Dépôt numérique
RECHERCHER

What would have been the impacts of wetlands on low flow support and high flow attenuation under steady state land cover conditions?

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Blanchette, Marianne; Rousseau, Alain N. ORCID logoORCID: https://orcid.org/0000-0002-3439-2124; Foulon, Étienne; Savary, Stéphane et Poulin, Monique (2019). What would have been the impacts of wetlands on low flow support and high flow attenuation under steady state land cover conditions? Journal of Environmental Management , vol. 234 . pp. 448-457. DOI: 10.1016/j.jenvman.2018.12.095.

[thumbnail of P3488.pdf]
Prévisualisation
PDF
Disponible sous licence Creative Commons Attribution Non-commercial No Derivatives.

Télécharger (2MB) | Prévisualisation

Résumé

Conversion of wetlands into other land covers such as cropland or urban area can affect watershed hydrology. The main objective of this work was to quantify the impact of land cover changes, especially those for wetlands, on low flow support and high flow attenuation, through a sub-watershed analysis of the St. Charles River, Quebec, Canada. 1978 and 2014 land cover scenarios, depicting a decrease in wetland areas of 15% at the watershed scale, were integrated into the hydrological modelling platform PHYSITEL/HYDROTEL. The most sensitive model parameters were automatically calibrated at the sub-watershed scale using the dynamically dimensioned search (DDS) algorithm. Pairs of simulations (with and without wetlands) were generated and model outputs were compared to illustrate the differences between the hydrological services provided by the wetlands of the 1978 land cover scenario and those provided by the wetlands of the 2014 land cover scenario. Results showed that low flow support at the outlet of the watershed, in scenarios with wetlands, compared to without wetland, would have increased from 2 to 14% in the 1978 land cover scenario (depending on flow indicator) and from 3 to 20% given the 2014 land cover scenario, whereas high flow attenuation would have been reduced from 15-26% to 16–20%, respectively. Results showed that the effect of wetland change was different between sub-watersheds, but demonstrated that the loss of wetland areas generally leads to a loss of hydrological services and highlighted the need for wetland conservation programs and restoration actions.

Type de document: Article
Mots-clés libres: hydrological model; St. Charles river watershed; low flow support; high flow attenuation
Centre: Centre Eau Terre Environnement
Date de dépôt: 01 mai 2019 15:47
Dernière modification: 14 févr. 2022 16:33
URI: https://espace.inrs.ca/id/eprint/8058

Gestion Actions (Identification requise)

Modifier la notice Modifier la notice