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ABSTRACT

Atmosphere–ocean general circulation models (AOGCMs) are useful for assessing the state of the climate

at large scales. Unfortunately, they are not tractable for the finer-scale applications (e.g., hydrometeorological

variables). Downscaling methods allow the transfer of large-scale information to finer scales and they are thus

relevant for the assessment of finer-scale variables. Among a wide range of downscaling methods, regression-

based approaches are commonly used for downscaling AOGCM data because of their low computational

requirements. However, downscaled variables are generally reproduced at gauged weather stations only.

Results at the gauged stations can then be interpolated a posteriori at ungauged locations with kriging or other

methods.

In this paper, a spatial Bayesian model is proposed for the downscaling of coarse-scale atmospheric data

(i.e., either reanalysis or AOGCM) to minimum and maximum daily temperatures. This approach uses

a Bayesian framework for mixing a prior distribution reflecting the monthly spatial dependence of the

temperatures with the daily fluctuations induced by the atmospheric predictors. Local characteristics (i.e.,

altitude and latitude) are also taken into account in the mean of the prior distribution by using a geographical

regression model. The posterior distribution thus reflects both monthly local patterns because of the prior and

daily larger-scale fluctuations. Finally, the Bayesian approach also allows for the accounting of estimated

parameter uncertainty, making it more stable to poor parameter fitting. The method is applied to the southern

part of the province of Quebec, Canada. Results show that the downscaled distributions of the temperatures

at gauged sites are in sufficient agreement with the validation dataset compared to a classical regression-based

method. The proposed model has also the advantage of directly producing temperature maps.

1. Introduction and review

Over the last couple of decades, atmosphere–ocean

general circulation models (AOGCMs) have been the

main tools for assessing the evolution of the earth’s cli-

mate. They allow the generation of scenarios for climate

evolution at large scale for up to one or two centuries

ahead. Unfortunately, the AOGCM data are generally

produced on horizontal grids with a poor spatial reso-

lution generally ranging from around 2.58 3 3.758 [e.g.,

the third climate configuration of the Met Office Unified

Model (HadCM3); see Gordon et al. 2000] to around

3.758 3 3.758 [e.g., the Canadian Centre for Climate

Modelling and Analysis (CCCma) Coupled General

Circulation Model, version 3.1 (CGCM3.1); see Flato

et al. 2000]. Although quite reasonable for large-scale

processes, this spatial resolution is not tractable for hy-

drological impacts and adaptation applications or mod-

eling (i.e., skillful scale; see e.g., Grotch and MacCracken

1991; Huth and Kyselý 2000). There is thus a real need for

methods and techniques that aim at enhancing the spa-

tial resolution of such models to more relevant regional

scales.

Precisely, statistical downscaling methods are dedicated

to improve the spatial resolution. The main objective of

these methods is to reproduce the local hydroclimatic

variables (the predictands) at a finer scale from the tem-

poral evolution of atmospheric variables (the predictors)

available at a coarser scale mainly from AOGCM outputs.

Among a wide range of techniques (see Benestad et al.

2008 for a detailed review), regression-based methods

are commonly used for downscaling AOGCM data (see

e.g., Wilby et al. 2002; Hessami et al. 2008; Jeong et al.

2010) because of both their ease of implementation and

their low computational requirements (Hessami et al.

2008).
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Regression-based methods perform well for downscal-

ing because the statistic relationships between the differ-

ent predictors and the predictands are case specific. No

matter the reasons for the observed differences between

sites (e.g., different distances with respect to AOGCM

grid points), the regression models will automatically

adapt themselves. As it is the case for most empirical ap-

proaches, a major drawback of regression-based methods

is that estimation is generally restricted to gauged sites,

making it difficult to extend the results to ungauged lo-

cations (i.e., spatial estimation). The three main alterna-

tives are (i) to interpolate the AOGCM predictors first

on the gauged station locations before the regression (see

Michelangeli et al. 2009), (ii) to interpolate the down-

scaled results (see e.g., Bárdossy and Van Mierlo 2000;

Benestad 2002, 2007; Hundecha and Bárdossy 2005), or

(iii) to interpolate the predictands at the gauged stations

on the target regular grid (see Lim et al. 2007; Baigorria

et al. 2008). When using the third alternative, the spatial

and temporal patterns of both processes are captured

first as empirical orthogonal functions (EOFs), which are

then inserted in linear regression models in order to model

the statistical relationships linking the predictors to the

interpolated predictands. This third approach is quite

powerful and reproduces adequately the observed cli-

mate anomalies. However, its main disadvantage is its

large computational requirements that directly depend

on the size of the target regular grid. Consequently, given

the disadvantages of these three options, an alternative

optimal solution would be to directly take into account

the spatial dependence during the downscaling process.

Regression models generally reproduce the mean or

the central part of the predictands. It is, however, more

relevant to build the whole distribution in order to re-

capture the variability of the process as well. In this regard,

probabilistic approaches have provided useful contri-

butions in downscaling applications (see Hughes and

Guttorp 1994; Hughes et al. 1999; Bates et al. 1998;

Bellone et al. 2000; Vrac and Naveau 2007; Vrac et al.

2007). They enable us to model the whole distribution at

once by modeling the influence of the AOGCM pre-

dictors on the parameters of the predictand distributions.

Among probabilistic approaches, Bayesian formulations

present a number of attractive characteristics (see e.g.,

Coelho et al. 2004; Tebaldi et al. 2004; Mendes et al. 2006).

Bayesian approaches have a great potential in the context

of downscaling applications as they enable us to integrate

several sources of information and account for the un-

certainty of the estimated parameters. However, these

approaches have not gained wide acceptance, due mainly

to their theoretical and practical difficulties. Moreover,

spatial estimation at ungauged locations also remains an

issue.

The main objectives of this paper are (i) to propose

a spatial Bayesian model for the statistical downscaling

of large-scale predictors to minimum and maximum

daily temperatures, (ii) to apply the proposed model to

a case study in order to produce maps of temperatures,

and (iii) to make sure that (at least at the gauged stations)

the proposed model provides similar results as other

regression-based methods. The present work focused

on using reanalysis products in the spatial downscaling

model. Future efforts can focus on using AOGCM var-

iables within the same context. The model relies on the

Bayesian framework in order to combine a joint spatial

model for the seasonal norms of both the minimum and

maximum temperatures with the daily corrections in-

duced by the atmospheric predictors. In this paper, the

mean of the prior distribution is estimated with local

characteristics (e.g., altitude and latitude) in a geograph-

ical regression model (GRM). The proposed model then

mixes the finer scale monthly variations due to the GRM

and the large-scale daily variations due to the atmo-

spheric predictors. Consequently, the resulting posterior

distribution reflects both the finer spatial scale and the

daily evolutions. As a result of the Bayesian approach,

prior distributions for the parameters of both the GRM

and the large-scale regression are also accounted for in

the model, thus making it more stable with respect to the

uncertainty of the estimated parameters.

After a brief description of the notations, the pro-

posed spatial Bayesian model is presented in detail with

its properties and its possible future extensions. The

proposed model is then applied to the case of minimum

and maximum daily temperatures in the southern part of

the province of Quebec, Canada. Reanalysis data are

used here in order to assess the potential of the proposed

method. The results are compared with those obtained

with a multiple multivariate linear regression (MMLR)

using the same set of predictors (see appendix A for the

details of this model). We can thus assess the loss/gain of

adequacy as a result of the spatial generalization of the

Bayesian model. A couple of estimated maps directly

provided by the Bayesian model are presented and the

results are spatially validated on an independent dataset

to assess the quality of the downscaled distributions.

2. Spatial Bayesian model

A spatial Bayesian model is presented in this section

in order to circumvent the inability of classic regression

methods to produce spatial estimations at ungauged sites.

The general formulation as well as the modeling assump-

tions are described hereafter. A sampling procedure and

potential generalizations to the method are also proposed

in this section.
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a. Notations

Let xi2R2 be the coordinates of a specific location. At

each location xi, we will consider m different predictands:

Z
( j)

(x
i
), j 5 1, . . . , m

(e.g., m 5 2 if only minimum and maximum tempera-

tures are considered), so that we can define

Z
i
5 [Z

(1)
(x

i
) . . . Z

(m)
(x

i
)]T

(1)

as the corresponding vector of predictands of interest,

where T denotes the transpose of the vector. Let the lo-

cation x0 be the target location for the downscaling pro-

cedure. We denote

Z
0

5 [Z
(1)

(x
0
) . . . Z

(m)
(x

0
)]T

(2)

as the vector of predictands at the target location (i.e.,

generally on a finer regular grid).

Finally, let Yk(Ai) be the kth predictor at the ith

AOGCM grid point. From Yk(Ai), one can define

Y5[Y
1
(A

1
) . . . Y

1
(A

n
) . . . Y

p
(A

1
) . . . Y

p
(A

n
)]T

(3)

as the (np) vector of the p predictors at the n different

AOGCM grid points and

Y
k

5 [Y
k
(A

1
) . . . Y

k
(A

n
)]T

, k 5 1, . . . , p (4)

as the p different subvectors reassembling the predictors

of same nature at the n different AOGCM grid points. In

a downscaling context, one typically tries to estimate the

predictands Z0 with the predictors Y (i.e., to reproduce

the behavior of the finer-scale predictands with the large-

scale predictors). In a probabilistic context, we are thus

looking for the conditional distribution f(Z0jY).

b. General formulation

Let us first assume that each grid point Ai of the

AOGCM model corresponds to a certain spatial area.

Without loss of generality, we use the same notation for

both the grid points and the corresponding areas. For each

predictand j and each area Ai, let us define

Z
( j)

(A
i
) 5

1

jA
i
j

ð
A

i

Z
( j)

(x) dx (5)

as an upscaled version of the predictand on Ai, where

jAij is the area of Ai. The predictand Z( j)(Ai) is thus an

averaged version of the predictand over the spatial area

Ai. Finally, let us define the random vector Z 2 Rmn31

grouping each upscaled predictand at each area with

Z5 [Z
(1)

(A
1
) . . . Z

(1)
(A

n
) . . . Z

(m)
(A

i
) . . . Z

(m)
(A

n
)]T

.

(6)

The random elements of Z are thus upscaled expres-

sions of the different predictands Z( j) on the same scale

and same locations as the predictors Y. Such variables

cannot be observed directly (i.e., hidden variables), but

there exist accurate methods for upscaling stochastic

variables over space (see e.g., Goovaerts 2008 and the

appendix B for more details). Once the upscaled series

of Z have been estimated for a significant period of time

(e.g., using 20–30 yr of historical data), one can model

their relation to the predictors Y with

Z5 g(Y; b) 1 e, (7)

where g(.) is some vector function, b are the parameters

of the function g(.), and e is a zero-mean vector of re-

siduals with covariance matrix Se. As the vectors Z and

Y share the same coarser spatial resolution and the same

locations, we expect that the information on the pre-

dictors Y provided by the predictands Z0 is quite negli-

gible compared to the information provided by the

upscaled predictands Z. In other words, it is reasonable

to assume stochastic independence between predictors

Y and predictands Z0 conditionally to vectors Z:

Z
0
? YjZ. (8)

Thus, Z can be seen as a vector of hidden variables al-

lowing the transfer of information from the predictors Y
to the predictands Z0, Z0, and Z being related by their

spatial dependences [e.g., (cross) covariance functions

or (cross) semivariograms].

Among the set of parameters, let us make the dis-

tinction between the vector b of the parameters of the

regression and the vector a of the parameters of the

prior distribution of the predictands (Z0, Z). We assume

here that b only influences the link between Y and Z,

while a only influences the prior distributions. Addi-

tionally, we assume that a and b are independent. These

assumptions enable us to make several simplifications

hereafter.

As stated at the end of section 2a, what is sought here

is the conditional distribution f(Z0jY) of the local pre-

dictands Z0 given the coarse predictors Y. Using the

assumption of Eq. (8) and the Bayes theorem, we find

that
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f (Z
0
, Z, a, bjY) 5 f (Z

0
, ZjY; a, b) f (a, bjY), (9)

5
f (YjZ

0
, Z; a, b) f (Z

0
, Zja, b)

f (Yja, b)
f (a, bjY), (10)

5
f (YjZ; a, b)

f (Yja, b)
f (Z

0
, Zja, b) f (a, bjY), (11)

5
f (ZjY; a, b)

f (Zja, b)
f (Z

0
, Zja, b)

f (a, b) f (Yja, b)

f (Y)
, (12)

where, for the sake of notation simplifications, we use the

same f(.j.) notation for the different probability density

functions.

Moreover, because of the different hypotheses on both

a and b, we have that f(Yja, b) is in fact equal to f(Y).

After simplifications, we can conclude that f(Z0jY) is

f (Z
0
jY) }

ð ð ð
f (ZjY; b)

f (Zja)
f (Z

0
, Zja) f (a) f (b) dZ da db.

(13)

All the distributions in Eq. (13) are modeled monthly.

Monthly modeled distributions enable us to account for

the seasonal effects on both the prior distributions and

the link between the predictors and the predictands. We

consider here that these distributions are stationary.

However, nonstationary fluctuations can still be induced

by the nonstationary evolutions of the predictors.

Although Eq. (13) is general, it is important to make

specific assumptions on the different distributions present

in this equation. Some particular choices are presented in

the next subsections. However, these choices do not af-

fect the general methodology proposed above.

c. Distributions of the predictands

Gaussian assumptions for f(Z0, Zja), f(ZjY; b) and

f(Zja) are in good agreements with monthly tempera-

ture data. Moreover, these assumptions lead to significant

computational simplifications and are thus particularly

convenient. Indeed, using these assumptions, the function

L(Z
0
, ZjY; a, b) 5

f (ZjY; b)

f (Zja)
f (Z

0
, Zja) (14)

is an exponential function of a quadratic form of (Z0,Z).

Consequently, L(Z0, ZjY; a, b) is proportional to a

multivariate Gaussian distribution. Moreover, one can

prove that the mean vector M(a, b) and the covariance

matrix S of this multivariate Gaussian distribution are

given by

S�1
5 S�1

1
0 0

0 S�1
e � S�1

Z

 !

M(a, b) 5 S S�1
m

0
(a)

mZ(a)

" #
1

0

S�1
e g(Y; b)� S�1

Z mZ(a)

" #( )
8>>>>><>>>>>:

, (15)

where

d S is the covariance matrix of Z0 and Z. It can be com-

puted using, for example, the fitted semivariograms.
d SZ is the submatrix of S corresponding to Z only.
d se is the covariance matrix of the residuals e.
d m0(a) and mZ(a) are the mean vectors of Z0 and Z,

respectively.

This result can be proven (details not shown here) by

identification of the coefficients of the quadratic form

with the corresponding coefficients of the multivariate

Gaussian distribution.

A GRM using longitude, latitude, and altitude at the

same location as Z0 is chosen for the estimation of m0(a)

(see Benestad 2002; Benestad et al. 2008 for more de-

tails) with

m
0;d

5 a
1;d

1 a
2;d

(l� m
l
) 1 a

3;d
(f� m

f
)

1 a
4;d

h 1 «
m;d

, d 5 1, . . . , 12, (16)

where (i) l, f, and h are, respectively, the longitudes,

latitudes, and altitudes of the location; (ii) mf and ml are

the mean of the observed weather stations latitudes and
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longitudes, respectively; and (iii) the vectors a1;d, . . . ,

a4;d have size m and are subvectors of a. In accordance

with the International Organization for Standardization

(ISO 2533:1975; see the ISO Web site online at http://

www.iso.org/), the parameters a4;d are all set so that the

lapse rate is 6.58C km21, which also corresponds ap-

proximately to the mean rate of pseudoadiabatic near

the ground at around a normal range of atmospheric

pressures. The other parameters are fitted using ordi-

nary least squares (OLS). Finally, as recommended by

Benestad (2005) and Benestad et al. (2008), the monthly

observed errors «m;d are interpolated using inverse dis-

tance interpolation over space and are added in Eq. (16) in

order to correct the observed offsets at the gauged sta-

tions. The parameters of the inverse distance interpolation

are fitted using a leave-one-out procedure for each month.

As the GRM provides the monthly mean at any lo-

cation, the elements of the prior mean mZ(a) can be

evaluated by averaging the GRM for each predictand j

and on each area Ai using the same formula as in Eq. (5).

This procedure ensures a more coherent estimation of

mZ(a).

In a Bayesian context, the function L(Z0,ZjY; a, b) is

known as the likelihood function and corresponds to the

distribution of the predictands if the parameters where

exactly known. Incidentally, sections 2d–f are dedicated

to the parameters prior distributions and to the estima-

tion of the posterior distribution of Eq. (13).

d. Distributions of the parameters a and b

There are two sources of uncertainty in the GRM: (i)

the uncertainty of «m;d (i.e., around the model itself) and

(ii) the uncertainty due to the estimation of the param-

eters a. The fitted GRM is corrected by adding the in-

terpolated errors «m;d in order to respect the seasonal

characteristics at gauged weather stations. A Gaussian

semivariogram-like model using the distance to the clos-

est station is chosen here in order to account for this

source of uncertainty. The variance of this Gaussian

semivariogram model is chosen as the observed variance

of «m;d and the range parameter is set to 100 km. This

results in an increasing uncertainty with respect to the

distance to the gauged stations, while preserving the ob-

served seasonal characteristics. Let us define Sm as the

diagonal covariance matrix that is constructed using the

Gaussian semivariogram model. As stated in section 2c,

the parameters a are fitted monthly using an OLS pro-

cedure. The OLS estimators are generally considered to

be asymptotically multivariate Gaussian, unbiased, and

with a covariance matrix Sa that depends on the co-

variance matrix of the errors «m;d.

The distribution of b is linked to the choice of function

g(.) in Eq. (7). Among other possibilities and similarly to

the model in appendix A, an MMLR model is assumed

here

g(Y; b) 5 b
0,d

1 b
1,d
Y, d 5 1, . . . , 12, (17)

where b0,d is the subvector of b corresponding to the

intercepts of the dth month and b1,d is a m 3 (np) matrix

with the slopes corresponding to the different predictors

Y. First, as expressed in appendix A, this kind of relation

is commonly used in downscaling methods because of its

ease of implementation and its low computational rate.

Second, similarly to the estimator of a and G (see ap-

pendix A), the OLS estimator for the parameters of this

model is known to be unbiased and asymptotically mul-

tivariate Gaussian with a covariance matrix Sb that de-

pends on the covariance matrix of the errors Se.

e. Estimation of the posterior distribution

By substituting all distributions in Eq. (12), it is pos-

sible to derive the expression of the posterior distribu-

tion f(Z0jY). It is not straightforward to find an analytical

expression of this posterior. However, the structure of the

model enables us to sample directly in the posterior with

the following sampling algorithm

ALGORITHM

1) Draw a sample ebi in f(b) (i.e., in a Gaussian distribu-

tion with mean vector equal to the OLS estimator for

the parameters and covariance matrix equal to Sb).

2) Similarly, draw a sample ea
i
in f(a) (i.e., in a Gaussian

distribution with mean vector equal to the OLS es-

timator for the parameters and covariance matrix

equal to Sa).

3) Draw a Gaussian perturbation g(e
m;d)

i
with zero mean

and covariance matrix Sm.

4) Using the samples eai and g(e
m;d)

i
, compute the per-

turbated valuese(m
0
(eai))i for the GRM in Eq. (16).

5) Using the samples ebi ande(m
0
(eai))i, draw a sample

(eZ
0
, eZ)i in the Gaussian distribution with the param-

eters given in Eq. (15).

6) Return to the first step until the number of simula-

tions is reached.

Using this algorithm, the resulting sequence (eZ
0
)

i
is a

random sample of the distribution f(Z0jY) so that any

properties of this distribution can be directly estimated

from the random sample (eZ0)i (e.g., mean, standard de-

viation, mode, and median).

f. Properties and potential extensions of the approach

The use of upscaled predictands Z can be questioned.

There are, however, several justifications for this particular

choice. Given the change of spatial scale between pre-

dictors and predictands, one can only expect the predictors
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to provide information on the smoother part of the

physical process. Indeed, the small structures at finer

scale (i.e., the observed predictands) are more likely to be

induced by the prior mean (i.e., the GRM regression). On

the other hand, upscaled predictands Z share the same

scale and the same location with the predictors Y. One

can thus expect to observe the same spatiotemporal pat-

terns in the upscaled predictands as in the predictors. The

statistical link between the predictors and the upscaled

predictands should thus be more direct than when using

the original predictands. Thus, as the predictors and the

original predictands do not share the same location (nor

the same scale), upscaling the predictands is preferred

to interpolating in order to account explicitly for the

change of scale. Moreover, thanks to the spatial averaging,

the upscaled variables are more stable than the inter-

polated ones. As a direct consequence of this stability,

the estimation of the parameters b in the function g(.)

gains also in both precision and relevance.

It is important to underline that the conditional inde-

pendence assumption in Eq. (8) is rather weak (i.e., it

is not too restrictive). It is at least weaker than impos-

ing a direct relation between Z0 and Y as the location of

Z0 changes along the estimation map. Moreover, in the

absence of clear information about this conditional re-

lation, the maximum entropy solution (i.e., the solu-

tion that minimizes the effects of a particular choice of

link) is to assume the conditional independence (see

e.g., Bogaert and Fasbender 2007 for a discussion of this

property). Consequently, the applicability of this Bayesian

spatial model is potentially wide. Even if linear re-

lations are assumed here, the use of this conditional

independence assumption enables us to consider non-

linear relations, which is generally not possible when using

classical spatial methods, such as cokriging approaches.

It also enables us to separate the spatial component [i.e.,

f(Z0, Zja)] from the information concerning the injec-

tion of the predictors [i.e., f(ZjY; a)] and the estimation

of the uncertainty of the parameters [i.e., f(a) and f(b)].

Consequently, each of these components is focused sep-

arately, which is much easier than to model the whole

distribution at once.

As a direct consequence of the underlying spatial model,

it is straightforward to include observed series at other

weather stations. Setting ZS as the observed values corre-

sponding to these new weather stations, the main differ-

ence would be to replace the prior distribution f(Z0, Zja)

with the conditional prior f(Z0, ZjZS; a) in Eqs. (11)

and (12). To make this substitution, one must assume

f (YjZ
0
, Z

S
, Z; a, b) 5 f (YjZ; a, b) (18)

instead of the assumption in Eq. (8). Thanks to this

property, it is possible to account for information with

different spatial resolutions, namely at-site observations

ZS and AOGCM predictors Y, within a unified theoreti-

cal spatial framework. Of course, in a forecasting context,

this property is not of great support as at-site observations

will no longer be available. The assessment of this abil-

ity of the proposed approach will be addressed in future

research.

A second direct consequence of the spatial model is

that one could also consider the variable Z0 to be mul-

tisite as well. Again, the main change is the conditional

independence assumption of Eq. (8). If one considers Z0

as a vector of multisite predictands, then the assumption

is stronger, since it implies more variables. However, the

expressions in Eqs. (9)–(12) and the simulation procedure

remain the same. Similarly to multiple multivariate linear

regression, the main advantage of this extension is that

jointly considering multisite predictands will enable us

to account for their spatial dependence. Although this

approach is not tractable in practice when estimating a

whole map for a large area, this could be particularly in-

teresting when downscaling AOGCM predictors at only

a small number of sites (e.g., weather stations).

By construction, the proposed method can provide

spatial estimates for the predictands. This is due to the

spatial covariance model that is more general than site

specific models (e.g., the MMLR models in appendix A).

However, at gauged locations, site specific models will

generally perform more adequately since they are inci-

dentally specific to these weather stations. As an example,

the spatial model ensures that the covariance between

two predictands is always the same for a given spatial lag.

This is not necessarily respected in real-case applications.

This leads to a drop of precision that is expected to grow

as the actual covariances between series diverge from the

spatial covariance model. We empirically evaluate this

loss of precision at gauged locations in the results section.

3. Case study

To illustrate the potential of the proposed Bayesian

spatial model of section 2, a case study is proposed in this

paper. In subsections 3a–c, details are provided con-

cerning the study area, the variables at hand and the data

processing. Section 3c is also dedicated to the definition

of the different quality criteria that are used in section 4.

a. Data and study area

The study area is located in the southern part of the

province of Quebec, Canada. Nine series of observed

daily minimum and maximum temperatures are selected

as predictands: Cedars, Drummondville, Seven Islands,

Bagotville, Quebec, Sherbrooke, Maniwaki, La Pocatiere,

and Mont-Joli, Canada (Data Access Integration 2009).
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Three additional stations are also selected in the same

region for the spatial validation of the proposed model:

Baie-Comeau A, Notre Dame du Lac, and La Tuque,

Canada. Figure 1 shows the location of these stations around

the St. Lawrence River and the Gulf of St. Lawrence. All

homogenized temperature data series (from Environ-

ment Canada weather stations) are provided by Vincent

et al. (2002), except Baie Comeau and Notre Dame du

Lac, which come from the National Climate Data and

Information Archive of Environment Canada (see on-

line at http://climate.weatheroffice.gc.ca/climateData/

canada_e.html). All series cover the period between

1 January 1961 and 31 December 2000 (i.e., 14 610 days).

The number of unobserved daily values in the original

time series ranges between 0 and 478 values depending

on the location. Days with at least one missing value are

removed in the analysis. For the validation of the method,

the total dataset is divided into two independent subsets:

a calibration period between 1961 and 1990 (i.e., 10 957

days) and a validation period between 1991 and 2000 (i.e.,

3653 days).

The region covered by the 9 weather stations is rather

homogeneous in latitudes (between 458 and 508N), in

longitudes (between 658 and 77.58W), and in altitudes

(between 0 and 1025 m above sea level; see Fig. 2; more

information is available online at http://www.geogratis.ca/

geogratis/fr/index.html). The region’s climate is conti-

nental, distributed from moderate in the south to sub-

polar in norther areas, with cold winters and hot–mild

summers modulated by the presence of water masses as

the Gulf of St. Lawrence (see further details in Gerardin

FIG. 1. Weather stations and AOGCM grid points located

around the Gulf of St. Lawrence. Calibration stations: 1) Cedars, 2)

Drummondville, 3) Seven Islands, 4) Bagotville A, 5) Quebec, 6)

Sherbrooke A, 7) Maniwaki Airport, 8) La Pocatière, and 9) Mont-

Joli A. Validation stations: (a) Baie-Comeau A, (b) Notre Dame

du Lac, and (c) La Tuque.

FIG. 2. Digital Elevation Model for the study area. The spatial resolution is 0.18 in both latitude

and longitude (approximately 6–10 km).
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and McKenney 2001). For a given day, we observe that

the nine temperature series are rather homogeneous with

only few differences along the location, except when

prominent cyclonic systems are moving from southern

areas or in development over the Atlantic coastlines es-

pecially in the winter season. Figure 3 illustrates two ex-

amples of maximum and minimum daily temperatures

evolutions in the case of Cedars and Seven Islands sta-

tions for the year 1981. One can check that both series

share in most cases similar daily variations, while the an-

nual mean values of the temperatures are lower at Seven

Islands (i.e., the most Nordic station of the study area).

Table 1 confirms this general observation by comparing

the annual means and annual standard deviations in

decreasing latitudes. The presence of the water masses

(i.e., estuary and Gulf of St. Lawrence) tends to reduce the

continental conditions of the climate and the diurnal and

annual temperature range (see Gerardin and McKenney

2001).

To assess the potential of the proposed method, we

use in this study the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis products (e.g., Kalnay et al.

1996; Kistler et al. 2001). The 2.58 3 2.58 original NCEP

data are interpolated on the 3.758 3 3.758 CGCM3 grid

(Gaussian), corresponding to the third generation of the

coupled Canadian Global Climate Model (see Scinocca

et al. 2008). In addition to the interpolation procedure,

TABLE 1. Annual statistics for the nine weather stations in decreasing latitudes.

Max temperature (8C) Min temperature (8C)

Station Lat (8) Annual mean Annual SD Annual mean Annual SD

Seven Islands 50.22 5.13 10.90 24.03 11.81

Mont-Joli A 48.60 7.12 11.80 21.21 10.49

Bagotville A 48.33 7.42 13.45 22.93 12.74

La Pocatière 47.36 8.38 12.20 20.68 11.29

Quebec 46.79 8.71 12.62 20.56 11.49

Maniwaki Airport 46.27 9.49 12.72 22.54 12.69

Drummondville 45.88 10.31 12.74 0.64 12.12

Sherbrooke A 45.43 9.88 12.23 21.57 11.92

Cedars 45.30 10.21 12.32 1.89 11.80

FIG. 3. Evolution of (a) maximum and (b) minimum daily temperatures for Cedars (south; in

black) and Seven Islands (north; in gray) for the year 1981.
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all NCEP–NCAR data has been averaged on a daily

basis from 6 hourly data, before being linearly inter-

polated to match the CGCM3 data (see all details about

the preparation of NCEP–NCAR and CGCM3 pre-

dictors in DAI Team 2008), as the final objective is to

use AOGCM predictors. However, the calibration pro-

cedure of all statistical downscaling models requires first

reanalysis datasets before to use properly the AOGCM

predictor variables. At each gridpoint location, 25 dif-

ferent NCEP predictors are provided (see Table 2). The

six closest grid points in the southern part of the prov-

ince of Quebec are selected (see Fig. 1). For each date,

150 covariates are thus available for the downscaling

process. A principal component analysis (PCA) is first

performed in order to reduce this number to 40. Indeed,

using the first 40 principal components (PCs) enables us

(i) to remove correlations between the predictors, (ii)

to obtain uncorrelated estimates of parameters b for a

given month, and (iii) to prevent overfitted regression

while preserving more than 97% of predictor variance.

It is important to note that for areas located in high

absolute latitudes, the corresponding grid cells cannot

be assumed to be rectangular. Indeed, in the Northern

Hemisphere, the top edge of the grid pixels is smaller

than the bottom edge (and reversely in the Southern

Hemisphere) and these edges are not linear. Figure 1

illustrates this phenomenon on the six selected grid

pixels. The direct consequence for the present study is

that higher latitude grid points correspond to smaller

areas. This has an effect on the values of the regularized

covariance functions.

b. Application of the model to the case study

The prior means are modeled using the GRM pro-

posed in section 2c. However, the linear spatial distribu-

tion of the stations does not permit to distinguish between

the effects of the latitude and the longitude (i.e., co-

linearity). In this study, GRM are thus assumed to vary

only with the latitude and the altitude [i.e., all the pa-

rameters a2;d in Eq. (16) are set to 0]. Residuals of this

regression model are then interpolated over space and

added using an inverse distance interpolation. The power

parameters for the inverse distance are fitted monthly

using a leave-one-out procedure (see Table 3) while the

variance of this interpolation is modeled as a Gaussian-

like semivariogram function with a variance equal to the

observed variance of the GRM residuals and a range equal

to 100 km. This approach enables us to consider the un-

certainty as proportional to the distance to the closest

observed weather station. The final GRM is then spatially

validated using a leave-one-out cross-validation pro-

cedure. Figure 4 shows the comparison between the

monthly modeled standard deviations of the GRM and

the observed monthly RMSE of the cross validation (av-

eraged over space). One can see that the GRM standard

deviations are in satisfactory agreements with the cross-

validation RMSE, the differences between the lines being

rather negligible.

The joint spatial model for both minimum and maxi-

mum daily temperatures is fitted monthly using the lin-

ear model of coregionalization (LMC; see e.g., Chilès

and Delfiner 1999) on the observed covariances between

series and the corresponding spatial lags (see Fig. 5). To

prevent the spatial deformations due to high latitudes,

Universal Transverse Mercator (UTM) coordinates are

used for the computation of spatial lags instead of the

original (l, f) coordinates of the Gaussian grid. As the

temperatures present a smooth spatial behavior, a com-

bination of a Gaussian model with a range equal to

1500 km and of a nugget model is selected. The 12 dif-

ferent models are validated using 2000 Gaussian random

simulations at the same locations. As the experimental

semivariograms belong to the 95% confidence interval

(see Fig. 5 for January), this validation procedure confirms

that the chosen spatial model is in acceptable agreement

with the variability of the empirical semivariograms ob-

served in equivalent conditions (i.e., same 9 locations,

same theoretical spatial model, etc.). Figure 6 shows the

monthly evolution of the different parameters. Generally

speaking, there is a stronger spatial dependence during

the summer than during the winter since the proportion

of the nugget effect is smaller during the summer. This

TABLE 2. NCEP predictor variables on the CGCM3 grid.

No. Predictors No. Predictors

1 Mean sea level pressure 14 500-hPa divergence

2 1000-hPa wind speed 15 850-hPa wind speed

3 1000-hPa U component 16 850-hPa U component

4 1000-hPa V component 17 850-hPa V component

5 1000-hPa vorticity 18 850-hPa wind vorticity

6 1000-hPa wind direction 19 850-hPa geopotential

7 1000-hPa divergence 20 850-hPa wind direction

8 500-hPa wind speed 21 850-hPa divergence

9 500-hPa U component 22 500-hPa specific humidity

10 500-hPa V component 23 850-hPa specific humidity

11 500-hPa vorticity 24 1000-hPa specific humidity

12 500-hPa geopotential 25 Mean temperature at 2 m

13 500-hPa wind direction

TABLE 3. Monthly estimation for the inverse distance power

parameters for both minimum and maximum temperatures.

J F M A M J J A S O N D

Tmax 1.18 8.24 6.44 9.00 9.84 1.62 7.96 3.07 2.09 5.52 1.89 8.38

Tmin 4.61 4.39 8.95 8.49 8.72 3.71 4.66 3.49 5.95 5.73 9.50 2.83
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is compatible with higher variability in winter than in

summer for both the minimum and maximum daily tem-

peratures across all regions. This seasonal difference in

the variability is even more pronounced in northern areas

(see Gerardin and McKenney 2001; Gachon et al. 2005).

For the maximum temperatures, the variance is higher

between April and June. This is due to the fact that the

maximum daily temperatures in the southern part of the

study area increase earlier than in the northern part,

where prevalent winter conditions can persist over spring

months. This results in a larger spatial variance in the LMC

model. Similarly, the spatial variances of minimum tem-

peratures are larger during winter because the north-

ern minimum temperatures can drop significantly lower

than in the southern part, with more persistent or longer

duration of colder conditions in northern areas (see

further details in Gachon et al. 2005).

Using the fitted spatial model, the upscaled variablesZ
are estimated using the theory of regularized covariance

functions (Goovaerts 2008; see appendix B for more de-

tails). The means of the upscaled predictands are com-

puted by averaging the GRM on the corresponding area

so that Eq. (B5) can be used instead of Eq. (B6). As ex-

pected, these upscaled variables reflect smoother time

series than the original series of observations since the

upscaled variables result from a spatial average (not

shown here).

The estimated upscaled predictands are then used to

fit the MMLR model of Eq. (7) with the decorrelated

predictors Y. Monthly covariance matrices S� for the

regression are then estimated based on the observed re-

siduals. The covariance matrices Sb for the estimated

parameters are computed using the classic properties of

MMLR models. This completes the expressions of both

the conditional pdf f(ZjY; b) and the prior f(b). Similarly,

the MMLR model presented in appendix A is applied

to the dataset using the same decorrelated predictors Y.

One can thus compare the results of the proposed spa-

tial mdel with those of this classical regression-based

approach.

Finally, the sampling algorithm proposed in section 2e

is applied using the modeled conditional and prior dis-

tributions. In this paper, the number of simulations is set

to 1000. The samples are then used for the estimation of

the posterior mean vector and the posterior covariance

matrix of the predictands.

c. Quality assessment

A first quality assessment is carried out through a di-

rect comparison of the downscaled distribution f(Z0jY)

and the true observations. The mean error (ME) and the

root-mean-square error (RMSE) are computed using the

difference between the observation and posterior mean.

The ME measures the accuracy of the downscaled dis-

tribution while the RMSE measures the precision. One

can then compare the RMSE values with the posterior

standard deviations, as they depict the same property of

the distribution. Indeed, close RMSE and posterior stan-

dard deviation values indicate that the proposed spa-

tial model correctly depicts the variability. Additionally,

FIG. 4. Visual comparison between the estimated standard deviation provided by the GRM

(circles) and the observed RMSE computed using a leave-one-out cross validation (triangles)

for (a) the maximum temperatures and (b) the minimum temperatures.
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building the 95% credibility intervals and checking that

approximately 95% of the observations fall within the

interval also somewhat validate the modeled distribution

of the downscaled predictands.

A set of several monthly and seasonal climatic indices

are also chosen for assessing the performance of the

downscaling models. The definitions of the climatic in-

dices are presented in Table 4. They were proposed in

the context of Nordic climates. They reflect the frequency,

intensity, and duration temperature extremes. They, thus,

ensure that the downscaled series depict correctly the

observed climate (see Hessami et al. 2008; Gachon et al.

2005; Wilby et al. 1998, 2002). The DTR index mea-

sures the mean of the diurnal temperature range (i.e.,

the difference between maximum and minimum tem-

peratures) and is computed on a seasonal basis. The frost

season length (FSL) index measures the number of days

per year separating 5 consecutive days of freezing con-

ditions (i.e., Tmean , 08C) to 5 consecutive days of thaw

conditions (i.e., Tmean . 08C), where Tmean 5 (Tmin 1

Tmax)/2. Similarly, the growing season length (GSL) index

measures the number of days per year separating 5 con-

secutive days for which Tmean . 58C to 5 consecutive days

for which Tmean , 58C and represents the growing season.

The FR-Th index measures the number of days per month

of freeze and thaw cycle (i.e., Tmax . 08C and Tmin ,

08C). Finally, the Tmax90 and Tmin90 indices are the

90th seasonal percentiles of Tmax and Tmin, respectively.

4. Results

The proposed spatial model was applied on the study

area. Figure 7 illustrates the maximum (left panels) and

minimum (right panels) predictions of temperatures for

a couple of specific dates corresponding to some large

observed anomalies in both the calibration and the vali-

dation periods. Figures 7a,b show the estimated maps for

3 January 1981. Even if this day was characterized by very

low temperatures, the influence of the predictors en-

abled us to reproduce the very low temperatures in the

estimated maps. Similarly, Figs. 7c,d show that the spa-

tial Bayesian approach was able to correctly estimate the

temperatures for 28 March 1998, even if the actual ob-

served temperatures were quite large for this period of

the year (approximately 108C above the seasonal aver-

ages). The last example corresponds to 31 August 1994

FIG. 5. Visual validation of the fitted multivariate semivariogram model (bold lines) for January. The 95% con-

fidence intervals (dashed lines) are computed using the 2000 simulations. The fitted model is in agreement the

observations as the empirical semivariograms (stars) belong to the 95% confidence intervals for (a) the maximum

temperatures, (b) the couple maximum–minimum temperatures, and (c) the minimum temperatures.
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for which the proposed approach correctly estimated very

low temperatures (58–108C below the seasonal averages)

with freezing conditions in higher altitudes and latitudes

(Figs. 7e,f).

The proposed approach allowed to model not only the

mean of the conditional pdf f(Z0jY) (see Fig. 7) but also

the whole distribution. It was thus interesting to focus on

the conditional standard deviation. Figure 8 illustrates the

map of the estimated standard deviation for 31 August

1994. It was observed that the standard deviation of the

model is smaller for locations close to the gauged weather

stations. This was mainly due to the modeled uncertainty

of the GRM. On the other hand, the large-scale dif-

ferences were mainly due to the influence of the NCEP

predictors over both gauged and ungauged sites, which

cannot capture all atmospheric features related to local-

scale temperature characteristics. Indeed, the covariance

matrix of the residuals in Eq. (7) contained different

variances depending on the upscaled predictand loca-

tion, so that the precision of the regression was not ho-

mogeneous over the study area. Finally, it was computed

that 10%–30% of the total variance for the maximum

temperatures and 5 to 10% of the total variance for the

minimum temperatures was due to parameter uncer-

tainties. However, the difference for the 95% credibility

intervals with and without consideration of the param-

eter uncertainty ranged between 0.58 and 28C in both

cases. Therefore, parameter uncertainty was almost non-

influent in this case.

Table 5 shows the mean RMSE values between the

observed and the 1000 daily simulated series based on

the proposed Bayesian method for each of the climatic

indices proposed in Table 4. Table 6 presents the same

indices but for the MMLR model of appendix A. One can

see that the results of the MMLR were in general slightly

FIG. 6. Evolution of the fitted parameters for the different components of the spatial model and for each month:

(a) monthly variances of maximum temperature, (b) monthly covariances between maximum and minimum tem-

peratures, and (c) monthly variances of minimum temperature.

TABLE 4. Definition of the climatic indices used for the per-

formance assessment of downscaled temperatures. Here Tmean is

defined here as (Tmin 1 Tmax)/2.

Indices Definition Unit

Time

scale

DTR Mean of diurnal temperature

range

8C Season

FSL Frost season length Days Year

Days between 5 consecutive

Tmean , 08C and 5 consecutive

Tmean . 08C

GSL Growing season length Days Year

Days between 5 consecutive

Tmean . 58C and 5 consecutive

Tmean , 58C

FR-Th Days with freeze and thaw cycle

(Tmax . 08C, Tmin , 08C)

Days Month

Tmax90 90th percentile of daily Tmax 8C Season

Tmin90 90th percentile of daily Tmin 8C Season
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better than those of the proposed spatial model. This

was not surprising since the MMLR model accounted for

more specific relationships between the NCEP predictors

and the predictands at the nine weather stations while the

proposed spatial model took into account the NCEP

predictors through the upscaled predictands. Moreover,

even the links between the predictands themselves were

more specific when using MMLR. Indeed, in the case of

the MMLR, two couples of stations sharing the same

spatial lag did not especially share the same covariances,

while covariances were uniquely specified by the spatial

lag within the proposed approach (see Fig. 5). A second

explanation could be that the independence hypothesis

between Z0 and Y given Z was not fulfilled. However,

as the true conditional dependence between these var-

iables could not be directly observed, the conditional

FIG. 7. Examples of (left) maximum and (right) minimum temperatures estimation maps for (a),(b) 3 Jan 1981;

(c),(d) 28 Mar 1998; (e),(f) 31 Aug 1994. Circles represent the true observations and squares are for the upscaled

temperatures on the AOGCM grid points.

5234 J O U R N A L O F C L I M A T E VOLUME 23



independence hypothesis was the maximum entropy

solution (see section 2f). On the other hand, the main

advantage of the proposed approach was that it directly

provided spatial estimation at ungauged locations, which

was not possible with the MMLR method precisely be-

cause it was too specific to the observed predictands.

Consequently, the loss of precision when using the

proposed spatial model could be considered negligible

compared to the advantage of providing estimation

maps.

The results were then spatially validated by compar-

ison of the observed and estimated temperatures at the

three validation stations (see Fig. 1 for the locations of

these stations). Figures 9, 10, and 11 show, for instance,

this comparison for the year 1995. Results indicated that

the estimated series were close to the true observed ones.

Moreover, the majority of the observations belonged to

the 95% credibility intervals based on the simulations,

which ensured that the proposed model adequately de-

picted the natural process and its fluctuations. Table 7

confirms these visual quality assessments by means of

the ME, the RMSE, and the percentage of observations

within the 95% credibility intervals calculated at the

3 validation stations during the validation period (1991–

2000). It indicates that there was a small estimation bias

(between 0.58 and 1.958C in absolute value) while the

RMSE ranged between 38 and 58C, which was less than

half the original standard deviation based on the fitted

spatial model. The model thus permitted to significantly

reduce the variability. Moreover, the estimated distri-

butions were in satisfactory agreements with the ob-

served values as approximately 95% of the observations

belonged to the 95% credibility intervals except for the

minimum temperatures at La Tuque, which seemed to

be overestimated. Aside from this exception, the vali-

dation using CI ensured that the uncertainty was accu-

rately depicted by the model.

5. Discussion and conclusions

A spatial Bayesian model is proposed in this paper

for the downscaling of AOGCM predictors. This model

FIG. 8. Maps of the estimated standard deviation for (a) maximum and (b) minimum temperatures for 31 Aug 1994.

TABLE 5. RMSE between observed and simulated series for the spatial Bayesian model on the basis of climatic indices for each of the nine

gauge weather stations during the validation period (1991–2000).

RMSE

Climatic Indices 1 2 3 4 5 6 7 8 9

Monthly mean Tmax (8C) 1.15 0.99 1.15 1.15 1.09 1.05 1.15 1.20 1.04

Monthly SD Tmax (8C) 0.88 0.77 0.76 0.83 0.84 0.87 0.77 0.82 0.79

Monthly mean Tmin (8C) 1.22 1.24 1.22 1.30 1.27 1.26 1.58 1.13 1.18

Monthly SD Tmin (8C) 1.19 0.97 0.94 0.86 1.02 1.01 0.92 1.00 1.18

DTR (8C) 0.92 0.84 0.70 0.75 0.71 0.84 0.94 1.01 0.64

FSL (day) 2.77 3.21 1.78 0.65 2.23 4.93 2.53 2.09 1.79

GSL (day) 21.84 14.82 13.31 19.33 13.62 15.25 17.92 14.28 12.57

FR-Th (day) 2.70 2.89 2.67 2.48 2.69 2.61 3.11 2.69 2.88

Tmax90 (8C) 1.28 1.15 1.17 1.23 1.18 1.30 1.30 1.27 1.39

Tmin90 (8C) 1.41 1.23 1.58 1.35 1.18 1.47 1.60 1.30 1.21
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relies on the Bayesian framework in order to link the

predictors to the predictands through unknown upscaled

predictands (i.e., hidden variables) at the same horizontal

resolution as the AOGCM predictors. The links between

the predictors and the upscaled predictands are assumed

to be constant for each month. On the other hand, the

links between the upscaled and the original predictands

change with their relative position by using the geo-

statistics theory of regularization of covariance and semi-

variogram functions (see e.g., Goovaerts 2008). This

approach enables the proposed model to provide esti-

mates of the predictands at any given spatial location.

The proposed model was applied to the estimation of

minimum and maximum temperatures in the southern

part of the province of Quebec, Canada. NCEP reanalysis

data were used as predictors in order to assess the po-

tential of the method, although the final objective is to use

AOGCM predictors. The obtained results were found

satisfactory compared to a regression-based downscaling

approach (e.g., MMLR) using the same predictors (see

appendix B for more details about the comparison method).

The proposed model provides interesting results for

the downscaling of coarse-scale atmospheric predictors,

specifically for the estimation of predictands such as min-

imum and maximum temperatures at ungauged locations.

It uses Bayesian updating of seasonal norms at a finer

spatial resolution (the prior distribution; computed using

local information sources such as the altitude and the

latitude) with temporal fluctuations induced by the coarse-

resolution predictors (NCEP in our case). The method

thus enables us to take advantage of both information

sources in order to produce the final estimation maps.

The Bayesian approach also enables the proposed

model to account for the uncertainty of both the esti-

mated prior mean and the estimated parameters linking

the NCEP (or AOGCM) predictors to the upscaled pre-

dictands. An algorithm is also proposed in order to jointly

generate simulated predictands and parameters for the

evaluation of the integrals over unknown parameters and

unknown upscaled predictands. The resulting estimations

are thus based on a complete probabilistic formulation,

which enables us to directly compute the probability of

events on the predictands (e.g., intervals of tempera-

tures). It is important to mention that accounting for such

uncertainties mainly influences the variability (i.e., the

variance) of the estimated conditional distribution, while

the mean of this distribution remains almost unchanged.

This is not surprising since (i) the distributions of the

estimated parameters are assumed to be Gaussian, (ii) the

mean of each Gaussian distribution is the corresponding

observed parameter, and (iii) the variances of the esti-

mated parameters are small thanks to the long period of

observations.

Another important fact is that any model is a simpli-

fied representation of a complex reality. There is thus no

true model. Either because of its adjusted parameters

and/or to its specific hypotheses, any model carries a cer-

tain amount of uncertainty (e.g., variables or effects that

are not accounted for in the model). Consequently, as the

AOGCM values are themselves outputs of mathematical

models, they are also a source of uncertainty for down-

scaling applications. In this study, this source of uncertainty

was not accounted for even if it is expected to induce

more variability in the mean of the predictands distri-

bution. Again, working within a Bayesian framework is an

advantage when trying to account for uncertainty. Because

of space limitations, this element was left out in the present

work. However, it is clear that such uncertainty should be

taken into account by the downscaling techniques.

Another advantage of the proposed approach is that it

sets the problem in a complete probabilistic framework.

The different assumptions are stated and discussed in

detail so that the limits of the approach are clearly de-

fined. Moreover, by construction, it is the whole condi-

tional distribution that is sought, thus modeling the mean

of the downscaled predictands as well as their variability.

TABLE 6. RMSE between observed and simulated series for the MMLR model on the basis of climatic indices for each of the nine gauge

weather stations during the validation period (1991–2000).

RMSE

Climatic Indices 1 2 3 4 5 6 7 8 9

Monthly mean Tmax (8C) 1.12 0.98 1.07 1.12 1.07 1.05 1.13 1.23 1.07

Monthly SD Tmax (8C) 0.77 0.79 0.72 0.77 0.69 0.83 0.75 0.75 0.75

Monthly mean Tmin (8C) 1.20 1.27 1.01 1.22 1.20 1.21 1.50 1.14 1.17

Monthly SD Tmin (8C) 0.82 0.90 0.80 0.88 0.74 0.95 1.10 0.79 0.77

DTR (8C) 0.90 0.92 0.64 0.74 0.66 0.87 0.95 1.08 0.63

FSL (day) 2.86 3.11 1.77 1.01 2.13 3.50 2.30 1.98 1.76

GSL (day) 21.61 14.67 12.09 19.68 12.67 14.23 19.00 13.86 12.73

FR-Th (day) 2.69 3.02 2.52 2.37 2.56 2.52 3.16 2.64 2.86

Tmax90 (8C) 1.26 1.18 1.18 1.15 1.00 1.26 1.27 1.27 1.29

Tmin90 (8C) 1.12 1.21 1.34 1.26 1.18 1.14 1.27 1.26 1.20
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There is thus no need to rely on ‘‘inflation’’ techniques

(e.g., von Storch 1999) in order to reproduce the total

variability of the process. Indeed, the regression models

generally reproduce the mean of the process conditionally

to the selected independent variables. As a consequence,

one can prove that the variability of the regression is al-

ways smaller than the initial variability (not shown here).

In this regard, it is more relevant to rely on simulation

techniques in order to compare the observed and esti-

mated series of predictands since this is equivalent to

considering that the observed series are random re-

alizations of a theoretical probabilistic model.

This study was conducted for a relatively small area

(cf. the scale of the AOGCM predictors). Consequently,

the estimated parameters of the model for this study

cannot be used for larger areas. Moreover, it is likely that

parameters for two different regions will be different, as

the climate conditions are sufficiently different and the

combination of predictors and its links with the local or

regional predictand should vary. It is thus recommended

to rely on locally estimated parameters in order to avoid

such risk. On the other hand, the number of AOGCM grid

points in this study could easily be increased, which would

improve the precision of both downscaling methods: the

FIG. 9. Visual validation of the Bayesian model for the year 1995 at the weather station of

Baie-Comeau. (a),(c) The evolutions of both the observed temperatures (bold lines) and the

95% credibility intervals (gray zones). (b),(d) The evolutions of both the estimation errors and

the 95% credibility intervals centered on 08C.
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MMLR and the spatial Bayesian model. In that con-

text, the use of regional-scale predictors from regional

climate model (RCM) instead of coarse-scale AOGCM

will be strongly beneficial for the downscaling process,

and the precision or the spatial representatives of the

upscaled predictands. Ongoing works will explore these

issues.

The proposed GRM could certainly be improved.

Benestad (2005) and Benestad et al. (2008) also proposed

to account for the distance from the coast and the local

slopes as independent variables. However, in our study,

the small number of weather stations did not enable us

to account for numerous independent variables. We

deliberately chose to limit the model to the latitudinal

position f and the altitude h. They were indeed the more

significant independent variables explaining the local

seasonal characteristics of temperatures in this region.

However, the influence on regional and local features of

temperatures from the distance of water masses (i.e., the

estuary and the Gulf of St. Lawrence) as well as the ori-

entation of the local slope and/or valley (ex. main rivers

as Saguenay, St. Lawrence, and others) will be ones of

the factors to include in future improved GRM model, in

the context of the southern Quebec climate. A locally

FIG. 10. Visual validation of the Bayesian model for the year 1995 at the weather station of

Notre Dame du Lac. (a),(c) The evolutions of both the observed temperatures (bold lines) and

the 95% credibility intervals (gray zones). (b),(d) The evolutions of both the estimation errors

and the 95% credibility intervals centered on 08C.
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estimated GRM is not necessarily a limitation of the

proposed approach as downscaling methods are generally

produced in relatively restricted areas (the size of, e.g.,

a hydrological basin).

Finally, the method could be adapted and extended in

order to account for other sources of information. Ba-

sically, the cost for this would be to assume additional

conditional hypotheses. The use of the spatial model and

FIG. 11. Visual validation of the Bayesian model for the year 1995 at the weather station of

La Tuque. (a),(c) The evolutions of both the observed temperatures (bold lines) and the 95%

credibility intervals (gray zones). (b),(d) The evolutions of both the estimation errors and the

95% credibility intervals centered on 08C.

TABLE 7. Quality assessment of the estimated series for the validation period (1991–2000) on the three validation stations. Criteria are

ME, RMSE, and percentage of observations in the 95% credibility interval (% in CI).

Max temperature Min temperature

Station Ref ME (8C) RMSE (8C) % in CI ME (8C) RMSE (8C) % in CI

A 20.42 2.99 0.95 21.95 4.24 0.93

B 0.67 3.42 0.94 1.05 3.67 0.95

C 1.24 3.81 0.91 21.74 5.18 0.88
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the regularization of covariance functions, also allows

us to take into account other predictors at a third scale

(intermediate or larger than the first AOGCM spatial

resolution). This possibility might be of great interest for

downscaling applications since the method would not only

account for the change of spatial resolution but also for

multiple scales or multiple AOGCM or RCM models at

once. Future research efforts can focus on these factors

and key components.
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(Université catholique de Louvain, Belgium), Dr. Dae Il

Jeong (INRS-ETE), Dr. Philippe Gachon (Environment

Canada), and the three anonymous reviewers noticeably

contributed to the improvement of this paper.

APPENDIX A

Regression-Based Statistical Downscaling

Using the proposed notations of section 2a, one can

summarize the regression-based downscaling approaches

with the following equation:

Z
0

5 h(Y; G) 1 e, (A1)

where the function h(.) can be calibrated with historical

data, G is the vector of parameters of the regression, and

e is a vector of residuals depicting the unexplained part

of the regression.

The choice for the function h(.) is not straightforward.

It should be motivated by the different predictors Y at

hand and by their correspondences with Z0. Among other

possibilities, monthly MMLR models have been com-

monly implemented and have proven to provide accurate

results in practice (Wilby et al. 2002; Benestad et al. 2008;

Hessami et al. 2008; Jeong et al. 2010). Equation (19) then

becomes

Z
0

5 G
d,0

1 G
d,1
Y1 e, (A2)

where (i) d 5 1, . . . , 12 corresponding to the actual

month; (ii) Gd,0 is the vector of dimension m corre-

sponding to the intercepts for each predictand; and (iii)

Gd,1 is a m 3 (np) matrix of parameters. Such parameters

have first to be estimated from historical data (generally

from 20 to 30 yr of calibration data). It is a classic result

of MMLR that using OLS for the estimation of such

parameters leads to unbiased estimators of G. Moreover,

if the errors e are multivariate Gaussian then the esti-

mated vector G is also Gaussian with a covariance matrix

that depends on the predictors Y and on the covariance

matrix of the errors «.

APPENDIX B

Regularization of Covariance Functions and
Statistical Upscaling

Let c(.) be the covariance function of a given second

order stationary random field on Rd, that is, for each xi

and xj 2 Rd:

c(h) 5 Cov[Z(x
i
), Z(x

j
)], (B1)

where h 5 kxi 2 xjk is the distance between the two

locations (e.g., Euclidean distance) and where Z(xi) and

Z(xj) are the random variables corresponding to these

locations.

Now defining Z(Ak) as the upscaled variable on the

spatial area Ak ˝ Rd with

Z(A
k
) 5

1

jA
k
j

ð
A

k

Z(x) dx, (B2)

where jAkj is the area of Ak, it is straightforward to prove

that, within the same random field, the block-to-point

covariance between any random variable Z(xi) and the

upscaled variable Z(Ak) is

Cov[Z(x
i
), Z(A

k
)] 5

1

jA
k
j

ð
A

k

c(kx� x
i
k) dx (B3)

because of the linearity of the integrals. Similarly, the

block-to-block covariance between two upscaled vari-

ables Z(Ak) and Z(Aj) is defined by

Cov[Z(A
k
), Z(A

j
)] 5

1

jA
k
kA

j
j

3

ð
A

j

ð
A

k

c(kx
k
� x

j
k) dx

k
dx

j
.

(B4)
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Regularized covariance functions are thus averaged

covariance functions on a corresponding spatial area.

Their behavior is generally smoother and their variances

(i.e., values at lag h 5 0) are smaller than the underlying

covariance function at finer scale. For a complete de-

scription and for more details concerning their proper-

ties, the reader is referred to Goovaerts (2008).

Using the theory of regularized covariance function,

one can build the linear relations between different scales

of the process at different locations. As direct by-product

of this property, one can also build estimates of an un-

observed upper-scale process Z(Ak) from observed finer-

scale processes Z 5 (Z(x1) . . . Z(xn))T. If mZ and mAk
,

respectively the mean vector of Z and of Z(Ak), are both

known, then one can use the aggregation simple kriging

(ASK) formula:bZ(A
k
) 5 mAk

1 sTS�1(Z� mZ), (B5)

where S is the covariance matrix of Z and s is the vector

of covariances between Z(Ak) and different elements of

Z. In this case (i.e., estimation of upper scale process),

the vector s only has to be computed using regularized

covariance functions, since S is directly computed from

the covariance function c(.). If mAk
is unknown, then

aggregation ordinary kriging (AOK) can be used instead

with

bZ(A
k
) 5 lTZ, (B6)

where l is the solution of the kriging system:

S 1

1T 0

� �
l

n

� �
5

s

1

� �
, (B7)

where 1 is a column of 1 and where n is the Lagrangian

multiplier that ensures that

�
n

i51
l

i
5 1.

The two main advantages of using regularized co-

variance functions for the estimation of the upper-scale

process are the following:

1) As already mentioned, this is a spatial estimation.

One can thus estimate the process on the spatial areas

that do not contain any finer scale observation. This is

not possible when using (e.g., simple averaging on the

spatial area).

2) The second interesting property is that this estima-

tion accounts for the spatial dispersion of the ob-

served data. The issue with spatial data is that two

closely located observations are likely to have similar

values. The partial information of the second obser-

vation is thus small. Knowing the value of the second

observation does not improve significantly our total

knowledge. This clustering issue is accounted for

when using regularized covariance functions in op-

position to using simple averaging.

On the other hand, the main disadvantage of the regu-

larized covariance functions is that in practice, one has

to discretize the spatial area for the evaluation of the

integrals. The resolution of the discretized area should

be (i) finer enough in order to accurately estimate the

integrals and (ii) not too fine in order to limit the com-

putational requirements. This choice of discretization

resolution can be motivated by the shape of the finer-scale

covariance function. For instance, smoother covariance

functions (e.g., with higher range or lower nugget effect)

can accept coarser discretization. This is because the

variations of a smooth covariance function on a spatial

area is small, the averaged covariance is thus even more

stable.

It is important to note that the same methodology can

be used for the estimation of finer-scale processes from

upper ones. Again, the reader is referred to Goovaerts

(2008) for more details about ‘‘area-to-point’’ kriging.

However, it is not likely that the upper-scale observations

will correctly reproduce the finer-scale behavior of the

process. The main advantage of using this change of scale

method for the estimation of the finer-scale process is

that it ensures the conservation of the information at the

coarser scale. In other words, averaging the estimation on

the same scale will provide the original block value.
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