














































































































































































































The shape of the THz pulse measured at the end of the 10 cm two-wire THz transmitter is
not a single cycle, contrary to expectation (see Fig. 4.4 (a)). This shape of the THz pulse needs to
be further investigated theoretically. Indeed, one of the main sources of distortions seems to be
the extended electrodes length along the propagation direction. Theoretical studies and further

experiments should be carried out to provide insight into the preliminary experimental results

and improve signal quality.
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Fig. 4.2 GaAs piece used as a PC antenna: (a) signal, (b) power spectrum. All curves are normalized to

their peaks.
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Fig. 4.3 (a) Signal from the 10 cm waveguide with GaAs piece being used as an external PC antenna
(normalized to the peak of the PC antenna’s signal) and (b) its power spectrum (normalized to the peak of

the PC antenna’s spectrum).
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Fig. 4.4 (a) Signal from 10 cm waveguide with GaAs piece inserted between two wires (normalized to
the peak of the PC antenna’s signal) and (b) its power spectrum (normalized to the peak of the PC

antenna’s spectrum).
4.3  Conclusion

In this chapter we addressed the issue of poor coupling efficiency in our passive two-wire
waveguide by introducing a novel active waveguide design, in which the generation of THz
signal occurs directly in the guiding structure. We fabricated the active waveguide by inserting a
thin rectangular piece of GaAs with a width and breadth of 300 pm in between the two wires of
the waveguide. The active waveguide structure is comparable to a PC antenna where the wires of
the waveguide act as the electrodes and the GaAs piece acts as the semiconductor substrate. The
active waveguide structure, which we also named as “two-wire THz transmitter”, when
developed efficiently could be an essential component in future THz communication networks
and THz-TDS. Exploiting the tightly confined TEM mode of a two-wire waveguide, a signal
processing component can be inserted in between the two wires of the transmitter to realize a

THz source with inbuilt pulse shaping characteristics.
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Chapter 5: Conclusion and future perspective

The field of terahertz (THz) radiation is evolving quickly and is leading to a plethora of scientific
and technological developments. It has found very useful applications in the field of imaging,
security and spectroscopy. Terahertz radiation is shorter in wavelength than microwaves and has
the ability to pass through several dielectric materials, unlike infrared radiation. The spectral
signature of several organic and inorganic molecules falls in the THz frequency range. These
characteristics make the field of THz very exciting and interesting to study. Another field where
THz technologies can play a significant role is communications and data transfer. The current
wireless communication system, which is based on microwave radiation, faces an ever-
increasing demand for faster transfer rates. One possible way to solve this problem would be to
move to higher frequency region such as THz, which could provide larger bandwidth for higher
information transfer rates. In order to realize the goal of a future THz communication network,
special waveguides and signal processing components need to be developed and investigated.

Therefore, as a further step towards a future THz communication network, a
low-dispersive THz two-wire metallic waveguide was developed and characterized in this thesis.
The two-wire waveguide (wire radius of 125 um and wire separation of 300 pm) carries a
low-dispersive TEM mode when the wire separation is close to the wavelength of operation. In
addition, the TEM mode carried by the two-wire waveguide is linearly polarized, similar to the
radiation emitted by conventional PC antenna sources. Hence, the two-wire waveguide mode is
easier to excite by PC antennas in comparison to the radially polarized modes of a single wire
waveguide for THz.

In our experiments, we demonstrated the propagation of single cycle THz pulses in the
two-wire waveguide over a bandwidth of 2 THz. The waveguide was found to carry the entire
spectrum generated by the PC antenna source. This demonstrated the broadband nature of the
developed two-wire waveguide.

The developed two-wire waveguide gives an easy access to its guiding region. As a
result, a polymer Bragg grating could be inserted between the two wires and a frequency filter
has been realized. Thanks to the slow-light effect enabled by the grating, we also observed an
enhancement in the water line at 0.557 THz.

Finally we also reported for the first time an active, two-wire THz waveguide. We

realized the active waveguide by illuminating a thin rectangular piece of GaAs inserted between
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the two metallic wires of the waveguide with femtosecond pulses and by applying voltage on the
wires. The active waveguide structure can be compared to a PC antenna where the wires act as
the electrodes and the thin piece of GaAs acts as the semiconductor substrate. The THz signal
thereby generated in the GaAs piece is directly coupled into the two-wire waveguide. With this
active waveguide, we observed a THz signal, whose peak electric field was higher than that of
the two-wire waveguide coupled to an external PC antenna. This experiment shows that our
two-wire waveguide can be used as a THz transmitter as well. Such an active waveguide carries
a higher strength associated to the THz field as compared to the waveguide coupled to an
external source.

The two-wire waveguide possesses special characteristics, such as low-dispersion
propagation and a relatively tight confinement of THz radiation in the region between the wires.
These features make the two-wire waveguide a potential candidate for future THz
communication networks, enhanced THz-TDS, signal processing and nonlinear optics.

As a future perspective of the work conducted in this thesis, the two-wire waveguide
could be improved by covering the waveguide with a polymer jacket. The polymer jacket would
protect the guiding region from unwanted external impurities, protect the wires from loosening,
getting dented and make the whole structure much more convenient to handle. New ways of THz
signal processing could also be achieved with the design of proper waveguides. For example,
metamaterials and new geometries of Bragg gratings could be coupled to the two-wire
waveguide mode for modulating the THz signal. This will avoid the use of intermediate signal
processing units, which can induce unwanted losses. Enhanced THz-TDS could also be
envisioned for the future. For example, the tight confinement of THz radiation in between the
wires provides longer interaction length for the samples to be characterizes by THz-TDS. This
will enhance the spectral response of the material being studied. Finally, following an in-depth
theoretical analysis of the demonstrated THz transmitter (chapter 4), further optimization could
be carried out on this structure. Altogether, with the help of signal processing components and
the THz transmitter, a novel THz source could be realized, where one could obtain a THz pulse

with desired pulse shape and spectrum.
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