables and one or two binary random variables for their
construction; (3) there is a broad range of the attainable
dependency, as measured linearly by the product-moment
correlation, or monotonically by the Spearman correlation;
(4) the models are analytically tractable so that, in some
cases, closed form joint probability density functions and
regressions can be obtained. For our purposes it is desirable
to model two aspects of the joint distribution: one depend-

Figure 1. Construction of the Neyman-Scott rectangular
pulses model. The procedure first generates the origin of the
storms (li), then the characteristics related to the rain cells,
namely, their number (ci), position (bi), duration (ei), and
depth (xi).
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ency measure, such as the product-moment correlation, and
a probability statement, such as Pr{W1 > W2}. For these
reasons the following two parameters model called (EP3)
has been chosen:

EP3ð Þ W1 ¼ t1Z1 þ I1Z2 0 � t1 � 1

W2 ¼ t2Z2 þ I2Z1 0 � t2 � 1;

�
ð2Þ

where Z1, Z2 are independent, identically and exponen-
tially distributed random variables of unit means and I1;

I2 � B 1; 1� tið Þ; i ¼ 1; 2 so that Pr{Ii = 0} = 1 – Pr{Ii =
1} = ti, i = 1, 2. We use the following notation in this
document

W � E t1; t2ð Þ ¼ t1 I1
I2 t2

� �
Z1
Z2

� �
:

[16] The joint distribution of Lawrence and Lewis var-
iates has been computed by Favre [2001].

3.2. Bivariate Geometric Variates

[17] The theory leading to the construction of the used
bivariate geometric variates has been developed by Arnold
[1967] using the additivity property of a distributions family.
[18] This property of closeness, under addition of inde-

pendent random variables, has led to inversion-free methods
for generating bivariate geometric random vectors, known
as trivariate reduction methods [Cherian, 1941; David and
Fix, 1961; Mardia, 1970; Schmeiser and Lal, 1982].
[19] Suppose we have G1 � G q1ð Þ;G2 � G q2ð Þ;G3 �

G q3ð Þ three independent geometric random variables with
parameters qi, i = 1, 2, 3. The bivariate geometric variates
are then obtained taking the minimum in the following way

~G1 ¼ min G1;G2ð Þ;
~G2 ¼ min G2;G3ð Þ: ð3Þ

We use the notation ~G1; ~G2

� �
� G q1; q2; q3ð Þ. The distribu-

tion of ~G1 and ~G2 can be directly obtained using the proper-
ties of the minimum function leading to ~G1 � G (q1 +
q2�q1q2), ~G2 � G q2 þ q3 � q2q3ð Þ. As ~G1 and ~G2 are both
functions of G2, dependence between these two variables is
introduced. The measure of this dependence has been
quantified through the correlation by Favre [2001].

r ~G1; ~G2

� �
¼ q2 1� q1 � q3 þ q1q3ð Þ

q1 þ q2 þ q3 � q1q2 � q1q3 � q2q3 þ q1q2q3ð Þ
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1 � 1ð Þ q3 � 1ð Þ
p : ð4Þ

[20] Suppose we want to generate bivariate geometric
random variables ~G1 ¼ G ~q1

� �
and ~G2 ¼ G ~q2

� �
with a given

correlation r0 ¼ r ~G1; ~G2

� �
, using the trivariate reduction

method defined in the above section. The parameters q1, q2,
q3 of the basic geometric variables used for generation can
be obtained with equation (4) by the resolution of the
following system of three equations in three unknown
variables

~q1 ¼ q1 þ q2 � q1q2
~q2 ¼ q2 þ q3 � q2q3 )
r0 ¼ r q1; q2; q3ð Þ

8<
:

q3 ¼
~q2 C~q

2

1þ~q1�1

� �
~q1�1ð Þ C~q1~q2þ1ð Þ

q2 ¼
~q2�q3
1�q3

q1 ¼
q3 1�~q1ð Þþ~q1�~q2

1�~q2
;

8>>>>><
>>>>>:

ð5Þ

where C ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q1�1ð Þ ~q2�1ð Þ

p
~q1~q2

.

4. Model Development

[21] An extensive analysis of the rainfall series available
on the Swiss Plateau exhibits the superposition of two
processes [Favre and Overney, 1999]: the first one is a
precipitation occurrence process active at all stations, while
the second one is a rain cell generating process active at
single stations with a stronger random component. Based on

Figure 2. Schematic depiction of the two-site Neyman-
Scott rectangular pulses model: Master process and
bivariate correlated generation.
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this finding, and following Cox and Isham [1994], we
assume that storms arrive in the studied region in the form
of a temporal Poisson process with rate �: this is called the
master process. The evolution of rainfall at any given site is
thought to be caused by a thinning of the master process,
that is, a random selection with probability p of the storms
that form the master process [Rényi, 1959]. A basic property
of the Poisson process [see, e.g., Resnick, 1992] ensures that
the storm origins at station i follow a Poisson distribution of
rate li = �pi.
[22] At each individual site i the model is required to have

the Neyman-Scott structure with five parameters �i = (li,
hi, bi, mC

(i) , mX
(i) ), where li = �pi.

[23] It is quite obvious that the idea of a master process
and thinning is not capable to take account of the whole
complex structure of correlation between stations. To go
further we must build a mathematically tractable model
based on multivariate statistics in which the correlation
between stations is handled through the generation of
correlated random variables. We thus look for bivariate
distributions with a given marginal and a given dependence
structure. The previous section presented methods appro-
priate for this purpose.
[24] Our data analysis showed that the parameter b, which

governs the position of cells relative to the storm origin is
the most random component both from the temporal and
spatial points of view (throughout the year, for different
calibration periods and for one station to another). Thus the

estimation of this parameter is highly uncertain. Based on
this remark, the basic version of the model assumes that B1

and B2, the positions of the cells relative to the storm center
at site 1 and 2, are independent random variates.
[25] The duration E and the intensity X of the cells both

follow an exponential distribution. To generate the correla-
tion between durations and intensities at two stations, the
bivariate exponential variates (EP3 in equation (2)) have
been chosen. Thus X1;X2ð Þ � E f1;f2ð Þ and E1;E2ð Þ �
E n1; n2ð Þ. To model the correlation between the number of
cells the trivariate reduction method, as defined in equation
(3), has been used so that C1;C2ð Þ � G q1; q2; q3ð Þ. Note that
according to equation (5), as soon as r0 is fixed, the
parameters q1, q2, q3 are determined as functions of mC

(1)

and mC
(2). Figure 2 shows a simplified representation of the

two-site model.
[26] The major theoretical advantage of the model is that

the basic property of the thinning of Poisson processes
mentioned above and the marginal distributional properties
lead directly to the marginal distribution being a Neyman-
Scott process at both sites.
[27] The proposed model is called TS-NSRPM (Two-Site

Neyman-Scott Rectangular Pulses Model). The Table 1
summarizes the different parameters of the TS-NSRPM
with bold lettering for those that are added in the passage
from NSRPM to TS-NSRPM.
[28] In order to estimate the parameters of the TS-

NSRPM, the cross covariance has been derived based on
the theory of point processes, and is given in the following
proposition: The cross covariance for two aggregated sub-
processes is

C
hð Þ
12 ðxÞ ¼ A1A2

�
K þ 1

�
h1
h2n1

> 1

�
K1 þ 1

�
h1n2
h2

> 1

�
K2

þ1

�
h1
h2n1

> 1

�
1

�
h1n2
h2

> 1

�
K3

�
: ð6Þ

Table 1. Statistical Structure of TS-NSRPM

Random Variable Notation Distribution Parameters

Storms origin (L1, L2) Poisson l1, l2, �
Number of cells (C1, C2) geometric mC

(1), mC
(2), RC

Cells position (B1, B2) exponential b1, b2
Cells duration (E1, E2) exponential h1, h2, N1, N2
Cells intensity (X1, X2) exponential mX

(1), mX
(2), F1, F2

Figure 3. Map of the ANETZ rainfall stations located in the Swiss Plateau.
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where

K ¼ n22 M1 þM2ð Þ
h22

�2 exp
�khh2
n2

� �
þ exp

�h k � 1ð Þh2
n2

� ��

þ exp
�h 1þ kð Þh2

n2

� ��

þ N1 þ N2 þ N3 þ N4ð Þ
b22

�2 exp �b2khð Þð

þ exp �b2h k � 1ð Þð Þ þ exp �b2h 1þ kð Þð ÞÞ

þO1

h22
�2 exp �h2khð Þ þ exp �h2h k � 1ð Þð Þð

þ exp �h2h 1þ kð Þð ÞÞ:

K1 ¼
P1 þ P2

h21h
2
2

�
� 2 exp

�h1h2kh
h1 � h2n1

� �
þ exp

�h1h2h k � 1ð Þ
h1 � h2n1

� �

þ exp
�h1h2h 1þ kð Þ

h1 � h2n1

� �
�h1 þ h2n1ð Þ2

�
;

K2 ¼
Q1

h21h
2
2

�2 exp
�h1h2kh
h1n2 � h1

� �
þ exp

�h1h2h k � 1ð Þ
h1n2 � h2

� ��

þ exp
�h1h2h 1þ kð Þ

h2n2 � h2

� �
h1n2 � h2ð Þ2

�
;

K3 ¼
Q2

h21h
2
2

�2 exp
�h1h2kh
h1n2 � h2

� �
þ exp

�h1h2h k � 1ð Þ
h1n2 � h2

� ��

þ exp
�h1h2h 1þ kð Þ

h1n2 � h2

� �
h1n2 � h2ð Þ2

�
:

[29] The constants building the above formula are given
in appendix A. The proof of this proposition is given by
Favre [2001].

5. Parameter Estimation and Validation

[30] Three groups of two stations located on the Swiss
Plateau have been used to estimate the parameters and

validate the two-site Neyman-Scott rectangular pulses
model: Payerne and Neuchâtel, Zürich SMA and Zürich-
Kloten, Tänikon and Güttingen. Figure 3 shows a map with
the location of the stations. The data used are from 1978 to
1999. First the single site parameters have been estimated
for January and June, representative winter and summer
months, with the procedure based on the method of
moments. Tables 2 and 3 show the historical properties of
these stations used for the estimation for January and June
respectively while Tables 4 and 5 shows the corresponding
parameters for the two months.
[31] For the two-site model, six additional parameters

remain to be estimated, namely �, rC, n1, n2, f1, f2. The
only realistic way to estimate the parameters is to use a
pseudogeneralized method of moments. Alternative estima-
tion procedure, such as maximum likelihood estimates,
besides involving heavy mathematical complexity are not
available and are not computable because the distribution
function of the rainfall intensity for a given scale of
aggregation is not known. A crucial factor in the parameters
estimation procedure is the choice of the model properties to
be included in the objective function. A selection of some
joint properties of the two stations is required for a sat-
isfactory representation of the spatial structure of the rainfall
process. Also, properties at various levels of aggregations
should be used in order to capture the temporal behavior of
the process. Kakou [1997] initially used two lag 0 cross
correlations, one at an aggregation level of 1 hour and one
of higher level, for instance 6, 12, or 24 hours, but the
obtained fits were rather poor. Subsequently, the latter
statistic was replaced by the lag 1 cross correlation of
hourly data, which provides additional information about
the motion of rainfall event, and significantly improves the
properties of the fitted processes. Thus, throughout the
analyses presented here, we used the lag 0 and lag 1 cross
correlation at hourly time step. Another important property
to be included is the probability that two sites are simulta-
neously dry during a time interval of given length. We use
this characteristic at hourly and daily levels in our proce-
dure. As each couple consists of stations that are close
together, it is assumed that � = max(l1, l2), and thus that

Table 2. Estimated Moments (Hourly Mean, Hourly and Daily

Variances, Hourly and Daily Lag 1 Autocovariances) Based on

Rainfall Data at Each Station for January 1978–1999

Payerne Neuch. SMA Kloten Tänikon Gütt.

m(1) 0.079 0.101 0.092 0.085 0.112 0.077
s(1) 0.125 0.145 0.130 0.126 0.202 0.115
s(24) 19.898 25.088 19.320 19.425 31.870 15.248
s(1)i,i+1 0.084 0.095 0.083 0.078 0.132 0.066
s(24)i,i+1 6.465 6.177 6.192 5.342 8.720 3.781

Table 3. Estimated Moments (Hourly Mean, Hourly and Daily

Variances, Hourly and Daily lag 1 Autocovariances) Based on

Rainfall Data at Each Station for June 1978–1999

Payerne Neuch. SMA Kloten Tänikon Gütt.

m(1) 0.136 0.130 0.193 0.155 0.194 0.153
s(1) 0.609 0.471 0.748 0.600 0.838 0.593
s(24) 43.985 39.157 60.206 46.781 64.171 46.114
s(1)i,i+1 0.203 0.203 0.293 0.208 0.304 0.215
s(24)i,i+1 4.271 4.967 7.050 5.478 9.108 4.464

Table 4. NSRPM Parameters at Each Station for January 1978–

1999

l h b mC mX

Payerne 8.74 � 10�3 0.982 5.77 � 10�2 11.52 0.769
Neuch. 1.32 � 10�2 1.62 9.76 � 10�2 19.82 0.624
SMA 1.23 � 10�2 1.09 5.76 � 10�2 11.14 0.732
Kloten 1.16 � 10�2 1.40 7.90 � 10�2 13.73 0.748
Tänikon 1.25 � 10�2 1.18 7.77 � 10�2 12.44 0.855
Gütt. 1.31 � 10�2 1.46 8.27 � 10�2 10.42 0.829

Table 5. NSRPM Parameters at Each Station for June 1978–1999

l h b mC mX

Payerne 1.99 � 10�2 3.52 1.78 � 10�1 5.58 4.31
Neuch. 1.95 � 10�2 2.10 1.35 � 10�1 5.27 2.66
SMA 2.80 � 10�2 2.62 1.52 � 10�1 5.78 3.12
Kloten 2.29 � 10�2 3.40 1.56 � 10�1 6.33 3.63
Tänikon 2.56 � 10�2 2.63 1.20 � 10�1 5.41 3.69
Gütt. 2.35 � 10�2 3.44 1.87 � 10�1 6.36 3.52
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the station with the biggest number of storms builds the
master process. With this assumption we have that p1 =

l1

max l 1;l2ð Þ and p2 ¼ l2

max l1;l2ð Þ. Computations of the cross cor-
relation function (see equation (6)) show that in order to
obtain sufficiently high values of correlation, it is necessary
that rC be large. Thus we set rC = 0.9 in the winter period,
respectively rC = 0.7 for the summer period. The remaining
estimation parameters procedure is divided into two steps: (1)
Computation of equation (6) with h = 1, k = 0 and k = 24 in
order to fit the observed correlation values. Since two
equations are used to estimate 4 parameters, several sets of
parameters are able to reproduce the desired cross correla-
tions. (2) Simulation with these parameters sets of precip-
itation series and computation of the probability that two sites
are simultaneously dry at hourly and daily levels. The
combination of these two steps leads to the choice of the best
parameters set regarding the dryness probability. Note that in
the second step, only the parameters n1 and n2 are in fact fitted
as the probability of two sites being dry does not depend on
f = (f1, f2). Tables 6 and 7 show the obtained parameters for
January and June respectively.
[32] A successful multisite model should be capable of

describing the main between-site dependencies of the rain-
fall process. The adequacy of the fit is assessed via compar-
ison between observed and estimated properties, both
marginal and joint, that have not been used in the parameter
estimation procedure. Tables 8 and 9 show the observed and
estimated properties for Payerne and Neuchâtel.
[33] With reference to Tables 8 and 9, we notice that at

all levels of aggregation, the probability of two sites dry
and the cross correlation are estimated accurately. The
same observations can be done for the two other pairs of
stations. The cross correlations are slightly underestimated
which is not surprising as we assumed that the position of
the cells from the storm origin are independent. The
probability that both sites are dry is slenderly overesti-
mated. The results in summer are slightly worse than in
winter: this can be due to the assumption that � = max(l1,
l2), which is more constraining in summer. Moreover the
convective precipitation in summer are more difficult to

model due to their unexpected characteristics. In fact
thunderstorms can happen very locally and it may rain at
a station while not at the neighboring station even if they
are close together.

6. Conclusion

[34] The spatial component of precipitation has been
taken into account in the development of a two-site Ney-
man-Scott Rectangular Pulses Model. The idea of the
proposed approach is to take into account the correlation
between stations through the generation of bivariate corre-
lated random variables. An application of the model for
three couples of sites showed that it is able to reproduce
both cross correlation at several levels of aggregation and
lag, and probability of precipitation occurrence at several
levels of aggregation. Two advantages of the proposed
model are its simplicity and flexibility.
[35] There are several possibilities for future work. Con-

sidering that the cells position are correlated would further
increase the flexibility of the model. More generally, a
challenging approach would be to generalize the model
for more than two sites. Coupling it with a rainfall-runoff
model in hydrological applications, would lead to the
quantification of the differences as compared to the inde-

Table 6. TS-NSRPM Parameters of Three Couples of Stations for

January 1978–1999

Payerne Neuch. Kloten SMA Tänikon Gütt.

l 1.32 � 10�2 1.23 � 10�2 1.31 � 10�2

rC 0.90 0.90 0.90
f1 0.11 0.98 0.31
f2 0.95 0.04 0.45
n1 0.22 0.17 0.04
n2 0.84 0.92 0.86

Table 7. TS-NSRPM Parameters of Three Couples of Stations for

June 1978–1999

Payerne Neuch. Kloten SMA Tänikon Gütt.

l 1.99 � 10�2 2.80 � 10�2 2.56 � 10�2

rC 0.70 0.70 0.70
f1 0.32 0.40 0.26
f2 0.58 0.38 0.52
n1 0.16 0.45 0.16
n2 0.55 0.28 0.72

Table 8. Cross Properties (Probability of Both Sites Dry and

Cross Correlation for Four Different Lags) Between Payerne and

Neuchâtel for Januarya

Level of
Aggregation

Probability of
Both Sites Dry

Cross Correlation

Lag 0 Lag 1 Lag 2 Lag 3

1 h H 0.814 0.652 0.580 0.454 0.379

M 0.774 0.681 0.594 0.424 0.357

6 h H 0.684 0.786 0.427 0.223 0.160

M 0.725 0.710 0.372 0.206 0.128

12 h H 0.600 0.832 0.330 0.163 0.094

M 0.652 0.785 0.312 0.147 0.068

24 h H 0.475 0.851 0.290 0.095 0.114

M 0.514 0.813 0.243 0.041 0.109

aH are the observed values. Characteristics in bold have been used in the
model fitting.

Table 9. Cross Properties (Probability of Both Sites Dry and

Cross Correlation for Four Different Lags) Between Payerne and

Neuchâtel for Junea

Level of
Aggregation

Probability of
Both Sites Dry

Cross Correlation

Lag 0 Lag 1 Lag 2 Lag 3

1 h H 0.834 0.425 0.327 0.228 0.172

M 0.812 0.438 0.335 0.214 0.118

6 h H 0.672 0.715 0.293 0.117 0.017

M 0.785 0.640 0.272 0.098 0.019

12 h H 0.569 0.784 0.193 0.005 0.019

M 0.640 0.669 0.140 0.012 0.000

24 h H 0.417 0.808 0.120 0.065 0.035

M 0.428 0.750 0.094 0.000 0.000

aH are the observed values. Characteristics in bold have been used in the
model fitting.
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pendent modelling of flows. Intuitively the extreme flows
should be by the way better reproduced.

Appendix A: Cross-Covariance Function

[36] The constants appearing in the cross-covariance
function are the following:

A1 ¼ l1p2E C1C2½ � b1b2
b1 þ b2

;

A2 ¼ E X1X2½ �;

A3 ¼ n1n2;

M1 ¼ � A3n1n22
h1n2 þ h2n1ð Þ h2 � b2n2ð Þ ;

M2 ¼
A3n1n22

�h1 þ h1n2 þ h2n1ð Þ h2 � b2n2ð Þ ;

N1 ¼
A3n1n2

h1 þ b2n1ð Þ h2 � b2n2ð Þ ;

N2 ¼ � h2n1 �h2 þ b2n2 þ A3n2h2 � A3n2b2ð Þ
h2 � b2ð Þ b2h2n1 þ h1h2 � h1b2ð Þ h2 � b2n2ð Þ ;

N3 ¼
�1þ A3ð Þ �1þ n1n2ð Þh1h2

b2h2n1 þ h1h2 � h1b2ð Þ �b2h1n2 þ h2b2 þ h1h2ð Þ ;

N4 ¼ � h1n2 �h1 � b2n1 þ A3n1h1 þ A3n1b2ð Þ
h1 þ b2ð Þ h2h1 þ h2b2 � b2h1n2ð Þ h1 þ b2n1ð Þ ;

O1 ¼ � 1

h2 h2 � b2ð Þ ;

P1 ¼
h2n1 � h1ð Þ h1 � h1n2 � h2n1 þ A3n1n2h2ð Þ

b2h2n1 þ h1h2 � h1b2ð Þh2 �h1 þ h1n2 þ h2n1ð Þ ;

P2 ¼ � �1þ A3ð Þ h2n1 � h1ð Þ �1þ n1n2ð Þ
b2h2n1 þ h1h2 � h1b2ð Þ �h1 þ h1n2 � h2 þ h2n1ð Þ ;

Q1 ¼
h2 � h1n2ð Þ h1n2 � h2 þ h2n1 � A3n1n2h1ð Þ

h1 h2h1 þ h2b2 � b2h1n2ð Þ h1n2 � h2 þ h2n1ð Þ ;

Q2 ¼
�1þ A3ð Þ h2 � h1n2ð Þ �1þ n1n2ð Þ

�h1 þ h1n2 � h2 þ h2n1ð Þ �b2h1n2 þ h2b2 þ h1h2ð Þ :
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