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Abstract: A new method for sensitivity analysis of water depths is presented based on a
two-dimensional hydraulic model as a convenient and cost-effective alternative to Monte Carlo
simulations. The method involves perturbation of the probability distribution of input variables.
A relative sensitivity index is calculated for each variable, using the Gauss quadrature sampling,
thus limiting the number of runs of the hydraulic model. The variable-related highest variation of
the expected water depths is considered to be the most influential. The proposed method proved
particularly efficient, requiring less information to describe model inputs and fewer model executions
to calculate the sensitivity index. It was tested over a 45 km long reach of the Richelieu River, Canada.
A 2D hydraulic model was used to solve the shallow water equations (SWE). Three input variables
were considered: Flow rate, Manning’s coefficient, and topography of a shoal within the considered
reach. Four flow scenarios were simulated with discharge rates of 759, 824, 936, and 1113 m3/s.
The results show that the predicted water depths were most sensitive to the topography of the
shoal, whereas the sensitivity indices of Manning’s coefficient and the flow rate were comparatively
lower. These results are important for making better hydraulic models, taking into account the
sensitivity analysis.

Keywords: flood mapping; Gauss quadrature sampling; Monte Carlo; shallow water equations;
hydraulic modelling

1. Introduction

Hydraulic models provide essential hydraulic parameters for informed flood risk management,
such as water depths, velocities, and timing of inundation. The hydraulic models include
one-dimensional (1D), two dimensional (2D), and three-dimensional (3D) methodologies that simulate
water movement by solving equations derived from applying physical laws to fluid motion with
varying degrees of complexity. Different physical processes may be governing at different spatial scales.
For instance, although 1D hydraulic may be appropriate for large-scale or even global applications,
explicitly modelling floodplain flow with 1D/2D models can be vital for more local assessments.
Parallel computing techniques, such as graphics processing unit (GPU) high-performance computing,
have been reported to substantially accelerate simplified or full hydraulic/hydrodynamic models for
large-scale flood modelling (e.g., [1–5]). As other numerical models, they represent an approximation
of physical phenomena and may be affected by various sources of errors, i.e., uncertainties in input
data, model structure, and model parameters [6,7]. Knowledge of uncertainties introduced by the
model is important for many research questions and is essential in improving simulation performance
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and increasing confidence in results [8]. A spatially distributed sensitivity analysis (SA) is generally
applied to investigate the relative influence of the input variables (individual or in combination) and
their impacts on the model outputs [9,10]. Methods such as the Monte Carlo analysis have been
applied successfully in a wide range of studies, like flood inundation modelling [11,12]. To take into
account the non-linear aspects of the hydrodynamic model, the traditional Monte Carlo method takes
into account the complete probability distribution of the input variables and their correlations as key
parameters to provide the probability distribution function (PDF) of the output. It is from the input
PDFs that the repeated random sampling is employed to evaluate uncertainty and sensitivity in the
model results. In addition, this type of analyses allows for accounting of any model, ignoring structures
in the input data and assessment of their impacts on results, such as misspecification of respective
PDFs and existence of heterogeneity. Sensitivity analysis in hydraulic modelling has been started
for non-complex models as one-dimensional (1D) hydraulic models [1,13–17]. For two-dimensional
modelling, data requirements are more extensive and require important computational resources
to evaluate sensitivity of output parameters. Therefore, a two-dimensional hydraulic model is
considerably more complex. There are advanced methods capable of assessing the sensitivity in
two-dimensional hydraulic modelling, but they are still at an exploratory level. Recently, variance
based on SA has been applied to 2D hydraulic models in flooding conditions [18,19]. Abily et al. [18]
present a spatially SA approach of 2D hydraulic models by perturbating only the digital elevation
model (DEM) in the low Var river valley (France). Sensitivity maps of simulated water depth to
topography are presented for a 5 km section of the river. Savage et al. [19] highlight the sensitivity of
simulated flood extent to inflow discharge during flood rising limb, then the channel friction parameter
during flood peak and the floodplain friction parameter during recession for a rural floodplain in
Sicily, Italy. On the other hand, Dimitriadis et al. [20] performed uncertainty and sensitivity analyses
using Monte Carlo on a benchmark test with a mixed rectangular–triangular channel cross section for
one- and quasi-two-dimensional hydraulic models. Whatever the hydraulic model applied, SA is an
essential component in its conceptualization and calibration, as well as in evaluating its performance
and in making decisions on strategies to reduce its uncertainty [21–24]. Even more important is the
fact that SA provides a large amount of critical information to the modeller while keeping the effort to
a minimum.

The SA of flood inundation models has been addressed in numerous studies that investigated
parameters such as surface roughness [14], boundary conditions Pappenberger et al. [25], model
structure [26], topography of river beds, and floodplains [27]. The focus of this paper is on the
relative influence of three essential input parameters most commonly considered by flood inundation
models, namely the flow rate, Manning’s n coefficient, and topography. An accurate description
of the topography has long been recognized as a key component in any numerical inundation
model [28,29]. Modern techniques for topographical surveys such as LiDAR (Light Imaging, Detection,
And Ranging) [30] enable morphological descriptions with a horizontal resolution of less than 1 m
and vertical errors in the range between 5 and 25 cm. Sonar surveys of channel topography and
morphology [31] and the introduction of global positioning systems (GPS) [32] have further increased
the accuracy of spatial coordinates and elevations. The Manning’s n coefficient, an empirically derived
lump-sum coefficient that describes the flow resistance of the main channel and the floodplain, is
generally used as a calibration parameter as it cannot be measured directly [33]. The calibrated
Manning’s n value is assumed to be the mean value for the purposes of uncertainty analysis.
The calibration process is not exact and even the calibrated parameters are optimally determined,
they involve a certain degree of uncertainty. The uncertainty estimates of the Manning’s n value
were established from those reported in the literature with a coefficient of variation from 0.1 to
0.3 [34]. Quantifying the flow rate uncertainty and its characteristics is another important step in
flood modelling [25,35]. Recorded at gauging stations, in flood modelling, it is determined by flood
frequency analysis (rating curve) and is used as a boundary condition imposed on the modelled reach.
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SA methods can be typically divided into two main groups: Local and global [36,37]. In the local
approach, SA evaluates model performance, varying one input parameter at a time, while the global
methods consider the whole variation range of the main input parameters to assess their contribution
to the uncertainty. They are not limited to linear models with inputs that have uncertainties of
different orders of magnitude. For example, a study of global sensitivity analysis quantified the
sensitivity and subsequently the contribution to model uncertainty from flow rate, topography,
and roughness coefficients [14]. GSA approaches are well suited to being applied with models
that have nonlinear behavior and when interaction among parameters occurs. These approaches
going through an intensive sampling are computationally demanding, as they most often rely on
the Monte-Carlo (MC) approach, even though some more parsimonious sampling methods, such as
Latin hypercube or pseudo-Monte Carlo, are sometimes applied [38]. There are numerous methods
reported in the literature for conducting SA [39], including perturbation and derivative methods [40,41],
analytical methods [42], variance-based methods [43,44], correlation and regression analyses [45–47],
Monte-Carlo filtering [48,49], density-based methods [50–52], etc. Published sensitivity studies have
mainly focused on the uncertainties sourced from model parameters and inputs, although friction
parameters are usually considered the most influential and are therefore given first consideration in
model calibration [53]. The choice of which SA method to use should be made on the basis of the
scope of the analysis, time required to run, number of input variables, number of model simulations
necessary to approximate sensitivity indices, degree of nonlinearity, etc. Analytical methods are
often limited in hydrodynamic models as they involve differential equations that are too complex to
solve analytically and conduct sensitivity analyses. In practice, SA generally requires a large number
of simulations [54] combined necessarily with extensive computational efforts [55], which makes
standard methods tedious and time consuming. Therefore, when using complex models, approximate
uncertainty analysis methods become more practical.

In this study, a novel and efficient method is proposed, using derivative-based sensitivity indices
to undertake a sensitivity analysis on simulated water depths. The proposed SA method was tested
and validated, applying a steady-state two-dimensional hydraulic model to a 45 km long reach of the
Richelieu River, Canada. The sampling strategy based on the three-point Gauss quadrature consisted
of a variable set of weighting factors and the corresponding optimal sampling points to generate three
sets of parameter samples. The distributions of the three considered independent input variables,
X1 upstream flow rate, X2 Manning’s n coefficient, and X3 topography, were assumed to be of normal
type with their own mean µ and standard deviation σ. The model results for water depths were used
to compute the sensitivity indices [56,57]. Relative sensitivity indices were obtained, measuring the
relative response of the water depth for each input variable. The sensitivity analysis was conducted
using a steady-state application of the Richelieu River hydraulic model.

2. Hydraulic Model of Richelieu River

The Richelieu River watershed with a total area of 2506 km2 is located about 20 km east of
Montreal, Canada (Figure 1a). The Richelieu River takes its source from the Lake Champlain (at the U.S.
border) and empties into the St. Lawrence River at the municipality of Sorel. The modelled 46 km long
domain extends between Rouses point (NY) on the U.S–Canada border, and the Fryers Island Dam
(QC), about 10 km downstream of the municipality of Saint-Jean-sur-Richelieu. The topography of the
river is relatively flat with an average slope between these two points of about 0.3 m/km, including the
relatively steep 24 m drop between the municipally of Saint-Jean-sur-Richelieu and the Fryer’s Dam
through a series of rapids. The riverbed is mainly bedrock covered with shallow coarse sediments with
a significant presence of shale clay and marine sediments dating from the post-glacial of Champlain
Sea. The outflow rate from the Lake Champlain is controlled by a shoal located just downstream
from Saint-Jean-sur-Richelieu (Figure 1c), forming a natural barrier to the flow. The study area has
regularly experienced floods in the past. The most recent event occurred between 5 June and 4 August,
2011, registering a flow rate of up to 1539 m3/s, generating economic losses of more than 88 million
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dollars [58]. The May 2011 flood, as recorded at the Richelieu River at Rouses Point, was estimated to
have a recurrence period equal to or greater than 1 in 500 years [59].Geosciences 2019, 9, x FOR PEER REVIEW  4 of 23 
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Figure 1. The Richelieu River watershed (a), the study area (b), and the shoal area at
Saint-Jean-Sur-Richelieu (c).

The starting point for the SA was the 2D finite element model H2D2 [60]. It was calibrated
for the 2011 flood event under steady flow conditions and is assumed to best represent high flow
rates [61]. The calibration accuracy itself is beyond the scope of this study. In the calibration process,
the flow contributions from tributaries were ignored because of the significant storage capacity of the
Champlain lake, which controls approximately 95% of the Richelieu River discharge into the Lawrence
River [58]. The topography of the Richelieu River was determined with a DEM, generated from the
available LiDAR data (Figure 2a). The DEM was with a 1 m grid with reported vertical accuracy of
±15 cm, whereas the vertical error specific to the airborne positioning system was estimated to be
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3 cm. The river bathymetry was obtained from the Canadian Hydrographic Service (low river) and
bathymetric transects were supplied by Parks Canada (mid river) [60].

Geosciences 2019, 9, x FOR PEER REVIEW  5 of 23 

 

unstructured hydrodynamic mesh with the respective finite elements. Based on the available 
substrate sample observations, the calibrated Manning’s n coefficient for the Richelieu channel ranges 
from 0.02 to 0.036 (Figure 2b). The substrate upstream from the Gouin Bridge consists mainly of fine 
sand, silt, and some small boulders, while it is coarse and dominated by boulders and stones 
downstream from the Gouin Bridge. The flow data were available from the Fryers Rapids gauging 
station EC 02OJ007. The upstream boundary condition at Rouses Point was defined with a constant 
flow rate, while at the downstream end, near the station EC 02OJ007, a fixed water level was set, 
using the following stage-discharge relationship in Equation (1): H =   𝑄/303.37(ଵ/ଵ.ଶ)  +  25.52 (1)

 

  
(a) (b) 

Figure 2. Digital Elevation Model (DEM) for the study area (a) and Manning’s n value for the studied 
river reach (b). 

3. The Sensitivity Analysis Method 

The SA method proposed herein was conducted in the following successive steps: (i) 
Identification of the main input variables (Xଵ upstream flow rate, Xଶ Manning’s n coefficient, and Xଷ 
topography) for which the sensitivity of the depth of water as a model output is estimated; (ii) 
determination of the range of variation of the respective input variables; (iii) generation of samples 
of input values using the Gauss quadrature sampling; (iv) execution of the hydraulic model for each 
of these samples; and (v) estimation of the relative influence of each input variable in the model 
output by computing sensitivity indices. 

3.1. Derivative-Based Sensitivity Indices 

Central to the determination of the derivative-based sensitivity index is the perturbation of one 
input parameter at a time and computing, in parallel, the changes in the model output [62]. The 
output response to parameter perturbation may be quantified as a percentage of the selected output 

Figure 2. Digital Elevation Model (DEM) for the study area (a) and Manning’s n value for the studied
river reach (b).

For the present study, the topography and bathymetry data were assembled on an irregular
hydrodynamic mesh with 97,261 nodes and 47,643 grid elements of 25 × 25 m. Significant
man-made structures, including the Gouin Bridge at Saint-Jean-sur-Richelieu, were incorporated in the
unstructured hydrodynamic mesh with the respective finite elements. Based on the available substrate
sample observations, the calibrated Manning’s n coefficient for the Richelieu channel ranges from 0.02
to 0.036 (Figure 2b). The substrate upstream from the Gouin Bridge consists mainly of fine sand, silt,
and some small boulders, while it is coarse and dominated by boulders and stones downstream from
the Gouin Bridge. The flow data were available from the Fryers Rapids gauging station EC 02OJ007.
The upstream boundary condition at Rouses Point was defined with a constant flow rate, while at
the downstream end, near the station EC 02OJ007, a fixed water level was set, using the following
stage-discharge relationship in Equation (1):

H = Q/303.37(1/1.727) + 25.52 (1)

3. The Sensitivity Analysis Method

The SA method proposed herein was conducted in the following successive steps: (i) Identification
of the main input variables (X1 upstream flow rate, X2 Manning’s n coefficient, and X3 topography)
for which the sensitivity of the depth of water as a model output is estimated; (ii) determination of
the range of variation of the respective input variables; (iii) generation of samples of input values
using the Gauss quadrature sampling; (iv) execution of the hydraulic model for each of these samples;
and (v) estimation of the relative influence of each input variable in the model output by computing
sensitivity indices.
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3.1. Derivative-Based Sensitivity Indices

Central to the determination of the derivative-based sensitivity index is the perturbation of
one input parameter at a time and computing, in parallel, the changes in the model output [62].
The output response to parameter perturbation may be quantified as a percentage of the selected output
variable or as a relative change of the output versus input [63]. For determination of the sensitivity
indices, a novel method of derivative-based sensitivity indices is proposed herein, based on the Gauss
quadrature sampling.

First, the statistical properties of the input variables, such as the mean and standard deviation, are
determined by respective probability distributions. In this study, the considered model output was
the spatial distribution of the water depths produced by the 2D hydraulic model for each scenario.
The SA is then performed varying the probability distribution of the model variables and analyzing
the corresponding changes in the model output. For a model with i input variables, f (X1, X2 . . .Xi),
the uncertain input normal random variable Xi with a mean µ j, considered as a nominal parameter
value, and a standard deviation, σ j, can be written as:

Xi = µ j + σ jξ j, (2)

where ξ j are independent identically distributed standard normal random variables corresponding to
each input parameter. A nominal scenario f

(
X0

i

)
is used to define the model output for the nominal

value of Xi. The focus is on the evaluation of the sensitivity index at the nominal value µi. The sensitivity
can be defined as the partial derivative of f evaluated for the nominal scenario with respect to the
input variable Xi.

S(Xi) =

[
∂ f
∂Xi

]
X0

i

, (3)

For easier understanding, the sensitivity can be considered as the rate of change of f due to change
in Xi. The relative sensitivity index Sr can then be determined as a product of the absolute sensitivity
and the ratio of the nominal input variable and the corresponding model output as follows:

Sr(Xi) =

[
∂ f
∂Xi

]
X0

i

X0
i

f
(
X0

i

) , (4)

The relative sensitivity index (Sr) represents an estimate of the slope of the model response for
the nominal value X of the input variable in the parameter space [64]. Therefore, it was used to test
the model sensitivity for each input variable. Higher value of the sensitivity indices indicates higher
impact of an input parameter over the variability of the output [39]. An index value close to 0 indicates
that the model output response to changes in the input is low or nil.

Given the complex nature of certain models, it can be difficult to approximate the partial derivatives
with respect to the independent variables in Equation (4). To this end, a variety of methods exist to
approximately compute the partial derivatives [65]. The finite difference method gradually varies each
input variable by positive and negative increments around a nominal value, while keeping all the other
input variables constant at their nominal value [66]. It is used as a sensitivity index in the context of
local approaches [67]. Equation (4) can then be written in the following form:

Sr(Xi) =

[
∆ f (Xi)

∆Xi

]
X0

j, j,i

X0
i

f
(
X0

i

) , (5)

where ∆Xi is the range of variation around the nominal value, ∆ f (Xi) is the difference between the
outputs for the two extremities of ∆Xi, and X0

i is the base scenario value. The input variables were each
perturbed in turn by an amount of range of variation (interval) to compute the model outputs necessary
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to calculate the sensitivity index. While each input variable was perturbed, the other inputs were held
at their mean values. Using an approximation of Equation (5), the computations of the sensitivity
measures for i input variables require i + 1 model evaluations, using the difference method. This means
that two runs of the model are needed for each of the three sensitivity coefficients and there is one
sensitivity coefficient for each model input with respect to each model output. The computation of
the derivative-based sensitivity indices is therefore computationally simple with relatively few model
evaluations. The size of the applied perturbation assumed as an indication of the uncertainty needs
to be sufficiently large to capture the whole set of variation of the model response and, at the same
time, it has to be sufficiently small to avoid highly nonlinear or discontinuous changes in the output.
The method is relatively simple in formulation when compared to other sensitivity analysis methods.
In addition, it is relatively easy to execute, with the bulk of the effort required to utilize the method
spent computing the sensitivity coefficients. The drawback of the method is that the derivative-based
sensitivity indices provide information about local sensitivity only [39]. Certain shortcomings of the
method also arise from the fact that it represents an approximate sensitivity analysis method.

3.2. Gaussian Quadrature Sampling

Global sensitivity analysis methods involve strategic sampling, e.g., such as the Sobol method
with Latin hypercube sampling [68]. This strategy, however, needs many model runs in order to
achieve the convergence. The sensitivity indices resulting from global sensitivity analysis are more
accurate as they measure not only the individual effect of each input variable, but also the combined
effect of the model inputs interacting with individual model inputs. In cases where it is not feasible
to compute the sensitivity indices analytically with a large number of Monte Carlo simulations,
an alternative sampling-based SA can provide useful information at acceptable computational costs.
In this study, the method of Gauss quadrature was applied. The Gauss quadrature [69–71] is considered
to be one of the best stratified sampling methods that use function values at sampling points with
corresponding weights. An example of the application of the Gauss quadrature is the representation of
random variables using Hermite polynomials of normally distributed random variables, known as
Gauss–Hermite quadrature [72,73]. Three optimal sampling points based on Gauss quadrature were
used. The choice of three points was made with a central point at x = µx and two additional points
of x+ and x−, symmetrically distributed at ±

√
3σ of the mean. The proposed method is therefore

much simpler, as it significantly reduces the required number of model evaluations, constituting an
efficient sampling strategy for considering scalar input variables (e.g., flow rate) and spatial variables
(e.g., DEM and Manning’s n coefficient) at the same time.

In this study, the rate of change in each input variable was set to ±
√

3 of the corresponding
standard deviation for the model input, reflecting their realistic possible ranges. Hence, three model
runs are associated to each input variable, i.e., there are three perturbed DEMs, three flow rate values,
and three sets of spatial distribution of the Manning’s n coefficient. The same interval was used in the
calculations for the propagation of uncertainty. The applicability of this interval was found significant
to lead a change in the calculation of a sensitivity index. In other words, the model outputs were
calculated for three values of a given input variable: Nominal value, upper value (+

√
3 uncertainty),

and lower value (−
√

3 uncertainty). The sensitivity indices for each input variable of the 2D model
were computed using Equation (5) independently.

3.3. Settings of Input Variables

3.3.1. Flow Rate

To consider the variation range of the flow rate, the reference flow for the hydraulic model was
determined by performing frequency analysis of daily average flows measured at the Fryers Rapids
station, available from 1970 to 2011. Frequency analysis was used to assess the specific flow rate
uncertainty characteristics. To fully investigate the uncertainty in the potential flood events, four flow
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rates variables were imposed to constrain the model: 759, 824, 936, and 1113 m3/s. These values are
related to return periods of 1.25, 1.4, 2, and 5 years, respectively. These scenarios are dynamic and
defined as flood thresholds by Quebec’s Public Safety department. In addition, they were selected
to study the effect of the shoal by increasing the flow rate from 759 to 1113 m3/s. The flow rate was
assumed to be normally distributed, which is asymptotically true for most quantile estimators [74].

The respective mean discharge µQ, and the ±
√

3σ flow rate values used as potential perturbed
boundary condition realizations to compute the sensitivity indices are given in Table 1.

Table 1. Quadrature Gaussian sampling: Flow rate values are in m3/s.

µ σ xi−
√

3σ xi+
√

3σ

759 39.4 690.75 827.24
824 36 761.64 886.35
936 33.7 877.62 994.37
1113 39.4 1044.75 1181.24

3.3.2. Manning’s n Coefficient

The Manning’s n coefficient in the 2D hydraulic model was inferred from substrate samples and
land use maps. The Manning’s n coefficient varies spatially over the domain in the range between 0.02
and 0.036 for both the channel and the floodplain. These values are subject to uncertainty and therefore
treated as random variables in the model. Changing the Manning’s n coefficient provides some control
over the flow velocity. The 3σ rule [75] was applied, assuming statistically heterogeneous variation
range with normal distribution [1,29,34]. The normal distribution has been used in similar studies [14]
and, in the absence of information to contradict the normal assumption, it appears to be a reasonable
approach. The calibrated Manning’s n values are assumed to be the mean values for the purposes of
sensitivity analysis. The standard deviation of the probability density function (PDF) was calculated
with the observed range [Mmin, Mmax ] of Manning’s n coefficient, using the following formula:

σ = (Mmax −Mmin)/6, (6)

Equation (6) gives a standard deviation of the respective PDF for the domain of 0.0026. In this
study, three Manning’s n coefficient maps were developed based on the Gauss quadrature to evaluate
the sensitivity indices. It involves changing the Manning’s n coefficient along the river by the

√
3 σ

error. An increase in the coefficient (upper scenario) yields a lower flow and a higher water level.
Likewise, a decrease in the coefficient (lower scenario) includes shallow water depth, faster velocities,
and supercritical flows.

3.3.3. Topography

The uncertainty related to terrain elevations in each DEM cell was generated by interpolating
the standard deviation error assessed by kriging over the topographic measurements. The errors
related to model topography were assumed with normal distribution and were introduced into the
model evaluation using model simulations. To approximate the uncertainty in the topography, normal
distribution was suggested [76,77]. The variance was then transformed into a standard deviation error
using kriging, performed applying a locally adaptive variogram model with a sill of 0.8 and a nugget
effect of 0.03 for the entire study area. In this way, a synthetic topographic surface was generated.
To further assess the spatial sensitivity of the simulated water depths to the topography, the ±

√
3

krigged standard deviation of 21 cm was added and subtracted from the nominal topography model
to obtain the upper and lower surfaces (±

√
3 σ). Figure 3 gives the random field of the topography

error together with the mean topography map and two realizations of the topography generated by
perturbing the mean topography by the ±

√
3 random error.
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4. Results and Discussion

4.1. Water Depth Outputs

The sensitivity indices for each input variable were computed for the considered output model
variable, the water depths in this case, predicted over the study domain. The water depth information
under the surface was obtained by subtracting the local elevation of the ground (provided by the DEM)
from the water surface elevation provided by the 2D hydraulic model. The simulated water depths for
the nominal flow regimes of 759, 824, 936, and 1113 m3/s are shown in Figure 4. The respective overall
mean water depths were computed as 4.38, 4.69, 4.83, and 4.68 m, respectively.
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Figure 4. Predicted water depth with the two-dimensional (2D) hydraulic model for flow cases of
759 m3/s (a), 824 m3/s (b), 936 m3/s (c), and 1113 m3/s (d) for nominal values of the topography
and Manning’s n coefficient.

A visual comparison of Figure 4 brings out areas with high water depths located in the downstream
section. The reach from Rouses Point to Saint-Jean-sur-Richelieu is characterized by shallower water
depths, implying that this region can be considered an extension of Lake Champlain.

4.2. Results of Sensitivity Analysis

The spatial distribution of the relative sensitivity Sr(Xi) for each of the input variables, flow
rate (X1), Manning’s n coefficient (X2), and topography (X3), was denoted respectively as Sr(X1),
Sr(X2), Sr(X3) and obtained applying Equation (5). The computation of sensitivity index maps of
water depths for the considered flow regimes of 759, 824, 936, and 1113 m3/s is shown in Figures 5–8.
The sensitivity index reflects the degree of influence of the model inputs on the model outputs and
does not indicate how much uncertainty the model input contributes. Positive coefficients mean that
the computed value, water depth, changes in the same direction as the model input.
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In general, the results show that the computed spatial distributions of the sensitivity indices for
the input variables are different for different flow regimes (Figures 5–8):

(i) The sensitivity index for the topography values are the highest, indicating highest impacts
on the computed water depths, particularly just upstream of the shoal. At the same time,
the Manning’s n coefficient and the flow rate have comparatively lower Sr values. The sensitivity
index for the computed water depths, with respect to the topography Sr(X3), is highest
close to the Saint-Jean-sur-Richelieu shoal area, and decreases gradually further upstream
(Figures 5c, 6c, 7c and 8c). This observation suggests that upstream water depths are influenced
by the shoal at Saint-Jean-sur-Richelieu, which exerts major control on the hydraulic system for
all depth ranges and outflow rates from Lake Champlain;

(ii) The sensitivity index for the flow rate, Sr(X1), in each regime is lower in the upstream part and
gradually increases in the downstream direction until the shoal, to drop again further downstream
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(Figures 5a, 6a, 7a and 8a). Such spatial distribution of sensitivity indices for flow rates is most
probably due to the influence of the upstream boundary at Rouses Point;

(iii) On the other hand, the sensitivity index for Manning’s n coefficient, Sr(X2), is higher for areas
where high values of the coefficient were measured, especially in a steep slope and where the
riverbed is composed of a coarser substrate (Figures 5b, 6b, 7b and 8b). Among these areas,
the rapids of Saint-Jean located at shoal are the most sensitive to the Manning’s n coefficient.
Thus, the impact of Manning’s n coefficient on water depth predictions is rather local. This can be
explained by the fact that higher Manning’s n coefficients increase the frictional force of the water
flow in the channel, reducing the flow velocity and consequently increasing the water level so
that more water spreads outside of the bank. In the upstream direction, the sensitivity index to
Manning’s n coefficient decreases to compensate the increased flow rate. At the upstream end of
the studied reach, Manning’s coefficient contributes more to the uncertainty of the model output
than the flow rate (Figures 5b, 6b, 7b and 8b).Geosciences 2019, 9, x FOR PEER REVIEW  13 of 23 
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It can be observed in Figures 5–8 that the effect of the shoal topography on the simulated water
depths decreases for higher discharge rates. This can be explained by the fact that for river discharges
higher than the bankfull discharge, the impact of modifications of river geometry on water depths
mainly occurs in the main channel of the Richelieu River [78]. In addition, the Saint-Jean-sur-Richelieu
shoal area contains some anthropogenic structures as steel traps for fishing nets and mill races (Figure 9).
At low flow rates, these man-made structures fill with water without contributing to the flow because
the velocities are very low, and probably act as a natural barrier at low flow rates. The preponderant
effect of the shoal on both low and high flow regimes was the reason that the hydraulic model for
the Richelieu River was calibrated solely for high water events of 6 May 2011, using a flow rate of
1539 m3/s. For this reason, and in order to build an accurate 2D hydraulic model, the topography
of the model should be carefully considered, especially in the shoal proximity, by acquiring the best
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river bathymetry possible. The improved topography will help to improve model performance and
therefore a good calibration for the entire range of the flow rate. If there are errors in the bathymetry,
the Manning’s n values that are determined through calibration to water depths would compensate for
these errors.Geosciences 2019, 9, x FOR PEER REVIEW  15 of 23 
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The quantified sensitivities reflect the degree of influence of the model inputs on the model outputs
without indicating the contribution of the input uncertainty on the results. There are also limitations in
extrapolating these findings to other hydrological settings. They are valid for a single model at a given
location and flood event, and rely on the applied SA method. The obtained variability of the sensitivity
of the water depth results is consistent with findings of Wilson and Atkinson [79], who showed that
even a small degree of uncertainty in bed elevation can have a relatively large effect on water depth
predictions. Horritt [28] came to a similar conclusion, pointing out the importance of the channel
bathymetry in bank flow hydraulics. Despite this fact, one could intuitively expect that the computed
sensitivities and ranking of input parameters should be different at different locations and different
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settings [17]. For example, for a smaller flood event with stages below bankfull conditions or where
the bankfull level has been barely reached, uncertainties in the boundary conditions and Manning’s n
parameters should be more important to consider, as they will be decisive to determine water depths
and whether the bankfull discharge is attained or not. However, this may not be the case for large
flood events. It would also be possible to apply a similar approach to assess the comparative influence
of other discrete choices, such as the choice of hydraulic model (comparing 1D and 2D models),
spatial resolution of DEM, etc. In any case, it is important for future studies to carefully consider the
definition of the variability interval of input parameters to reduce or eliminate the influence on the
sensitivity indices.Geosciences 2019, 9, x FOR PEER REVIEW  17 of 23 

 

 

Figure 9. (a) Man-made structures in the Saint-Jean-sur-Richelieu bedrock shoal area. (b) Water 
surface disturbances caused by the remains of eel fishing structures. 

 

 

 

 

 

 

Figure 9. (a) Man-made structures in the Saint-Jean-sur-Richelieu bedrock shoal area. (b) Water surface
disturbances caused by the remains of eel fishing structures.

5. Conclusions

A sensitivity analysis (SA) was conducted for a 2D hydraulic model and individual impacts of
three input variables: Topography, flow rate, and Manning’s n coefficient were quantified. Sensitivity
coefficients were calculated for each input variable with respect to the simulated water depths.
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The method was tested and validated for a 2D hydraulic model of a 45 km long reach of the Richelieu
River, Canada. This study provides an insight into models’ parameters and, in particular, their impacts
on the simulated results.

The results indicate that the topography was the most critical input variable with the highest
impact on the flood predictions. The effect of the topography on water depths was, however, attenuated
for higher flow rates. On the other hand, Manning’s coefficient and the flow rate were comparatively
less influential. In addition to the high quality LiDAR data, these results emphasize the need for
accurate bathymetry and spatial distribution of the Manning’s coefficient in order to obtain better
calibrated hydraulic models.

The standard SAs are based on hundreds or thousands of runs of the hydraulic model in order to
test the numerous combinations of the system inputs. Applying traditional SA methods significantly
increases the associated computational effort and often it is even impossible to run SA for practical
cases where computer codes require several hours (or even several days) for a single simulation.
Therefore, the scientific merits of the presented study are, first of all, in a considerably decreased
computational effort, required to undertake SA of a 2D hydraulic model. Although the results are
mathematically only approximate, this allows the user to test a number of perturbations to input
variables, still obtaining results with satisfying accuracy. Therefore, instead of evaluating the sensitivity
of one uncertain variable on the flood inundation, it is now possible to rapidly evaluate relative
uncertainties among multiple variables and their propagation to the model outcome and, in this way, to
provide improved understanding of the impacts of uncertain variables in flood inundation modelling.
Subsequent work should focus on quantification of the sensitivity of model results to other input
parameters, such as velocity, that differ for events of a different magnitude and at different locations.
Additionally, it would be useful to explore the impact of the spatial resolution of DEM on the spatial
variation in flood inundations. Overall, the study results contribute to informed decision-making,
regarding the strategies for reducing model uncertainties.
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