Record Number: Author, Monographic: Dhatt, G.//Dupuis, P.//Soulaïmani, A.//Leclerc, M. Author Role: Title, Monographic: Modélisation des écoulements lents et rapides à surface libre **Translated Title: Reprint Status:** Edition: Author, Subsidiary: Author Role: Place of Publication: Québec Publisher Name: INRS-Eau Date of Publication: 1985 **Original Publication Date:** Décembre 1985 **Volume Identification:** Extent of Work: 146 Packaging Method: pages Series Editor: Series Editor Role: Series Title: INRS-Eau, Rapport de recherche Series Volume ID: 187 Location/URL: **ISBN:** 2-89146-185-1 Notes: Rapport annuel 1985-1986 Abstract: Rapport rédigé pour Hydro-Québec, Direction environnement et distribué par TAO Simulations, no TAO-85-02 R000187 Call Number: Keywords: rapport/ ok/ dl

Modélisation des écoulements lents

et rapides à surface libre

Par

=

Gouri Dhatt Pierre Dupuis Azzedine Soulaīmani Université Laval

> Michel Leclerc INRS-Eau

INRS-Eau Université du Québec C.P. 7500 Sainte-Foy (Québec) G1V 4C7

Rapport scientifique No 187

Décembre 1985

· · · -.

=

Daniel BERNOULLI (1700-1782)

En hommage aux pionniers ...

TABLE DES MATIÈRES

CHAPITRE I: INTRODUCTION

1.	Généralités	2
1.1	Historique	4
1.2	La classification des écoulements	8
	1.2.1 Nombres adimensionnels	9 12

CHAPITRE II: LE MODÈLE MATHÉMATIQUE

2.	Le modèle mathématic	que en 3-o	dimensi	ons .	••	٠	•	•••	•	•	•	•	•	•	15
2.1	Généralités	• • • •	• • •	• • •	••	•	•	••	•	•	•	•	•	•	15
2.2	Choix de coordonnées		• • •	•••	••	•	•	••	•	•	•	•	•	•	17
2.3	Relations mathématic	ques	• • •	• • •	••	•	•	••	٠	•	•	•	•	•	18
	2.3.1 Modèle de bas 2.3.2 Conditions au 2.3.3 Solution d'ur	se ux limites n problème	s typiq e d'éco	ues uleme	 nt .	•	•	•••	• •	• • •	• • •	• • •	• •	• •	18 22 23
2.4	Modèle algébrique de	e la turbi	ulence	• • •	••	•	•	••	•	•	•	•	•	•	24
	2.4.1 Contraintes a 2.4.2 Théorie moder 2.4.3 Différents moder	apparentes rne de la	s de Re longue	ynold ur de	s. mél	ang	je:	••• 1	• ៣	•	•	•	•	•	24 27 24
	2.4.5 Differences into 2.4.4 Exemples le	nrofil de	yebriqu a vitas	ies po iso da	nc]	m 'ác	•	••• 10m	•	• +	•	•	•	•	25
	permanent un 2.4.5 Rugosité et s	iforme . sous-coucl	he lami	naire	δ.	•	•	•••	•	•	•	•	•	•	31 35
2.5	Résumé du modèle mat	thématique	e	• • •	••	•	•	••	•	٠	•	•	•	•	36

CHAPITRE III: CLASSIFICATION DES MODÈLES ET LE PROBLÈME DU RESSAUT

÷

3.1	Présen	tation adimensionnelle des relations 3-D	39
	3.1.1 3.1.2	Hypothèses sur les grandeurs caractéristiques Modèle 3-D avec l'hypothèse de pression hydrostatique	39 41
3.2	Modèle	2-D: Vitesse moyenne verticale; pression hydrostatique .	43
	3.2.1 3.2.2 3.2.3	Hypothèses	43 44 45
3.3	Modèle	1-D	53
	3.3.1	Simplifications	54
3.4	Classi	fication locale d'un écoulement	56
	3.4.1 3.4.2 3.4.3	Régime d'écoulement	56 58 59
3.5	Écoule	ment varié	69
	3.5.1 3.5.2 3.5.3	Profils pour une pente faible (M)	73 75 76
3.6	Les re	essauts hydrauliques	77
	3.6.1 3.6.2 3.6.3 3.6.4	Calcul de la perte de charge: cas unidimensionnel Longueur de ressaut	78 83 84 84
CHAP	ITRE IV	: ANALYSE DU FROTTEMENT DU LIT DES COURS D'EAU, DE LA LA GLACE ET DU VENT	
4.1	Divers	es approches du coefficient empirique de frottement	87
4.2	Perte	de charge	102

4.2.1 Rugosité, turbulence et concept de vitesse de	
cisaillement 10	2
4.2.2 Application aux ecoulements à surface libre des formules universelles de perte de charge 10	4
4.3 Frottement dans les cours d'eau rapides	5
4.4 Le coefficient du Chézy pour un écoulement sous couvert de glace 10	7
4.5 Estimation de la contrainte du vent	В
4.6 Discussion	0
CHAPITRE V: SOLUTION NUMÉRIQUE PAR ÉLÉMENTS FINIS	
5. La méthode des éléments finis	4
5.1 Introduction à l'approche	4
5.2 Écoulements bidimensionnels (MEFLU 2-D)	8
5.3 MEFLU - Tri-dimensionnel (MEFLU 3-D)	9
CONCLUSION	4
BIBLIOGRAPHIE	5
ANNEXE 1: TESTS SUR UN MODÈLE 2-D HORIZONTAL D'ÉCOULEMENTS FORTEMENT FINIS	3
ANNEXE 2: PROPOSITION D'UNE MÉTHODE DE CALCUL DE L'ÉCOULEMENT TURBULENT DANS UN RESSAUT	9

.

LISTE DES TABLEAUX

Tableau =	1:	Coefficient de rugosité n de Manning pour les canaux et rivières (d'après Chow)
Tableau	2:	Valeurs de K pour certains cours d'eau (Pardé) 97
Tableau	3:	Résumé des valeurs des coefficients de la formule de Cowan
Tableau	4:	Valeurs indicatives de rugosité $\varepsilon = \frac{k}{2}$ 106
Tableau	5:	Modèles d'estimatin du C ₁₀ (tiré de Shanahan et Harleman
Tableau	A1.1:	Résultats du premier test (viscosité turbulente égale à 50 m²/s) dans la première configuration de canal) 132
Tableau	A1.2:	Résultats du second test (viscosité turbulente constante de 20 m ² /s) dans la première configuration de canal
Tableau	A1.3:	Résultats du troisième test (longueur de mélange) dans la première configuration de canal 134
Tableau	A1.4:	Deuxième configuration (maillage grossier) 137

LISTE DES FIGURES

•>

Figure	1:	Choix de coordonnées	18
Figure	2:	Contraintes de frottement	19
Figure	3:	Décomposition de la vitesse u	24
Figure	4:	Turbulence	26
Figure	5:	Longueur du mélange de Prandtl	29
Figure	6:	Longueur du mélange	30
Figure	7:	Équilibre des forces au sein d'un écoulement (2-D vertical)	32
Figure	8:	Contrainte verticale	32
Figure	10:	Rugosité et couche laminaire	35
Figure	9:	Conventions	41
Figure	11:	Conventions du modèle bi-dimensionnel	45
Figure	12:	Conservation de la masse	46
Figure	13:	Conservation du mouvement	46
Figure	14:	Forces (contraintes) en présence sur un élément différent bi-dimensionnel	47
Figure	15:	Conditions aux limites	52
Figure	16:	Ligne d'énergie sous forme unidimensionnelle (régime permanent variant graduellement	55
Figure	17:	Vitesses en coordonnées locales	56
Figure	18:	Différents régimes d'écoulement et de variation de H selon Fr	57
Figure	19:	Développement de l'instabilité d'un écoulement	58
Figure	20:	Critère de stabilité dans un cana rectangualire en utilisant la formule de Manning	59

Page

.

Figure	21:	Représentation énergétique de l'écoulement uniforme	60
Figure	22:	Influence du débit et de la profondeur pour le régime .	61
Figure	23:	Régime en fonction du débit de Manning	63
Figure	24:	Profondeur - débit (Manning introduit plus de frottement pour H _n > 1)	64
Ēigure	25:	Hauteur et pente pour divers régimes d'écoulement	65
Figure	26:	Énergie – profondeur	66
Figure	27:	Débit - profondeur, E = constante	67
Figure	28:	Force spécifique - profondeur	67
Figuré	29:	Régime varié dans un canal uniforme	7U
Figure	30:	Régime varié dans un canal variable	70
Figure	31:	Zones de transition pour diverses pentes de fond	72
Figure	32:	Phénomènes de ressaut	78
Figure	33:	Transition douce d'un régime fluvial à torrentiel	81
Figure	34:	Ressaut en fonctin du nombre de Froude (voir Chow ou Henderson)	81
Figure	35:	Courbes caractéristiques du ressaut dans un canal rectangulaire (adapté de Chao, 1959)	82
Figure	36:	La perte en fonction de la pente (adapté de Rajaratnam, 1967)	82
Figure	37:	Relation entre Fr ₁ et $\frac{H_2}{H_1}$ pour un ressaut dans un canal droit rectangulaire (adapté de Chow, 1961)	83
Figure	38:	Longueur caractéristique du ressaut dans un canal droit rectangulaire (adapté de Chow, 1961 d'après USBR)	84
Figure	39:	Modèles d'estimation du coefficient C ₁₀ pour une force du vent donné (adapté de Shanahan et Harleman, 1982) .	110
Projet TAO-Sim	Archipe	el - lac Saint-Louis - débit module (d'après as. 1985b).	
Figure Figure	40: 41:	Hauteur d'eau relative par rapport à 20 m	120 120

÷

•

.

Projet	Archipe	el - Bassin La Prairie - vitesses simulées - débit module	
tu apre	es tau-s	Simulations, 1905D/.	
Figure	42:	Conditions actuelles	121
Figure	43:	Conditions aménagées (scénario 1)	121
Figure	44:	Hauteur d'eau relative - vent sud-ouest moyen - lac	
-		Saint-Jean (d'après Leclerc, 1985)	122
Figure	45:	Courants simulés - vent sud-ouest moyen - lac	
- •		Saint-Jean (d'après Leclerc, 1985)	123
Figure	A1.1:	Première configuration de canal (maillage fin)	130
Figure	A1.2:	Éléments T-6-3 de référence et réel	131
Figure	A1.3:	Deuxième configuration (maillage grossier)	136

:

٠

Chapitre I

Ξ

INTRODUCTION

INTRODUCTION

1. GÉNÉRALITÉS

L'eau est un élément indispensable pour toute vie. Depuis l'antiquité, l'homme se sert de son expérience et de son intelligence pour mieux contrôler et mieux utiliser l'eau aussi bien à la surface de la terre qu'en profondeur. Aujourd'hui, nous avons besoin d'aménager les eaux et de maintenir leur qualité nécessaire pour notre évolution et même pour notre survie.

Le développement industriel avec ses avantages a occasionné également des catastrophes écologiques. Citons entre autres:

- la pollution des lacs, des rivières et de presque toutes les côtes marines des pays occidentaux;
- les pluies acides;
- la pollution des eaux souterraines par des produits chimiques et/ou des déchets nucléaires.

Nos connaissances technologiques actuelles, nous permettent de réaliser des méga-projets d'aménagements qui incluent à la fois les aspects hydroélectriques, la qualité de l'eau, le contrôle des inondations, les loisirs, etc.

L'aménagement implique nécessairement des outils de modélisation et de simulation. Il y a à peine dix ans, la modélisation impliquait uniquement des modèles physiques ou réduits. Le problème d'aménagement des eaux étant très complexe, le seul recours disponible était la simulation et l'étude d'impact en utilisant des modèles réduits. L'arrivée de l'informatique a tout changé. En effet, il n'est même pas possible pour l'ingénieur d'évaluer correctement l'impact de l'informatique sur la modélisation. Les développements informatiques sont trop raides se font rapidement alors que l'ingénieur est souvent trop conservateur dans l'exercice de sa profession. Même dans le milieu universitaire, les chercheurs ont des difficultés à saisir et intégrer les outils informatiques dans leur méthodologie de recherche. On pense que cette situation persistera encore au moins dix ans.

En hydraulique, nous avons l'outil "simulation numérique"; les anglosaxons l'ont baptisé: "COMPUTATIONAL HYDRAULICS". Les outils de la simulation numérique sont des concurrents très forts et certainement gagnants des modèles réduits. Le rôle de ces derniers va changer. En effet, les modèles numériques peuvent faire presque tout ce que les modèles réduits accomplissaient traditionnellement; les modèles réduits vont désormais être contrôlés par les besoins des modèles numériques. Pour ainsi dire, ils sont indispensables, mais ne joueront plus le même rôle. Ils vont être utilisés systématiquement pour valider les modèles numériques et pour agrandir le champ des applications numériques. L'informatique ne nous laisse pas le choix; elle s'impose et l'ingénieur doit s'adapter.

Voici donc un nouveau domaine puissant et économique que nous baptisons: "HYDRAULIQUE NUMÉRIQUE". Il existe des facteurs très favorables au développement de ce domaine:

Les connaissances en hydraulique; depuis l'idée révolutionnaire de Chézy (1778), nous avons beaucoup appris sur les phénomènes d'écoulement. On a identifié les problèmes de la turbulence et du frottement. On a également adopté le concept de longueur de mélange (Prandtl, 1930) pour mieux étudier l'influence de la turbulence. Ainsi avons-nous la viscosité moléculaire, la viscosité turbulente, la diffusion moléculaire et la diffusion turbulente, les divers modèles d'évaluation de la viscosité turbulente soit, le modèle algébrique (o-équation), le modèle -κ(énergie turbulente) et le modèle κ - ε (énergie turbulente et dissipation).

- Les modèles physiques vont nous fournir les paramètres pour rendre les modèles numériques de plus en plus fiables. Les caractéristiques physiques d'un phénomène seront toujours identifiés par les expériences et le modèle numérique représentera le levier en simulation.
- L'informatique est la force motrice, et son développement rapide touche presque les frontières de la fiction. Le coût des calculs diminue et leur vitesse augmente; les outils graphiques s'imposent. L'ingénieur est un spécialiste du visuel et voilà l'ordinateur qui devient graphique. Un monde de couleurs, d'isovaleurs, de lignes de courants se développe; tout est représenté par des plages de couleur. Plus les ordinateurs deviennent puissants en vitesse et en équipements graphiques, plus le domaine de l'hydraulique numérique se développe.
- Les nouvelles techniques informatiques de l'<u>intelligence artificielle</u>" vont révolutionner les domaines de la simulation numérique en hydraulique. Les "systèmes experts" pointent à l'horizon. Ils vont permettre non seulement d'accéder rapidement à l'ensemble des connaissances en hydraulique mais également de manipuler ces connaissances dans le contexte de la simulation numérique.

Dans les sections suivantes, nous allons présenter une évolution historique de la modélisation en hydraulique suivie d'une classification des différents phénomènes et concepts existants toujours au point de vue de l'ingénieur numéricien.

1.1 HISTORIQUE

=

Depuis la préhistoire, l'homme a construit des ouvrages hydrauliques. En Egypte et en Mésopotamie, on trouve déjà des canaux d'irrigation 3000 av. J.C. À la même époque, on construit en Iran des réservoirs souterrains; en Inde et en Chine, on installe des canaux de distribution d'eau en céramique. Au 15ième siècle, les italiens lancèrent une étude expérimentale sur les problèmes de canalisation. Léonard de Vinci (1452-1519) fut parmi les premiers à utiliser une approche "scientifique" pour concevoir les ouvrages hydrauliques. On lui doit le principe de continuité (débit, section, vitesses sont interdépendants) et la presse hydraulique. Nous pouvons aussi mentionner le Hollandais Simon Stevin en hydrostatique.

Les développements en mécanique des fluides sont de plus en plus nombreux en Europe notamment en France à partir du 17ième siècle.

=

Evangélista			
Torricelli:	1608-1647	:	Mouvement de l'eau dans les orifices
René Descartes:	1598-1650	:	Philosophie et bases mathématiques
Blaise Pascal:	1623-1662	:	Hydrostatique
Leibnitz:	1646-1716	:	Concept de l'énergie cinétique
La famille Bernoulli	:		
Jacob	1654-1705	:	Mathématique
Johan	1667-1748	:	"Nouvelle hydraulique"
Daniel (fils de Johan)	1700-1782	:	Hydrodynamique
Léonard Euler:	1707-1783	:	Fondateur de l'hydrodynamique (Eqs. d'Euler)
Joseph-Louis Lagrange:	1736-1813	:	Potentiel, ligne de courant, ondes
Pierre-Simon Laplace:	1749-1827	:	Opérateur de Laplace
Comte de Buat:	1734-1809	:	écrivit "Principe d'hydraulique", l'américain Freeman en 1929 lui attribue le titre de "Père de l'hydraulique"
Antoine Chézy:	1718-1798	:	suivant l'idée du comte de Buat, Chézy fut le premier à introduire le concept de couche limite (sans utiliser le nom) et le frottement de parois: $V = C \sqrt{HS}$ où S est la pente, H le rayon hydraulique; C le coefficient de Chézy.
Jean-Baptiste Bélanger:	1789-1894	•	Courbes de remous, l'équation de Bélanger pour les ressauts hydrauli- ques

Gaenard-Guetavo			
Coriolis:	1792-1893	:	Coefficient de distribution d'énergie pour les vitesses non uniformes dans la vertiçale
Frédéric Reech:	1805-1884	:	Problème de similitude dans les expériences hydrauliques
Ludwig Hagen:	1797-1884	:	Écoulement laminaire dans les canaux
Jean-Louis Poiseuille:	1799-1869	:	Écoulement du sang dans les veines
Jean-Claude Bassi de Saist			
Venant:	1797-1886	:	Théorie des ondes, résistance dans tuyaux, etc.
Arsène Dupuit:	1804-1886	:	Écoulement à surface libre, remous, la profondeur critique, etc.
Henri D'Arcy:	1803-1858	:	Construction d'un canal expéri- mental
Henry Bégin:	1829-1917	:	Élève de D'Arcy Première formule sur le frottement de Chézy en fonction de la rugosité 'a' et du rayon hydraulique H (en 1897): C = $87/(1+a/\sqrt{H})$
Émile Gauguillet:	(1818-1894)	:	Formule du frottement en fonction de la rugosité et du rayon hydraulique
Wilhem Kutter: Philippe Gauckler: Robert Manning:	(1818-1888) (1826-1905) (1816-1897)	:	Formule de frottement qui porte le nom de Manning par une erreur histo- rique
William Froude:	(1810-1879)	:	Loi de similitude, nombre de Froude. N'a jamais utilisé le nombre de Froude mais a travaillé sur le problème de couche-limite
Louis-Marie Navier:	1785-1836	:	Équation hydrodynamique d'Euler avec existence d'une force entre les particules
George Stokes	1809-1903	:	Utilisation du concept de viscosité dans les équations de Navier
Joseph Boussinesq	1849-1929	:	"Essai sur la théorie des eaux courantes" 1872, ondes; coefficient de quantité de mouvement; viscosité turbulente
Osborne Reynolds:	1842-1912	:	Modèle réduit avec distorsion, la classification d'écoulement turbu- lent, les contraintes turbulentes

- 6 -

=

Nicola Joukowskay: Wilhem Kutta:	1847-1921 1867-1944	:	Portance hydrodynamique, etc.
Ludwig Prandtl: Theodor Karman: (élève de Prandtl)	1875-1953 1881-1963	:	Longueur de mélange, couche limite et la viscosité turbulente, les tourbillons
Schlichting, Bakhmet Nikuradse, Keulegan Von Muises, Colebrool	eff: k-White		Influence importante sur le dévelop- pement de l'hydraulique analytique

Tendances actuelles

r

Depuis le développement des ordinateurs, les méthodes numériques ont apporté une contribution importante au domaine de l'hydraulique (Leenderste). Les chercheurs ont intégré les connaissances physiques, théoriques, expérimentales et informatiques pour développer des outils de simulation numérique sous forme de logiciel. Notons quelques développements:

- 1954 : la méthode des éléments finis présentée par des chercheurs américains: les professeurs Clough, Martin et leurs collègues (Berkeley)
- 1963 : un développement important de l'utilisation des éléments finis en mécanique des solides et des structures: notons Zienkiewiez, Wilson, Ivans, Oden, etc.
- 1970-1980: la première application des éléments finis en hydraulique: Taylor et Hood, le modèle CAFE par le MIT, le modèle MEFLU par l'Université Laval - Compiègne, etc. Actuellement le groupe de Québec composé de l'Université Laval, INRS-Eau, Hydro-Québec et l'Université de Compiègne est en pleine croissance dans le développement des logiciels pour résoudre les problèmes bidimentionnels et tridimensionnels de courantologie et de sédimentologie. Notons également les groupes européens, parmi d'autres, Rodi en Allemagne.

- 7 -

• Un outil d'analyse pour l'aménagement

1.2 LA CLASSIFICATION DES ÉCOULEMENTS

Le domaine de l'hydraulique numérique utilise différents concepts, venant à la fois d'ingénieurs praticiens, de mathématiciens, de mécaniciens des fluides et d'informaticiens. Il est très riche en vocabulaire. Il nous semble donc nécessaire d'expliquer quelques concepts et classifications utilisées pour décrire les régimes d'écoulements.

L'étude d'un régime d'écoulement consiste à calculer la vitesse, la pression, la température, la densité, la concentration d'espèces chimiques ou biologiques, les niveaux d'eau sous diverses conditions et modifications. Nous notons:

(u,v,w) = les composantes de la vitesse en fonction de (m/sec) (x,y,z,t) (x,y,z;t) = le système de coordonnées de référence spatio-(m;sec) temporelle p,h,T,ρ (x,y,z) = respectivement la pression, le profil de la ligne (N/m²,m,°C,kg/m³) d'eau, la température et la masse spécifique

- 8 -

u,v,w,p,h etc. sont les variables cherchées ou les inconnues du problème.

Les variables physiques sont conditionnées par la forme et la nature des limites du domaine géométrique dans lequel on étudie l'écoulement. Par exemple, les coefficients de frottement de Chézy "C" ou de Manning "n" sont fonction de la rugosité du fond (C en $m^{1/2}/sec$).

Les paramètres physiques du fluide lui-même jouent un rôle important:

- la viscosité cinématique (m²/sec); v ou 1 stokes = 1 cm²/sec = 10^{-4} m^2 /sec v de l' eau à 20°C = 10^{-6} m^2 /sec v de l'air à 0°C = 13,3 x 10^{-6} m^2 /sec (pression de 750 mm de mercure)
- viscosité dynamique: $\mu = \rho v$ μ de l'eau à 20°C \approx 0,01 Poise (= 1g/cm·s) \approx 10⁻³ kg/m-sec

1.2.1 Nombres adimensionnels

Diverses forces agissent sur les écoulements à surface libre:

- la gravité
- l'inertie
- la viscosité.

Pour classifier les écoulements, on compare la valeur relative de ces forces. Ce faisant, on définit des nombres adimensionnels dont la valeur reflète le résultat de l'équilibre de ces forces. Deux nombres sont très utilisés: Reynolds et Froude. a) Nombre de Reynolds

:

$$Re = \frac{Force \, d'inertie}{Force \, visqueuse} = \frac{U \, D}{v}$$
(1-1)

où U est une vitesse caractéristique m/sec

D est une dimension caractéristique en m; soit la hauteur d'un obstacle ou soit la profondeur "H" d'eau

v est la viscosité cinématique.

Par exemple, de l'eau (à 20°C) coulant à une vitesse de 1 m/sec et ayant une profondeur de 1 m sera caractérisée par un nombre de Reynolds de: Re = 10^6 .

Plus le nombre Re est grand, plus l'influence des forces visqueuses sur l'écoulement devient négligeable. Dans les écoulements naturels, à surface libre les forces d'inertie sont prédominantes par rapport aux forces visqueuses dites "laminaires". Ces écoulements sont dits turbulents.

b) Nombre de Froude

Ce nombre adimensionnel est très important pour les écoulements à surface libre. Il n'est pas utilisé pour les écoulements en charge car la force de gravité n'influence pas ce type d'écoulement.

$$Fr = \frac{Force \, d'inertie}{Force \, de \, gravite} = \frac{U}{\sqrt{gH}}$$
(1-2)

où g = accélération de la gravité

H = dimension caractéristique, la profondeur d'eau par exemple.

Ce nombre joue le même rôle que le nombre de Mach, Ma, pour un écoulement de fluide compressible en aérodynamique.

- 10 -

$$Ma = \frac{U}{\sqrt{K/\rho}}$$
(1-3)

où K = compressibilité en N/m² ρ = masse spécifique en kg/m³.

Remarquons que \sqrt{gH} est aussi la célérité c d'une onde longue dans les eaux peu profondes:

Si Fr est grand (≈ 1 ou plus), une perturbation à l'amont se propage à l'aval rapidement et peut provoquer des chocs, des instabilités; le régime d'écoulement est dit "torrentiel".

Si le fluide a un nombre de Froude inférieur à 1 (Fr < 1), l'écoulement est dit fluvial. Toutes les perturbations en aval influencent alors l'écoulement en amont. Si le fluide a Fr > 1, l'influence des conditions en aval ne se fera pas sentir. Le passage du régime torrentiel (Fr > 1) au régime fluvial (Fr < 1) se fait par l'intermédiaire d'un ressaut; par contre, le passage du régime fluvial au régime torrentiel se fait sans discontinuité.

(régime torrentiel)	(régime fluvial)				
$C_1 = \sqrt{gH_1}$ est petit	$C_2 = \sqrt{gH_2}$ est grand				
U1 est grand	U_2 est petit				

Si le nombre de Froude voisine 1 (Fr \approx 1) comme c'est le cas lors du passage d'un régime torrentiel à fluvial ou l'inverse, l'écoulement est dit critique. Les perturbations sont alors pratiquement stationnaires.

- 11 -

Dans les problèmes de similitude (modèles réduits), on utilise très souvent Re et Fr pour comparer les écoulements et les règles d'extrapolation des résultats du prototype.

c) Paramètre de rugosité relative: k/H

⁼ La rugosité relative est une mesure de la qualité d'une paroi. Contrairement à Re et Fr, ce paramètre n'est pas l'expression d'un rapport de forces. La résistance à l'écoulement est fonction de la nature de la paroi et de la configuration du fond. On utilise un paramètre k qui mesure dans <u>un certain sens</u> la dimension moyenne des grains de la surface de la paroi, en mm ou en cm. En pratique, k est très difficile à mesurer. La détermination correcte de l'influence de la rugosité constitue une bonne part de la difficulté de modéliser les écoulements.

Fond rugueux

(Nikuradse)

Rugosité équivalente

Le coefficient "n" de Manning est une mesure empirique de l'influence de la rugosité. Par contre, "k" est uniquement une dimension caractéristique représentant les éléments de la surface de la paroi, qui est ensuite utilisé pour classer différents types de parois.

1.2.2 Classification générale

Un régime d'écoulement peut être classé suivant sa variation en fonction du temps.

les variables ne changent pas en fonction du temps (débit stable):

- écoulement dans une rivière

- écoulement dans un canal

.

les variables changent en fonction du temps:

- l'écoulement en mer (marée)
- l'écoulement dans une rivière en fonction de la pluie, onde de crue, etc.

En plus du temps, le régime d'écoulement peut être classifié selon différents autres aspects dépendant de l'objectif poursuivi.

ASPECT	TYPE DE RÉGIME
Espace	Uniforme ou varié soit, graduellement soit, brusquement; écoulement uni-dimensionnel, bi-dimensionnel ou tri-dimensionnel
Force de gravité (Froude)	En charge ou à surface libre soit, fluvial, torrentiel ou critique
Masse spécifique	Compressible ou imcompressible (selon la varia- tion de la masse spécifique)
Viscosité/Fond (Reynolds)	Fluide parfait (viscosité nulle), fluide visqueux, laminaire ou turbulent (Re; turbulent rugueux)
Domaine	Écoulement en mer (marée), en estuaire, en rivière, ou en lac (induit par le vent)

- 13 -

Ì I

Chapitre II

Ξ

LE MODÈLE MATHÉMATIQUE

2. LE MODÈLE MATHÉMATIQUE EN 3-DIMENSIONS

2.1 GÉNÉRALITÉS

En mécanique des fluides, nous cherchons un champs de vitesse (u,v,w)et de pression p en tout point (x,y,z) du domaine géométrique et en tout instant (t) sous différentes conditions géométriques et différentes conditions aux limites. Dans un cas général, les variables d'un problème d'écoulement sont: les vitesses (u,v,w), la pression (p) ou le profil de la surface libre, la température (T), la masse spécifique (p) et la viscosité moléculaire (v).

Nous distinguons deux catégories d'écoulements:

- <u>les écoulements en charge</u>: la limite géométrique du domaine est connue avec les conditions aux limites nécessaires, par exemple, les écoulements dans les tuyaux, autour d'un avion, etc.
- les écoulements à surface libre: la limite supérieure de la géométrie du domaine n'est pas définie; par exemple, les écoulements en mer, en estuaire, en fleuve, en rivière, en canal et en lac. La surface libre constitue alors une inconnue du problème.

Écoulement en charge: (Tuyau circulaire)

Écoulement à surface libre:

L'étude des écoulements à la surface libre est l'objectif de la présente étude; ceux-ci sont régis par les lois fondamentales suivantes:

- <u>conservation de la masse</u> (éq. 2-1): cette loi traduit la conservation de la masse du fluide. Elle est exprimée mathématiquement en fonction des vitesses (u,v,w) et de la masse spécifique p (équation de continuité).
- <u>conservation du momentum</u>¹ (éq. 2-2): cette loi représente l'équilibre des forces dans un écoulement (trois équations de quantité de mouvement selon x, y et z);
- <u>conservation de l'énergie</u>: l'énergie totale (thermique, interne et mécanique) est conservée (première loi de la thermodynamique). L'équation de l'énergie est exprimée en fonction de la température. Pour cette étude, nous n'allons pas tenir compte de cette relation. Pour les problèmes hydrodynamiques, nous supposons un découplage entre l'équation du mouvement et celle de l'énergie. Nous supposons également dans une première approximation que la viscosité est constante, et que la masse spécifique est définie à priori. Ainsi, ρ et μ ne sont plus des inconnues du problème.
- <u>conservation de la densité</u> (éq. 2-5): Pour un écoulement stratifié, le mélange des eaux est caractérisé par la relation de transportdiffusion turbulente de la densité.

On peut donc résumer les différents aspects de la représentation d'un écoulement comme suit:

¹ Le mot momentum désigne la quantité de mouvement; ces deux expressions seront employés indistinctement.

Туре	Variable inconnues	Lois physiques	Représentation mathématique
écoulement général	u,v,w, p Τ,ρ,μ	 .conservation de la masse .conservation du momentum .conservation de l'énergie .équation d'état .équation de la viscosité 	 .équation de continuité .équation de Navier- Stokes .équation de transport- thermique .équation pour la densité et la viscosité
écoulement à surface libre H	u,v,w,p p, la surface libre "H"	 .conservation de la masse et du momentum .conditions sur la surface libre pour la pression et la vitesse normale nulle 	 .équations de continuité et de Navier-Stokes (2-1 et 2-2) .équations cinématiques sur la surface libre

2.2 CHOIX DE COORDONNÉES

Nous choisissons un système de coordonnées cartésiennes, avec l'axe z orienté vers le zénith. Les composantes de la vitesse sont indiquées à la figure 1.

La description des variables est faite dans une configuration Eulérienne, c'est-à-dire que les vitesses et la pression ne sont pas associées à une particule matérielle du fluide; mais plutôt à une position (x(t),y(t),z(t),t) au sein du domaine occupée par différentes particules à différents instants. Figure 1: Choix de coordonnées.

~

(x vers l'est, y vers le nord à cause de la force de Coriolis)

La dérivée temporelle d'une fonction en configuration Eulérienne est:

	df	<u>(x,y,</u> dt	<u>z,t)</u>	=	<u>∂f</u> +	<u>∂f</u> ∂x	$\frac{dx}{dt}$ +	<u>) ठे</u> ठेप्र	dy dt	$+ \frac{\partial f}{\partial z}$	dz dt	
puisque	•		dx dt	Ŧ	u	,	dy dt	- =	v	et	dz dt =	* W
alors,			df dt	=	<u>)</u> ठेर +	<u>ðf</u> ठेx	u +	<u>ेf</u> ठेप्र	v +	<u>∂t</u> w		

2.3 RELATIONS MATHÉMATIQUES

2.3.1 Modèle de base

a) Équation de continuité

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0 \qquad (2-1a)$$

$$\frac{\partial \rho}{\partial t}$$
 + Div $\dot{\rho u}$ = 0

ou

2

En régime permanent: $\frac{\partial \rho}{\partial t} = 0$ d'où:

$$\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial}{\partial z} (\rho w) = 0 \qquad (2-1b)$$

Pour un fluide homogène et incompressible: ρ = constante et $\frac{d\rho}{dt}$ = 0

$$Div \dot{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
 (2-1c)

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right) = Fx - \frac{\partial p}{\partial x} + \frac{\partial \sigma}{\partial x} + \frac{\partial \sigma}{\partial y} + \frac{\partial \sigma}{\partial z}$$
(2-2a)

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}\right) = Fy - \frac{\partial p}{\partial y} + \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z}$$
(2-2b)

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}\right) = F_{z} - \frac{\partial p}{\partial z} + \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z}$$
(2-2c)

- 19 -

	Force d'inertie	I	:	inertie locale
			•	
-	Force de volume	III	:	Fx, Fy Coriolis (F _Z ≈ U) Fz gravité
-	Force de pression	IV		
	Force de frottement visqueux	۷		

À cause de la description Eulérienne, nous avons une composante locale et une composante convective de la force d'inertie (En description Lagrangienne, la composante convective est nulle). Ces termes rendent l'équation de mouvement non-linéaire.

Le tenseur symétrique de contraintes visqueuses est:

$$\begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix}$$

(la symétrie est nécessaire pour l'équilibre des moments)

Force de volume de Coriolis

À cause de la rotation de la terre, une particule de fluide subit une force d'inertie dite "de Coriolis". Elle est importante dans l'étude des marées et des plans d'eau de grande superficie (lacs).

En supposant un type d'écoulement naturel (l'écoulement horizontal est dominant et la profondeur est petite par rapport à la dimension horizontale), la force de Coriolis a pour expression:
Fx = ρfv Fy = $-\rho fu$ Fz = 0 où: f = 2 ω sin ϕ ϕ = latitude (positive pour l'hémisphère nord) ω = vitesse de rotation de la terre = .73 x 10⁻⁴ rad/s

Force de volume de gravité

Dans le système choisi:

 $Fz = -\rho g$

où g = accélération de la gravité = 9.81 m/s^2

La loi du frottement

Pour un écoulement visqueux, la loi du frottement de Newton s'écrit:

$$\sigma_{xx} = 2\mu \frac{\partial u}{\partial x} ; \quad \sigma_{yy} = 2\mu \frac{\partial v}{\partial y} ; \quad \sigma_{zz} = 2\mu \frac{\partial w}{\partial z}$$
(2-4)
$$\sigma_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) ; \quad \sigma_{yz} = \mu \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) ; \quad \sigma_{xz} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)$$

Pour un écoulement incompressible (ρ = constante) d'un fluide homogène (μ = constante), les termes IV de l'équation (2-2) deviennent:

μΔu ; μΔv ; μΔw avec
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 (opérateur Laplacien)

c) Relation de conservation de la densité

 $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} - \frac{\partial}{\partial x} (K_x \frac{\partial \rho}{\partial x}) - \frac{\partial}{\partial y} (K_y \frac{\partial \rho}{\partial y}) - \frac{\partial}{\partial z} (K_z \frac{\partial \rho}{\partial z}) = 0 \quad (2-5)$ Transport
Diffusion
par l'échange turbulent

2.3.2 Conditions aux limites typiques

Il est nécessaire de définir des conditions aux limites suffisantes pour obtenir une solution du problème $(2-1 \ a \ 2-5)$

- paroi imperméable avec adhérence complète:

 $\mathbf{u} = \mathbf{v} = \mathbf{w} = \mathbf{0}$

- paroi imperméable avec glissement:

u_N = 0 (vitesse normale nulle)

- paroi avec frottement:

$$u_{N} = 0;$$

$$\sigma_{xx} 1 + \sigma_{xy} m + \sigma_{xz} n = f_{x}$$

$$\sigma_{xy} 1 + \sigma_{yy} m + \sigma_{yz} n = f_{y}$$

ou encore, dans un plan (S-T) normal à Ñ

 $\sigma_{\rm S} = f_{\rm SN}$ $\sigma_{\rm T} = f_{\rm TN}$

- où: l,m,n sont les cosinus directeurs de la normale orientée vers l'extérieur du domaine; fx, fy sont les forces appliquées ou définies en fonction de la vitesse dans le plan normal à \vec{N} (lois de frottement de la paroi ou du fond présentées au chap. IV)
- paroi avec un débit entrant ou sortant: le profil de (u, v, w) est défini

- surface libre:

cette condition nous permet d'appliquer la force du vent, de définir la hauteur d'eau

$$\sigma_{xx} + \sigma_{xy} + \sigma_{xz} = f_x^W$$

$$\sigma_{xy} + \sigma_{yy} + \sigma_{yz} = f_y^W$$

$$p = 0 \quad ; \quad \sigma_N = 0 \quad ; \quad f_z^W = 0$$

$$o\tilde{u} + f_i^W = force \quad du \quad vent \quad selon \quad i$$

$$w = \frac{dz}{dt} = \frac{\partial z_s}{\partial t} + u \quad \frac{\partial z_s}{\partial x} + v \quad \frac{\partial z_s}{\partial y}$$

où z_s est la cote du plan d'eau

Cette relation implique que la pente de la surface libre est faible (onde longue). f_x^W et f_y^W sont les composantes de la force du vent présentées au chapitre IV.

2.3.3 Solution d'un problème d'écoulement

Les équations (2-1) et (2-2) représentent le modèle mathématique d'un écoulement général à la surface libre ayant u,v,w,p comme inconnues du problème. La viscosité μ et la masse spécifique ρ sont définies à priori. Nous cherchons un champ u(x,y,z,t), v(x,y,z,t), w(x,y,z,t) et p(x,y,z,t) tel que les équations (2-1, 2-2) soient satisfaites en tout point du domaine avec les conditions aux limites appropriées. En théorie, les relations de Navier-Stokes représentent complètement le problème d'écoulement, mais à l'heure actuelle leur solution est impossible à obtenir même avec l'aide des ordinateurs les plus puissants. La complexité du problème réside dans les variations rapides (turbulence) de u,v,w,p en fonction du temps. Pour obtenir une solution réelle du problème, il faudrait calculer les vitesses et la pression à chaque instant t avec un ∆t en micro- ou mili- seconde et pendant une période de temps suffisante pour tenir compte de toutes les variations. En effet, la plupart des écoulements réels sont "turbulents" et il est nécessaire de développer les modèles de turbulence pour représenter d'une manière approximative mais équivalente l'influence des variations temporelles rapides de u,v,w,p sur l'écoulement. Remarquons que tout écoulement est non-permanent à micro-échelle même s'il est considéré comme permanent à macro-échelle. La notion de permanence est donc associée à l'échelle considérée. Il nous semble que dans les vingt prochaines années, les moyens informatiques vont nous imposer l'utilisation de modèles simples de turbulence pour résoudre les problèmes d'écoulement tridimensionnel. Un développement révolutionnaire imprévu en technologie informatique peut certes influencer cette orientation.

2.4 MODÈLE ALGÉBRIQUE DE LA TURBULENCE

2.4.1 Contraintes apparentes de Reynolds

À l'heure actuelle, le modèle algébrique de la turbulence est mieux adapté aux applications industrielles. Ce modèle utilise le concept d'une viscosité turbulente μ_t un paramètre dépendant du champ de vitesse. Nous allons faire une présentation très sommaire du modèle.

Les variables de notre modèle peuvent être présentées comme une valeur moyenne autour de laquelle s'ajoute une fluctuation (Boussinesq)

Figure 3: Décomposition de la vitesse u.

$$u(t) = \overline{u}(t) + u'(t)$$

$$v(t) = \overline{v}(t) + v'(t) \quad (2-6a)$$

$$w(t) = \overline{w}(t) + w'(t)$$

$$p(t) = \overline{p}(t) + p'(t)$$

$$f(t) = \frac{1}{t_1} \int_{t}^{t+t_1} u(t) dt ; \int_{t}^{t+t_1} u'(t) dt = 0 \quad (2-6b)$$

 $\overline{u}(t)$ représente la vitesse moyenne

u'(t) représente la variation autour de la moyenne

où "t" représente le temps global. On suppose que la période t_1 est suffisamment petite pour prendre en compte l'évolution d'ensemble du phénomène et suffisamment grande pour filtrer les variations de courte période.

On montre aisément que:

$$\overline{u} \cdot u = \overline{u}^2 + \overline{u} \cdot u^*$$
 etc. (2-6c)

En remplaçant les variables dans les équations (2-1), (2-2) par (2-6a) et en prenant une moyenne sur la période t_1 on obtient en première approximation:

Pour (2-1)

=

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho \overline{u}) + \frac{\partial}{\partial y} (\rho \overline{v}) + \frac{\partial}{\partial z} (\rho \overline{w}) = 0 \qquad (2-7a)$$

$$\frac{\partial}{\partial x} (\rho u') + \frac{\partial}{\partial y} (\rho v') + \frac{\partial}{\partial z} (\rho w') = 0 \qquad (2-7b)$$

On suppose que ρ ne varie pas rapidement dans le temps ($\rho = \overline{\rho}$)

Pour (2-2a)

$$\rho \left(\frac{\partial \overline{u}}{\partial t} + \overline{w} \frac{\partial \overline{u}}{\partial z} + \overline{v} \frac{\partial \overline{u}}{\partial y} + \overline{w} \frac{\partial \overline{w}}{\partial z}\right) = Fx - \frac{\partial \overline{p}}{\partial x} + \frac{\partial \sigma \overline{xx}}{\partial x} + \frac{\partial \sigma \overline{xy}}{\partial y} + \frac{\partial \sigma \overline{xz}}{\partial x}$$
$$- \left[\frac{\partial}{\partial x} \left(\rho \overline{u'u'}\right) + \frac{\partial}{\partial y} \left(\rho \overline{u'v'}\right) + \frac{\partial}{\partial z} \left(\rho \overline{u'w'}\right)\right] \qquad (2-8)$$

et de même pour le 2-2b etc.

Ainsi, nous obtenons le tenseur de <u>contraintes apparentes de Reynolds</u> (1895) représentant l'influence de la turbulence (figure 4).

a) Moyenne des variations

$$[\sigma'] = -\rho \begin{bmatrix} \overline{u'u'} & \overline{u'v'} & \overline{u'w'} \\ \overline{v'u'} & \overline{v'v'} & \overline{v'w'} \\ \overline{w'u'} & \overline{w'v'} & \overline{w'w'} \end{bmatrix}$$
(2-9)

Par analogie avec la viscosité moléculaire, Boussinesq (1877, 1896) a introduit un coefficient de mélange, souvent appelé la viscosité turbulente, pour décrire l'influence de la turbulence:

$$\sigma'_{xy} = -\rho \overline{u'v'} = \mu_t \frac{\partial \overline{u}}{\partial y}$$

On peut généraliser cette relation en faisant appel au taux de déformation angulaire d'une particule:

$$\sigma'_{xy} = -\rho \overline{u'v'} = \mu_t \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x}\right)$$
(2-10)

On peut remarquer la ressemblance avec la relation de Newton (2-4); par contre, μ_t est une fonction des vitesses, et de leur gradient etc. C'est donc une propriété hétérogène de l'écoulement et sa valeur change d'un point à l'autre. La viscosité moléculaire μ est une propriété intrinsèque du fluide.

2.4.2 Théorie moderne de la longueur de mélange: l_m

En 1925, Prandtl a apporté une contribution importante dans le domaine de la turbulence en introduisant le concept de longueur de mélange "l emprunté à la théorie cinétique des gaz. En fait, son travail est la suite naturelle des travaux de Chézy (1778), de Bousinesq (1896), et de Reynolds (1896). Les fondements de l'hypothèse de la longueur de mélange sont:

 les variations turbulentes, u', w', w' sont du même ordre de grandeur: u'≈ v'≈ w'. En effet, ceci est du à la relation de continuité (2-7b) pour (u',v',w'); la variation u' peut être exprimée en fonction du gradient de la vitesse moyenne. En effet, toute la validité de l'hypothèse de Prandtl est fondée sur cette supposition. Heureusement, elle a été vérifiée ultérieurement par des résultats expérimentaux.

On suppose que la vitesse u' au point "Q" est \overline{u} (Q) - \overline{u} (P); le point P est séparé du point Q par une distance $l_m/2$ (figure 5). Prandtl suppose que dans un écoulement turbulent, les particules au point P (vitesse \overline{u} (P)) sont instantanément transportées au point Q par la variation transversale u', acquérant ainsi un excédent de vitesse u' = u(Q) - u(P). Cet excédent introduit un momentum additionnel appelé la contrainte turbulente. De même entre P et Q' la distance Q' - Q est dite la longueur de mélange et est une fonction spatiale-temporelle de l'écoulement. En supposant la fonction \overline{u} (y) dérivable, on peut faire l'hypothèse:

$$|\mathbf{u}'| = \mathbf{1}_{m} \left| \frac{d\overline{u}}{dy} \right| \quad |\mathbf{v}'| = \mathbf{1}_{m} \left| \frac{d\overline{u}}{dy} \right|$$
$$\overline{\mathbf{u}'\mathbf{v}'} = -\mathbf{1}_{m}^{2} \left| \frac{d\overline{u}}{dy} \right| \quad \frac{du}{dy}$$
$$\sigma'_{\mathbf{xy}} = \rho \mathbf{1}_{m}^{2} \left| \frac{d\overline{u}}{dy} \right| \quad \frac{du}{dy} ; \quad \mu_{\mathbf{t}} = \rho \mathbf{1}_{m}^{2} \left| \frac{d\overline{u}}{dy} \right| \qquad (2-11)$$

Il faut déterminer correctement la valeur de l_m pour bien représenter l'écoulement. Un modèle turbulent donné diffère d'un autre par la technique d'évaluation de l_m ou μ_t . À l'heure actuelle, on trouve les modèles suivants:

 le modèle algébrique: l_m est définie par une relation algébrique utilisant des résultats empiriques. Dans cette étude, nous utilisons ce type du modèle appelé aussi "modèle à O-Équation";

- le modèle différentiel de l'énergie turbulente k, dit modèle à une équation;
- le modèle différentiel de l'énergie turbulente κ et de la dissipation " ε ", dit modèle κ - ε ou modèle à deux équations.

Figure 5: Longueur du mélange de Prandtl.

2.4.3 Différents modèles algébriques pour 1_m

Pour un écoulement général, nous pouvons choisir:

$$\mu_{t} = \rho \, 1_{m}^{2} \left[2 \left(\frac{\partial u}{\partial x} \right)^{2} + 2 \left(\frac{\partial v}{\partial y} \right)^{2} + 2 \left(\frac{\partial w}{\partial z} \right)^{2} + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)^{2} + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right)^{2} \right]^{\frac{1}{2}}$$
(2-13)

La longueur de mélange peut être définie algébriquement de différentes manières. Ce type de définition suppose qu'elle ne dépend que de la géométrie. $l_{m} = \kappa y \qquad \kappa = 0,4 \text{ (constante de Von-Karman)} \qquad (2-13a)$ où encore: $l_{m} = \kappa y \quad \text{si} \quad y < y_{max}$ $l_{m} = \kappa y_{max} \quad \text{si} \quad y > y_{max}$ $M = \kappa y_{max} \quad \text{si} \quad y > y_{max}$

b) Loi logarithmique (figure 6)

À proximité d'une paroi (Prandtl)

a)

Si l'on suppose que l'écoulement est régi par une loi logarithmique:

 $l_{\rm m} = \kappa y / 1 - \frac{y}{H}$; (pour un fluide sans sédiment) (2-13b)

D'après nous, cette relation est la plus proche de la réalité pour un écoulement à la surface libre.

Figure 6: Longueur du mélange.

c) Loi de puissance:

=

$$l_{\rm m} = \kappa y \left(\frac{y}{\rm H}\right)^{-1/n} \sqrt{1 - y/{\rm H}}$$
(2-13c)
n à choisir

Si $n = \infty$, nous retrouvons la formule 2-13b.

2.4.4 Exemple: le profil de vitesse dans l'écoulement permanent uniforme

Pour estimer le profil de vitesse dans un cas simple d'écoulement uniforme et unidirectionnel; on pose:

$$u (x,y,z) = u(z)$$

 $v = w = 0$

On peut montrer¹ que le problème se résume à la première équation simplifiée du mouvement

$$\frac{\partial \sigma}{\partial z} + \rho g \frac{\partial h}{\partial x} = 0$$

En réduisant les notations

$$\frac{\partial \sigma}{\partial z} + \rho g \frac{\partial h}{\partial z} = 0$$

¹ La pression est considérée comme hydrostatique. C'est la hauteur d'eau relative qui tient lieu alors de pression.

 $P = pg (H-z) \Delta x$

En supposant la pente " α " petite

 $\frac{dx}{ds} \approx 1$; sin $\alpha \approx \tan \alpha = S_0$ (2-14a) $\sigma = \rho g H S_0 (1 - z/h)$ $\sigma = \rho q H S_0 \tilde{a} z = 0$

Figure 8: Contrainte verticale.

Dépendant du choix de la longueur de mélange l_m , nous obtenons différents profils de vitesse dans la verticale.

longueur du = mélange	^μ t	u(z)	$\overline{u}(z) = \int \frac{dz}{H}$	u _{max}	z ou
C .					u(z)= <u>u</u> (z)
-	μ ₀ (constante)	$\frac{\sigma_0}{\mu_0}(z-\frac{z^2}{2H})$	$\frac{\sigma_0}{\mu_0} \frac{H}{3}$	$\frac{\sigma_0}{\mu_0} \frac{H}{2}$	$H(1 - \sqrt{1/3})$
к z √1-z/H	ρκ ² z ² (1-z/H)	$\sqrt{\frac{\sigma_0}{\rho}} \cdot \frac{1}{\kappa} \ln(\frac{z}{z_0})$	$\sqrt{\frac{\sigma_0}{\rho}} \frac{1}{\kappa} \ln(\frac{H}{z_0} - 1)$	$\sqrt{\frac{\sigma_0}{\rho}} \frac{1}{\kappa} \ln(\frac{H}{z_0})$	
$\kappa z(\frac{z}{H}) \frac{-\frac{1}{n}}{\sqrt{1-\frac{z}{H}}}$	$\rho \kappa^2 z^2 \left(\frac{z}{H}\right)^{-\frac{2}{n}} x \left(1 - \frac{z}{H}\right)$	$\sqrt{\frac{\sigma_0}{\rho}} \frac{n}{\kappa} \left(\frac{z}{H}\right)$	$\sqrt{\frac{\sigma_0}{\rho}} \cdot \frac{1}{\kappa} (\frac{n^2}{n+1})$	$\sqrt{\frac{\sigma_0}{\rho}} \frac{n}{\kappa}$	

Profil de vitesse u(z)

Si on suppose la loi logarithmique de vitesse:

 $u(z) = \sqrt{\frac{\sigma_0}{\rho}} \frac{1}{\kappa} (\ln z - \ln z_0)$ En posant u* = $\sqrt{\frac{\sigma_0}{\rho}}$ (vitesse dite de cisaillement) $\frac{u(z)}{u^*} = 2,5 \ln z + \overline{B}$

u

ou encore:

$$\frac{u(z)}{u^{*}} = 2,5 \ln \left(\frac{z}{k_{s}}\right) + B$$
(2-15)

Pour un écoulement turbulent rugueux: B = 8,5

Le paramètre de rugosité $A_R = \frac{u^*k_s}{v}$ sert à définir la nature de l'écoulement

- où k $_{\rm S}$ est le paramètre de rugosité ν la viscosité moléculaire
- Si $A_r >> 70$ (turbulent rugueux)

Dans le cas d'un écoulement naturel, nous avons toujours un régime turbulent rugueux. L'équation (2-15) s'écrit:

$$\frac{u}{u^{\star}} = 2.5 \ln(\frac{z}{k_{s}}) + B$$

$$\frac{u_{max}}{u^{\star}} = 2.5 \ln(\frac{H}{k_{s}}) + B$$

$$\frac{u_{max} - u}{u^{\star}} = -2.5 \ln(\frac{z}{H}) \qquad (2-16)$$

et pour B = 8.5

$$\frac{\overline{u}}{u^*} = \frac{1}{H - k_s} \int_{k_s}^{H} u(z) dz = 2.5 \ln[11 \frac{H}{k_s}]$$

$$\overline{\frac{u}{u^*}} = \frac{u_{max}}{u^*} - 2.5$$
(2-17)

Distribution de la vitesse.

- 34 -

La loi universelle de la distribution est donnée par l'équation (2-16)qui est indépendante de la rugosité du fond. C'est-à-dire que la variation $(u_{max}-u)$ est identique pour tous les écoulements, les rugosités, etc.

Dans un écoulement turbulent, on peut représenter le développement de l'écoulement comme à la figure suivante.

2.4.5 Rugosité et sous-couche laminaire δ

Nous utilisons k comme la mesure du paramètre de rugosité et δ la hauteur de la couche limite laminaire.

Figure 10: Rugosité et couche laminaire.

2.5 RÉSUMÉ DU MODÈLE MATHÉMATIQUE

En supposant un fluide incompressible à surface libre et en considérant à toute fin pratique la conservation du fluide (ρ = constant, où varie très lentement dans l'espace), nous pouvons caractériser un écoulement turbulent en trois dimensions par les relations¹ suivantes:

Continuité

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
 (2-18)

Mouvement

$$\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right) + \frac{\partial p}{\partial x} = \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} + fv$$

$$\rho \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}\right) + \frac{\partial p}{\partial y} = \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} - fu$$

$$\rho \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}\right) + \frac{\partial p}{\partial z} = \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} - \rho g \qquad (2-19)$$

$$\sigma_{xx} = 2 \mu_t \frac{\partial u}{\partial z} ; \sigma_{yy} = 2 \mu_t \frac{\partial v}{\partial y} ; \sigma_{zz} = 2 \mu_t \frac{\partial w}{\partial z}$$

$$\sigma_{xy} = \mu_t \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) ; \sigma_{yz} = \mu_t \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) ; \sigma_{xz} = \mu_t \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)$$

$$\mu_t = \rho I_m^2 \left(2\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial v}{\partial y}\right)^2 + 2\left(\frac{\partial w}{\partial z}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right)^2\right)^{\frac{1}{2}}$$

¹ À partir d'ici, on simplifie les notations en laissant tomber l'opérateur moyenne pour les vitesses et la pression.

Mélange des eaux

=

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} = \frac{\partial}{\partial x} \left(k_x \frac{\partial \rho}{\partial x} \right) + \frac{\partial}{\partial y} \left(k_y \frac{\partial \rho}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_z \frac{\partial \rho}{\partial z} \right)$$
(2-20)

 k_x , k_y , k_z sont des coefficients de diffusion turbulente.

<u>Conditions aux limites</u> (En supposant que le fond et la surface libre ont une pente faible)

. paroi imperméable: u = v = w = o

• paroi avec glissement $u_N = 0$ $\sigma_{nx} = fx$ $\sigma_{ny} = fy$ (dans le plan S-T)

. un débit entrant ou sortant: définir u_N

surface libre: (surface presque horizontale)

$$\sigma_{xz} = f_{xw} \text{ (vent)}$$

$$\sigma_{yz} = f_{yw} \text{ (vent)}$$

$$p = 0 ; \sigma_n = 0$$

$$w = \frac{dz_s}{dt} = \frac{\partial z_s}{\partial t} + u \frac{\partial z_s}{\partial x} + v \frac{\partial z_s}{\partial y}$$

fond:

 $\sigma_{xz} = f_{xf}$ $\sigma_{yz} = f_{yf}$

·

. .

Chapitre III

CLASSIFICATION DES MODÈLES ET LE PROBLÈME DU RESSAUT

·

.

3.1 PRÉSENTATION ADIMENSIONNELLE DES RELATIONS 3-D

Un modèle 3-D est trop général pour résoudre les écoulements réels et il est souvent souhaitable, même nécessaire, de simplifier les relations afin d'obtenir les solutions numériques avec les moyens informatiques actuels. Pour mieux comprendre le domaine de validité des simplifications ou des approximations introduites, nous présentons d'abord les relations (2-18, 2-19) sous forme adimensionnelle. Il faut choisir les paramètres adimensionnels avec la plus grande prudence afin de bien dégager l'ordre de grandeur des différents termes à retenir.

Posons:

$$u^{*} = \frac{u}{u_{0}} ; v^{*} = \frac{v}{v_{0}} ; x^{*} = \frac{x}{L_{0}} ; y^{*} = \frac{y}{L_{0}}$$
$$w^{*} = \frac{w}{w_{0}} ; z^{*} = \frac{z}{H_{0}} ; t^{*} = t. \frac{u_{0}}{L_{0}} p^{*} = \frac{p}{\rho u_{0}^{2}}$$
(3-1)

où:

 u_0 , v_0 , L_0 sont des valeurs caractéristiques pour les directions horizontales; w_0 et H_0 représentent la verticale.

3.1.1 Hypothèses sur les grandeurs caractéristiques

On suppose que l'écoulement est peu profond, c'est-à-dire, H₀/L₀ ≦ 1/10 à 1/20.

Dans ce cas, l'approximation d'onde longue est valable; alors, la vitesse de propagation de l'onde (célérité) est

$$c = \sqrt{gH_0}$$

On suppose que la vitesse de l'eau caractéristique u₀ sera

$$v_0 \approx u_0 = c = \sqrt{gH_0}$$

Enfin, on admet une hypothèse très importante:

$$\frac{W_0}{H_0} \approx \frac{U_0}{L_0}$$
Puisque
$$\frac{U_0}{L_0} = \frac{\sqrt{gH_0}}{L_0} = \frac{\sqrt{g}}{\sqrt{H_0}} \cdot \frac{H_0}{L_0}$$

$$= \frac{.15}{\sqrt{H_0}} \quad \text{si} \quad L_0 = 2U H_0$$
Alors:
$$w_0 = .15 \sqrt{H_0}$$

Les équations (2-18 et 2-19) deviennent:

1

$$\frac{\partial u^{\star}}{\partial x^{\star}} + \frac{\partial v^{\star}}{\partial y^{\star}} + \frac{L_{0}w_{0}}{H_{0}u_{0}} \frac{\partial w^{\star}}{\partial z^{\star}} = 0 \qquad (3-2)$$

$$\frac{\partial u^{\star}}{\partial t^{\star}} + u^{\star} \frac{\partial u^{\star}}{\partial x^{\star}} + v^{\star} \frac{\partial u^{\star}}{\partial y^{\star}} + \left(\frac{w_{0}L_{0}}{U_{0}H_{0}}\right)^{\dagger} w^{\star} \frac{\partial u^{\star}}{\partial z^{\star}} + \frac{\partial p^{\star}}{\partial x^{\star}} =$$

$$\left(\frac{1}{u_{0}L_{0}}\right) \left[\frac{\partial}{\partial x^{\star}} \left(\sigma_{XX}^{\star}\right) + \frac{\partial}{\partial y^{\star}} \left(\sigma_{Xy}^{\star}\right)\right] + \left(\frac{L_{0}}{u_{0}H_{0}^{2}}\right) \frac{\partial}{\partial z^{\star}} \left(\sigma_{XZ}^{\star}\right) \qquad (3-3)$$
La deuxième équation du mouvement a une forme analogue.

La troisième est différente:

$$\frac{\partial w^{\star}}{\partial t^{\star}} + u^{\star} \frac{\partial w^{\star}}{\partial x^{\star}} + v^{\star} \frac{\partial w^{\star}}{\partial y^{\star}} + \left(\frac{w_{0}L_{0}}{u_{0}H_{0}}\right)^{\star} w^{\star} \frac{\partial w^{\star}}{\partial z^{\star}} + \frac{L_{0}u_{0}}{H_{0}w_{0}} \frac{\partial p^{\star}}{\partial z^{\star}} = -g \left(\frac{L_{0}}{u_{0}w_{0}}\right) + \left(\frac{1}{u_{0}L_{0}}\right) \left[\frac{\partial}{\partial x^{\star}} \left(\sigma^{\star}_{Zx}\right) + \frac{\partial}{\partial y^{\star}} \left(\sigma^{\star}_{Zy}\right)\right] + \left(\frac{L_{0}}{u_{0}H_{0}^{2}}\right) \frac{\partial}{\partial z^{\star}} \left(\sigma^{\star}_{Zz}\right)$$
(3-4)

Les termes de Coriolis n'exercent pas d'influence sensible pour les milieux de type rivière.

En prenant

Ξ

$$\frac{H_0}{L_0} = e ; \frac{w_0}{u_0} = e ; \frac{H_0 w_0}{L_0 u_0} = e^2 et \frac{w_0 L_0}{u_0 H_0} = 1$$
(3-5)

On obtient pour (3-4):

$$e^2 \left(\frac{\partial w^*}{\partial t^*} + \dots \right) + \frac{\partial p^*}{\partial z^*} = -1$$
(3-6)

Compte tenu de la valeur de e (≈ .1 à .05) les divers termes de 3-6 précédés de e² peuvent être négligés vis-à-vis de la pression et du terme unité (1). C'est l'hypothèse de "pression hydrostatique".

$$\frac{\partial p^*}{\partial z^*} = -1$$
 ou $\frac{\partial p}{\partial z} = -\rho g$ (3-7)

En intégrant (3-7) entre le niveau z et la surface libre (conventions de la figure 9), on a

$$f = z = s$$

$$\int dp = \int -gdz$$

$$p(z) = -g(h(x,y) - z)$$

En prenant

$$p_s = p_{atm}$$

$$p(z) = p_{atm} + g(h(x,y) - z)$$
 (3-8)

L'hypothèse de la pression hydrostatique implique que;

- tous les termes de l'accélération verticale sont petits;
- les termes de contrainte verticale sont petits;
- ces simplifications sont possibles grâce à l'hypothèse des ondes longues; en effet, si la pente de la surface libre est grande, la pression n'est plus hydrostatique.

Les conditions aux limites sont les mêmes que celles présentées à la section 3. Les inconnues du problème sont u(x,y,z), v(x,y,z) et h(x,y). La valeur de w(x,y,z) est obtenue en intégrant la relation de continuité entre z_f et z (voir Robert, 1983 ou Leclerc, 1985)

$$w(z) = w(z_f) - \int_{z_f}^{z} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) dz = 0$$
(3-9)

Si l'on intègre l'équation de continuité entre z_f et la surface z_s , on peut en utilisant le théorème de Liebnitz montrer que:

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \int_{z_{f}}^{z_{s}} u dz + \frac{\partial}{\partial y} \int_{z_{f}}^{z_{s}} v dz = 0$$
(3-10)

Cette approche permet d'éliminer l'inconnue w de l'équation de continuité.

En introduisant la relation de pression hydrostatique dans les deux premières équations du mouvement, on obtient:

(selon x)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - g \frac{\partial h}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\mu t}{\rho} \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{\mu t}{\rho} \frac{\partial u}{\partial y}\right) + \frac{\partial}{\partial z} \left(\frac{\mu t}{\rho} \frac{\partial u}{\partial z}\right)$$
(3-11a)

(selon y)

$$\frac{\partial \mathbf{v}}{\partial \mathbf{t}} + \mathbf{u} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v} \frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \mathbf{w} \frac{\partial \mathbf{v}}{\partial \mathbf{z}} - \mathbf{g} \frac{\partial \mathbf{h}}{\partial \mathbf{y}} = \frac{\partial}{\partial \mathbf{x}} \left(\frac{\mu}{\rho} \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right) + \frac{\partial}{\partial \mathbf{y}} \left(\frac{\mu}{\rho} \frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right) + \frac{\partial}{\partial \mathbf{z}} \left(\frac{\mu}{\rho} \frac{\partial \mathbf{v}}{\partial \mathbf{z}}\right)$$
(3-11b)

<u>Remarque</u>: Il est préférable quelquefois d'utiliser "H" au lieu de h pour le terme de pression

Alors,

-

$$\frac{\partial h}{\partial x} = \frac{\partial H}{\partial x} + \frac{\partial z}{\partial x} = \frac{\partial H}{\partial x} + S_{xo}$$
$$\frac{\partial h}{\partial y} = \frac{\partial H}{\partial y} + \frac{\partial z}{\partial y} = \frac{\partial H}{\partial y} + S_{yo}$$

 $H = z_s - z_f = h - z_f$

où: S_{xo} et S_{yo} sont les pentes directionnelles du fond

3.2 MODÈLE 2-D: VITESSES MOYENNES DANS LA VERTICALE; PRESSION HYDROSTA-TIQUE

3.2.1 Hypothèses

Nous présentons ci-après le modèle hydrodynamique le plus souvent utilisé à l'heure actuelle pour le calcul des écoulements dans les estuaires, les fleuves et les rivières. Les approximations sont:

- pression hydrostatique: onde longue;
- les termes d'accélération sont négligés verticale;
- les variations de u et v dans la verticale sont petites.

Le milieu est relativement homogène en "z"; les petites variations nous permettent d'écrire l'équation du mouvement (en prenant des valeurs moyennes) dans la verticale sans introduire trop d'erreurs sur l'équilibre local.

de la vitesse

3.2.2 Implications de l'hypothèse des vitesses moyennes

Le coefficient de momentum ou de Boussinesq donne la mesure d'un écart sur la moyenne:

$$\beta = \frac{\int u^2 dz}{H \overline{u^2}} = \frac{H \overline{u^2} + \int \varepsilon^2 dz}{H \overline{u^2}} = 1 + a > 1$$

Le coefficient d'énergie ou de Coriolis $(\frac{\rho u^3}{2})/unité de masse$

$$\alpha = \frac{\int \rho \frac{u^3}{2} dz}{\rho \frac{\overline{u}^3}{2} H} = \frac{\int u^3 dz}{H \overline{u}^3} = \frac{H\overline{u}^3 + 3\overline{u} \int \varepsilon^2 dz + \int \varepsilon^3 dz}{H \overline{u}^3}$$
$$\alpha = 1 + 3 a > \beta$$

En pratique, pour une distribution parabolique, $\beta \approx 1,2$. Mais dans un écoulement gravitationnel turbulent, $\beta \approx 1,05$.

- 44 -

3.2.3 Intégration verticale des équations 3-D

2

Habituellement, le modèle bi-dimensionnel est obtenu en intégrant le modèle 3-D entre le fond et la surface; la méthode d'intégration s'appuie sur le théorème de Leibnitz (conventions de la figure 11).

$$\int_{z_{f}}^{h} \frac{\partial f}{\partial x} dz = \frac{\partial}{\partial x} \int_{z_{f}}^{h} f dz - f(h) \frac{\partial h}{\partial x} + f(z_{f}) \frac{\partial z_{f}}{\partial x}$$
$$= \frac{\partial}{\partial x} (H\overline{f}) - f(h) \frac{\partial h}{\partial x} + f(z_{f}) S_{x_{0}}$$
(3-12)

où f peut représenter une composante de la vitesse (u ou v).

Figure 11: Conventions du modèle bi-dimensionnel.

Cette approche est assez classique et on la retrouve développée dans de nombreux ouvrages de base d'hydrodynamique.

On peut aussi utiliser une approche plus directe explicitant les flux et les forces ou contraintes en présence dans l'équilibre global d'une colonne d'eau.

a) Conservation de la masse

La conservation de la masse est illustrée directement par la figure 12.

en utilisant la notation u pour \overline{u} et v pour \overline{v} .

b) Équilibre des forces, contraintes et quantité de mouvement

L'équilibre des forces et de la quantité de mouvement est illustré par la figure 13 pour la pression et la figure 14 pour l'ensemble des composants du bilan

Figure 13: Conservation du mouvement.

- 2 : Turbul ence
- 4 : Frottement (fond)

 σ_{xx}

5 : Vent

: Pression

3

=

6 : Coriolis

En supposant que sin $\alpha \approx \tan \alpha \approx \alpha$, on peut écrire les équations de la quantité de mouvement intégrées dans la verticale.

$$\rho \left\{ \frac{\partial H\overline{u}}{\partial t} + \frac{\partial}{\partial x} (fu^2 dz) + \frac{\partial}{\partial y} (fuv dz) + g \frac{\partial}{\partial x} (\frac{H^2}{2}) \right\} = F_x + \frac{\partial}{\partial x} \overline{\sigma}_{xx} + \frac{\partial}{\partial y} \overline{\sigma}_{xy} + \sigma_{xs} - \sigma_{xf}$$
(3-14a)

de même selon y

$$\rho \left\{ \frac{\partial H\overline{v}}{\partial t} + \frac{\partial}{\partial x} (fuvdz) + \frac{\partial}{\partial y} (fv^2dz) + g \frac{\partial}{\partial y} (\frac{H^2}{2}) \right\} = \overline{F}_y + \frac{\partial}{\partial x} \overline{\sigma}_{xy} + \frac{\partial}{\partial y} \overline{\sigma}_{yy} + \sigma_{ys} - \sigma_{yf}$$
(3-14b)

Les unités sont des N/m².

 σ_{ys} , σ_{xs} = force du vent ou le frottement d'un couvert de glace; σ_{vf} , σ_{xf} = force de frottement au fond ou force de Chézy.

En supposant β identique pour u², uv, v² et ρ constant pour le calcul de conservation du momentum, on peut écrire en remplaçant \overline{u} et \overline{v} par u et v

$$\frac{\partial u}{\partial t} + \beta \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) + g \frac{\partial h}{\partial x} + \frac{\sigma_{xf}}{\rho H} = \frac{F}{\rho H} + \frac{1}{\rho H} \left(\text{contraintes} \right) + \frac{\sigma_{xs}}{\sigma H}$$
 (3-15a)

$$\frac{\partial \mathbf{v}}{\partial t} + \beta \left(u \frac{\partial \mathbf{v}}{\partial x} + \mathbf{v} \frac{\partial \mathbf{v}}{\partial y} \right) + g \frac{\partial h}{\partial x} + \frac{\sigma_{yf}}{\rho H} = \frac{F_{y}}{\rho H} + \frac{1}{\rho H} \left(\text{contraintes} \right) + \frac{\sigma_{ys}}{\rho H}$$
 (3-15b)

En pratique on prend $\beta = 1$.

c) Lois de comportement empiriques

Nous allons introduire maintenant certaines approximations empiriques souvent utilisées dans les modèles bidimensionnels pour représenter les contraintes.

Résistance du fond

-

Une évaluation correcte de ces forces nécessite une bonne connaissance de la rugosité, la pente de l'écoulement, etc. Présentement ces forces sont évaluées par des formules empiriques.

$$\frac{\sigma_{xf}}{\rho H} = \frac{g |V| u}{C^2 H}$$

$$\frac{\sigma_{yf}}{\rho H} = \frac{g |V| v}{C^2 H}$$
(3-16a)
avec $V = \sqrt{u^2 + v^2}$

- et où C est un coefficient de frottement ayant une dimension m_2^3/s . Nous allons consacrer le chapitre IV au choix de coefficients de frottement appropriés.
- Contrainte du vent

$$F_{XW} = \frac{\sigma_{XS}}{\rho_{H}} = \alpha |W| W_{X}$$

$$F_{yW} = \frac{\sigma_{yS}}{\rho_{H}} = \alpha |W| W_{y} \qquad (3-1\text{ob})$$

où W_i est la vitesse du vent selon i.

Cette force est bien connue, on trouvera la description dans le chapitre suivant.

Frottement de la glace:

Dans le cas d'un couvert de glace; on peut choisir une formule similaire à celle du frottement du fond.

$$\frac{\sigma_{XS}}{\rho H} = \frac{g |V| u}{C_S^2 H}$$

$$\frac{\sigma_{YS}}{\rho H} = \frac{g |V| V}{C_S^2 H}$$
(3.16c)

où C_S est un coefficient similaire au coefficient de Chézy tenant compte de la rugosité du couvert de glace.

Il est à remarquer que, pour un écoulement sous un couvert de glace, le problème de la surface libre devient plus compliqué et le coefficient β du momentum peut devenir important. L'hypothèse de la pression hydrostatique peut également être remise en cause.

Contraintes apparentes (turbulence)

Il est supposé que les contraintes apparentes (elles résultent d'un filtrage des mécanismes turbulents) sont représentées par:

$$\sigma_{xx} \approx 2 \ \mu_t \ \frac{\partial u}{\partial x} \quad ; \quad \sigma_{yy} \approx 2 \ \mu_t \ \frac{\partial u}{\partial y}$$

$$\sigma_{xy} \approx \mu_t \ (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) \quad (3-16d)$$

et

-

En utilisant l'équation de continuité, on peut montrer que:

$$\frac{1}{\rho H} \left(\frac{\partial^{\sigma} xx}{\partial x} + \frac{\partial^{\sigma} xy}{\partial y} \right) = v_{t} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right)$$

$$\frac{1}{\rho H} \left(\frac{\partial^{\sigma} yx}{\partial x} + \frac{\partial^{\sigma} yy}{\partial y} \right) = v_{t} \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} \right)$$

$$v_{t} = \frac{\mu_{t}}{\rho} = \text{constante} \qquad (3-16e)$$

 v_t la viscosité cinématique turbulente en m²/s approximée ainsi dans le cas où v_t est variable, l'approximation de la longueur de mélange peut être utilisée.

et

avec

$$v_{t} = \lim_{m} \left[2\left(\frac{\partial u}{\partial x}\right)^{2} + 2\left(\frac{\partial v}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^{2} \right]^{1/2}$$

où 1_m est une longueur de mélange.

On peut choisir l_m comme une constante ou variable en palier près de Ja frontière (voir Rodi).

d) Forces de Coriolis

Les forces de Coriolis, nous l'avons vu, sont déterminées par la rotation de la terre et ne sont pas le résultat d'une démarche empirique.

$$\frac{F_x}{\rho H} = 2 \omega \sin \phi v = f_c v$$
$$\frac{F_y}{\rho H} = -2 \omega \sin \phi u = -f_c u$$

avec ω : rotation de la terre en rad/s.

φ: latitude moyenne du lieu.

e) Résumé du modèle 2-D (voir Rodi)

En résumé, le modèle bidimensionnel (avec v_t constant) s'écrit:

$$\frac{\partial h}{\partial t} + \frac{\partial (Hu)}{\partial x} + \frac{\partial (Hv)}{\partial y} = 0 \qquad (3-17)$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \frac{\partial h}{\partial x} + g \frac{|V|}{C^2 H} = + f_c v + F_{xw} + v_t \Delta u$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \frac{\partial h}{\partial y} + g \frac{|V|}{C^2 H} = - f_c u + F_{yw} + v_t \Delta v \qquad (3-18)$$

$$\frac{1}{1} \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7$$

1 : accélération locale

1

2 : accélération convective

- 51 -

- 3 : pression hydrostatique
- 4 : frottement au fond
- 5 : force de Coriolis
- 6 : force du vent
- 7 : contraintes apparentes (turbulence) \triangle est l'opérateur laplacien.

On peut remplacer $\frac{\partial h}{\partial x}$ et $\frac{\partial h}{\partial y}$ par $(\frac{\partial H}{\partial x} - S_{0_X})$ et $(\frac{\partial H}{\partial y} - S_{0_y})$ respectivement où S_{0_i} est la pente du fond selon i.

f) Conditions aux limites

Les conditions aux limites sont:

- glissement:
$$u_N = 0$$

- avec frottement $F_T = \alpha |u_T| |u_T^2$
- un débit: $Q_N = Hu_N$
- hauteur d'eau: h

Figure 15: Conditions aux limites.

3.3 Modèle 1-D

Nous allons insister un peu plus sur le modèle 1-D pour les rivières. Ce degré d'agrégation des équations de Navier-Stokes permet de simplifier considérablement l'analyse de certains phénomènes comme nous allons le voir plus loin. Pour un canal¹ très large, on peut prendre v = 0; u(x,y) = u(x). Les relations (3-17, 3-18) deviennent:

$$\frac{\partial h}{\partial t} + \frac{\partial (Hu)}{\partial x} = 0 \qquad (3-19)$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + g \frac{\partial h}{\partial x} + g \frac{|u|}{C^2 H} = F_{xw} + v_t \frac{\partial^2 u}{\partial x^2}$$
(3-20)

Ces deux relations peuvent être utilisées pour un canal relativement plus étroit, en identifiant bien u, comme la vitesse moyenne \overline{u} sur une section transversale.

Le coefficient de correction du mouvement peut toutefois devenir assez important:

$$\beta = \frac{\int u^2 \, dy \, dz}{\overline{u}^2 \, A} \tag{3-21}$$

¹ Le terme canal peut également recouper la notion de cours d'eau naturel.

Canal: type	min.β	moyenne	max.
régulier	1,03	1,05	1,07
rivière sous la glace	1,07	1,17	1,33
vallée inondée	1,17	1,25	1,33

D'après Chow, 1959, les valeurs typiques de β sont les suivantes:

Dans la relation (3-19), "H" désigne le rayon hydraulique

$H = \frac{A(\text{section})}{\text{Perimetre mouille}}$

3.3.1 Simplifications

Si l'écoulement varie lentement, il peut être considéré comme <u>perma</u>nent et uniforme:

 $g \frac{\partial h}{\partial x} + \frac{g u^2}{C^2 H} = 0 \quad (vent = 0) \quad (3-22)$

ou encore, si $H = h + h^{*}$:

 $g \frac{\partial H}{\partial x} - g S_0 + g \frac{u^2}{C^2 H} = 0$

où: H est la profondeur

 S_0 la pente moyenne du fond $(\frac{\partial h'}{\partial x})$.

Si la section est trop irrégulière, il faudra intégrer correctement 3-17 en conséquence. Si on néglige de nouveau le vent et la viscosité turbulente, la forme de l'équation du mouvement <u>permanent</u> peut aussi s'écrire d'une manière rappelant la relation de Bernouilli.
$$\frac{d}{dx} \left(\frac{u^2}{2g} + H\right) + S_f - S_0 = 0$$
 (3-23)

avec S_f: pente de frottement

$$= \frac{|u|u}{C^2g}$$

ZA

On peut aussi intégrer cette forme par rapport à x (entre A et B, figure 16).

Figure 16: Ligne d'énergie sous forme unidimensionnelle (régime permanent variant graduellement).

Quand la hauteur d'écoulement H est constante, l'écoulement devient permanent uniforme. Alors,

$$U = C \sqrt{HS}$$
 (Chézy) (équation de Chézy) (3-25a)

$$U = \frac{1}{n} H^{2/3} S^{1/2}$$
 (Manning) (3-25b)

avec $S = S_0$ (pente du fond).

où

-

3.4 CLASSIFICATION LOCALE DES ÉCOULEMENTS

Les écoulements bidimensionnels peuvent être représenter en utilisant les concepts mis au point pour les situations unidimensionnelles. Il faut alors exprimer les variables u et v en coordonnée locale (s), celle-ci étant

la trajectoire de l'écoulement. On peut dès lors appliquer les notions de régime et analyser efficacemnt le profil de la ligne d'eau. Notre but est d'arriver, en exploitant les connaissances traditionnelles, à mettre en évidence les phénomènes locaux susceptibles de perturber le comportement des modèles numériques. Pour ce faire, nous allons reprendre brièvement quelques exposés devenus classiques et qu'on peut retrouver d'ailleurs dans de Figure 17: Vitesses en nombreux ouvrages de référence (voir la liste en annexe).

3.4.1 Régime d'écoulement

On utilise le nombre de Froude pour définir un régime d'écoulement lent (fluvial) ou rapide (torrentiel) (voir la figure 18).

$$Fr = \frac{U}{\sqrt{gH}}$$

Fluvial

Torrentiel

Figure 18: Différents régimes d'écoulement et de variation de H selon Fr.

	Froude	Régime	Caractéristiques
 < =	1	fluvial (lent)	stable, pas de vague, mais turbulent en cours d'eau naturel
=	1	critique	profil d'eau légèrement ondulé
≧	1	torrentiel (rapide)	le profil d'eau en onde et en vague; sauf pour un écoulement lisse, lami- naire

En plus de la vitesse, le régime d'écoulement est directement caractérisé par le profil de la surface libre ou ligne d'eau défini par H(x,y); H(s). En général, pour toute analyse, on suppose que le débit par unité de largeur est constant et on étudie la variation de H en fonction du nombre de Froude. Toute variation rapide en H implique un problème d'oscillations numériques; c'est pourquoi nous allons plus loin concentrer notre attention sur cet aspect.

3.4.2 Stabilité de l'écoulement

La stabilité d'un écoulement rapide est reliée à la valeur du nombre de Froude et peut être définie plus spécifiquement par le nombre dit de Vedernikov (voir Ligett, Chow) qui est fondé sur l'influence de la courbure d'écoulement.

V ≤ 1 stable

où "m" est la puissance de "H" dans la formule de frottement:

= 1/2 pour Chézy ou 2/3 pour Manning.

Fr : Nombre de Froude calculé en utilisant l'une ou l'autre de ces formules pour trouver la vitesse.

3.4.3 Écoulement uniforme dans un canal

Tout en étant fluvial ou torrentiel ou encore stable ou instable, un écoulement peut être défini comme permanent (moyen pendant un intervalle donné) uniforme¹. Nous allons profiter de cette possibilité pour mieux comprendre la signification réelle des paramètres et équations développées précédemment. Nous arriverons ainsi à mettre en évidence les situations critiques de changement de régime avec les oscillations qui leur sont associées. Cette démarche est nécessaire pour la mise au point de méthodes numériques efficaces adaptées à ce genre de phénomènes.

¹ S'il se produit dans un <u>canal uniforme</u> c'est-à-dire, ne présentant pas de changement longitudinal significatif.

a) Énergie spécifique

. 1

Dans un écoulement uniforme, la vitesse U et la profondeur H sont constantes en tout point pour un débit donné. Ainsi l'équation (3-24) devient en coordonnée locale s:

$$S_{f} = S_{0}$$
 et $\frac{d}{ds} \left(\frac{U^{2}}{2g} + H\right) = 0$ (3-26)

Posons $E = \frac{U^2}{2g} + H = Énergie spécifique$

Alors,
$$\frac{dE}{ds} = 0$$
 et E = constante (3-27)

Figure 21: Représentation énergétique de l'écoulement uniforme.

On suppose que:

- les pentes sont faibles: tang $\alpha = \alpha = S_0$

le paramètre "x" peut être confondu avec sa coordonnée locale s

$$\frac{\Delta x}{\Delta s} = \cos \alpha \approx 1$$

l'accélération verticale ($\frac{\partial h}{\partial t}$) est négligeable.

Procèdons d'abord à une classification des écoulements uniformes en fonction de la pente S_0 . Selon S_0 , le coefficient de frottement et le débit, un écoulement peut être lent ou rapide.

Nous allons écrire le nombre de Froude en fonction du débit q supposé constant: (q = UH)

-

Figure 22: Influence du débit et de la profondeur pour le régime.

Pour une profondeur donnée, le régime change de fluvial à torrentiel avec une augmentation du débit.

 D_{ans} un écoulement uniforme, la force de gravité pour une pente S_0 est égale au frottement du fond $\mathsf{S}_{\mathsf{f}}.$

Les expressions du frottement du fond sont les suivantes:

Selon Chézy:

$$S_{f} = \frac{U^{2}}{C^{2} H} = \frac{q^{2}}{C^{2}H^{3}} = \frac{g Fr^{2}}{C^{2}}$$
 (3-29a)

Selon Manning: $(C^2 = H^{1/3}/n^2)$

$$S = \frac{n^2 U^2}{H^{473}} = n^2 \frac{q^2}{H^{1073}} = \frac{n^2 g F r^2}{H^{173}}$$

= n^2 g Fr^2 $\left(\frac{g F r^2}{q^2}\right)^{1/9} = 12,65^1 \frac{n^2 F r^{20/9}}{q^{279}}$ (3-29b)

Un écoulement est fluvial ou torrentiel si, pour une pente S_0 donnée, on a un nombre de Froude ≤ 1 ou ≥ 1 . Pour ce qui suit nous allons définir trois termes très importants dans le cas des écoulements uniformes soit, la pente critique, la profondeur normale et la profondeur critique.

 Pente critique: Fr = 1 pour chaque cours d'eau, on associe une pente critique

Selon Chézy:
$$S_c = g/C^2$$
 (3-30)
Selon Manning: $S_c = 12,05 \frac{n^2}{q^{2/9}}$

La formule de Manning est très importante en pratique. Elle révèle que la pente critique d'un canal est une fonction <u>décroissante</u> du débit. <u>Ainsi</u> <u>un même cours d'eau peut avoir un caractère fluvial à l'étiage et un caractère torrentiel en période de crue</u> selon la valeur des paramètres S₀ et n. On peut avoir S₀ \geq S_c pour un débit élevé, et S₀ \leq S_c pour un faible débit.

 $\frac{1}{1}g^{10/9} = 12,65$

Figure 23: Régime en fonction du débit avec Manning.

Remarquons que la pente critique donnée par la formule de Chézy est indépendante du débit. La pente critique selon Manning et Chézy est identique pour un débit Q = \sqrt{g} m³/sec/m-largeur.

2) Profondeur normale: H_n

La profondeur normale H_n est celle pour laquelle l'écoulement dans un canal est <u>uniforme</u>

 $S_{f} = S_{0}$ Chézy : $H_{n} = \left(\frac{q^{2}}{C^{2}S_{0}}\right)^{1/3}$ Manning: $H_{n} = \left(\frac{q^{2}n^{2}}{S_{0}}\right)^{3/10}$ (3-31)

3) Profondeur critique:

Pour chaque cours d'eau, on associe une profondeur critique qui correspond \tilde{a} Fr = 1.

L'équation (3-28) avec Fr = 1 devient:

$$H_c = \left(\frac{q^2}{g}\right)^{1/3}$$
 pour Chézy et Manning (3-32)

Ainsi:

Figure 24: Profondeur-débit (Manning introduit plus de frottement pour $H_n \ge 1$).

On peut donc résumer les caractéristiques d'un écoulement uniforme en différents régimes selon la pente S_0 comme suit (figure 25):

Fluvial: $Fr \leq 1$ (Pente Faible - M)

Critique: Fr = 1 (Pente Critique - C)

Figure 25: Hauteur et pente pour divers régimes d'écoulement.

b) Relation énergie - profondeur

En 1912, Bakhmeteff, un hydraulicien américain a introduit une représentation graphique basée sur l'énergie pour identifier les régimes d'écoulement. C'est une relation entre l'énergie spécifique et la profondeur H.

Soit:

$$E = H + \frac{U^2}{2g} = H + \frac{q^2}{2g H^2} = H (1 + \frac{Fr^2}{2})$$
 (3-34)

Remarquons qu'on cherche toujours à identifier les régimes pour <u>un</u> <u>débit donné</u>. Pour différents biefs, on peut observer des régimes divers pour le même débit. On suppose H ≥ 0
 (E- H)H² = q²/2 g = constante ≥ 0

la valeur de E correspondant à $H_c = (q^2/2g)^{1/3}$

$$E = H_{c} + \frac{q^{2}}{2gH_{c}^{2}} = 1,5 H_{c}$$

$$\frac{dE}{dH} = 1 \frac{q^{2}}{gH^{3}} = 1 - Fr^{2} ; \frac{d^{2}E}{dH^{2}} = \frac{3 q^{2}}{g H^{4}} \ge 0 \qquad (3-36)$$

(3-35)

Encore le minimum d'énergie a lieu pour H = $(q^2/g)^{1/3} = H_c$

Une observation intéressante est que l'énergie E de l'écoulement est minimale à la profondeur critique (pour Fr = 1):

Figure 26: Énergie-profondeur.

Pour un même débit, on peut avoir deux profondeurs (profondeurs alternées): H_2 = fluvial; H_1 = torrentiel:

- 67 -

Sur la figure 27, nous présentons le rapport débit-profondeur pour une énergie constante. On peut également donner une relation entre le momentum et la profondeur (figure 28). Soit F la "force spécifique":

$$F = \left(\frac{Hu^2}{g} + \frac{H^2}{2}\right) = \left(\frac{q^2}{gH} + \frac{H^2}{2}\right) = (Fr^2 + \frac{1}{2}) H^2$$
$$(F - \frac{H^2}{2}) H = \frac{q^2}{g}$$
(3-37)

Figure 28: Force spécifique - profondeur.

où:

$$F = H (E - \frac{H}{2})$$

$$\frac{dF}{dH} = -\frac{q^2}{gH^2} + H = H (1 - \frac{q^2}{gH^3}) = H \frac{dE}{dH}$$
(3-38)
$$F_c = 1,5 H_c^2$$

Résumons les propriétés d'un écoulement critique, sous ou super-critique

- Dans un écoulement fluvial, la profondeur est dominante et l'énergie cinétique est faible. En effet c'est un écoulement dominé par la gravité (Fr ≤ 1). Le momentun est relativement faible.
- Dans un écoulement torrentiel, la profondeur joue un rôle plus faible que l'énergie cinétique. Les forces de gravité sont très petites et les termes d'inertie sont importants. La perte de charge est également plus importante au fur et à mesure que Fr augmente.
- Dans un écoulement critique:
 - . l'énergie spécifique est minimale;
 - . le débit est maximal;
 - . l'énergie cinétique est la moitié de la profondeur;
 - Fr = 1; la vitesse d'écoulement est égale à la célérité d'une onde de gravité (onde longue);
 - les variations de la hauteur d'eau sont très rapides et répondent à toute perturbation (instabilité numérique).

Formules importantes dans un écoulement uniforme

Profondeur critique: Fr = 1 (pente critique)

$$H_{c} = \left(\frac{q^{2}}{g}\right)^{1/3}$$
 (indépendant du canal)
S_c = g/C² (Chézy)

Profondeur normale

$$H_{n} = H_{c} \left(\frac{g}{C^{2} S_{0}}\right)^{1/3} Chézy$$

$$g/C^{2} S_{0} \ge 1 \qquad \text{fluvial}$$

$$g/C^{2} S_{0} \le 1 \qquad \text{torrentiel}$$

Énergie critique

$$E_{c} = 1,5 H_{c}$$

Nombre de Froude

$$Fr = \frac{q}{g^{1/2}H_n^{3/2}} = \frac{C\sqrt{S_0}}{\sqrt{g}} \quad (Chézy)$$
$$= \frac{H^{1/6}S_0^{1/2}}{n\sqrt{g}} \quad (Manning)$$
$$Fr^2 = \frac{H_c^3}{H_a^3}$$

Énergie

$$E = \frac{U^2}{2g} + H = \frac{q^2}{2gH^2} + H = (\frac{Fr^2}{2} + 1) H$$

Force spécifique

$$F = (Fr^2 + \frac{1}{2}) H^2$$

3.5 Écoulement varié

L'objectif de toute simulation numérique est d'étudier un écoulement varié. Pour mieux apprécier les problèmes d'oscillations dites "parasites" (numérique) ou oscillations réelles dans un écoulement, nous allons présenter quelques caractéristiques d'un écoulement varié. Signalons qu'on peut avoir un écoulement varié dans un canal uniforme à cause des conditions à l'amont et à l'aval.

C : critique

Figure 29: Régime varié dans un canal uniforme.

M : pente douce (mild)
S : pente forte (steep)

Figure 30: Régime varié dans un canal variable.

Nous pouvons analyser facilement les différents régimes de transition possibles en utilisant l'équation d'énergie. Les hypothèses sont les suivantes:

- on néglige toutes les oscillations temporelles en supposant que l'écoulement varié est bien établi;
- l'écoulement est verticalement uniforme (si nécessaire on peut aussi utiliser le facteur de distribution β);
- toute accélération verticale est négligée sauf dans les ressauts hydrauliques;
- les pentes ne sont pas trop fortes de sorte qu'on puisse écrire que tan α = Sin α = S; cos $\alpha \approx 1$; ainsi la sélérité d'une onde est \sqrt{g} H

L'équation de l'énergie est:

ou encore:

$$\frac{dE}{dx} = S_0 - S_f$$

$$\frac{dE}{dH} \frac{dH}{dx} = S_0 - S_f$$

$$\frac{dH}{dx} = S_0 \frac{(1 - S_f / S_0)}{(1 - Fr^2)}$$
(3-39)
$$\frac{dH}{dx} = S_0 \frac{1 - \frac{(H_n / H)^3}{1 - (H_c / H)^3}}{(1 - (H_c / H)^{10/3}}$$
(Chézy)
$$\frac{dH}{dx} = S_0 \frac{1 - \frac{(H_n / H)^{10/3}}{1 - (H_c / H)^{10/3}}}{(1 - (H_c / H)^{10/3}}$$
(Manning)
(3-40)

Les relations (3-39) et (3-40) sont équivalentes: par exemple, pour un débit donné, par la formule de Chézy:

- 71 -

$$S_{0} = \frac{q^{2}}{C^{2} H_{n}^{3}}; S_{f} = \frac{q^{2}}{C^{2} H^{3}}$$

Fr² = $\frac{U^{2}}{q H} = \frac{q^{2}}{q H^{3}} = \frac{H_{c}^{3}}{H^{3}}$

en introduisant ces relations dans 3-39 on retrouve 3-40 (version Chézy).

Suivant la pente (S_0) ou (H_n) , nous avons trois régimes uniformes possibles.

$$H_n < H_c$$
; $H_n = H_c$ ou $H_n > H_c$

Ces trois régimes sont associés respectivement à une pente faible (M = mild), critique (C) ou forte (S = steep).

Dans un écoulement varié, la profondeur H évolue en transition d'un régime à un autre (éventuellement dans le même régime aussi). Cette profondeur définit le type de transition selon sa valeur par rapport à H_n et H_c . Diverses situations sont possibles.

Figure 31: Zones de transition pour diverses pentes de fond.

- 72 -

Ces trois zones vont nous servir à analyser la variation graduelle de régime dans un écoulement. L'équation 3-40 nous permet de prédire qualitativement le profil de la ligne d'eau au cours d'une transition d'un régime à un autre. Dans l'exercice qui va suivre nous allons désigner les profils possibles de ligne d'eau avec une convention basée sur le type de pente (M, C ou S) et la zone définie par la figure précédente (1, 2 ou 3). Par exemple, un profil M1 se produit dans une zone à pente faible (M) et pour laquelle la hauteur d'eau H serait supérieure à H_n.

3.5.1 Profils pour une pente faible (M)

Nous pouvons avoir trois profils différents situés dans les zones 1, 2, 3 (M1, M2, M3) (voir la figure ??).

Profil M1

 $H_n/H < 1; H_c/H < 1$ d H/dx positive: assymptote avec H en amont : stable numériquement

contrôle artificiel

Naturel

passage d'un écoulement torrentiel à un écoulement fluvial

Profil S1:

 $H_n/H < 1$; $H_c/H < 1$: $\frac{dH}{dx}$ est positive

: importantes oscillations numériques (ressaut)

Profil S2:

 $H_n/H < 1$; $H_c/H > 1$: $\frac{dH}{dx}$ négative Fr > 1 ; $\frac{dFr}{dx} > 1$: transition du fluvial au torrentiel; couplé avec M2 : possibilité d'oscillations numériques

Profil S3:

 $H_n/H > 1$; $H_c/H > 1$: $\frac{dH}{dx}$ positive Fr > 1; $\frac{dFr}{dx} < 1$: transition d'un régime torrentiel à un autre : les oscillations numériques ne sont pas probables

3.5.3 Autres profils

Nous pouvons également identifier des profils pour une pente critique (C1; C3). De même, il est possible de développer des situations de transition vers une pente horizontale (H) ou adverse (A).

3.6 LES RESSAUTS HYDRAULIQUES

L'étude du ressaut hydraulique constitue une difficulté importante de toute analyse d'écoulement à surface libre. Le passage d'un régime torrentiel à fluvial se traduit par la formation d'ondulations et de fortes turbulences où une quantité d'air considérable est entraînée. Quelques caractéristiques globales de l'écoulement comme, la perte d'énergie, les hauteurs conjuguées et la quantité de mouvement peuvent être déterminées de manière approximative par la théorie de Bélanger. Par contre, les caractéristiques locales, comme le champ de vitesse, le profil de la surface, la répartition de la pression et des quantités turbulentes, la perte locale d'énergie et la localisation du ressaut doivent, en général, être déterminées par le recours à l'expérience.

Notre approche consiste à exploiter les données empiriques pour établir les lois de comportement permettant de simuler correctement le ressaut à l'aide d'un modèle mathématique (numérique). L'analyse des différents régimes fluvial ou torrentiel par la méthode des éléments finis (par exemple) ne pose plus vraiment de problème au stade actuel de nos connaissances. Cependant, les régimes fortement variés caractérisés par un passage de torrentiel à fluvial introduisent de fortes oscillations numériques qui empêchent le modèle de converger vers une solution du problème.

La technique habituelle consiste à intoduire un paramètre de viscosité turbulente approprié pour bien représenter la perte de charge. Après une expérience de simulation (présentée brièvement à l'annexe 1), il nous semble possible d'utiliser cette approche pour l'analyse des écoulements fortements variés.

a) Ressaut sur une pente H (horizontale)

b) Ressaut ondulé (H_{n_1} et H_{n_2} près de H_c)

Figure 32: Phénomènes de ressaut.

3.6.1 Calcul de la perte de charge: cas unidimensionnel

Cette approche est fondée sur les hypothèses suivantes:

- comme la longueur du ressaut est relativement petite, la perte d'énergie au fond est négligée devant la perte d'énergie par turbulence au sein de l'écoulement (Rajaratnam, 1967);
- la pression est hydrostatique avant et après le ressaut; on n'impose pas cette restriction au sein du ressaut lui-même;
- avant et après le ressaut, la vitesse est supposée uniforme et on néglige les vitesses fluctuantes.

Nous avons $q = U_1H_1 = U_2H_2$

$$\frac{q^2}{gH_1} + \frac{H_1^2}{2} = \frac{q^2}{gH_2} + \frac{H_2^2}{2}$$
(3-41)
$$\frac{q^2}{g} \left(\frac{H_2 - H_1}{H_2H_1}\right) = \frac{1}{2} (H_2 + H_1)(H_2 - H_1)$$

après simplifications

$$\left(\frac{H_2}{H_1}\right)^2 + \frac{H_2}{H_1} - \frac{2q^2}{gH^3} = 0$$

La racine positive $(\frac{H_2}{H_1} > 1)$ de cette expression nous donne

$$\frac{H_2}{H_1} = \frac{1}{2} \left(\sqrt{1 + \frac{8q^2}{gH_1^3}} - 1 \right) = \frac{1}{2} \left(\sqrt{1 + 8 Fr_1^2} - 1 \right) = \alpha > 1$$
 (3-42)

La perte en énergie (E_L) du ressaut est défini comme suit:

$$E_{L} = \Delta E = E_{1} - E_{2}$$

 $E = (1 + \frac{Fr^{2}}{2}) H$

puisque

on peut montrer que:

et

$$\frac{E_{L}}{E_{1}} = \frac{1}{8} \frac{(\sqrt{1+8} \operatorname{Fr}_{1}^{2} - 3)^{3}}{(2+\operatorname{Fr}_{1}^{2})(\sqrt{1+8} \operatorname{Fr}_{1}^{2} - 1)}$$
(3-43)

Cette relation très importante permet de définir la perte E_L en fonction du nombre de Froude à l'entrée du ressaut.

Exemple

Soit un ressaut avec un nombre de Froude à l'entrée égal à Fr₁ = 20; la perte d'énergie $E_L = 0,86 E_1$.

La relation 3.43 peut être exprimée plus simplement en utilisant le coefficient α :

Prenons:

$$H_{2} = \alpha H_{1} ; Fr_{1} = \frac{\alpha(\alpha+1)}{2}$$

$$Fr_{1} = \frac{q}{gH_{1}^{3}} ; Fr_{2} = \frac{q}{\alpha^{3}gH_{1}^{3}}$$

$$E_{1} = (1 + \frac{Fr_{1}^{2}}{2}) H_{1} ; E_{2} = \alpha (1 + \frac{Fr_{2}^{2}}{2\alpha^{3}}) H_{1}$$

$$E_{L} = E_{1} - E_{2}$$

On peut montrer que:

$$E_{L} = \frac{H_{1} (\alpha - 1)^{3}}{4\alpha}$$
 (3-44a)

ou encore

Figure 33: Transition douce d'un régime fluvial à torrentiel.

 $1 \leq Fr \leq 1,7$: Rugosité grande

 $1,7 \leq Fr \leq 2,5$: Turbulence en surface

 $4,5 \leq Fr \leq 9,0$, Stable, moins de vague

WALLAST ASTAST ASTAST ASTAST ASTAST

 $1 \le Fr \le 1,7$: Lisse

Onde irrégulière

Jets oscillants

TATATATATATATATATA $2,5 \le Fr \le 4,5$

Pénétration dans le ressaut comme des jets

Fr > 9,0 : Fort mais assez ondulé

Figure 34: Ressaut en fonction du nombre de Froude (voir Chow ou Henderson).

$$E_{L} = \frac{E_{1} (\alpha - 1)^{3}}{2\alpha (2 + Fr_{1}^{2})}$$
(3-44b)

Pour mettre au point des techniques nouvelles de modélisation du ressaut, la perte d'énergie est une information privilégiée. On trouvera à la figure 35 des courbes caractéristiques du ressaut. La figure 36 montre la perte d'énergie en fonction de la pente.

Figure 35: Courbes caractéristiques du ressaut dans un canal rectangulaire (adapté de Chow, 1959).

Figure 36: La perte en fonction de la pente (adapté de Rajaratnam, 1967).

- 82 -

La figure 37 illustre la relation entre le rapport $\frac{H_2}{H_1}$ et le nombre de Froude à l'amont. Toutes ces informations sont des sources particulièrement intéressantes pour calibrer les paramètres d'un modèle numérique du ressaut. 32

Figure 37: Relation entre Fr_1 et $\frac{H_2}{H_1}$ pour un ressaut dans un canal droit rectangulaire (adapté de Chow, 1961).

3.6.2 Longueur de ressaut

À l'heure actuelle, il n'est pas possible de prédire la longueur du ressaut surtout à cause des limitations informatiques. Par contre, nous avons suffisamment de résultats expérimentaux pour l'estimation de la longueur du ressaut. La figure 38 donne des informations pertinentes au calcul de cette longueur.

Henderson a proposé une formule empirique pour 4,5 < Fr $_1$ < 13 sur une pente S $_0$

$$\frac{L}{H_2} = 6,1 + 4 S_0 \tag{3-45}$$

En deçà de cette limite de Fr₁, le rapport $\frac{L}{H_2}$ diminue rapidement.

Figure 38: Longueur caractéristique du ressaut dans un canal droit rectangulaire (adapté de Chow, 1961 d'après USBR).

3.6.3 Localisation du ressaut

La plus grande difficulté pour un modèle numérique réside dans la prédiction de la position du ressaut. Rajaratnam a identifié différentes situations associées à la position du ressaut qui dépendent de la pente, des conditions à l'amont et de l'existence de hauteurs conjugées, etc. Nous n'irons pas plus en détails sur cet aspect. Notre approche consiste plutôt à résoudre numériquement un modèle simplifié de ressaut.

3.6.4 Modèle mathématique unidimensionnel du ressaut

$$\frac{\partial (Hu)}{\partial x} = 0 \qquad (3-46)$$

$$\frac{\partial}{\partial x} (Hu^2) + g H \frac{\partial H}{\partial x} = H (S_0 - S_f) + \frac{1}{\rho} \frac{\partial \sigma}{\partial x}$$
(3-47)

$$\sigma = \mu_{\rm T} \, {\rm H} \, \frac{\partial u}{\partial x} \tag{3-48}$$

où

Dans une zone de ressaut, il faut choisir la valeur de $\boldsymbol{\mu}_{t}$ pour reproduire:

- la longueur;
- la perte H_i;
- le profil en fonction de Fr₁.

En effet, c'est sur ce point qu'il faudra consacrer les efforts de recherche en utilisant le concept de longueur de mélange et de viscosité effective μ_T variable. L'annexe 2 est entièrement consacrée à cet effet.

La difficulté se présente à deux niveaux:

- comment identifier la zone de ressaut;
- comment choisir μ_T pour reproduire la réalité le mieux possible.

En bref, la démarche globale est la suivante:

- il y a une possibilité locale de ressaut dans une zone où:
 - . Fr ≥ 1 (régime torrentiel);
 - ∂u/∂x ≤ 0 (ralentissement des vitesses);
 - $\partial H/\partial x \ge 0$ (rehaussement du plan d'eau);
 - une fois une telle zone identifiée, choisir la valeur $\mu_{\overline{T}}$ en fonction du nombre de Froude, des gradients de vitesses et du profil. La valeur $\mu_{\overline{T}}$ doit nécessairement représenter la perte totale E_L sur une longueur L avec un profil raisonnable.

La vérification complète de cette approche, on le comprendra, sort du contexte de cette étude; nous entendons nous consacrer à développer cette méthode au cours de nos prochains travaux.

<u>Chapitre IV</u>

ANALYSE DU FROTTEMENT DU LIT DES COURS D'EAU, DE LA GLACE ET DU VENT

4.1 DIVERSES APPROCHES DU COEFFICIENT EMPIRIQUE DE FROTTEMENT

Dubuat (1734-1809) fut le premier à introduire le concept du frottement de fond et il l'a associé à la force d'accélération de gravité (pente):

..." quand l'eau se meut uniformément, la résistance qu'elle éprouve est égale à sa force accélératrice", (Dubuat, "Principes d'hydraulique").

a) Formule de Chézy

En se basant sur cette nouvelle idée, Chézy, Ingénieur des ponts et chaussées à Paris, a proposé une formule ayant la forme d'une loi quadratique (1768):

$$U = C \sqrt{R_{\rm H} S_{\rm f}}$$
(4-1)

où R_{μ} est le rayon hydraulique

et sous sa forme actuelle:

$$S_f = \frac{U^2}{C^2 R_H}$$

Il est intéressant de noter que Chézy a fait l'hypothèse que la force de frottement de l'écoulement est une fonction quadratique de la vitesse et qu'elle est en équilibre avec la force de gravité due à la pente " S_{f} ".

En effet, dans le cas d'un écoulement unidimensionnel permanent uniforme, la pente de la ligne d'eau est parallèle au radier et l'équilibre des forces selon l'axe longitudinal x se résume à

$$\rho g A \Delta x \sin \alpha = \Delta x \int \sigma d Pm = \Delta x \overline{\sigma} Pm \qquad (4-2)$$

- où Pm: périmètre mouillé
 - A: aire de la section
 - α: angle du lit par rapport à l'horizontale
 - σ : résistance du fond

Or,
$$\sin \alpha \approx \left|\frac{\Delta h}{\Delta x}\right| = S_f$$

et on tire finalement

$$\overline{\sigma} = \rho g \frac{A}{Pm} \left| \frac{\Delta h}{\Delta x} \right| = \gamma R_{H} \frac{\Delta h}{\Delta x} = \gamma R_{H} S_{f}$$
(4-3)

De façon à pouvoir interpréter cette relation on doit trouver une relation reliant $\overline{\sigma}$ à h. Puisqu'il s'agit de rivières ou de canaux, l'écoulement est turbulent rugueux (comme nous le verrons à la section suivante) et la relation expérimentale reliant la vitesse moyenne de l'écoulement à la contrainte de cisaillement est de forme quadratique.

 $\sigma = \rho f U^2$ où f est un coefficient adimensionnel (4-4)

Insérant cette dernière relation dans (4-3) on tire

$$U = \sqrt{\frac{g}{f}} \sqrt{R_{H}S_{f}} = C \sqrt{R_{H}S_{f}}$$
(4-5)

qui s'avère la forme usuelle de l'équation de Chézy.

Le coefficient adimensionnel était-il universel ou dépendait-il de la géométrie du canal, de la rugosité du fond (concept inconnu à l'époque) de la pente, etc.?
b) Formules de Darcy et Bazin

Les ingénieurs ont fait, au départ, l'hypothèse d'un coefficient universel mais qui donnait des résultats faux dans maintes situations. Pour résoudre ce problème, Darcy et son élève Bazin ont construit en 1856 (presque 88 ans après Chézy) un canal près de Dijon d'une longueur de 569,5 m. Ils ont introduit différentes sections, différents types de fond, etc. Les résultats se présentent sous la forme:

$$\frac{1}{C} = (a(1 + \frac{b}{R_{H}}))^{-1/2}$$
(4-6)

où a et b sont des coefficients empiriques. Plus tard, en 1897, Bazin présenta une formule plus correcte n'ayant qu'un seul coefficient:

 $C = \frac{87}{1 + \frac{a}{\sqrt{R_{u}}}}$

TYPE DE FOND	a (Bazin)
- parois très unies (ciment, bois)	0,06
- parois unies (briques, pierres de tailles)	0,16
 parois de maçonnerie de moëllons 	0,46
- en terre irrégulière	0,85
 canaux en terre dans les conditions naturelles 	1,30
 en terre naturelle avec les berbes 	1,75

La principale difficulté de son application concerne le choix judicieux de la valeur à attribuer au coefficient a.

(4-7)

c) Formules de Ganguillet et Kutter

En 1869, Ganquillet et Kutter ont proposé la formule suivante:

$$C = \frac{23 + \frac{0,00155}{S_{f}} + \frac{1}{a}}{1 + (23 + \frac{0,00155}{S_{f}})\frac{a}{\sqrt{R_{H}}}}$$
(4-8)

où a est un coefficient variable. Cette formule, nonobstant sa complexité, ne donne pas de résultats supérieurs à celle de Bazin. Pour le calcul des égoûts, Kutter propose une simplification de la formule précédente

$$C = \frac{100 \sqrt{R_{H}}}{b + \sqrt{R_{H}}}$$
(4-9)

d) Relation de Gauckler-Hagen et formule de Manning

En utilisant les résultats de Ganguillet et Kutter, Gauckler (1868) et Hagen (1881) ont établi une importante relation entre le coefficient de Chézy et la rugosité du matériau du canal:

$$C = \frac{R_{\rm H}^{1/6}}{n}$$
(4-10)
$$S_{\rm f} = \frac{n^2 U^2}{R_{\rm H}^{4/3}}$$

avec "n" un paramètre fonction de la rugosité. Flamant (1891) attribue cette formule à l'irlandais Manning:

$$S_{f} = \frac{n^{2} U^{2}}{a^{2} R_{H}^{4/3}}$$
(4-11)

avec "a" un paramètre de conversion entre les systèmes métriques et anglais

2	_	ſ	1	métrique
a	-		1,486	anglais

ou

Signalons que la valeur de "n" est identique à celle de "b" dans l'équation (4-9). Strickler a cherché à déterminer la valeur du coefficient "n" en fonction de la dimension des matériaux constitutifs des parois du canal.

$$K = \frac{1}{n} = 26 \left(\frac{R_{H}}{d_{35}}\right)^{1/6}$$
(4-12)

où d₃₅ correspond au diamètre passant pour lequel 35% (en poids) du matériau est de diamètre supérieur; (en mètre).

Ainsi la formule de Manning-Strickler donne:

$$S_{f} = \frac{U^{2}}{K^{2}R_{H}^{4/3}}$$
 (4-13)

En fait, nous pouvons donner une forme générale à la formule de Strickler:

$$n = a (d_{a})^{1/6}$$
d'après Gray, $n = 0,041 d_{50}^{1/6}$
ou $n = 0,038 d_{90}^{1/6}$
(4-14)

Quelle que soit la forme de la formule de Manning, il nous reste toujours à déterminer la valeur de la rugosité "n" ou "K" ou d_{50} , d_{35} , d_{90} ; une tâche qui exige nécessairement une approche empirique. On trouvera dans la table suivante (tableau 1), différentes valeurs de "n" en fonction du type de fond. Cette table, extraite de Chow (1959) n'a pas été traduite en français.

À titre indicatif, le coefficient K = $\frac{1}{n}$ applicable au Rhône coulant dans ses propres alluvions, dans le tiers central de sa vallée (pente de la ligne d'eau = U,7 m par km) est d'enviroin 35 (ce qui correspond à un coefficient n = 0,0286); pour le canal d'amenée de l'usine de Kembs, K = 46

Tableau 1: Coefficient de rugosité n de Manning pour les canaux et rivières (d'après Chow).

F

Description of Channel	n	<u>1.49</u> n
Exceptionnaly smooth, straight surfaces:		
enameled or glaced coating: glass; lucite; brass	0.009	165.55
Very well-planed and fitted lumber boards:		
or paint coating	0.010	149.00
Planed lumber; smoothed motar (1/3 sand) without	0 011	135 45
Carefully fitted but unplaned boards; steel	0.011	100.40
troweled concrete, in straight alignment Reasonably straight, clean, smooth surfaces	0.012	124.16
without projections: good borads; carefully		
Duilt brick wall; wood troweled concrete; smooth, dressed ashlar	0.013	114.62
Good wood, metal, or concrete surfaces with		
moss or algae growth or gravel deposition;		
shot concrete surfaced with troweled mortar Rough brick: mediium quality cut stone surface:	0.014	106.43
wood with algae or moss growth; rough		
Concrete; riveted steel Very smooth and straight earth channels free	0.015	99.33
from growth; stone rubble set in cement, shot,		
untroweled concrete; deteriorated brick wall exceptionally well-excavated and surfaced		
channel cut in natural rock	0.017	87.65
uniform silt deposits; metal flumes with		
excessive curvature, large projections,	0.018	82.77
Smooth, well-packed earth; rough stone walls;	0.010	
channels excavated in solid, soft rock; little curving channels in solid loess, gravel, or clay		
with silt deposits, free from growth and in		
flume with curvatures and deabris; very large		
canals in good condition	0.020	74.50
condition; straight natural strreams with rather		
clean, uniform bottom without pools are flow	0 025	50 60
Ditches; below average man-made channels with	0.020	J J ,00
scattered cobbles in bed	0.028	53.21

Tableau 1: Coefficient de rugosité n de Manning pour les canaux et rivières (d'après Chow) (suite).

Description of Channel n		<u>1.49</u> n
Well-maintained large floodway; unkept artificial channels with scours, slides, considerable aquatic growth; natural stream with good		
alighment and fairly constant cross section Permanent alluvial rivers with moderate changes in cross section, average stage; slightly curving	0.030	49.66
intermittent streams in very good condition Small, deteriorated artificial channels, half choked with aquatic growth; winding river with	0.033	45.15
clean bed, but with pools and shallows Irregularly curving permanent alluvial stream with smooth bed; straight natural channels with uneven bottom, sand bars, dunes, few rocks and underwater ditches; lower section of mountainous streams with well-developed channel with sediment deposits; intermittent streams in good condition; rather deteriorated artificial channels, with moss and reeds, rocks,	0.035	42.57
and slides Artificial earth channels particlly obstructed with deabris, roots, and weeds; irregularly meandering rivers with partly grown-in or rocky bed: developed floodplains with high	0.040 h	37.25
grass and bushes Mountain ravines; fully ingrown small artificial channels: flat floodplains crossed by deep	0.067	22.24
ditches (slow flow) Mountain creeks with waterfalls and steep ravines: very irregular floodplains: weedy and	0.080	18.62
sluggish natural channels obstructed with trees Very rough mountain creeks; swampy, heavily	0.10	14.9
bottom, floodplain forest with pools	0.133	11.2
watershed slopes	0.22	6.77

Tableau	1:	Coefficient de	rugosité	n	de	Manning	pour	les	canaux	et	rivières
		(d'après Chow)	(suite).			_	•				

٣

Type of channel and description	Minimum	Normal	Maximum	سی
Excavated or dredged				
a. Farth straight and uniform				
1. Clean recently completed	0.016	0 018	0.020	
2 Clean after weathering	0,018	0,010	0,020	
3 Graval uniform conting	0,010	0,025	0,020	
J. Graver, uniform section, clean	0,022	0,025	0,030	
4. With Short grass, rew weeds	0,022	0,027	0,035	
D. Earth, widing and sluggish	0.000	0.005	0.000	
1. No vegetation	0,023	0,025	0,030	
2. Grass, some weeds	0,025	0,030	0,033	
3. Dense weeds or aquatic plants				
in deep channels	0,030	0,035	0,040	
Earth bottom and rubble sides	0,028	0,030	0,035	
5. Stony bottom and weedy banks	0,025	0,035	0,040	
6. Cobbe bottom and clean sides	0,030	0,040	0,050	
c. Dragline-excavated or dredged				
1. No vegetation	0,025	0,028	0,033	
2. Light brush on banks	0,035	0,050	0,060	
d. Rock cuts	-	-	-	
1. Smooth and uniform	0.025	0.035	0.040	
2. Jagged and irregular	0,035	0.040	0.050	
e. Channels not maintained, weeds	-,	••••	•••	
and brush uncut				
1 Bansa woods high as flow denth	0 050	0 080	0 120	
2 Close bottom bruch on cidoc	0,030	0,000	0,120	
2. Crean Docton, Drush on Sides	0,040	0,050	0,000	
J. Same, rignest stage of flow	0,045	0,070	0,110	
4. Dense Drush, nigh stage	0,080	0,100	0,140	
Natural Streams				
U-1. Minor streams (top width a flood				
stage ≦ 100 ft)				
a. Streams on plain				
1. Clean, straight, full stage, no				
rifts or deep pools	0,025	0,030	0,033	
2. Same as above, but more stones				
and weeds	0,030	0,035	0,040	
3. Clean, winding, some pools and				
shoal s	0,033	0,040	0,045	
Same as above, but some weeds				
and stones	0,035	0,045	0,050	
5. Same as above, lower stages,		-	-	
more ineffective slopes and				
sections	0,040	0,048	0,055	
6. Same as 4. but more stones	0.045	0.050	0.060	
7. Sluggish reaches, weedy, deen	- ,	-,	-,	
	0,050	0.070	0.080	
8. Very weedy reaches, deep nonis	-,	-, -, -, -	-,	
or floodways with heavy stand				
of timber and underbrush	0.075	0,100	0.150	

Type of channel and description	Minimum	Normal	Maximum	
b. Moutain streams, no vegetation in channel, banks usually steep, trees and brush along banks submerged at high stages				
1. Bottom: gravels, cobbles and				
few boulders 2. Bottom: cobbles with large	0,030	0,040	0,050	
boulders	0,040	0,050	0,070	
D-2. Flood plains	-	-	-	
a. Pasture, no brush				
1. Short grass	0,025	0,030	0,035	
2. High grass	0,030	0,035	0,050	
b. Cultivated areas	0 000	0.000	0.040	
1. NO Crop	0,020	0,030	0,040	
2. Mature row crops	0,025	0,035	0,045	
3. Mature field crops	0,040	0,060	0,080	
 c. Brush 1. Seattered brush, heavy weeds 2. Light brush and these in 	0,035	0,050	0,070	
2. Light brush and trees, in Winter 2. Light brush and those in	0,035	0,050	0,060	
Summer	0,040	0,060	0,080	
4. Medium to dense brush, in Winter 5. Medium to dense brush, in	0,045	0,070	0,110	
Summer	0,070	0,100	0,160	
1. Dense willows, summer.				
straight	0,110	0,150	0,200	
stumps, no sprouts	0,030	0,040	0,050	
heavy growth of sprouts	0,050	0,060	0,080	
4. Heavy stand of timber, a few down trees, little undergrowth, flood stage				
below branches 5. Same as above, but with flood	0,080	0,100	0,120	
<pre>stage reaching branchese D-3. Major streams (top width at flood stage ≥ 100 ft). The n value is less than that for minor streams of similar description, because banks offer less effective resistance a. Regular section with no boulders</pre>	0,100	0,120	0,100	
or brush	0,025		0,060	
b. Irregular and rough section	0,035		0,100	

Tableau 1: Coefficient de rugosité n de Manning pour les canaux et rivières (d'après Chow) (suite)

r

ı

(n = 0,0218) pour le canal de navigation et K = 57 (n = 0,0176) pour le canal usinier.

On peut évaluer le coefficient de Manning-Strickler par comparaison avec les valeurs déterminées pour des cours d'eau de régime analogue. Pardé (tiré de Carlier) présente les valeurs de K pour diverses catégories de cours d'eau. Le tableau 2 présente ces valeurs.

Plus récemment (1957) le hongrois Szesztay, se basant sur de nombreuses observations de vitesses relatées dans la littérature technique, a proposé la relation suivante entre le coefficient n de Manning et la dimension moyenne d de la rugosité des parois:

$$\frac{1}{n} = 19,8 \log \frac{915}{d}$$
 (d en cm)

e) Formule de Cowan

Cette formule permet d'estimer la valeur du coefficient n en séparant l'influence des différents facteurs. Elle s'écrit:

$$\mathbf{n} = (\mathbf{n}_0 + \mathbf{n}_1 + \mathbf{n}_2 + \mathbf{n}_3 + \mathbf{n}_4) \mathbf{m}_5 \tag{4-15}$$

Les valeurs de ces divers coefficients sont explicitées ci-après et résumées au tableau 3.

<u>Coefficient n_0 </u>: c'est le coefficient valable pour un cours d'eau ou un canal rectiligne dont les parois, les berges et le fond sont homogènes et lisses. La valeur de n_0 ne dépend alors que de la nature des parois et peut être prise égale à:

n₀ = 0,020 pour la terre 0,025 pour le roc 0,024 pour le gravier fin 0,028 pour le gravier grossier

Catégorie	C Chézy	K Manning-Strickler
1	25-32	23-26
2	33-38	27-29
3	39-42	30-33
4	43-45	34-37
5	46-4 8	38-40
6	49-52	41-42
7	50-55	43-45
8	56-65	46-50

Tableau 2: Valeurs de K pour certains cours d'eau (Pardé).

Description des catégories-type

- Petit cours d'eau de montagne à fond très irrégulier, largeur de 0 à 30 mètres.
- Cours d'eau de montagnes large de 30 à 50 mètres avec une pente supérieure à 0,002 et un fond de gros graviers (10 à 20 cm de diamètre pour beaucoup d'entre eux).
- 3. Rivières de largeur comparable ou supérieure, à pente comprise entre 0,008 et 0,002, avec fond de graviers dont le diamètre extrême en général ne dépasse pas 8 à 10 cm (Rhin à Bôle).
- 4. Pente comprise entre 0,006 et 0,008, graviers de 4 à 8 cm (Rhône à Lyon).
- 5. Même pente mais cailloux plus petit (Rhône à la porte de Scex avant le Léman).
- 6. Pente inférieure à 0,006 et supérieure à 0,00025, cailloux très petits ou sable (Danuble à Vienne).
- 7. Cours d'eau peu turbulents, avec pentes de 0,00012 à 0,00025, fond de sable et de boue (Seine, Rhône, Rhin inférieur).
- Très gros cours d'eau à très faible pente (moins de 0,00012) et fond très large (Volga ??????).

	Paramètres du c	anal	Valeurs
n ₀	Matériel	terre	0,020
		roc	0,025
		gravier fin	0,024
		gravier grossier	0,028
n ₁	Degré	faible	0,000
	d'irrégularité	mineur	0,005
		modéré	0,010
		majeur	0,020
n ₂	variation de	graduelle	0,000
	la section	alternance occasionnelle	0,005
	transversale	alternance fréquente	0,010 - 0,015
n ₃	obstructions	négl igeables	0,000
		mineures	0,010 - 0,015
		appréciables	0,020 - 0,030
		majeures	0,040 - 0,060
n ₄	végétation	faible	0,005 - 0,010
		moyenne	0,010 - 0,025
		forte	0,025 - 0,050
		très forte	0,050 - 0,100
m 5	méandres	mineurs	1,000
		appréciables	1,150
	e'	majeurs	1,300

Tableau 3: Résumé des valeurs des coefficients de la formule de Cowan (adapté de V.T. Chow).

formule: $n = (n_0 + n_1 + n_2 + n_3 + n_4)m_5$

<u>Coefficient n_1 </u>: il traduit l'influence des irrégularités de surface, du fond et des parois. On peut adopter les valeurs suivantes:

- parois lisses, comparables aux meilleurs surfaces susceptibles
 d'être obtenues avec le matériaux considéré: n₁ = 0
- parois comportant de légères irrégularités: $n_1 = 0,005$
- parois comportant des irrégularitrés modérées: ce sera le cas par exemple des canaux peu ou pas dragués, des cours d'eau naturels dont les berges sont modérément érodées ou affaissées: n₁= 0,010
- parois comportant des irrégularités importantes, ce sera le cas par exemple des cours d'eau naturels ou des canaux dont les berges sont très marécageuses, érodées ou affaissées, des canaux de contours et de surfaces irrégulièrement taillés dans la pierre: $n_1 = 0,020$

<u>Coefficient n_2 </u>: il traduit l'influence des variations de forme et de dimension de la section mouillée.

- pour une section présentant une variation progressive, on adoptera $n_2 = 0$
- pour une section présentant des variations alternées occasionnelles (alternance des grandes et petites sections, déplacement du courant principal d'une rive à l'autre résultant des variations de forme), on adoptera $n_2 = 0,005$
- pour une section présentant des variations alternées fréquentes, on adoptera $n_2 = 0,010$ à 0,015

<u>Coefficient n_3 </u>: il traduit l'influence des obstructions de la section mouillée par des dépôts d'ordures, racines apparentes, souches d'arbres, blocs de pierre, troncs d'arbres tombés ou enracinés, etc.

Pour apprécier l'influence de ces obstacles, il faut éviter de faire intervenir les facteurs considérés précédemment. Il convient d'estimer notamment jusqu'à quel point les obstructions réduisent la surface moyenne de la section mouillée, la forme de ces obstructions (les obstacles anguleux provoquent une turbulence plus grande que ceux dont les formes sont arrondies et les surfaces polies), la position et l'espacement des obstructions dans le sens transversal et dans le sens longitudinal dans le bief considéré.

Compte tenu de ces remarques, on pourra adopter pour le coefficient n_3 les valeurs suivantes:

- obstructions négligeables: $n_3 = 0$
- obstructions faibles : $n_3 = 0,010$ à 0,015
- obstructions appréciables: $n_3 = 0,020$ à 0,030
- obstructions importantes: $n_3 = 0,040 \text{ à } 0,060$

Coefficient n_{μ} : il traduit l'influence de la végétation.

- végétation de faible importance: pousses denses d'herbes flexibles (gazon) dont la hauteur moyenne est de l'ordre de la moitié ou du tiers de la profondeur (par exemple l'herbe bleue ou Bermuda), jeunes plantations arbustives souples (saule, tamaris) dont la hauteur moyenne est de l'ordre du tiers ou du quart de la profondeur; on prendra $n_4 = 0,005$ à 0,010
- végétation modérée: herbes dont la hauteur moyenne est de l'ordre de la moitié de la profondeur, herbes résistantes ou jeunes plantations arbustives à feuillage peu épais dont la hauteur moyenne est de l'ordre du tiers à la moitié de la profondeur: buissons peu denses (saules de un à deux ans) en hiver le long des berges, sans végétation importante dans le lit du cours d'eau dont le rayon hydraulique est supérieur à 0,70 m; on prendra $n_4 = 0,010$ à 0,025
- végétation importante: herbes dont la hauteur moyenne est de l'ordre de la profondeur; arbres de 8 à 10 ans entremêlés de quelques buissons sans feuillage en hiver, pour des cours d'eau dont le rayon hydraulique est supérieur à 0,70 m; en période végétative, arbres

tels que des saules touffus de un an, entremêlés d'herbes très développées sur les berges, sans végétation notable dans le lit du cours d'eau dont le rayon hydraulique est supérieur à 0,70 m; on prendra $n_{\mu} = 0,025$ à 0,050

- végétation très importante: herbes dont la hauteur moyenne dépasse le double de la profondeur; en période végétative, présence de saules de un an touffus, entremêlés d'herbes en pleine croissance sur les berges, ou pousses denses de roseaux au fond du lit du cours d'eau dont le rayon hydraulique reste partout inférieur à 3 à 5 m; en période végétative, présence d'arbres entremêlés d'herbes et de buissons très feuillus, le rayon hydraulique restant partout inférieur à 3 à 5 m; on prendra $n_4 = 0,050$ à 0,10

<u>Coefficient m_5 </u>: ce facteur correctif traduit l'importance des méandres qui peut être estimée par le rapport de la longueur du profil longitudinal du cours d'eau à la longueur du segment de droite joignant les deux extrémités du bief considéré.

L'influence des méandres est dite modérée pour des rapports de l'ordre de 1 à 1,2 et on prendra $m_5 = 1$.

Cette influence est dite appréciable pour des rapports de l'ordre de 1,2 à 1,5 et on prendra $m_5 = 1,15$.

L'influence est importante pour des rapports supérieurs à 1,5 et on prendra $m_5 = 1,3$.

<u>Remarques</u>: Les valeurs des coefficients de la formule de Cowan ont été établies à partir d'un échantillon de 40 à 50 cours d'eau de faible importance; néanmoins la méthode s'applique également à des cours d'eau plus larges dont le rayon hydraulique dépasse 5 m.

Cette méthode ne fait pas intervenir l'influence des particules en suspension.

4.2 PERTE DE CHARGE

4.2.1 Rugosité, turbulence et concept de vitesse de cisaillement

La plus grande difficulté dans les problèmes de fluide est l'étude de la turbulence, phénomène responsable de la perte de charge et des modifications importantes du champ de vitesses et de la ligne d'eau. L'écoulement en cours d'eau naturel est toujours turbulent sauf exceptionnellement dans une situation de "sheet flow".

On peut considérer la turbulence en deux zones distinctes:

- près des parois
- loin des parois

Dans un écoulement gravitationnel, les effets du fond (de paroi) dominent la perte de charge. On peut dire qu'en général, la grande partie de la perte a lieu dans la couche limite, sauf pour les écoulements fortement variés, dans lequel la perte dans l'écoulement peut être largement supérieure à celle due à la résistance du fond. Dans cette section, nous nous limitons à l'évaluation de cette dernière.

Le concept de rugosité est fondamental lors de l'évaluation du frottement des parois. La rugosité est en général représentée par le paramètre k.

Rugosité uniforme

Rugosité moyenne

Rugosité équivalente

La nature de la turbulence peut être reliée à ce paramètre de rugosité si on définit le concept de vitesse de cisaillement U*

$$J^{\star} = \sqrt{\frac{\sigma_0}{\rho}}$$
(4-16)

où σ_0 est le frottement au fond $(\frac{N}{m^2})$ Ainsi, la turbulence du régime se catégorise en U Régime turbulent lisse: a) si $0 < \frac{k U^*}{v} < 5$ ou $\frac{k Re}{77 H} < 1$ TINK δ = sous-couche limite laminaire $\delta > k$ le frottement du fond $\sigma_0 = f$ (Re) où Re = nombre de Reynolds Régime turbulent intermédiaire b) si $5 < \frac{k \ U^{\star}}{v} < 70$ $\sigma_0 = f(\frac{k}{H}, \text{Re})$ <u>Régime turbulent rugueux f = $f(\frac{k}{H})$ </u> c)

si
$$\frac{k \ U^*}{v} > 70$$
 ou $\frac{k \cdot Re}{2240 \ H} > 1$ (Carlier)
alors $\sigma_0 = f(\frac{k}{H})$

Dans un cours d'eau naturel, l'écoulement est en général turbulent rugueux dans sa totalité et la dernière relation prévaut. La formule donnant l'épaisseur d'une couche-limite laminaire est:

$$\delta = \frac{130 \text{ H}}{\text{Re } \sqrt{\text{f}}}$$

et on constate que δ tend vers 0 pour un nombre de Reynolds supérieur à $10^5.$

4.2.2 <u>Application aux écoulements à surface libre des formules universelles</u> de perte de charge

Le nombre considérable d'études consacrées aux pertes de charge dans les canalisations à partir des recherches de Prandtl, Nikuradse, Karman, Colebrook, etc. devait avoir pour conséquence de rechercher dans quelle mesure ces formules "universelles" pourraient s'appliquer aux écoulements à surface libre.

Le coefficient adimensionnel de résistance f s'écrit en fonction de la perte de charge S_f par unité de longueur

$$S_{f} = \frac{\Delta H}{L} = \frac{f U^{2}}{8g R_{H}}$$
(4.17)

Par comparaison avec l'équation de Chézy

$$S_{f} = \frac{U^2}{C^2 R_{H}}$$
(4.18)

nous trouvons la relation entre f et C

$$C = \sqrt{\frac{8g}{f}}$$
(4.19)

La valeur de C peut être évaluée en connaissant la valeur moyenne de la dimension des rugosités relatives ε et la valeur du nombre de Reynolds.

La formule de White et Colebrook explicite le coefficient C sous la forme

C = 18 ln
$$\left(\frac{6 R_{H}}{\frac{k}{2} + \frac{\delta}{7}}\right)$$
 (4.20)

Or, pour des parois rugueuses, $\delta \approx 0$.

Le tableau 4 donne des valeurs indicatives de la rugosité.

La valeur de k est, on le rappelle, la hauteur moyenne de la rugosité équivalente, c'est-à-dire le diamètre des sphères qui, couvrant uniformément les parois et le fond du canal, provoqueraient la même perte de charge.

Cette dernière équation se compare bien avec celle du hongrois Szesztay (1957) qui, se basant sur de nombreuses observations de vitesses relatées dans la littérature technique a proposé

$$\frac{1}{n} = 19,8 \ln \frac{9,15}{k}$$
 k = en mètre (4-21)

4.3 FROTTEMENT DANS LES COURS D'EAU RAPIDES

Le coefficient de frottement dans des cours d'eau de vitesses élevées et de fortes pentes n'est pas facile à évaluer. Le problème de turbulence est général et il y a une perte importante sur toute la section. Nous présentons ici quelques formules récentes de Jarrette.

$$n = 0,39 \quad s^{0,38} R_{H}^{1/6}$$
 (4-22a)

ou

$$n = 0,104 S^{0,177}$$
 (Gray) (4-22b)

Par contre, ces formules ne sont pas encore bien vérifiées dans la pratique On recommande la prudence dans leur utilisation. Tableau 4: Valeurs indicatives de rugosité $\varepsilon = \frac{k}{2}$.

Rochers ou pierres:	0,5 à 1 fois le diamètre des pierres selon leur espacement
Sables sans rides:	0,5 fois le diamètre des grains
Sables avec rides:	0,75 à 1 fois la hauteur des rides
Terre lissée:	10 à 25 mm
Graviers:	5 à 25 mm
Maçonnerie:	2,5 à 10 mm
Béton:	1 à 10 mm c.à.d. le degré de lissage
Acier:	0,5 à 1 mm
Acier asphalté:	0,01 à 0,025 mm
Amiante ciment:	0,25 à 1 mm
Bois rugueux:	0,25 à 1 mm
Bois raboté:	0,1 à 0,25 mm

4.4 LE COEFFICIENT DE CHÉZY POUR UN ÉCOULEMENT SOUS COUVERT DE GLACE

Pour un cours d'eau à surface libre relativement large, le rayon hydraulique peut être considéré égal à la profondeur lorsque la section est relativement large.

$$R_{H} = (H + h)$$
 (4-23)

Lorsqu'il y un couvert de glace, le rayon hydraulique se trouve diminué à:

$$R_{H_0} = \frac{H_0 + h_0}{2}$$
 (4-24)

(H + h) et $(H_0 + h_0)$ étant respectivement les profondeurs équivalentes moyennes à surface libre et sous la glace. Michel (1981) indique que le coefficient de rugosité équivalent sous la glace est généralement bien représenté par l'équation de Sabaneev (1948):

$$n_{e} = \left(\frac{n^{3/2} + n_{g}^{3/2}}{2}\right)$$
(4-25)

où l'on recherche un coefficient de Manning équivalent:

n : du lit du cours d'eau n_g : du couvert de glace n_g : équivalent

L'auteur indique également que la rugosité d'un couvert de glace diminue en fonction du temps au cours de l'hiver (ref. Nezhikhouskii, 1964). Il importe donc de déterminer la rugosité pour différentes conditions de glace. De plus, on doit prendre en compte la croissance de la glace, qui se traduit par une diminution de l'aire mouillée avec l'aide de la formule de Stefan modifiée (Michel, 1971)

$$h_{g} = \alpha \sqrt{\frac{K_{L}}{\rho \cdot g L}} \cdot s \qquad (4-26)$$

avec K_L : conductivité thermique de la glace p' : densité de la glace L : chaleur latente de fusion de la glace g : accélération gravitationnelle h_g : épaisseur de la glace s : nombre de degré-jours de gel $= \Sigma (\Theta_a - \Theta_0) \Delta t$ α : coefficient de croissance de la glace (toujours inférieur à 1)

- 108 -

Nous référons à l'article de Michel (1981) pour de plus amples détails.

4.5 ESTIMATION DE LA CONTRAINTE DU VENT

Il existe un consensus dans la bibliographie pour formuler mathématiquement la contrainte du vent. Celle-ci est généralement donnée sous la forme:

$$\tau_{s}^{i} = C_{h} \rho_{a} |W_{h}^{i}| W_{h}^{i}; i = x, y \qquad (4-27)$$

 τ_{s}^{i} : est la composante en direction de la contrainte

 ρ_a : la masse spécifique de l'air

 $|W_{h}|$: la valeur absolue de la vitesse résultante du vent à une hauteur h au dessus du plan d'eau

 W_{h}^{1} : la composante i de la vitesse du vent

 C_h : un coefficient de frottement correspondant à cette hauteur h

Cette forme d'équation reprend le même schéma quadratique que celle décrivant la résistance du lit. Le coefficient C_h peut être spécifié après analyse du profil de vitesse du vent, lequel est déterminé par des phénomènes de turbulence propres à la couche limite. En ce sens, on retrouve une situation analogue à l'effet de paroi dans l'eau. Ce genre d'analyse est souvent effectué pour des situations de laboratoire (soufflerie superposant un canal).

En pratique cependant, on utilise la relation précédente pour un h de 10 m. c'est-à-dire:

$$\tau_{s}^{i} = C_{10} \rho_{a} |W_{10}^{+}| W_{10}^{i}$$
(4-28)

Le coefficient C_{10} traduit d'une certaine façon la rugosité du plan d'eau, laquelle est fonction de son état d'instabilité (rides, vagues, houle). Plusieurs auteurs (Wu, 1969; Wilson, 1960; Ottesen-Hansen, 1975; Banks, 1975; Ruggles, 1970; Hsu, 1975; Van Horn, 1953) ont obtenu empiriquement des valeurs ou des expressions pour C_{10} . Celles-ci ont tendance à se recouper comme l'illustre la figure 39 et le tableau 5. Il nous apparaît cependant que l'approche de Wu (1969), tout en demeurant simple d'utilisation, semble bien traduire à la fois la tendance générale des diverses propositions et la nature particulière du phénomène avec ses discontinuités.

Il est évident que la force du vent a un effet sur la stabilité du plan d'eau avec pour conséquence de modifier sa rugosité. On aura donc une relation du type:

$$C_{10} = f(W_{10})$$
 (4-29)

Figure 39: Modèles d'estimation du coefficient C_{10} pour une force du vent donné (adapté de Shanahan et Harleman, 1982).

4.6 DISCUSSION

La forme générale de l'équation de perte de charge s'écrit sous la forme

$$S_f = \frac{U^2}{C^2 R_H}$$

Puisque le coefficient C de la formule de Manning-Strickler est fonction de $R_H^{1/6}$ et, par le fait même, fonction de la profondeur d'eau, nous préconisons le calcul du n de Manning selon l'équation

$$K = \frac{1}{n} = 26 \ (d_{35})^{-1/6}$$

Wu (1969)	1,25 x	10^{-3} W ₁₀ ^{-1/5}	$W_{10} \leq 1 \text{ ms}^{-1}$
	0,5 x	10-3 W ₁₀	$1 \leq W_{10} \leq 15 \text{ ms}^{-1}$
	2,6 x	10-3	$W_{10} \ge 15 \text{ ms}^{-1}$
Wilson (1960)	1,66 x	10-3	vents légers
	2,37 x	10 ⁻³	vents forts
Ottesen-Hansen	0,8 x	10-3	$W_{10} \leq 7 \text{ ms}^{-1}$
(1975)	1,0 x	10-3	$W_{10} \ge 7 \text{ ms}^{-1}$
Banks (1975)	9,0 x	10^{-3} W ₁₀ ^{-1/2}	vents faibles
	3,8 x	10- ³	vents moyens
	0,7 x	10-4 W ₁₀	vents forts
Ruggles (1970)	1,6 x	10-3	2 ms ⁻¹ $\leq W_{10} \leq 10$ ms ⁻¹
Hsu (1975)	0,7 x	10-3	$W_{10} \leq 5 \text{ ms}^{-1}$
Van Dorn (1953)	1,11 x	10-3 +	W ₁₀ ≦ 5,6 ms ⁻¹
	1,11 x	10-3	W ₁₀ ≥ 5,6 ms ⁻¹
2,	06 x 10-	⁻³ (1-5,6/W ₁₀) ²	

Tableau 5: Modèles d'estimation du C_{10} (tiré de Shanahan et Harleman, 1982).

si on peut évaluer de d_{35} avec suffisamment de précision. Une vérification par l'utilisation de la formule de Szesztay

$$\frac{1}{n} = 19,8 \log \frac{9,15}{\frac{k}{2}}$$
 k (en mètre)

et une corroboration des résultats par la méthode de Cowan et les tables de Pardé et Chow est de rigueur. On utilisera alors la formule de Manning-Strickler pour calculer la perte de charge

$$S_{f} = \frac{n^2 U^2}{R_{H}^{4/3}}$$

En définitive, le praticien obtiendra une plage de valeur admissible de n sur laquelle il devra établir son choix. <u>Chapitre V</u>

SOLUTION NUMÉRIQUE PAR ÉLÉMENTS FINIS

5. LA MÉTHODE DES ÉLÉMENTS FINIS

5.1 INTRODUCTION À L'APPROCHE

Deux méthodes sont généralement utilisées pour traduire un modèle mathématique en modèle numérique: la méthode des différences finies et les éléments finis. La première, relativement simple a été appliquée avant la deuxième. Elle s'appuie sur une <u>discrétisation régulière</u> du domaine géométrique et une prise en compte de fonctions mathématiques du modèle de base à l'aide de "<u>molécules</u>" construites en fonction du problème à résoudre. La méthode des éléments finis apparaît plus complexe dans ses principes. Elle permet cependant une <u>discrétisation irrégulière</u> du domaine et s'avère finalement plus souple d'utilisation. Les deux méthodes conduisent à une représentation algébrique sous forme matricielle.

$$[M] \{0\} + [K(U)] \{U\} = \{F\}$$
(5-1)

- où $\{0\}$ est dérivée par rapport au temps des inconnues du problème;
 - {U} l'ensemble des inconnues du problème;
 - [M] la matrice dite "masse";
 - [K(U)] la matrice dite "de rigidité" qui traduit les relations entre les inconnues du problème; celle-ci est habituellement non-linéaire;
 - {F} les sollicitations sur le système, par exemple, le vent.

Nous utilisons la méthode des éléments finis pour diverses raisons dont les principales sont sa polyvalence et sa souplesse, en particulier, vis-àvis de domaines géométriques complexes. La méthode permet de raffiner la disrétisation localement (autour des îles, baies, chenaux, discontinuité de bathymétrie) en plus d'adopter étroitement la forme des contours du domaine.

Il ne faut pas confondre dans le langage modèle <u>mathématique</u> et modèle <u>numérique</u>. Le modèle mathématique pour un écoulement quelconque apparaît sous forme d'équations aux dérivées partielles (EDP). Ces modèles sont montrés aux chapitres 2 et 3. Un modèle sous forme d'EDP traduit comme nous l'avons vu diverses formes de <u>bilans théoriques</u>: quantité de mouvement on équilibre des forces, conservation de la masse. Cette forme de représentation purement <u>déterministe</u> se trouve également associée à des <u>lois de</u> <u>comportement</u> lesquelles apportent la connaissance empirique des phénomènes à l'étude. Il en est ainsi des lois de turbulence ou encore des paramètres de frottement qu nous avons considérés au chapitre IV.

Le modèle numérique est la version pratique informatisée du modèle mathématique théorique. Dans la méthode des éléments finis, le modèle mathématique est traduit en modèle variationnel avant qu'on procède à la discrétisation. Il sort du cadre de cette présentation d'entrer dans les détails de cette approche. Mentionnons simplement qu'en général, dans les problèmes de fluides on utilise la technique des résidus pondérés de Galerkin (Dhatt et Touzot, 1981) pour obtenir une forme variationnelle du modèle EDP de base de chaque problème d'écoulement.

Nous avons un résidu R(U):

$$\{R(u)\} = \{\dot{u}\} + [L(u)] \{u\} - \{f\} = 0$$
 (5-2)

où [L(u)] est un opérateur mathématique qui traduit la forme des EDP.

Nous procédons à une formulation intégrale du résidu pondéré par la première variation (δu) des inconnues du problème pour obtenir une fonctionnelle W qui est le modèle variationnel proprement dit:

$$W = \int \delta u \{R(u)\} dV = 0$$
(5-3)
$$V \qquad \qquad \forall \delta u$$

Cette fonctionnelle, si elle s'annule pour tout δu , permet de satisfaire 5-2 et fournit alors théoriquement la solution du problème.

En pratique, le modèle variationnel apparaît sous forme discrétisée en utilisant l'approximation par éléments finis des variables u et de leur première variation ou. Ainsi, dans la figure précédente on utilise un triangle à six noeuds pour représenter le champ de variation des vitesses u et v et de la hauteur d'eau h. Celles-ci sont interpolées au sein du domaine à l'aide d'une approximation faisant appel à la valeur aux noeuds du triangle des variables. Nous avons alors:

$$u(x,y) = \langle N(x,y) \rangle \{U_n\}$$
 (5-4)

où < N(x,y) > est un vecteur de fonctions d'interpolation en nombre égal au nombre de valeurs nodales de la variables à interpoler.

 $\{u_n\}$ sont les valeurs nodales de u

De même,

$$\delta u(x,y) = \langle N(x,y) \rangle \{\delta u_n\}$$
 (5-5)

Les valeurs de δu et u de la relation 5-3 seront remplacées par leur approximation 5-4 et 5-5 sur chaque élément du domaine discrétisé et on procédera à l'intégration "réduite" de 5-3 à l'aide des méthodes numériques de type Gauss. (voir Dhatt et Touzot, 1981). On obtient ainsi un système algébrique matriciel dit "élémentaire". Chacune des matrices élémentaires sera assemblée dans la matrice globale avant de procéder à la résolution. On obtient ainsi le système 5-1.

Cette approche est illustrée globalement à la figure suivante.

Le lecteur peut consulter les références (Dhatt et Touzot, 1981; Cochet, 1979; Soulaïmani, 1984; Robert, 1984 et Leclerc, 1985) pour plus de détails sur la méthode des éléments finis appliquée aux problèmes d'écoulement à surface libre. Ces chercheurs de l'Université Laval, de l'Université de Compiège (France) et de l'INRS ont conjointement développé des logiciels d'éléments finis pour la résolution numérique des problèmes d'écoulements en 2 et 3 dimensions. Ces logiciels sont parfois désignés par l'appellation MEFLU et sont associés au logiciel-cadre MEF, lequel permet également de résoudre d'autres types de problèmes (mécanique des solides, thermique, etc.).

Le pré-traitement de la base de données (CAO) et le post-traitement graphique des résultats s'effectuent dans une étape relativement distincte du processus de résolution. Plusieurs logiciels sont disponibles sur le marché pour la CAO et l'illustration des résultats des modèles. Nous utilisons en général soit, MOSAÏC, un logiciel développé conjointement par Compiège et Québec soit, HYDGRAF, un logiciel élaboré à l'Université Laval. Le premier est particulièrement bien adapté pour la CAO, c'est-à-dire, la préparation du maillage, l'optimisation de la numérotation des noeuds en vue de minimiser la taille du problème de même que la spécification des condi-

- 117 -

tions aux limites du modèle. HYDGRAF est particulièrement bien adapté pour la représentation des résultats. Nous allons d'ailleurs en montrer quelques exemples à la section suivante.

5.2 ÉCOULEMENTS BIDIMENSIONNELS (MEFLU 2-D)

Ce logiciel nous permet de résoudre les problèmes d'écoulements bidimensionnels. En voici les caractéristiques importantes:

- le modèle de base est celui des "eaux peu profondes" (shallow water equations);
- les variables sont les vitesses moyennes dans la verticale et la hauteur d'eau;
- les vitesses sont représentées par une approximation quadratique et la hauteur par une forme linéaire (continuité de type C₀);
- la pression est considérée comme hydrostatique (onde longue);
- tous les effets de la turbulence verticale sont négligés;
- les éléments finis sont soit, des triangles à 6 noeuds (T-6), ou des quadrilatères à 9 noeuds (Q-9);
- la méthode de Newton-Raphson est utilisée pour résoudre les équations non-linéaires;
- les résultats sont présentés graphiquement en multiples couleurs d'isovitesses, trajectoires d'écoulement, iso-niveaux d'eau, etc.;
- ce modèle est bien adapté pour étudier les régimes permanents et non permanents dans les rivières, les fleuves et les estuaires;

-

le modèle est valable pour tous les problèmes d'écoulements fluvial, torrentiel et turbulent respectant l'hypothèse des ondes longues.

On trouvera aux figures 40 à 43 diverses illustrations de résultats obtenus à l'aide de ce modèle dans le cadre du projet Archipel dans la région de Montréal.

5.3 MEFLU - TRI-DIMENSIONNEL (MEFLU 3-D)

L'approche tri-dimensionnelle des problèmes d'écoulement permet d'aborder de manière beaucoup plus réaliste certaines classes de phénomènes comme la circulation de l'eau dans les régimes de méandre, les écoulements stratifiés, les courants de dérive (induits par le vent). Ces phénomènes complexes se traduisent par une élaboration plus poussée des modèles en particulier, dans les variables prises en compte et la technique de discrétisation. Deux approches ont été développées dans le cadre de MEF.

La première (Robert, 1983) est une adaptation aux éléments finis de l'approche de Lendertsee laquelle a d'abord été élaborée autour d'une méthode de différences finies. Cette approche consiste à considérer un écoulement comme un ensemble de couches chacune pouvant être caractérisée par des valeurs moyennes des vitesses dans la verticale. La pression est hydrostatique et se trouve représentée par la hauteur d'eau relative (h). Le modèle s'appuie sur une discrétisation en triangles à 6 noeuds (T-6) chacun se voyant attribuer les vitesses moyennes de chaque couche à l'aplomb. La vitesse verticale est obtenue en post-traitement par résolution de l'équation de continuité - on cherche w connaissant déjà u et v -. Ce modèle requiert des conditions aux limites en hauteur d'eau ce qui convient bien aux problèmes de marée dans les estuaires maritimes et les écoulements gravitationnels dans les cours d'eau.

La seconde approche proposée par Leclerc (1985) diffère principalement par la nature plus riche, de l'approximation verticale des vitesses, la discrétisation du domaine et la nature des problèmes visés. Dans ce modèle, les vitesses font l'objet d'une approximation quadratique dans la verticale.

- 120 -

٠

5

Projet Archipel - Bassin La Prairie - vitesses simulées - débit module (d'après TAO-Simulations, 1985b). Figure 42: Conditions actuelles. Figure 43: Conditions aménagées (scénario 1). - 121 -

r

Quoique la base de données s'appuie également sur un élément T-6 dans l'horizontale, cet élément n'est que la projection dans le plan d'un élément prismatique à 18 noeuds (P-18) qui accompagne l'approximation quadratique tridimensionnelle des vitesses de ce modèle. Celui-ci permet également d'utiliser un nombre variable dans l'espace de ces prismes dans un même problème ce qui respecte l'esprit de souplesse de la méthode des éléments finis. Enfin, ce modèle est particulièrement bien adapté pour résoudre les problèmes de circulation induite par le vent dans les lacs. Dans ce genre de problème, la hauteur d'eau est totalement inconnue du problème et ne peut, par conséquent, être spécifiée comme condition aux limites. Un modèle numérique requiert en général une hauteur de référence pour converger vers une solution. Le modèle contourne cette contrainte en forçant le processus de résolution à respecter une contrainte de volume constant ce qui traduit un principe supplémentaire de conservation de la masse.

On trouvera aux figures 44 et 45 des illustrations de résultats de ce modèle pour la hauteur d'eau et les vitesses pour une configuration de vent moyen du sud-ouest sur le lac Saint-Jean (Leclerc, 1985).

Figure 44: Hauteur d'eau relative - vent sud-ouest moyen - lac Saint-Jean (d'après Leclerc, 1985).

Figure 45: Courants simulés - vent sud-ouest moyen - lac Saint-Jean (d'après Leclerc, 1985).

• ۲
CONCLUSION

. .

CONCLUSION GÉNÉRALE

Dans cette étude, nous avons présenté un aperçu général de la technique de modélisation des écoulements à surface libre. Les modèles mathématiques sont présentés en détail avec des discussions sur leur domaine d'application spécifique.

À l'heure actuelle, nous sommes capables d'étudier numériquement la plupart des écoulements en 2-D et 3-D respectant l'hypothèse de la pression hydrostatique. Nous avons également présenté la classification de différents types d'écoulement, fluvial ou torrentiel.

Le phénomène du ressaut est discuté et nous avons proposé une méthode pour la simulation numérique de ce type d'écoulement. La localisation du ressaut est très importante, de même que sa longueur et la perte de charge qu'il provoque. Le problème numérique est très complexe et il faudra que les chercheurs fassent un effort afin de pouvoir mieux prédire les régimes variés dans les écoulements bidimensionnels.

Nous avons également présenté une discussion détaillée sur les coefficients de frottement du fond de la glace et du vent. On trouve un historique sur le concept du frottement du fond et des recommandations sur le choix des valeurs empiriques à adopter. Nous avons opté pour le coefficient de Manning-Strickler. Une évaluation détaillée de la valeur de certains coefficients est donnée sous forme de tableau. Nous avons également étudié les écoulements rapides et le choix du coefficient en fonction de la rugosité du fond, de la pente et du rayon hydraulique.

Enfin, nous avons présenté quelques exemples numériques pour illustrer des écoulements en régime varié: du torrentiel au fluvial et vice-versa.

BIBLIOGRAPHIE

L.

ł. 1 ł. ł. ł. Ł 1 ł. ÷.

BIBLIOGRAPHIE

- Carlier, M. (1980), "Hydraulique générale et appliquée", Eyrolles, Collection EDF, Paris.
- Chow, Ven T. (1959), "Open-channel Hydraulics" McGraw-Hill Civil Engineering Series, McGraw-Hill, Toronto.
- 3. Chow, Ven T. (1961), "Open-channel Flow" in: Streeter, V.L. (1961), Streeter, V.L. (1961), "Handbook of Fluid Dynamics", McGraw-Hill Book Co., N.Y.
- Cochet, J.F. (1979), "Modélisation d'écoulements stationnaires et nonstationnaires par éléments finis" Thèse de docteur-ingénieur, Université de Technologie de Compiègne (FRANCE).
- 5. Henderson F.M. (1966), "Open-channel Flow", Macmillan Series in Civil Engineering, Macmillan, N.Y.
- 6. Leendertse, J.J. et al (1973-1979), "Three-dimensionnal Model for Estuaries and Coastal Seas", Vol. I to VI, The Rand Corporation, Cal.
- 7. Leliavsky, S. (1965), "River and Canal Hydraulics", Design Textbooks in Civil Engineering, Vol. 4, Chapman and Hall Ltd., London.
- Li, Wen-Hsiung (1983), "Fluid Mechanics in Water Ressources Engineering", Ally & Bacon Inc., Boston.
- 9. Morris, H.M.; Wiggert, J.M. (1972), "Applied Hydraulics in Engineering", John Wiley & Sons, Toronto.
- 10. Rajaratnam, N. (1967), "Hydraulic Jumps" in: Ven T. Chow, ed, "Advances in Hydro-sciences2, Vol. 4, Academic Press, N.Y.
- Robert, J.L. (1983), "Modélisation tridimensionnelle des écoulements à surface libre, permanents ou non-permanents, par éléments finis", Thèse de PhD. Génie civil, Université Laval.
- 12. Shanahan, P. et Harleman, D.R.F. (1982), "Linked Hydrodynamic and Biochemical Models of Water Quality in Shallow Lakes", Rep. # 268, Ralph Parsons Lab., MIT.
- 13. Simon, A.L. (1981), "Practical Hydraulics", J. Wiley & Sons, N.Y.
- 14. Soulaïmani, A. (1983), "Nouveaux aspects de l'application de la méthode des éléments finis en hydrodynamique", Thèse de maître es sciences, Génie civil, Université laval.

ANNEXE 1

TESTS SUR UN MODÈLE 2-D HORIZONTAL D'ÉCOULEMENTS FORTEMENT VARIÉS

.

TESTS SUR UN MODÈLE 2-D HORIZONTAL D'ÉCOULEMENTS FORTEMENT VARIÉS

A.1 INTRODUCTION

Pour la modélisation d'écoulements fortement variés, il est nécessaire d'introduire des termes dissipatifs du momentum afin de stabiliser la résolution numérique. Avec les deux exemples qui vont suivre, nous allons démontrer les effets de l'introduction d'une viscosité constante ou variable.

A.1.1 PREMIÈRE CONFIGURATION DE CANAL (MAILLAGE FIN)

Il s'agit d'un canal droit de 2 400 m de longueur et de 1 000 m de largeur dont la pente varie longitudinalement (figure A1.1). Le coefficient de Manning est fixé à n = .03. Les conditions aux limites sont données sur les hauteurs d'eau amont et aval (figure A1.1).

Le maillage relativement fin (14 éléments longitudinalement dont quatre dans la section à pente de 1%) a été réalisé avec des éléments triangulaires à 6 noeuds (figure A1.2) dont trois sont affectés à l'approximation des hauteurs d'eau. L'approximation des vitesses (6 noeuds) est alors quadratique et celle des hauteurs d'eau, linéaire. Ce schéma de discrétisation du domaine et d'approximation des variables est nécessaire à l'application du modèle MEFLU (Soulaïmani, 1984).

Nous voulions vérifier par cet exemple s'il est possible d'atteindre de grands nombres de Froude et d'analyser l'influence de la viscosité turbulente. Trois cas ont été simulés:

a) Premier cas: viscosité constante forte

 $v_T = 50 \text{ m}^2/\text{s}$

Notes: -
$$h_1$$
 et h_2 : conditions aux limites imposées.
- maillage en éléments T-6-3.

Figure A1.1: Première configuration de canal (maillage fin).

Figure A1.2: Maillage pour MEFLU.

Les résultats numériques sont donnés au tableau Al.1. Dans cet exemple, le nombre de Froude maximum atteint a été de 0.93 ce qui correspond à un écoulement fluvial. La résolution s'effectue alors sans problème.

b) Deuxième cas: viscosité constante moyenne

 $v_T = 20 \text{ m}^2/\text{s}$

Les résultats sont donnés au tableau Al.2. Le nombre de Froude atteint cette fois une valeur de 1.23 ce qui correspond localement à un écoulement légèrement torrentiel. Dans cet exemple, le champ de vitesse et le profil de la surface libre sont très différents du premier test (20% de diférence). Ceci montre bien l'influence considérable de la viscosité turbulente.

c) Troisième cas: relaxation de la viscosité turbulente

Il s'agit d'utiliser une loi de longueur de mélange amorcée avec une viscosité moléculaire de 10^{-6} m²/s

Tableau A1.1: Résultats du premier test (viscosité turbulente égale à 50 m²/s) dans la première configuration de canal.

x	0	100	200	300	400	500	600	700	800	850
ប	2,0	1,57	1,55	1,64	1,91	1.79	2,28	2,52	2,73	3,42
h [m]	0,0		-0,37		-0,32		-0,63		-1,53	
Fr [-]			0,29		0,37		0,473		0,72	

(suite)

900	950	1000	1050	1100	1150	1200	1300	1400	1500	1600
3,25	0,53	2,02	1,62	1,44	1,40	1,40	1,43	1,48	1,50	1,56
-2,61		-2,60		-2,55		-2,60		-2,74		-2,89
0,88 maximu	m	0,42		0,24		0,24		0,26		0,28

(suite)

1700	1800	1900	2000	2100	2200	2300	2400	
1,58	1,69	1,66	1,95	1,63	2,30	3,07	2,00	
	-3,077		-3,30		-3,56		-5,0	
	0,32		0,38		0,47		0,63	

Tableau A1.2: Résultats du second test (viscosité turbulente constante de 20 m²/s) dans la première configuration de canal.

x [m]	0	100	200	300	400	500	600	700	800	850
U [ms-1]	2,0	1,85	1,93	1,88	2,22	2,05	2,50	2,75	2,96	4,11
h [m]	0,0		-0,117		-0,33		-0,63		-1,50	
Fr [-]	0,368		0,36	-	0,43		0,52		0,75	

(suite)

9 00	950	1000	1050	1100	1150	1200	1300	1400	1500
4,14	3,14	2,50	1,95	1,67	1,62	1,64	1,66	1,76	1,72
-2,85		-2,74		-2,65		-2,69		-2,82	
1,22 maximu	m	0,53		0,29		0,29		0,31	

(suite)

1600	1700	1800	1900	2000	2100	2200	2300	2400	
1,86	1,19	2,03	1,85	2,27	1,89	2,39	3,48	3,38	
-2,95		-3,10		-3,30		-3,53		-5,0	
0,34		0,38		0,44		0,49		1,078	

- 133 -

Tableau A1.3: Résultats du troisième test (longueur de mélange) dans la première configuration de canal.

x [m]	0	100	200	300	400	500	600	700	800	850
U [mx ⁻¹]	2,0	1,87	1,88	1,87	2,12	2,09	2,36	2,80	2,91	4,07
h [m]	0,0		-0,12		-0,33		-0,63		-1,39	
Fr [-]	0,39		0,35		0,41		0,49		0,73	
(suite)									
900	950	1000	1050	1100	115	0 1	200	1300	1400	1500
4,26	3,16	2,41	2,00	1,77	1,6	2 1	,74	1,65	1,87	1,70
-2,86		-2,70		-2,66	-	-2	, 69		-2,82	
1,27 maximum		0,51		0,31		0	,31		0,34	

(suite)

1600	1700	1800	1900	2000	2100	2200	2300	2400	
1,91	1,78	2,00	1,85	2,21	1,93	2,22	3,50	3,37	
-2,95		-3,10		-3,30		-3,54		-5,0	
0,35		0,37		0,43		0,45		1,236	

- 135 -

$$v_{T} = \lambda H^{2} \sqrt{2 \left(\frac{\partial U}{\partial x}\right)^{2} + 2 \left(\frac{\partial U}{\partial y}\right)^{2} + \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)^{2}}$$

H: hauteur d'eau totale $(h + h^1)$

U et V: les composantes de la vitesse selon x et y.

Dans cet exemple, on trouve:

Fr (maximum) = 1,30

La viscosité varie de 10^{-2} m²/s à 1,6 m²/s les valeurs maximales se trouvant bien sûr, dans la zone à forts gradients de vitesse. La différence entre les résultats de cet exemple et ceux du deuxième sont faibles (autour de 4%) tant pour les vitesses que pour les hauteurs d'eau h.

Conclusion de la première configuration

À partir d'un certain seuil maximal et pour des valeurs inférieures, la viscosité devient de moins en moins sensible sur la solution. Cependant, une valeur minimale est toujours requise pour assurer la convergence du modèle. Cette valeur minimale est étroitement liée aux gradients de vitesse et du nombre de Froude. Afin de donner une signification plus physique à $v_{\rm T}$, il est nécessaire de définir la valeur de λ en fonction des caractéristiques de l'écoulement.

A.1.2 DEUXIÈME CONFIGURATION DE CANAL (MAILLAGE GROSSIER)

Nous avons simplifié le maillage de la première configuration de manière à tester plusieurs variantes (figure A1.3). La nature des tests est sensiblement la même que la première configuration de maillage fin (n = .03).

Note : h_1 et h_2 imposées

Note: h₁ et h₂ imposées

Figure A1.3: Deuxième configuration (maillage grossier).

a) Premier cas: $v_T = 5 \text{ m}^2/\text{s}$

Le nombre de Froude maximum atteint a été de 2,31 (tableau Al.4a) pour une bonne convergence.

b) Deuxième cas: $v_T = .05 \text{ m}^2/\text{s}$

Le modèle diverge à partir d'une dénivellation totale de 1,8 m (tableau A1.4b).

c) Troisième cas: v_{T} variable avec une loi de longueur de mélange $(\lambda = 0,02)$

Le modèle évolue dans une zone critique où la solution oscille (norme) sans que le résultat diverge.

Tableau A1.4: Deuxième configuration (maillage grossier).

x [m]	0	50	100	150	200	250	300	350	400
U [ms-1]	5,84	4,87	4,05	4,05	4,30	3,62	3,11	5,98	6,64
h [m]	0		-0,312		-0,12	•	-0,07		-3,24
Fr [-]	1,04		0,71		0,70		0,49		2,37

a) Premier cas: $v_T = 5 \text{ m}^2/\text{s}$

b) Deuxième cas: $v_T = 0,05 \text{ m}^2/\text{s}$ divergence à partir de h_{aval} = - 1,8 m

x [m]	0	50	100	150	200	250	300	350	400
U [ms-1]	2,90	3,65	4,25	3,63	3,28	3,14	3,09	4,06	4,58
h [m]	0,0		-0,85		-0,82		-0,97		-2,10
Fr [-]	2,54	· · · · · · · · · · · · · · · · · · ·	0,92		0,59	<u> </u>	0,57		1,035

c) Troisième cas: $\lambda = 0,01$ $v_{T} = 10^{-4}$, des oscillations à partir de $h_{aval} = -1,70$

n [m]	0	50	100	150	200	250	300	350	400
U [ms-1]	4,53	4,20	3,93	4,00	4,17	3,56	3,03	4,37	5,14
h [m]	0,0		-0,10		-0,50		-0,30		-1,6
Fr [-]	0,84		0,74		0,71	· · · · · · · · · · · · · · · · · · ·	0,50		1,059

Pour une dénivellation de 1,70 m, le nombre de Froude maximum est de 2,54 (tableau Al.4). La viscosité maximale est de 0,30 m²/s dans la zone à forts gradients de vitesse.

Conclusion

La conclusion de cette deuxième configuration est sensiblement la même que dans le cas précédent.

ANNEXE 2

PROPOSITION D'UNE MÉTHODE DE CALCUL DE L'ÉCOULEMENT TURBULENT DANS UN RESSAUT (adapté de Li Tsen, consultant)

PROPOSITION D'UNE METHODE DE CALCUL DE L'ÉCOULEMENT TURBULENT DANS UN RESSAUT

A.2.1 INTRODUCTION

Dans le problème nouveau d'aménagement des rapides, on aura à étudier des écoulements dans lesquels la vitesse varie notablement d'une zone à l'autre et dans toutes les directions. On peut donc anticiper la non-validité des hypothèses de longues ondes dans les zones de ressaut, de coude, de confluence etc., où les forces verticales d'inertie et de frottement peuvent être importantes. Une grande partie de l'énergie hydraulique est dissipée par agitation turbulente au sein de l'eau, sur toute la profondeur. L'étude complète de ces phénomènes doit tenir compte du caractère tridimensionnel de l'écoulement. Cependant, dans la simulation numérique que nous proposons, nous nous restreignons au cas bidimensionnel, il reste toutefois à établir un modèle de turbulence adapté au problème du ressaut.

A.2.2 LE RESSAUT HYDRAULIQUE CLASSIQUE

Considérons l'exemple classique du ressaut stationnaire dans un courant dirigé suivant x et invariant en y. Pour simplifier, nous supposons le fond horizontal. Le régime est torrentiel avant le ressaut et devient fluvial à la sortie après que la turbulence provoquée par le ressaut ait dissipé une partie de l'énergie. Pour simplifier encore, nous omettons les frottements du lit et à la surface libre, ce qui est justifié dans les ressauts violents où les variations des forces d'inertie et de pression priment sur les frottements du fond et l'action éventuelle du vent.

Le modèle unidimensionnel résultant de ces hypothèses est le suivant:

(continuité)
$$\frac{d}{dx}(Hu) = 0$$
 (1)

(momentum) Hu
$$\frac{du}{dx} = -g H \frac{dH}{dx} + 2 \frac{d}{dx} (Hv_T \frac{du}{dx})$$
 (2)

dans (2) nous avons introduit la viscosité cinématique turbulente effective v_{T} .

Ces équations s'intègrent en:

$$Hu = H_1 u_1 \tag{3}$$

et

$$H_1 u_1 u + g \frac{H^2}{2} - 2 v_T H \frac{du}{dx} = H_1 u_1^2 + g \frac{H_1^2}{2} = constante$$
 (4)

Avec u_1 et H_1 la vitesse et la hauteur d'eau totale à la section amont (position x_1) où le nombre de Froude est $Fr_1 = \frac{u_1}{\sqrt{\alpha H}}$ 1.

Pour qu'il y ait un ressaut hydraulique, à l'aval la hauteur d'eau doit être au moins égale à la hauteur conjuguée H_2 de H_1 , donnée par la relation de Bélanger.

$$\frac{H_2}{H_1} = \frac{\sqrt{1+8} Fr_1 - 1}{2}$$
(5)

En éliminant H de l'équation (2), on a:

$$2v_{T} \frac{1}{u} \frac{du}{dx} = (u - u_{1}) + \frac{g}{2} H_{1}u_{1} (\frac{1}{u^{2}} - \frac{1}{u_{1}^{2}})$$
(6)

Si v_T est donnée selon une fonction de u et des propriétés du fluide, l'intégration de l'équation (6) fournit le profil u(x) de la vitesse et la substitution dans (3) donnera le profil de la surface libre H(x).

A.2.3 ANNALYSE DE QUELQUES MODÈLES DE TURBULENCE:

a) Premier modèle

 $\nu_{T}^{}$ est constante dans tout le champ de l'écoulement, posons

 $v_T = v_0 u_1 H_1$

(7)

 v_0 étant un coefficient sans dimension pouvant varier avec le nombre de Froude amont Fr₁, et il sera déterminé par une calibration sur des résultats expérimentaux.

En introduisant (7) dans (6), on obtient

$$2_{\nu_0} \frac{du^*}{dx^*} = \frac{u^*}{u^*_1} \left[\frac{u^*}{2} \left(\frac{1}{u^*^2} - \frac{1}{u^*^2} \right) + \left(u^* - u^*_1 \right) \right]$$
(8)

où u*, u $*_1$ et x* sont des valeurs adimensionnelles

$$u^{\star} = Fr = \frac{u}{\sqrt{g H_1}}$$
$$u^{\star}_1 = Fr_1 = \frac{u}{\sqrt{g H_1}}$$
$$x^{\star} = \frac{x}{H_1}$$

L'intégration de (8) entraîne:

$$\frac{x^{*} - x^{*}_{0}}{v_{0}} = 2 \int_{u^{*}_{0}}^{u^{*}} \frac{u^{*}}{\frac{u^{*}}{u^{*}_{1}}} \left(\frac{1}{u^{*}} - \frac{1}{\frac{1}{u^{*}}}\right) + (u^{*} - u^{*}_{1})\right]$$
(9)

L'origine des x a été arbitrairement fixée à x_0 où $Fr_0 > 1$.

Méthode de calibration:

L'inversion de (9) donne la répartition u*(x*) et la substitution dans (3) donne le profil du ressaut H*(x*) = $\frac{H}{H_1}$, soit:

$$H^* = H^*_{\text{théorie}} \left(\frac{X^*}{v_0}, Fr_1\right)$$

Cette solution dite "théorique" et:

$$H^* = H^*_{empir.}(\frac{x^*}{v_0}, Fr_1)$$

les profils de ressauts mesurés (voir les résultats dans le volume "Open Channel Flow" de V.T. Chow par exemple) devraient correspondre. L'ajustement du profil théorique sur le profil expérimental pour chaque valeur du nombre de Froude fournit alors la loi $v_0(Fr_1)$ cherchée.

b) Deuxième modèle: v_T proportionnel à la profondeur

Si le ressaut est long par rapport à la profondeur, l'échelle de longueur de la turbulence peut grandir dans le sens des x. On peut tenir compte de cet effet en modélisant v_{T} comme:

$$v_{T} = v_{0}^{i}Hu_{1} = v_{0} \frac{H_{1}u_{1}}{u} \cdot u_{1}$$
 (10)
H

En substituant (10) dans (6), on a:

$$2vd \frac{du^{*}}{dx^{*}} = \frac{u^{*2}}{u^{*}_{1}} \left[\frac{u^{*}_{1}}{2} \left(\frac{1}{u^{*2}} - \frac{1}{u^{*}_{1}} \right) + \left(u^{*} - u^{*}_{1} \right) \right]$$
(11)

et on peut procéder comme avant pour calibrer $v_0^1(Fr_1)$.

L'équation (9) peut être écrite sous la forme,

$$\frac{x^{*} - x^{*}_{0}}{v_{0}^{i}} = 2u^{*}_{1} \int_{u^{*}_{0}}^{u^{*}} \frac{u^{*} du^{*}}{(u^{*} - u^{*}_{1})(u^{*} - u^{*}_{2})(u^{*} - u^{*}_{3})}$$
(12)

$$u_{2}^{*} = \frac{1 - \sqrt{1 + 8Fr_{1}^{2}}}{4u_{1}^{*}}$$
 $u_{3}^{*} = \frac{1 + \sqrt{1 + Fr_{1}^{2}}}{4u_{1}^{*}}$

où

et s'intègre en:

$$\frac{x^{*} - x^{*}_{0}}{v_{0}^{1}} = 2u^{*}_{1} \left[A \ln |u^{*} - u^{*}_{1}| + B \ln |u^{*} - u_{2}| + C \ln |u^{*} - u^{*}_{3}| \right]_{u^{*}_{0}}^{u^{*}}$$
(13)

avec

$$B = \frac{u^{*}_{2}}{(u^{*}_{1} - u^{*}_{2})(u^{*}_{3} - u^{*}_{2})} ; C = \frac{u^{*}_{3}}{(u^{*}_{1} - u^{*}_{3})(u^{*}_{2} - u^{*}_{3})} et A = -(B + C)$$

De même l'intégration de (11) donne (13) avec:

$$B = \frac{1}{(u_{1}^{*}-u_{2}^{*})(u_{3}^{*}-u_{2}^{*})} ; C = \frac{1}{(u_{1}^{*}-u_{3}^{*})(u_{2}^{*}-u_{3}^{*})} et A = -(B + C) (14)$$

Remarquons que les équations (13) et (14) sont singulières en u* = u_1^* et u* = u_3^* et ne permettent pas de fournir la longueur du ressaut. Pour cette raison nous proposons un autre modèle.

c) Troisième modèle: modèle de Prandtl

9

Nous utilisons le modèle de Prandtl, dans lequel la longueur de mélange est supposée égale à la hauteur totale H,

$$v_{\rm T} = \sqrt{2v_0} \ H^2 \ \left| \frac{du}{dx} \right| \tag{15}$$

En substituant (15) dans (8), on a:

$$-2v_0 \left(\frac{du^*}{dx^*}\right)^2 u^*_1^2 = (u^* - u^*_1)(u^* - u^*_2)(u^* - u^*_3)$$
(16)

Remarquons qu'on a bien $(u^* - u^*_1)(u^* - u^*_2)(u^* - u^*_3) < 0$, sachant que u^*_3 est la vitesse conjuguée de u^*_1 .

Cette dernière relation s'intègre en:

$$\frac{x^{*} - x^{*}_{0}}{\sqrt{2}_{v_{0}}} = u^{*}_{1} \int_{u^{*}_{0}}^{u^{*}} \frac{-du^{*}}{\sqrt{-(u^{*} - u^{*}_{1})(u^{*} - u^{*}_{2})(u^{*} - u^{*}_{3})}}$$
(17)

Notons que cette intégration est définie au voisinage de u*₁ et u*₃. Ainsi la longueur du ressaut est donnée par: L = $x_3 - x_0$

$$\frac{L^{\star}}{\sqrt{2_{\nu_0}}} = u^{\star}_1 \int_{u^{\star}_1}^{u^{\star}_3} \frac{-du^{\star}}{\sqrt{-(u^{\star} - u^{\star}_1)(u^{\star} - u^{\star}_2)(u^{\star} - u^{\star}_3)}}$$
(18)

En multipliant l'équation (2) par u, on peut écrire l'équation de transformation de l'énergie:

 $H_1 u_1 \left[\frac{d}{dx} \left(\frac{u^2}{2}\right) + g \frac{dH}{dx}\right] = 2u \frac{d}{dx} \left[Hv_T \frac{du}{dx}\right]$ (19)

Ainsi l'énergie dissipée est donnée par:

$$\Delta E = E_{L} = 2 \int_{x_{1}}^{x_{3}} u \frac{d}{dx} [Hv_{T} \frac{du}{dx}] dx = -2 \int_{x_{1}}^{x_{3}} Hv \left(\frac{du}{dx}\right)^{2} dx$$

= $H_{1}u_{1} [\frac{u^{2}}{2} + g H] {\binom{2}{1}}$
= $H_{1}u_{1} \frac{g}{4} H_{1} \left(\frac{\alpha - 1}{\alpha}\right)^{3}$ avec $\alpha = \frac{1}{2} (\sqrt{1 + 8u^{*}} - 1)$
= $H_{1}u_{1} \Delta E_{s}$

Cette dernière relation suppose que les forces de compression visqueuses sont négligeables vis-à-vis des forces de pression (hydrostatique) dans les sections en amont et à l'aval du ressaut.

$$v_{0} = \frac{\sqrt{H_{1}}}{g^{3/2}} \frac{1}{\Delta E_{s}} \int_{x_{1}}^{x_{3}} \frac{1}{u^{*3}} \left[(u^{*} - u^{*}_{1})(u^{*} - u^{*}_{2})(u^{*} - u^{*}_{3}) \right]^{3/2} dx$$

$$v_{0} = \left(\frac{H_{1}}{g}\right)^{3/2} \frac{1}{\Delta E_{s}} \int_{0}^{L^{*}} \frac{1}{u^{*3}} \left[(u^{*} - u^{*}_{1})(u^{*} - u^{*}_{2})(u^{*} - u^{*}_{3}) \right]^{3/2} dx \qquad (20)$$

et
$$L^* = u^*_1 \sqrt{2v_0} \int_{u^*_1}^{u^*_3} \frac{du^*}{\sqrt{-(u^* - u^*_1)(u^* - u^*_2)(u^* - u^*_3)}}$$
 (21)

en posant $x_1 = 0$

Les équations (18), (20) et (21) peuvent être résolues itérativement pour fournir $u^{*}(x^{*})$, $H^{*}(x^{*})$, $v_{0}(Fr_{1})$ et L(Fr₁).

A.2.4 ÉCOULEMENTS RAPIDES BIDIMENSIONNELS

Nous proposons le modèle de turbulence qui généralise la formule de Prandtl au cas bidimensionnel

$$v = \lambda \sqrt{v_0} H^2 \left(2 \left(\frac{du}{dx} \right)^2 + 2 \left(\frac{dx}{dy} \right)^2 + \left(\frac{du}{dy} + \frac{du}{dx} \right)^2 \right]^{1/2}$$
(22)

 ν_0 étant donné par (20) pour un nombre de Froude Fr_1 (moyen) et λ un coefficient de calibration proche de 1.

A.2.5 CONCLUSION

La résolution numérique des équations hydrodynamiques dans l'approximation des estuaires, peut être un outil compétitif dans l'étude de l'aménagement des cours d'eau rapides. La difficulté nouvelle procède des variations importantes de vitesse dans le champ, créant de la turbulence et les pertes de charge correspondantes; le passage du régime torrentiel au régime fluvial se fait par ressaut. Il est important de formuler correctement la dissipation par turbulence si l'on désire simuler de façon réaliste l'écoulement dans les ressauts.