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Abstract. Two different models for analyzing extreme hydrologic events, based on,
respectively, partial duration series (PDS) and annual maximum series (AMS), are
compared. The PDS model assumes a generalized Pareto distribution for modeling
threshold exceedances corresponding to a generalized extreme vatue distribution for
annual maxima. The performance of the two models in terms of the uncertainty of the
T-year event estimator is evaluated in the cases of estimation with, respectively, the
maximum likelihood (ML) method, the method of moments (MOM), and the method of
probability weighted moments (PWM). In the case of ML estimation, the PDS model
provides the most efficient T-year event estimator. In the cases of MOM and PWM
estimation, the PDS model is generally preferable for negative shape parameters, whereas
the AMS model yields the most efficient estimator for positive shape parameters. A
comparison of the considered methods reveals that in general, one should use the PDS
model with MOM estimation for negative shape parameters, the PDS model with
exponentially distributed exceedances if the shape parameter is close to zero, the AMS
model with MOM estimation for moderately positive shape parameters, and the PDS
model with ML estimation for large positive shape parameters. Since heavy-tailed
distributions, corresponding to negative shape parameters, are far the most common in
hydrology, the PDS model generally is to be preferred for at-site quantile estimation.

Introduction

As an alternative to the annual maximum series (AMS)
approach in hydrologic frequency modeling, the partial dura-
tion series (PDS) method, also denoted the peaks over thresh-
old (POT) method, has been advocated. The classical PDS
model comprises the assumptions of a Poisson distributed
number of threshold exceedances and independent exponen-
tially distributed exceedance magnitudes [Shane and Lynn,
1964; Todorovic and Zelenhasic, 1970]. This implies that the
annual maxima follow the Gumbel (EV1) distribution. Alter-
native exceedance distributions have been proposed, including
the gamma distribution [Zelenhasic, 1970], the Weibull distri-
bution [Miquel, 1984; Ekanayake and Cruise, 1993], and the
lognormal distribution [Rosbjerg et al., 1991]. In recent years,
several papers have focused on the generalized Pareto (GP)
distribution [e.g., Van Montfort and Witter, 1986; Hosking and
Wallis, 1987; Fitzgerald, 1989; Davison and Smith, 1990; Wang,
1991; Rosbjerg et al., 1992; Madsen et al., 1994, 1995]. The GP
distribution reduces to the exponential distribution as a special
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case, and it implies the annual maxima to be generalized ex-
treme value (GEV) distributed. The GEV distribution was
recommended for flood frequency analysis in the U.K. Flood
Studies Report [Natural Environment Research-Council, 1975],
and, since the introduction of the index-flood procedure based
on probability-weighted moments estimation by Wallis [1980]
and Greis and Wood [1981], it has gained much interest in
regional frequency studies [e.g., Hosking et al., 1985a; Wallis
and Wood, 1985; Lettenmaier et al., 1987; Hosking and Wallis,
1988; Chowdhury et al., 1991; Stedinger and Lu, 1995).

An objection against the AMS method is that it considers
only the annual maximum value, notwithstanding that second-
ary events in one year may exceed the annual maxima of other
years. In addition, annual maximum floods observed in dry
years may in some regions be very small, and inclusion of these
events can significantly bias the outcome of the extreme value
analysis. The PDS method avoids-these drawbacks by consid-
ering all events above a certain threshold level. However, in
spite of this, the PDS method seems to be much less applied in
hydrologic studies than the AMS method, mainly due to diffi-
culties in defining the PDS. While the AMS in general is
readily obtained from the hydrologic time series (as long as the
water year is properly defined), the extraction of peaks to
include in the PDS analysis is by no means a straightforward
task. First, consecutive peaks should be independent, and
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hence some criteria to identify independent events must be
defined. For instance, in the case of multiple peaks corre-
sponding to the same hydrologic event, only the largest peak
should be included in the PDS. Second, the method involves
the selection of an appropriate threshold level, that is, a level
which ensures as much relevant information as possible to be
included in the analysis without violating basic statistical as-
sumptions. The problem of independent peaks was addressed
by the U.S. Water Resources Council [1982] and Cunnane
[1979]. Consecutive peak floods are defined as independent if
(1) the interevent time exceeds a critical time and (2) the
interevent discharge drops below a critical flow. The problem
of threshold selection was discussed by Rosbjerg and Madsen
[1992], who compared different methods for defining the
threshold level g,. The method based on a predefined fre-
quency factor k, g, = E{Q} + kS{Q} where E{Q} and
S{Q} are, respectively, the mean and the standard deviation

of the basic data series, was recommended. It has been applied

in flood frequency studies [Rasmussen and Rosbjerg, 1991] and
in extreme precipitation studies [Madsen et al., 1994].

Although practical advantages and drawbacks should be
considered when choosing between the two model candidates,
it should not be the main criterion. A model comparison
should primarily be based on appropriate performance criteria,
for example, the accuracy with which quantiles are estimated.
Cunnane [1973] compared the PDS model with exponentially
distributed exceedances (PDS/EXP) with the AMS model
based on the EV1 distribution (AMS/EV1) using the variance
of the T-year event estimator as a performance index. By
comparing the asymptotic variance expressions based on max-
imum likelihood estimation, he showed that for return periods
larger than about 20 years, the PDS estimator has a smaller
variance than the AMS estimator if the PDS contains more
than 1.65 exceedances on average per year. This value is often
referred to as a general point beyond which the PDS model
becomes more efficient than the AMS model [e.g., Stedinger et
al., 1993]. However, as will be shown in this paper, the result is
valid only for PDS/EXP versus AMS/EV1 estimation, and, in
addition, it depends on the estimation method.

The objective of the present study is to generalize Cunnane’s
[1973] results by comparing the PDS model with GP distrib-
uted exceedances with the AMS model based on the GEV

distribution in terms of the accuracy of T-year event estima-

tors. A comparison of the PDS/GP and AMS/GEV models has
previously been made by Wang {1991]. However, he considered
only estimation in a PDS with an average number of events
equal to the number of years of the sample period. We, more
generally, compare estimation in the AMS model with that of
the PDS model using a wide range of the number of events
included in the PDS, and the results from the present study
therefore provide more useful recommendations for practitio-
ners. While Cunnane’s results were based on maximum likeli-
hood (ML) estimation, Wang used the method of probability
weighted moments (PWM). Here ML and PWM as well as the
classical method of moments (MOM) estimation are com-
pared.

PDS and AMS Mode! Formulations
PDS/GP Model v
The exceedance magnitudes in the PDS are assumed to be

GP distributed. The GP distribution, introduced by Pickands
[1975], has the cumulative distribution function (CDF)

k=10

F(q)=1—exp<—q—q0)

o
_ e (1
F(q)=1—<1—xq~a—q0> k%0

where a is the scale parameter, « is the shape parameter, and
g, is thethreshold level. For k = 0 the EXP distribution is
obtained as a special case. For k = 0 the rangeofg isgy = g <
o, whereas for k > 0 an upper bound exists: g, < g < g4 +
o/x. An important feature of the GP distribution in a PDS
context is that a truncated GP distribution remains a GP dis-
tribution, implying that theoretically, the choice of threshold
level is not critical for the assumption of the type of exceedance
distribution. Assume that the GP distribution applies for the
threshold level g, then for a higher threshold, ¢, > g, the
distribution of the exceedance given Q > q, is

F(g) — Fgy A
F(Q|q>Q1)=fﬁ—1;((Z:§‘=1—eXP<”q aq)
k=20
F(g) — F(qv (2)
F(q|q>f11)=1q_—F(qu)—
q-q e
:1_<1_Ka~'<(ql—qo)>
k#0

which is a GP distribution with the original shape parameter «
and scale parameter « — k(q; — q,). For the EXP distribu-
tion, the scale parameter remains unchanged.

For the GP distribution in (1), the threshold level ¢, is
determined a priori, implying that only the parameters « and k
have to be estimated from the PDS sample (given in terms of
the exceedances x; = q; — ¢,). Estimation of the parameters
of the GP distribution was considered by Hosking and Wallis
[1987] who compared ML, MOM, and PWM. Rosbjerg et al.
[1992] compared MOM and PWM with focus on T-year event
estimation from PDS. The moment of order r of the GP dis-
tribution exists provided x > —1/r. The MOM estimators are
obtained from the sample mean j and the sample variance 6%
of the exceedances

(3

The PWM estimators, or the equivalent L-moment estimators
[Hosking, 1990], are given by B

€

where A, is an estimate of the first L moment (equal to the
sample mean), and %, = A,/A, is an estimate of the L coeffi-
cient of variation (L-C ). To estimate the L moments, unbi-
ased estimators of the PWMs B8, = E{X[F(X)]"} are em-
ployed [Landwehr et al., 1979; Hosking and Wallis, 1995},
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A1 = Bg, A, = 2B, — B,. For the ML estimation procedure, no
explicit solution for the GP parameter estimators exists. Here
a numerical procedure is applied based on the modified New-
ton-Raphson algorithm used by Hosking and Wallis [1987].

The accurrence of peaks is assumed to be described by a
Poisson process with an annual periodic intensity. Hence, the
number of exceedances N in ¢ years is Poisson distributed with
probability function

n

)
PIN(D) = n} = —

exp (—Ar) n=0,1,2,--- (5)
where A is the mean annual number of threshold exceedances.
For the Poisson distribution, MOM, PWM, and ML estimation
are identical, and the estimator is given by

. N
A= (6)

The Tp-year event, that is, the event which on the average is
exceeded once in T years, is in a PDS context usually defined
as the (1 ~ 1/AT,) quantile in the distribution of the ex-
ceedances [e.g., Rosbjerg, 1985]. By inverting (1), one obtains

91, = qo T a In (AT}) k=0

_ o 1 1 \*
9, =qo+ 11— AT,

The Tp-year event estimate is obtained from (7) by inserting
the estimated PDS parameters.

(7
k#*0

AMS/GEV Model

The annual maximum distribution corresponding to the par-
ent PDS/GP model can be derived as follows. Assume that a
threshold level g, is chosen, corresponding to a mean annual

‘number of exceedances, A; then, at any higher threshold,
g > go, the number of exceedances N, (r) is Poisson distrib-
uted with parameter

A= N1~ F(@)] ®)

The probability of the annual maximum being lower or equal
to g is equal to the probability of having no exceedances above
g in a single year. Hence, by combining (1), (5), and (8), one
obtains

G{g) = P{N (1) = 0} = exp (-A[1 - F(g)])

( [ q—[qo+a1n()»)]])
=exp|—exp| - ————— =0
. 9
G(q) = P{N,(1).= 0} = exp (—=A[1 - F(g)])
r o T
q - [%Jr;(l —/\7")]
=expl—|1—« o *
k#*0

which is a GEV distribution with the same shape parameter «
as in the GP distribution. In particular, for k = 0 the EV1
distribution for annual maxima corresponds to a PDS ‘model
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with EXP distributed exceedances. The location parameter &
and the scale parameter a* of the GEV distribution are

E=qgo+ aln(r) k=10
§=q0+%(1—)\_") k #0 (10)
a* = aqr™" (11)

Note that the GEV distribution obtained from the PDS/GP
model is defined only for g > q,. At g = g, the CDF of the
annual maximum distribution is equal to exp (—A), which cor-
responds to the probability of no exceedances in a year. Thus
the parent PDS model provides no information about the AMS
below the threshold level, and this makes a direct comparison
of the two models complicated. Wang [1991] argued that for
“fairness of comparison,” the PDS/GP model should be com-
pared to the AMS/GEV model censored at the PDS threshold
level. In this study, however, we compare the two methods as
they would be applied in practice, that is, the comparison is
based on estimation in the complete AMS.

The MOM estimators of the GEV parameters are given by
[e.g., Stedinger et al., 1993]

&*

R [ +& —171-

E= it
&* = sign {kH[oR]A[T (1 + 2&) — [T(1 + &)]F]V%)
(12)
¥ = sign {k}({-T(1 +3&) + 3T (1 + &) (1 + 2&)
—2[TA + RHPITA + 2&) - [T(1 + )PP

where sign{&} is plus or minus 1, depending on the sign of &.
The shape parameter estimator is obtained from the sample
skewness ¥ by iteration. The rth moment of the GEV distri-

- bution exists if k > —1/r, implying that the skewness tends to

infinity for k — —1/3. Thus MOM estimation of « is restricted
to k > —1/3. The PWM estimators read [Hosking et al., 1985b]

Ak

E=Ri+ [P +i)—1] -

Ak

TTa+oa-29

*

& (13)
2 ()

A 2 N T Tty
k=7.8590c + 2.9554¢ c= #,+3 In(3)

where the L-moment estimators f\l, Xz, and #; = X3/X2 (L
skewness) are obtained from the unbiased estimators of the
first three PWMs (A; = 6B, — 68, + B,). The ML estimators
are determined numerically using a modified Newton-Raphson
algorithm [Hosking, 1985].

The T-year event based on the AMS is defined as the
(1 = UYT) quantile in the annual maximum distribution.
From (9) one obtains ’

qr=§&+ a*yr
*

gr=¢&+ aT [1 —exp (~xyp)]

k=0
‘ (14)

k#0

where y, = —In[—In(1 — 1/T)] is the Gumbel reduced

variate. In terms of the PDS parameters, (14) reads
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gr=qo+ a[ln(A) +y7] k=0

. (15)
a -

gr=qot+ [T —exp (=«[ln (A) +y7)] «#0

which is seen to be different from the Tp-year event definitién

in (7). The difference, however, is negligible for large return

periods [Rosbjerg, 1977]. In the comparative study the AMS-

based T-year event definition is applied, and T-year event

estimators for both models are then obtained from (14) and

(15) by inserting the estimated parameters.

Comparison of PDS/EXP and AMS/EV1 Models

In the study by Cunnane [1973] the PDS/EXP model was
compared with the AMS/EV1 model using the asymptotic vari-
ance of the T-year event estimator as a performance index. For
both models, ML estimation was applied. Based on a Taylor
series expansion of (15), Cunnane derived the following as-
ymptotic expression for the variance of the PDS/EXP T-year
event estimator:

a2

varpps {¢r} = Y] [1+ (In(A) +yn*] (16)
An improved expression was deduced by Rosbjerg [1985], im-
plying a small sample correction factor to be multiplied on the
second term in (16). The difference between Rosbjerg’s for-
mula and (16) vanishes for larger sample sizes. Note that since
ML, MOM, and PWM estimators are identical in the EXP and
Poisson distributions, (16) is also valid for MOM and PWM
estimation. -

The asymptotic variance of the AMS/EV1 T-year event es-
timator in the case of ML estimation is given by [Kimball, 1949)

2

Vatuys {dzh = - [1.109 + 0514y, + 060831 (17)
By comparing (16) and (17) it is seen that the ratio
varppsi §ri/varsps {§7) depends only on A and 7. Since the
variance of the PDS estimator decreases as A increases, it is
to be expected that for a certain value of A, say A, the
variance of the PDS estimator equals that of the AMS es-
timator. It is readily seen that as the return period T tends
to infinity, A, tends to an asymptotic value of 1/0.608 = 1.64
which, except from a minor deviation at the last decimal,
corresponds to the value reported by Cunnane {1973]. For T
larger than about 20 years, A, is virtually equal to the as-
ymptotic value.

In the case of MOM estimation, the asymptotic variance of
the AMS/EV1 T-year event estimator reads {e.g., Phien, 1987]

2
a
varays {7} = 7 [1.168 + 0.192y7 + 1.100y%] (18)
Phien [1987] also derived an expression for the asymptotic
variance of the PWM T-year event estimator which, however,
contains an error of the sign of the term including y,. The
correct formula for large ¢ reads

2

a
varams {qT} = 7[1.113 + 0.457y7'+ 0.805}7%-] (19)
By comparing (16) with (18) and (19), respectively, it is seen
that the asymptotic value of A, is 1/1.100 = 0.91 for MOM
estimation and 1/0.805 = 1.24 for PWM estimation. However,
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contrary to ML estimation, A, for MOM and PWM estimation
only slowly tends to the asymptotic value as T increases. For
both estimation methods, A, is smaller than the asymptotic
value for all T (e.g., for T = 100 years, A, = 0.79 for MOM
estimation and A, = 1.17 for PWM estimation).

Since the variance of the PDS/EXP T-year event estimator is
identical for all three estimation methods, the results given
above reflect the efficiency of the different estimation proce-
dures for the AMS/EV1 model. Thus for this model ML esti-
mation is more efficient than PWM estimation, which in turn is
more efficient than MOM estimation. Monte Carlo simulation
studies performed by Landwehr et al. [1979] also revealed this
general behavior of the efficiency of the different estimation
methods for the EV1 model. Hence, as a general guideline, the
PDS/EXP model is preferable provided A > 1.64, otherwise
the AMS/EV1 model with ML estimation should be used.

Comparison of PDS/GP and AMS/GEV Models

Asymptotic expressions for the variance of the PDS/GP and
AMS/GEV T-year event estimators are given in the appendix.
For all three estimation methods, the asymptotic variance of
the PDS/GP T-year event estimator can be written

2

o
varpps {§1} = i) gi(x, A, T) (20)
Similarly, for the AMS/GEV estimator one obtains
a*z az
varavs {47} = e gk, T) = IR gax, T) (21)

where (11) has been used. Comparison of (20) and (21) reveals
that the variance ratio varpps{§+}/varavs{d,} depends only
on k, A, and T; that is, « of the parent PDS model can be
chosen arbitrarily. Thus for a given return period and a given
shape parameter the value of A that yields equal asymptotic
variances of the two-estimators can be found. First, however, a
Monte Carlo simulation study is performed to evaluate the
small sample properties of the model comparison. In this case
a new parameter, the number of recording years ¢, has to be
taken into account.

Simulation Algorithm

The simulation is complicated by the fact that the GEV
distribution is defined only for values larger than the threshold
level applied in the PDS. Simulation of a PDS sample from a
parent GP distribution corresponding to a chosen A (and hence
a threshold level g,) does not provide sufficient information
about the AMS sample, since the annual maximum will be less
than g, in a single year with probability exp (—A). Similarly,
simulation of an AMS sample from a parent GEV does not
provide adequate information about the corresponding PDS.
To overcome this problem, one may exploit the fact that a
truncated GP distribution remains a GP distribution with the
shape parameter unchanged. The simulation algorithm is as
follows:

1. Choose an initial value of the mean annual number of
exceedances, Ao, in the PDS that implies the probability of no
exceedances in a year, exp (—\,), to be small. Also choose,
independently of A, a threshold level g, = 0 and the GP scale
parameter ay > 0.

2. The number of exceedances n; in a single year is simu-
lated from a parent Poisson distribution with parameter A,.
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For a given value of the « parameter, the n; exceedances, x;,
j=1,2,..., n; are drawn from a parent GP distribution
with parameters o, and «, and the annual maximum is then
determined as q; = max {x;} + g, This step is repeated ¢
times to obtain an AMS sample of length ¢ years and an initial
PDS sample with 2n; exceedances.

3. From the initial PDS sample a number of series corre-
sponding to higher threshold levels are extracted. These PDS
samples also have a parent GP distribution with the same « as
the initial parent distribution, and hence T-year event estima-
tors based on the different PDS samples are directly compa-
rable to the AMS T-year event estimator. If M new PDS
samples are generated with mean annual number of ex-
ceedances denoted A,, k = 1, 2, ..., M, the corresponding
threshold levels g, = g4 are (see (8))

Ao\
ge=¢qot+ agin|{ — k=0
As

et A\ e
-]
4. The AMS/GEV T-year event estimator 4§ sns and the
PDS/GP T-year event estimators (G, pps)i- K = 1,2, ..., M
are calculated in the cases of, respectively, ML, MOM, and
PWM estimation following the previously described proce-
dures. '
5. Steps (2)—(4) are repeated a large number of times, and
on the basis of the resulting samples of 7 anms and (47 pps) ks
~ the root mean square errors RMSE{4,} = [E{(E{§s} —
q7)?}]"? are calculated for the three estimation methods
considered.

(22)

qr = 4o Kk # 0

Results

Monte Carlo simulations were performed for sample sizes
t = 10, 30, and 50 years; mean annual number of exceedances
in the range 0.4 = A = 15; and shape parameters in the range
—0.3 =< k = 0.3. For each sample size, 50,000 samples were
generated, and the RMSE of the T-year event estimates cor-
responding to 7 = 10, 100, and 1000 years were calculated.
Note that the RMSE ratio RMSEp,5{§7}/RMSE s s{d 7} is
independent of the basic parameters A, g4, and «,, implying
that the relative performance of the AMS/GEV method is
independent of the coefficient of variation of the parent GEV
distribution.

In the Newton-Raphson algorithm for ML estimation, the
PWM estimators were used as initial values. The Newton-
Raphson algorithm occasionally fails to converge, and such
failures are mostly caused by the nonexistence of a maximum
of the log likelihood function rather than by a bad choice of
initial- estimates [Hosking et al., 1985b; Hosking and Wallis,
1987]. Nonconvergence of the ML algorithm was a particular
problem for small sample sizes and large (positive) k. Another
problem of the ML algorithrh related to small samples was
observed. In some cases the ML procedure resulted in very
extreme T-year event estimates implying unstable estimates of
the RMSE. To circumvent this problem, it was decided to
exclude samples that gave a T-year event estimate larger than
the event corresponding to a return period of 10* times T. The
proportion of samples excluded because of nonconvergence of
the Newton-Raphson algorithm or generation of very unrea-
sonable T-year event estimates was found significant only for
t = 10 years. Also, in the case of MOM estimation some

(a) ML estimation
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(c) PWM estimation
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Figure 1. Ratio of simulated RMSE of T-year event estima-

tors based on, respectively, the PDS/GP and the AMS/GEV
model. Record length ¢ = 30 years, and return period T =
100 years. (a) ML estimation, (b) MOM estimation, and (c)
PWM estimation.

generated samples provided unreasonable 7-year event esti-
mates and hence unstable estimates of the RMSE. The pro-
portion of samples excluded in this case, however, was at most
2-3 of 50,000 for all sample sizes considered.

For different values of «, the RMSE of the PDS/GP and
AMS/GEV models are compared in Figure 1 for ¢ = 30 years
and T = 100 years. If the RMSE ratio RMSEppg{g,}/
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Table 1. Mean Annual Number of Exceedances in PDS to Obtain Equal Performance of PDS/GP and AMS/GEV T-Year
Event Estimators for Different Shape Parameters k, Record Lengths ¢, and Return Periods T

T = 10 T =100 T = 1000
K t =30 t = t =10 t = 30 t =50 t = t =30 t = oo
ML Estimation
-0.3 <0.4 0.70 <0.4 <0.4 1.1 2.31 <0.4 2.32
-0.2 <04 0.77 <0.4 <0.4 1.1 2.26 0.9 2.27
-0.1 <0.4 0.87 VU <04 1.1 221 0.7 2.22
0.0 0.7 0,99 vu <0.4 1.1 2.14 0.7 2.16
0.1 0.7 1.15 vu <04 1.1 2.08 0.9 2.11
0.2 0.8 1.30 \'AS} <0.4 1.3 1.92 0.9 2.05
0.3 0.9 1.41 vuU <0.4 1.4 0.64 0.9 T 201
MOM Estimation
-0.3 <0.4 NA 0.6 <0.4 <0.4 NA 0.8 NA
-0.2 <0.4 NA 1.0 0.5 <0.4 NA 2.7 NA
-0.1 <0.4 0.12 2.1 1.4 1.3 - 0.01 52 0.01
0.0 0.7 0.91 5.8 35 30 0.14 4.5 091
0.1 1.1 1.07 10.3 6.3 55 3.66 5.0 2.60
0.2 >15 160 >15 >15 >15 194 8.5 6.73
0.3 >15 3840 >15 >15 >15 156 >15 19.8
PWM Estimation
-03 0.9 0.55 6.5 1.5 <0.4 0.98 13 1.18
-0.2 1.0 0.76 33 1.7 1.5 1.35 1.5 1.50
-0.1 1.0 0.87 29 2.4 2.2 2.17 1.9 2.06
0.0 >15 21.0 4.5 4.5 44 4.42 2.8 3.11
0.1 >15 110 79 9.9 10.9 12.2 43 544
0.2 >15 798 >15 >15 >15 499 7.0 12.2
0.3 >15 16,200 >15 >15 >15 >15 49.9

455

Results are obtained from simulations (¢ = 10, 30, 50) and asymptotic theory (¢t = ).
T and ¢ are in years. VU, values are unreliable since more than 10% of the generated samples were excluded because of nonconvergence of
the Newton-Raphson algorithm or generation of unreasonable T-year event estimates; NA, no approximate solution exists.

RMSE\s1d 7} in this figure is less than 1, the PDS/GP esti-
mator is more efficient. The value of A to obtain equal RMSE
of the two estimators, A, is shown in Table 1 for different
combinations of ¢ and T. For A larger than A, in this table, the
PDS/GP estimator is more efficient. In general, the PDS model
becomes more efficient as A increases, although the relative
performance of the PDS model depends strongly on the esti-
mation method and the shape parameter.

In the case of ML estimation, for ¢ = 30 years and 7' = 100
years (see Figure 1a) the RMSE ratio is smaller than 1 irre-
spective of A (A > 0.4), implying that the PDS model should
always be preferred. The value of A, increases slightly as «
and/or ¢ increases (see Table 1), However, since typical A
values fall in the range of 2-5, the results indicate that for most
practical purposes, the PDS/GP model provides the most effi-
cient T-year event estimator for ML estimation. In the case of
MOM estimation (see Figure 1b and Table 1), A, varies widely
for k values in the range —0.3 = k = 0.3. The value of A,
increases as « increases, and for large (positive) « a very large,
and in practice unrealistic, number of exceedances is required
to obtain equal model performance. For typical A values ob-
tained in practice, the PDS model is generally preferable for
negative «k for T = 100 years. For T = 10 years the PDS
model is more efficient also for slightly positive «, and for T =
1000 years, only if « < —0.1. The results from PWM estima-
tion (see Figure 1c and Table 1) are virtually similar to those
obtained for MOM estimation. Also in this case, the PDS
model seems to be a realistic alternative to the AMS model
only for negative k. For very small sample sizes, however, A,
increases for decreasing xk when x < —0.1, and in this case the
PDS model seems preferable only for —0.2 <= k < 0. For T =

1000 years the PDS model may be preferable also for slightly
positive k.

For all estimation methods, the RMSE ratio (and hence the
RMSE of the PDS/GP T-year event estimator) for small values
of A is seen to decrease for decreasing A. This somewhat sur-
prising result suggests that the PDS model in some cases per-
forms better than the AMS model also for small A. This result
was also found by Wang [1991] in the case of PWM estimation,
and he argued that in certain circumstances it may be advan-
tageous to increase the threshold level in order to reduce the
sampling variance. However, since this behavior is observed
only for very small A values, it is of little practical relevance,
and hence no such secondary A, values are reported in Table
L

The asymptotic variance expressions given in the appendix
have been evaluated for different return periods and shape
parameters. The values of A to obtain equal asymptotic vari-
ances of the two estimators are compared with the Monte
Carlo simulated results in Table 1. In the case of ML estima-
tion the asymptotic formulae provide poor estimates of A, for
finite samples. The significant difference between asymptotic
and simulated résults in this case is caused by the generally bad
evaluation of the variances and covariances of the parameter
estimates when based on the expected information matrix. The
inverse of the observed information matrix (i.e., the matrix
evaluated at the estimated parameters) is a better estimator of
the covariance matrix [Prescott and Walden, 1983]. For MOM
estimation an approximate solution for the variance of the
AMS/GEV T-year event estimator exists only for k > —1/6.
For « close to —1/6, the unbounded variance of the AMS/GEV
T-year event estimator causes the asymptotic variance ratio
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Table 2. Standardized RMSE of T-year Event Estimators RMSE{§+}/q . for Estimation
With-the AMS/GEV Model for Different Shape Parameters k, Record Lengths ¢, and

Réturn Periods T

_ T = 100

K T=10,t=30 =10 =30 ¢=50 T=1000,¢= 30

-03 ML 0.20 2.49 0.71 0.41 2.07

MOM 032 0.56 0.44 037 0.56

PWM 0.17 0.63 042 034 1.00

—01 ML 0.12 VU 034 0.23 0.64

MOM 0.13 033 0.22 0.18 033

- PWM 0.12 0.45 0.26 0.20 0.54

01 ML 0.072 VU 0.16 0.11 0.39

MOM 0.071 0.19 0.12 0.092 0.18

PWM 0.071 0.27 0.14 0.11 0.26

03 ML 0.040 VU 0.071 0.048 0.14

MOM 0.040 0.11 0.061 0.047 0.089

PWM 0.041 0.15 0.072 0.054 0.12

T and ¢ are in years. VU, values are unreliable since more than 10% of the generated samples were
excluded because of nonconvergence of the Newton-Raphson algorithm or generation of unreasonable

T-year event estimates.

varppstg 1 /Varastd st to deteriorate and tend to zero. In
practice, only for k > 0.1, the asymptotic formulae provide
reasonable results for moderate sample sizes. In the case of
PWM estimation the results obtained by using the asymptotic
formulae agree fairly well with the Monte Carlo-simulated
values when sample sizes are not too small.

In summary, the results obtained in this section reveal that
the PDS/GP model is generally the most efficient model for
ML estimation. For MOM and PWM estimation the PDS/GP
model is preferable for negative k, whereas the AMS/GEV
model is more efficient for positive k. Important to note is that
the above findings differ significantly from the results of Cun-
nane’s [1973] comparison between the PDS/EXP and AMS/
EV1 models, and hence an interpretation of Cunnane’s results
beyond its assumptions may lead to erroneous conclusions.

Discussion

The above analysis has focused on the choice of model when
a certain estimation method is applied. However, when choos-
ing the most efficient T-year event estimator, one should con-
sider not only the choice of PDS or AMS but also the choice of
estimation method. Thus one has to compare the performance
of six different estimators: PDS/GP-ML, PDS/GP-MOM, and
PDS/GP-PWM for estimation in PDS and AMS/GEV-ML,
AMS/GEV-MOM, and AMS/GEV-PWM for estimation in
AMS. _

Rosbjerg et al. [1992] compared the PDS/GP-MOM and
PDS/GP-PWM methods and showed that except for very large
sample sizes, which are rarely available in practice, MOM
estimation is more efficient for all « in the range —0.5 < k <
0.5. Hosking and Wallis [1987] also applied the ML procedure
and demonstrated that the PDS/GP-ML method is preferable
only for larger samples and for « > 0.2. In addition, they
showed that for small return periods (not considered by Ros-
bjerg et al. [1992]), the PDS/GP-PWM procedure is the most
efficient method. Hosking et al. [1985b] compared the AMS/
GEV-ML and AMS/GEV-PWM methods and concluded that
the PWM method is generally to be preferred for small to
moderate sample sizes. To the authors’ knowledge, no com-

parison has been made with the AMS/GEV-MOM estimation
procedure. :

The RMSE of the T-year event estimator of the three esti-
mation methods for the AMS/GEV model based on the sim-
ulations described in the previous section are shown in Table 2.
For T = 100 years and moderate sample sizes, MOM estima-
tion has the smallest RMSE for —0.25 < « < 0.3, PWM
estimation is preferable for k < —0.25, and ML estimation
(when sample sizes are not too small) is preferable for « > 0.3.
As t decreases and/or T increases, the interval of « values for
which MOM estimation is more efficient tends to increase. For
instance, for T = 1000 years, MOM estimation is more effi-
cient for all shape parameters considered. For T = 10 years,
PWM estimation is preferable for negative , whereas for
positive x the three methods have almost equal efficiency. In
practice, when focus is on high quantile estimation, the simu-
lations reveal that MOM estimation is preferable in most
AMS/GEY cases, in accordance with the results of estimation
in the PDS/GP model. T

For T = 100 years and ¢ = 30 years, the performance of the
six different models are compared in Figure 2. In this case, for
typical values of A in the range 2-5, the following conclusions
are obtained. For negative k, the PDS/GP-MOM method is the
most efficient method; for 0 < « < 0.2, the AMS/GEV-MOM
method is preferable; and for « > 0.2, the AMS/GEV-MOM
method is preferable when A is smaller than about 4, and the
PDS/GP-ML method is preferable otherwise. For larger sam-
ple sizes the PDS/GP-ML method is preferable for « > 0.2,
irrespective of the value of A. For larger return periods the
AMS/GEV-MOM method becomes more efficient for slightly
negative k. Only for small return periods and small « is PWM
estimation preferable. For instance, for T = 10 years the
PDS/GP-PWM method is the most efficient method for k <
—0.2 and A smaller than about 3. In all other cases, the results
obtained for T = 100 years apply. )

Another aspect to consider is the particular case where « is
close to zero. Rosbjerg et al. [1992] evaluated the performance
of the PDS/EXP model when the parent population is GP
distributed. Despite the introduced model error, the EXP dis-
tribution, in terms of RMSE of the T-year event estimator, is
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Figure 2. Standardized RMSE of T-year event estimator RMSE{4,}/q 7 for the six estimation methods
considered. Record length ¢ = 30 years, and return period T = 100 years; (a) k = =03, (b) k = —0.1, (¢)

k = 0.1, and (d) k = 0.3.

more efficient for moderate sample sizes when —0.2 < x < 0.1
for MOM estimation and —0.3 < « < 0.1 for PWM estimation.
For increasing sample size the interval of « values for prefer-
ence of the PDS/EXP model decreases. In the case of estima-
tion with AMS, Lu and Stedinger {1992] obtained virtually
similar results when comparing the EV1 and GEV T-year
event estimators for samples drawn from a parent GEV dis-
tribution. These results suggest that if no. physical evidence
implies a « value significantly different from zero, the PDS/
EXP or AMS/EV1 model should be applied when « is close to
zero. In this case, as shown above, the PDS/EXP model gen-
erally is preferable.

The RMSE as applied in the present study is commonly used
as an overall measure of estimator performance. Kroll and
Stedinger [1996] proposed another performance index based on
the RMSE in log space (L-RMSE). With this index, underes-
timation errors will receive more weight than overestimation
errors. Application of L-RMSE in our comparative study re-
sulted in essentially similar conclusions as application of the
RMSE criterion. The only difference was the relative perfor-
mance of MOM and PWM estimation for very small k {x <
—0.3), where the MOM estimator has a large negative bias. In
this case the L-RMSE of the PDS/GP T-year event estimator

for MOM and PWM estimation suggested equal performance
of the estimators. -

Conclusions

In this paper, estimation of T-year events based on PDS and
AMS data, respectively, has been compared. It has been shown
that a PDS with GP-distributed exceedances and a Poisson-
distributed number of threshold exceedances implies the AMS
to be GEV distributed. The special case of k = 0 corresponds
to PDS with EXP-distributed exceedances and to AMS with an
EV1 distribution. :

In the special case « = 0 the comparison of the PDS/EXP
and AMS/EV1 models by Cunnane {1973] has been reviewed
by including also MOM and PWM estimation for the AMS/
EV1 model. The PDS/EXP model is the most efficient model
provided A > 1.64; otherwise, the AMS/EV1 model with ML
estimation is preferable. .

The performance of the PDS/GP and AMS/GEV models for
ML, MOM, and PWM estimation has been compared using
Monte Carlo simulations as well as asymptotic theory. For all
practical purposes the PDS model provides the most efficient
T-year event estimator in the case of ML estimation. For
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MOM and PWM estimation the PDS model is generally pref-
erable for negative k, whereas for positive « the AMS model is
more efficient. A comparison of the six different models reveals
that in general, one should apply the PDS/GP-MOM model for
negative k, the AMS/GEV-MOM model for 0 < x < 0.2, and
the PDS/GP-ML model for « > 0.2. For small sample sizes,
however, the ML procedure is not advisable, and in this case
the AMS/GEV-MOM model should be applied also for «k >
0.2. When « is close to zero, and no physical evidence suggests
a k value different from zero, the PDS/EXP model is prefera-

ble.
" In conclusion, since heavy-tailed distributions, correspond-
ing to negative «, are far the most common in hydrologic
applications (see, e.g., comprehensive flood frequency studies
by Farquharson et al. [1987] and Gustard et al. 1989) the results
obtained in this study suggest that the PDS model generally is
- to be preferred for at-site quantile estimation.

Appendix: Asymptotic Variance of T-Year
Event Estimators

For the PDS/GP model the asymptotic variance of the T-
year event estimator is obtained from a first-order Taylor series
expansion of (15):

. agr\* . (dar\*
Varpps {4} = (6—;) var {&} + (ﬁ) var {k}

2
+ (%) var {A} + 2(%) (%) cov{&, &} (Al)
where it has been assumed that the sample properties of the
exceedance magnitudes are independent of the sample esti-
mate of A {e.g., Rosbjerg, 1985], that is, cov {X, &} = cov {A, &}
= 0. The bias of the parameter estimates is usually of second
order importance, and the partial derivatives in (A1) are there-

fore for simplicity evaluated at the population values. The
variance of A reads

var {A} = A/t (A2)

where the small sample corrections given by Rosbjerg et al.
[1991] have been neglected since they are relevant only for
N = At < 5. Smith [1984] gave the asymptotic covariance
matrix of the ML estimators of the GP parameters, which for
K < 1/2 reads

& (1 —x)[2a? «
D[k]= N { a 1-K]
The asymptotic covariance matrix of the MOM estimators was
obtained by Hosking and Wallis [1987]:

(A3)

&) 1 (1+ «)?
Dl SN O T 20 + 300 40

20*(1 + 6k + 12&%) a(l + 2k)(1 + 4k + 1247%)
la@ + 2001 + 4+ 1268 (1 + 2021 + K + 62)

(Ad)

Since the asymptotic variance of 6* depends on the fourth
moment, (A4) is valid only for « > —1/4. Hosking and Wallis
[1987] also obtained the asymptotic covariance matrix of the
PWM estimators which for k > —1/2 is given by

: [oﬁ(7 + 18k + 112 + 2«%)
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& 1 1
D[k] TNT+200 + 20
a2 + k)2 + 6k + Tid + 2°)
a2+ K2+ 6x+ 7i¢ + 20 (1 + 102 + K1 + k + 265 ]

’ v (AS)

Rosbjerg et al. [1992] derived small sample correction factors
for the variances and the covariances of the MOM and PWM
estimators conditioned on the number of exceedances. being
greater than or equal to 2. The corrections, however, are rel-
evant only for smaller sample sizes, N < 20, and can therefore
usually be neglected.

For the AMS/GEV model the asymptotic variance of the
T-year event estimator can be written [Rosbjerg and Madsen,
1995]

a*?
varays {47 = e Wi + A(Awy + 2wyy)

+ B(BW33 - 2W13 - 2AW23)] (A6)

where 4 and B are expressed in terms of « and 7. The w; in
(Ab) are elements of the asymptotic covariance matrix of the
GEV parameter estimators

z * %2 *
£ 1 [« Wy atw, atwp
A 2
D|&* | ==|a*w, o*wy, a*wy (A7)
K a*W13 a*W23 Wias

and depend only on the shape parameter «. In the case of ML
estimation the asymptotic properties are obtained by inverting
the Fisher information matrix given by Prescott and Walden
[1980]. The algebraic form of the w;; is very complicated. They
are evaluated numerically for several values of « in Table Al.

In the case of MOM estimation the asymptotic covariance
matrix can be calculated as follows. The moments of the GEV
distribution are given by )

*

p=E+—[1-T+x)]
(A8)

m= (2.?) 2 (f)<~1>'+‘r<[r ~ il + DTk + DY

i=0
r=2’3’...

where u, is the central moment of order r(p, = o), which
exists provided k > —1/r. The sample estimators (&, &2,
fi;)T are asymptotically normally distributed with mean (u,
o2, 3)T and covariance matrix t 1V where ¢ is the number of
observations. The elements of the covariance matrix, for con-
venience written in vector notation V,,, are given by [Kendall
and Stuart, 1963]

vy =t var {i} = o?
Upa = t var {6’2} = g 0'4
Upz =t var {fig} = g — pi— 6p40” + 90°
i (A9)
Uy =t cov {fi, 6%} = p,

Ups =t cov {fi, fis} = py — 30*

Uns =t Cov {82, fis} = ps — 4pu0°
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Table Al. Elements of the Asymptotic Covariance Matrix of the GEV Parameter Estimators
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K Wit Wiz Wis Waz - Was W33
) ML Estimation
-0.4 1.2909 0.7980 0.2637 1.0431 —0.0881 0.8344
-03 1.2866 0.6855 0.2712 0.9136 -0.0178 0.7366
-0.2 1.2784 0.5713 0.2730 0.8056 0.0451 0.6444
—0.1 1.2658 0.4551 0.2687 0.7188 - 0.1000 0.5578
0.0 1.2487 0.3368 0.2583 0.6533 0.1468 0.4770
0.1 1.2273 0.2156 0.2421 0.6083 0.1849 0.4008
0.2 1.2017 0.0919 0.2202 0.5839 0.2140 0.3304
0.3 1.1727 —0.0347 0.1933 0.5795 0.2333 0.2653
0.4 1.1413 —0.1644 0.1623 0.3945 0.2422 0.2058
MOM Estimation
-0.1 1.4641 1.4879 1.0299 8.9121 5.6607 4.3852
0.0 1.3180 0.5247 0.4252 1.2022 0.6217 0.8909
0.1 1.2404 0.2448 0.2677 0.6896 0.2459 0.4520
0.2 1.2144 0.0969 0.2437 0.5959 0.2222 0.3742
0.3 1.2160 —0.0165 0.2777 0.5888 0.2680 0.4305
0.4 1.2401 -0.1177 0.3580 0.6178 0.3337 0.5942
PWM Estimation
-04 1.6637 1.3355 1.1405 1.8461 1.1628 2.9092
-03 1.4153 0.8912 0.5640 1.2574 0.4442 1.4090
—-0.2 1.3322 0.6727 0.3926 1.0013 0.2697 0.9139
-0.1 1.2915 0.5104 0.3245 0.8440 0.2240 0.6815
0.0 1.2686 0.3704 0.2993 0.7391 0.2248 0.5634
0.1 1.2551 0.2411 0.2966 0.6708 0.2447 0.5103
0.2 1.2474 0.1177 0.3081 0.6330 0.2728 0.5021
0.3 1.2438 -0.0023 0.3297 0.6223 0.3033 0.5294
0.4 1.2433 —0.1205 0.3592 0.6368 0.3329 0.5880
On the basis of the relations between the sample moments and [ 5 TR TR 1) 1
the GEV parameter estimators (&, a*, K)T (see (A8)), a 9 da* ok
first-order Taylor series expansion yields ) ) )
4 do* do- d0 (A12)
var {{1} var {&} 9§  da* Ik
A Ak
var ?Z? var {{"ﬂ }} dps s Ous
s | var {fis _ var {k _ 28 da* ox
t VM— cov {’1’ 6'2} =D cov {g’ &*} DVP L § o K J ' .
cov {fx, f13} cov {& ik} and can be calculated from (A8). Note that the derivative of
cov {&?, fiz} cov {&*, k} the gamma function, I'(x), is T'(x)y(x) where y(x) is the
: (A10) digamma function. The vector Vp containing the covariances of
. . . o . the GEV parameter estimators is finally obtained
where D is a matrix of partial derivatives given by - -
-, ) a*iwy,
an ayp a 2ana; o a*w,,
a3 ax al 2anan Was
2 2 2 Ve=t'DWy=1t" Al3
D= a3 as az 2aznas 4 M a*wy, ( )
u@y apdy Apdp Gnént Gpdn a*wys
anas Gpayn Apds Audn T dods a*wys
La”a“ Apfly ands Gndn T ands where the w,; are functions of «. The asymptotic variances and
264813 241 '} covariances of the MOM estimators involve the use of the
central moment of order 6 implying that the asymptotic ex-
2ayax 2a507 pressions are valid only for k > —1/6. Values of w;; for differ-
2a3a3; 2a,03 ‘ ent shape parameters are given in Table Al
(Al1) The covariance matrix of the PWM estimators are obtained

andxy + ands
apds + apds

Ayuds; + apas

Ayt apin
Ay + apds

ands+ ands

The a;; are elements of the matrix .

by using a procedure similar to the one described above for
MOM estimation. The variances and the covariances of the
estimated PWMs are given by Hosking et al. [1985b]. Numer-

ically evaluated values of w,; using these expressions are given
in Table Al.
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