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Nonparametric approaches to prediction and forecasting of
complex physical systems, such as artificial neural networks
(ANNSs), are set to spread with modern computing possibilities.
As Muier and Dandy [1996] correctly point out, data-driven
models make prediction and forecasting possible under less
stringent hypotheses. This paper is highly appreciated for in-
troducing ANNS to the water resources community and pre-
senting a practical application. However, as many readers may
be unfamiliar with this type of model, we would like to clarify
links that exist between ANNs and autoregressive-moving av-
erage (ARMA) models, which the authors did not emphasize.
We would also like to suggest the use of a different network
configuration, which may prove more appropriate for time
series forecasting.

To discuss the links that exist between ANNs and ARMA
models, a common vocabulary is needed. ANNs, which were
originally designed to solve artificial intelligence (AI) problems
such as speech and hand writing recognition, are often de-
scribed using AI terminology. While this may have been ap-
propriate when the purpose of ANNs was to loosely model the
human brain, it is now a major source of confusion. For ex-
ample, the authors nathe “training” or “learning” the process
by which the weights of an ANN are adjusted so as to minimize
mean squared error (section 2.2.3). However, in fact, this is
absolutely equivalent to the calibration process of any stochas-
tic model: training is equivalent to “calibrating.” The algorithm
most often used for calibration of an ANN, called “backpropa-
gation” by the AI community (see section 3 for instance) is
nothing else but the well-known steepest-descent method of
optimization [Cauchy, 1847). Backpropagation also refers in
some of the literature (and in this paper) to the type of feed
forward network used by the authors, but this terminology is
misleading as other equally valid algorithms may be used for
calibration, including the conjugate gradient method [Fletcher
and Reeves, 1964], simulated annealing [Aarts and Korst, 1989],
genetic algorithms [Holland, 1992], and evolutionary program-
ming [Fogel et al., 1989]. At this point in their development,
ANNS are simply another type of “black-box” model [Welstead,
1994]. An ANN needs to be configured and calibrated like any
other type of model, and using similar algorithms, it does not,
in any way, “learn” a relationship from the data, unless we
define as learning the process of fitting a model to observed
data.

Machine learning is best defined by Mogili and Sunol [1993,
p. 756] as “a process in which a computer program improves its
performarce, acquires knowledge and solves new problems in
a specified domain”. These authors also correctly state that
ANNSs “. .. are unsuitable for knowledge acquisition purposes
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as they do not allow for knowledge extraction in the form of
rules...”. By themselves, ANNs are not appropriate for ac-
quiring and organizing knowledge but can be useful as part of
a larger automated learning system [Mogili and Sunol, 1993]. In
short, there is nothing mystical about an artificial neural net-
work, and using Al terminology sustains the hope that ANNs
may be almost as efficient as humans in picking up patterns in
data, which is still far from the truth.

When properly used and understood, ANNs often prove
very efficient: being able to model nonlinear relationships, they
have a clear advantage over most commonly used stochastic
models. In fact, the type of feed forward ANN used by the
author has been shown to be a type of nonlinear autoregressive
(NAR) model [Connor et al., 1994]. No matter the number of
hidden layers and the number of hidden nodes in each layer, a
feed-forward ANN used for time series analysis may always be
described by (1), for some finite value of p:

X = h(xt—b Xp—3, *° (1)
where 4 can be any function, y, represents a vector of related
time series, and e, is a random shock of zero mean and finite
variance. ,

NAR models suffer some of the same shortcomings as linear
autoregressive (AR) models. Specifically, they cannot model
dependence of x, on previous random shocks e,_;, ¢, _,, ***,
and so cannot model moving average (MA) components of a
time series. Recurrent ANNs, which use as inputs previous
observed random shocks, are a generalization of feed forward
ANNs and allow modeling of complex nonlinear autoregres-
sive-moving average systems (NARMA). They can thus be
described by (2), for some finite values of p and g:
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where / can be a nonlinear function. Fully recurrent NARMA
networks [Connor et al., 1994] have been shown to perform
much better than the NAR model proposed in the paper by
Maier and Dandy [1996] when moving average components are
present in the stochastic process. We thus question the state-
ment by the authors that feed forward network (or backpropa-
gation network, as named by the authors) “. .. are the type of
ANN most suited to forecasting applications” (section 3). Se-
rious thought should be given to recurrent designs for fore-
casting time series. )

Understanding that the feed-forward ANNs used in this
paper are simply a class of NAR, we can comment on two
other statements made by the authors about feed forward
ANNS. It is mentioned that “...when developing ANN mod-
els, the statistical distribution of the data does not have to be
known...” (section 3), meaning in particular that ANNs are
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applicable when the random shock component is not normal,
contrary to ARMA models. In fact, the objective function used
to calibrate both types of models (mean squared error) is
justified mainly because it maximizes the likelihood of the
model under the hypothesis of normal (or at least symmetrical)
randoni shocks. If their distribution is known to be skewed,
then the objective function needs to be adapted for both types
of models. It is also mentioned that a disadvantage of model-
driven approaches, such as ARMA models, is that “...the
model order has to be determined before the unknown model
parameters can be estimdted” {section 3). We would like to
point out that the process of selecting the number of hidden
layers and hidden nodes in each layer is also quite complex and
must be conducted prior to calibrating the network [Bebis and
Georgiopoulos, 1994]. Furtherinore, for ARMA models, there
exist well-established statistical procedures, such as MAICE
[Akaike, 1972, to help select the order of the model.

We would also have liked the authors to substantiate their
claim that ANNSs can efficiently model nonstationarities in the
data without differencing or otherwise transforming it (section
3), instead of only referring to a research report [Maier and
Dandy, 1995]. Of course, it is well known that feed-forward
ANNS can approximate any function to any degree of accuracy
[Hornik et al., 1989], including nonstationary functions. How-
ever, in practice modeling nonstationary data with an ANN is
quite difficult since the fietwork, once calibrated, will be faced
with input patterns the like of which it has never seen before:
instead of interpolating between similar previously observed
input-output examples, the ANN will be asked to extrapolate.
Also, ANNs are usually not very good at extrapolating, given
their large number of free parameters. In fact, it can be argued
that nonparametric, data-driven models; such as ANNS, are in
general not suited for extrapolation, and at best constitute very
arbitrary models for this task [Fortin et al., 1997]. Extrapolation
only makes sense when based on clearly stated verifiable hy-
potheses; complex black-box models do not qualify. Not know-
ing precisely what Maier and Dandy [1995] have discovered, we
would prefer nonstationary stochastic models [Young, 1994] or
multivariate adaptive regression splines [Friedman, 1991; Lall
et al., 1996] for modeling nonstationary data without trans-
forming it prior to the analysis.

All this is not to say that ANNs were not useful in the
practical problem studied by Maier and Dandy [1996]. How-
ever, as suggested by the authors, a thorough comparison with
ARMA models would be needed to confirm their value. Fur-
thermore, recurrent architectures should be considered. In
fact, since an ANN is at best a nonlinear ARMA model, we
suggest fitting a linear ARMA model first and then verifying,
by the use of an ANN, if the shortcomings of the ARMA
model are caused by the hypothesis of linearity. Finally, we
strongly believe that presenting an artificial neural network as
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what it really is, a type of nonlinear AR or ARMA model and
not quite a model of the brain, will help users in the field of
water resources understand and apply this powerful tool
wisely.
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