INRS

UNIVERSITE DE RECHERCHE

Université du Québec
Institut National de la Recherche Scientifique
Centre Energie Matériaux Télécommunications

Human-Agent-Robot Teamwork Coordination
in FiWi Based Tactile Internet Infrastructures

By
Mahfuzulhoq Chowdhury

Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy (Ph.D.) in Telecommunications

December, 2018

Thesis Evaluation Committee

External Examiner Prof. Christine Tremblay (Ecole de Technologie Supérieure)
External Examiner Prof. Zbigniew Dziong (Ecole de Technologie Supérieure)
Internal Examiner Prof. Jean-Charles Grégoire (INRS EMT)

Research Director Prof. Martin Maier (INRS EMT)

©DMahfuzulhoq Chowdhury, Montréal, Canada, 2018. All rights reserved.



This work is dedicated to my parents and teachers for their guidance, love, and

encouragement throughout my life.



Acknowledgements

I want to express my sincere and wholehearted thanks to my adviser Prof. Martin Maier,
who always gave me excellent guidance and support of my research project with brilliant
ideas, encouragement, and great advice during my learning process. Without his excellent
supervision, this thesis would not have been possible. I feel very fortunate to have had the
chance to work under his guidance. I would like to extend my gratitude to Prof. Christine
Tremblay, Prof. Zbigniew Dziong, and Prof. Jean-Charles Grégoire for agreeing to serve on
my thesis evaluation committee and for their valuable observations. Finally, I would like to

express my gratitude to the people of INRS, who helped me in some way. Thank you all!

i



Abstract

The demands of increasingly latency-sensitive applications create challenges for pervasive mo-
bile devices/robots to execute the involved computation-intensive tasks in a resource-efficient
manner. Cooperative human-agent-robot teamwork (HART) holds promise to serve as a pow-
erful paradigm to tackle the challenges of real-time task execution of mobile devices/robots.
Integrated fiber-wireless (FiWi) enhanced networks play a pivotal role in ensuring quality-
of-service (QoS) for several HART-centric applications due to their coverage and capacity
advantages. In this work, integrated FiWi access networks consist of optical fiber (Ethernet
passive optical network or EPON) and wireless (wireless local area network or WLAN) Ether-
net technologies, which are integrated with their cellular counterparts, namely, 4G Long Term
Evolution Advanced (LTE-A), to give rise to FiWi enhanced LTE-A heterogeneous networks
(HetNets).

To unleash the full potential of HART task coordination over FiWi enhanced 4G networks,
this thesis first provides a detailed study of recent progress, enabling technologies, and briefly
describes important open research challenges. To render the human-to-robot task allocation
process more efficient, this thesis presents a local and non-local human-to-robot task allocation
scheme for FiWi-based infrastructures according to several key design parameters such as the
availability, skill set, distance to task location, minimum task processing time, and remaining
energy of robots. To reduce failures during task execution, a neighboring robot assisted
failure reporting mechanism is also proposed. Our obtained results show that, compared with
traditional priority-based schemes, a task execution time efficiency of 18% can be achieved in
our proposed local and non-local human-to-robot task allocation scheme.

Due to limited computing, energy, and storage resources, robots can not always meet the
task execution time and energy consumption requirements of many delay-sensitive applica-
tions. To improve the energy efficiency of the selected host robot while satisfying a given
task deadline, this thesis presents a collaborative task execution scheme, in which the sensing
sub-task is conducted by a suitable host robot and the computation sub-task is offloaded onto
one of the suitable collaborative nodes consisting of central cloud, cloudlets, and neighboring
robots. The presented results demonstrate that for a typical task input size of 240 KB, the

collaborative task execution scheme decreases the task response time by up to 8.75% and the
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energy consumption by up to 14.98% compared to the only host robot based non-collaborative
task execution scheme.

Taking the idea of task offloading a step further, task migration among mobile HART mem-
bers has emerged as an important research topic to improve the quality of experience (QoE)
of mobile users (MUs) by minimizing their task execution time. Task migration broadens the
scope of conventional computation task offloading by not only transferring the task from an
MU onto the cloud, but also from one cloud server to another one for execution. Note, howev-
er, that task migration incurs an additional migration delay. Hence, for a given task migration
gain and latency overhead, the question of how and where an MU’s task should migrate to is
key. After describing the key features of physical vs. cognitive tasks and collaborative robot
(cobot) vs. stand-alone robot types, this thesis next investigates the problem of whether and,
if so, when and where a HART-centric task should be best migrated to. For resource-efficient
task execution, a context-aware task migration scheme is presented, in which the suitable
task migration decision is made by taking into account given task processing capabilities of
cloud/cloudlet agents and cobots, task execution deadline, user mobility, energy consumption
of involved collaborative robots (cobots) and mobile devices, and task migration latency. Our
obtained results show that for a typical task input data size of 600 MB, the cobot-to-agent
(c2a) task migration (cloudlet near task location) scheme exhibits up to 20% task response
time and 23% energy efficiency improvements over the traditional task execution without mi-
gration scheme. The results also indicate that in the case of an agent node failure, intra-agent
task migration offers a higher task response time gain than inter-agent migration.

Furthermore, to improve QoS for executing multiple HART tasks, the development of
real-time task scheduling mechanisms has emerged as an interesting research issue by taking
different real-time HART task properties, failure avoidance, and task processing capabilities
into account. Thus, to improve the HART task execution process, this thesis next presents a
community- and latency-aware HART task assignment scheme by using real-time information
about arriving task requests for both isolated and clustered robots/agents. More specifically,
a suitable multi-task scheduling scheme is presented for task on- and offloading based HART
task execution with task prefetching and fault tolerance capabilities. To reap the benefits from
task prefetching for executing multiple HART tasks, this thesis develops a novel prefetching-
aware bandwidth allocation scheme that copes with both conventional broadband and task
offloading data traffic at the same time. Next, a comprehensive analytical model is presented
to investigate the performance of our proposed community- and latency-aware task ofoading
scheme in terms of mean task service time, delay and power saving ratio, task prefetching

time efficiency, task service time gain to overhead ratio, among others. Our obtained results
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show that for a typical system of 32 integrated optical network unit-mesh portal points (ONU-
MPPs) and a polling cycle time of 100 ms, our proposed task offloading scheme achieves up
to 31.3% and 32.7% task completion time gain over the task onloading scheme for nearby
and remote task execution, respectively. The results demonstrate that for a typical task
offload input data size of 500 MB, our proposed community- and latency-aware task offloading
scheme with task prefetching capability offers a 11% higher task service time gain to overhead
ratio than a conventional fetching based scheme. Our findings also suggest that for failure
avoidance, the proposed fault tolerance mechanism is more effective in the considered task
offloading scheme than the alternative failure recovery mechanism.

Given human users’ different preferences for real-time HART task execution, e.g., lower
delay and monetary cost, suitable HART task coordination has emerged as an important re-
search problem, taking dynamically changing cloud agent/robot resources, network bandwidth
utilization as well as delay-sensitive and delay-tolerant HART task properties into account.
To cope with these challenges, this thesis explores the synergy between caching, computation,
and communications for achieving cost-effective HART task execution. More precisely, to
minimize task execution delay and monetary cost, this thesis presents a user preference-aware
HART task coordination framework that selects the appropriate dedicated or non-dedicated
robot and cloud agent for given caching and computing HART task execution requirements.
To cope with varying bandwidth resources, this thesis proposes a proactive bandwidth allo-
cation policy for the execution of both delay-sensitive and delay-tolerant HART tasks. To
minimize the task execution delay of delay-sensitive users, our proposed delay cost saving
(DCS) based scheme selects suitable actors by using both dedicated and non-dedicated ac-
tors. Conversely, to minimize the monetary cost for delay-tolerant policy users, our proposed
monetary cost saving (MCS) scheme selects appropriate actors only from the set of dedicated
actors. Furthermore, this thesis also presents a proactive bandwidth allocation scheme that
assigns preemptive and non-preemptive bandwidth resources to DCS and MCS policy users,
respectively. Unlike alternative approaches, our findings indicate that the maximum through-
put and minimum delay (MTMD) based resource assignment policy is useful for both DCS and
MCS policy users due to its minimum task execution time and monetary cost. Our obtained
results show that for a typical number of 10 tasks and 8 available dedicated robots, the DCS
(MTMD) policy exhibits a 30.5% higher task execution time saving ratio and a 63.6% lower
monetary cost saving ratio than the MCS (MTMD) policy. Our proposed user preference
aware HART task coordination policy thus represents a promising solution to reduce both
task execution delay and monetary cost for emerging Tactile Internet applications.

Keywords: Caching, Cloud Computing, Computation Offloading, Collaborative Com-
puting, Delay Cost Saving, Dynamic Bandwidth Allocation (DBA), Energy Efficiency, Fail-



ure Avoidance, Fiber-Wireless (FiWi) Enhanced Networks, Human-Agent-Robot Teamwork
(HART), Human-to-Robot Communication (H2R), Human-Machine Co-activity, Internet-of-
Things (IoT), Mobile-Edge Computing (MEC), Monetary Cost Saving, Tactile Internet, Task
and Resource Scheduling, and Task Migration.
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Résumé

Introduction et motivation

L’avenement de robots/machines télécommandés disponibles sur le marché peut étre le précurseur
d’une ére de convergence technologique, ou les taches de notre vie quotidienne (par exemple,
'assistance cognitive) seront de plus en plus souvent accomplies par des robots/machines
qui nous permettent de voir, d’entendre, de toucher et de manipuler des objets dans des en-
droits ot nous ne sommes pas physiquement présents. Dans divers systemes cyber-physiques
(CPSs, pour ‘cyber-physical systems’) qui exploitent 'interaction homme-machine en temps
réel (par exemple, formation & distance, opérations de sauvetage essentielles a la mission),
une latence aller-retour extrémement faible est nécessaire pour faire correspondre l'interaction
humaine a ’environnement. Cette vision de 'Internet est maintenant largement connue sous
le nom d’Internet tactile, qui a récemment émergé pour diriger/controler les objets virtuels
et physiques de notre entourage et de notre environnement et nous permettre de transmettre
le toucher et 'action en temps réel [1],[2]. En offrant des communications a faible latence,
I'Internet tactile devrait couvrir un large éventail de domaines d’application, y compris les soins
de santé a distance, la conduite autonome ou assistée, le divertissement, et I'automatisation
industrielle [3],[4]. Dans la plupart de ces secteurs verticaux, une latence trés faible et une
tres grande fiabilité sont essentielles pour la réalisation d’applications immersives telles que la
téléopération robotique [5], [6].

Il existe un chevauchement important entre I'Internet des objets (IoT, pour ‘Internet of
Things’), la 5G et la vision Tactile Internet, bien que chacune d’entre elles présente des car-
actéristiques uniques. Les principales différences peuvent étre mieux exprimées en termes
de paradigmes de communication sous-jacents et de dispositifs finaux habilitants. L’IoT re-
pose sur la communication M2M (M2M, pour ‘machine-to-machine’), 'accent étant mis sur
les dispositifs intelligents (capteurs et actionneurs, par exemple). En coexistence avec la
communication de type machine (MTC, pour ‘machine type communication’) émergente, 5G
maintiendra son paradigme traditionnel de communication d’homme & homme (H2H, pour
‘human-to-human’) pour les services triple play conventionnels (voix, vidéo, données) avec un

accent croissant sur 'intégration avec d’autres technologies sans fil (notamment le WiFi) et
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la décentralisation. Inversement, I'Internet tactile sera centré sur les communications homme-
machine/robot (H2M/R) (H2M, pour ‘human-to-machine’) en tirant parti des dispositifs tac-
tiles/haptiques. Malgré leurs différences, 1'ToT, le 5G et I'Internet Tactile semblent converger
vers un ensemble commun d’objectifs de conception importants : tres faible latence, ultra-
haute fiabilité avec une disponibilité presque garantie de 99,999%, coexistence H2H/M2M,
intégration de technologies centrées sur les données avec un accent particulier sur le WiFi et
la sécurité. Contrairement a I'Internet mobile et a I'loT, I'Internet tactile facilitera les com-
munications haptiques en fournissant le moyen de transporter les sens haptiques (c’est-a-dire
le toucher et Iactionnement) en temps réel en plus des données non haptiques classiques, de
la vidéo et du trafic audio.

Les applications basées sur la communication H2M/R en temps réel sont sensibles a la
latence de bout en bout vécue pendant le processus de communication entre les opérateurs
humains et les robots/machines télécommandés. Pour réaliser des applications Internet tactile
a faible latence de bout en bout, le cloud computing au bord du réseau d’acces radio mobile
appelé cloudlet représente une solution prometteuse [7]. La recherche sur le cloudlet a eu
tendance a se concentrer sur le WiFi dans le passé, bien qu’il y ait eu récemment un intérét
croissant parmi les opérateurs de réseaux cellulaires. L’importance des nuages peut étre con-
statée dans de nombreuses applications centrées sur l'interaction homme-machine sensibles a
la latence, telles que la réalité augmentée, I'assistance cognitive en temps réel ou la reconnais-
sance des visages sur les appareils mobiles. En septembre 2014, I'initiative de 'industrie de
I'informatique mobile (MEC, pour ‘mobile-edge computing’) a introduit une architecture de
référence afin d’identifier les défis qui doivent étre surmontés pour faciliter la mise en ceuvre
des serveurs cloudlet [8]. MEC fournit des capacités informatiques et de I'informatique cloud
dans le réseau d’acces radio (RAN, pour ‘radio access network’) a proximité des abonnés mo-
biles. On s’attend a ce que la mise en cache avancée, le déchargement des calculs et la gestion
du trafic axée sur 'utilisateur a la périphérie des réseaux sans fil réduisent non seulement la
charge de trafic de liaison terrestre, mais aussi améliorent la latence des applications Internet
tactiles.

Les applications d’Internet tactile posent des exigences élevées pour les futurs réseaux
d’acces en termes de latence, de fiabilité et de capacité. Pour atteindre les exigences clés du
5G et de I'Internet tactile de tres faible latence et d’ultra-haute fiabilité, dans [9], les auteurs
ont proposé le concept de réseaux LTE-A HetNets améliorés de FiWi qui unifie les réseaux
mobiles 4G centrés sur la couverture et les réseaux d’acces a large bande a fibre optique et
sans fil (FiWi, pour ‘fiber-wireless’) centrés sur la capacité, basés sur les technologies de fibre
optique centrées sur les données et d’Ethernet sans fil. Au moyen d’analyses probabilistes et

de simulations de vérification basées sur des traces récentes et completes de smartphones, les
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auteurs ont montré qu’'une latence moyenne de bout en bout de 1 a 10 ms et une disponibilité
presque garantie peuvent étre obtenues grace au partage de la fibre optique et aux capacités de
déchargement WiFi. Notez, cependant, que seules les communications H2H conventionnelles
ont été prises en compte dans [9] sans aucune communication H2R (H2R, pour ‘human-to-
robot’)ou M2M coexistante. Pour réaliser des communications H2R a faible latence dans
I'Internet Tactile, nous avons discuté dans [5] du role de plusieurs technologies habilitantes
clés, y compris les réseaux LTE-A HetNets améliorés de FiWi, les cloudlets, la robotique dans
les nuages, le codage de réseau, les réseaux définis par logiciel (SDN, pour ‘software-defined
networking’), et les communications de machine a cloud (M2C, pour ‘machine-to-cloud’), entre
autres. De plus, en tirant parti du haut débit, de la fiabilité, et en particulier, de la perfor-
mance a retardement des réseaux HetNets LTE-A améliorés de FiWi, nous avons signalé que
les infrastructures multirobots intégrées de FiWi basées sur des cloudlets décentralisés seront
essentielles pour la coordination des applications Internet tactiles basées sur les communica-
tions H2R. Pour le déploiement rentable des applications Internet tactile, nous avons également
identifié plusieurs défis de recherche importants tels que la conception de techniques adapta-
tives de gestion des ressources de bande passante pour le support du trafic H2H et H2R sur les
réseaux améliorés FiWi avec une bonne coordination des services, des stratégies d’allocation
des taches H2R (planification optimale en ligne/hors ligne), le traitement des pannes et la
gestion de la mobilité, entre autres. La figure R.1 résume les caractéristiques, les technologies
habilitantes et les défis pour la réalisation d’applications Internet tactiles en temps réel.

Outre la communication haptique, un autre aspect distinct de I'Internet tactile est le fait
qu’il devrait amplifier les différences entre les machines et les humains et entrainer la symbiose
entre I’homme et la machine. En s’appuyant sur les zones ou les machines sont fortes et les
humains faibles, I'Internet tactile tire parti de leur autonomie “coopérative” et “collaborative”
de telle sorte que les humains et les robots se completent. A I’avenir, le travail en commun avec
des machines (par exemple, des robots) favorisera les grappes géographiques de production
locale (“inshoring”) et nécessitera une expertise humaine dans la coordination de la symbiose
homme-machine pour inventer de nouveaux emplois que les humains peuvent difficilement
imaginer et ne savaient méme pas qu’ils voulaient faire [6]. Contrairement a I'loT qui s’appuie
sur ses communications M2M sous-jacentes sans aucune implication humaine, I'Internet tactile
implique la nature inhérente de l'interaction haptique HITL (HITL, pour ‘inherent human-
in-the-loop’) et permet ainsi une approche de conception coopérative homme-machine vers la
création et la consommation de nouvelles expériences immersives via I'Internet [10].

Dans “DeepThinking : Where Machine Intelligence Ends and Human Creativity Begins,”
Garry Kasparov explique I'importance d’un processus supérieur dans la collaboration homme-

machine, montrant que la faiblesse humaine + machine + meilleur processus est supérieur



Human-Agent-Robot

Mobile Internet | |Internet of Things (loT) Haptic Communication Teamwork (HART)
F 3

A T T
4{ Inherits characteristics Two Distinct Aspects }7

Some Applications Challenges
- Remote tele-surgery - Very low latency,
- Serious online gaming - Ultra-high reliability
- Road traffic control Tactile . and high security
- Robotic exoskeleton “| - Real-time HART
Internet

task coordination
-Failure avoidance

control, safe driving

Enabling Technologies

ﬁ and Technigques
¥ l ¥

Fiwi Enhanced Networks Cloudlet Agent and MEC Network Coding and SDN Cloud Robotics
- Fiber backhaul sharing - Computation offloading - Recoding - M2M
- WiFi Offloading - Decentralization - Virtualization -M2C

Figure R.1: L’Internet tactile : applications, défis, et technologies habilitantes.

a la force humaine + machine + processus inférieur. Ainsi, un processus intelligent bat des
connaissances supérieures et une technologie supérieure.

Une approche prometteuse pour atteindre une coordination homme-machine avancée au
moyen d’un processus supérieur pour orchestrer avec fluidité la co-activité homme-machine
peut étre trouvée dans le domaine encore jeune de la recherche sur le travail en équipe homme-
agent et robot (HART, pour ‘Human-Agent-Robot Teamwork’), dont ’objectif spécifique est
de garder les humains dans la boucle plutot qu’en dehors de la boucle [11]. Historiquement,
HART étend 'approche dite humains-are-better-at/machines-are-better-at (HABA/MABA),
qui assigne des taches soit aux humainsou aux machines, alors que HART se concentre sur
la fagcon dont les humains et les machines pourraient travailler ensemble. En ce qui concerne
I'interaction homme-machine sous-jacente dans les applications d’Internet tactile HART, le
principal défi est d’orchestrer la meilleure facon d’exécuter les taches de concert. La col-
laboration et la communication entre les membres de HART sont essentielles pour faire face
aux changements dynamiques dans ’environnement des taches, améliorant ainsi la latence
d’exécution des taches. Il est a noter que les activités interdépendantes des membres de HART
peuvent entrainer une complexité accrue et une consommation accrue de ressources. Pour fa-
ciliter 'exécution efficace des taches HART, la recherche dans le domaine de la coordination
centralisée/décentralisée des réseaux, la gestion adaptative des ressources en bande passante

pour la coexistence du haut débit traditionnel et du trafic de déchargement, I’attribution des
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taches en cas de panne, I'énergie, le temps et les politiques de déchargement des taches en
fonction des couts énergétiques, ainsi que la coordination des taches et des ressources devi-
ennent obligatoires. Les principaux défis de la coordination des taches HART sur I'Internet

tactile sont décrits a la figure R.2.

Objectifs

Les objectifs de cette these sont les suivants :

e [’obstacle crucial au déploiement réussi d’applications Internet tactiles locales et non
locales est I'absence de stratégies appropriées de répartition des taches entre les robots.
La plupart des études existantes d’attribution de taches multi-robots se concentrent sur
un seul ou quelques parametres pour la sélection du robot, par exemple, ’énergie d'un
robot ou la distance jusqu’a 'emplacement de la tache. Il est clair que les applications
Internet tactiles basées sur les communications H2R en temps réel exigent des schémas
avancés de sélection de robots, dans lesquels des parametres supplémentaires doivent étre
pris en compte tels que les robots hétérogenes et les propriétés des taches (par exemple,

I’emplacement des robots et des taches, la consommation d’énergie des robots, la charge
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de travail des taches, et les délais). De plus, I'absence de stratégies appropriées de
surveillance des défaillances des robots pendant 1’exécution des taches et des stratégies
d’allocation des ressources pourrait entrainer une augmentation des délais d’exécution
des taches et de la consommation d’énergie des robots. Un certain nombre de questions
de recherche telles que (i) comment les demandes de taches humaines sont arrivées au
réseau de robots et (i) comment les robots sont au courant de toutes les demandes de
taches ont été largement négligées dans les études précédentes. Ainsi, le premier objectif
de ce travail est de concevoir un mécanisme efficace d’attribution de taches H2R locales
et non locales qui évitent les défaillances et un schéma unifié de gestion des ressources
qui minimise le temps d’exécution des taches et la consommation d’énergie des robots

dans les infrastructures Internet tactiles basées sur FiWi.

Avoir une sélection de robot appropriée pour satisfaire les demandes d’exécution de
taches des utilisateurs mobiles peut ne pas étre suffisant pour éviter les échecs d’exécution
de taches en raison de contraintes de ressources données (par exemple, capacités de
traitement des taches, stockage, ou énergie restante) du robot sélectionné. Notez que
les appareils mobiles/robots peuvent surmonter leur probléme de pénurie de ressources
en utilisant les ressources des agents cloud collaboratifs. Ce type d’exécution de tache
est également connu sous le nom de calcul collaboratif, o un robot aux ressources
limitées transfere sa tache de calcul a un autre agent cloud plus puissant ou a un robot
proche pour exécution. Actuellement, la recherche dans le domaine du cloud computing
d’infrastructure et de l'exécution de taches collaboratives sans infrastructure HART
centric sur les infrastructures FiWi fait défaut dans la littérature existante. Ainsi, pour
améliorer le temps d’exécution des taches et l'efficacité de la consommation d’énergie
des robots/appareils mobiles a ressources limitées, le deuxieme objectif de cette these
est de proposer un schéma de calcul collaboratif qui sélectionne conjointement un nceud
hote approprié et un nceud d’agent cloud collaboratif pour exécuter différentes taches
HART. Un autre objectif majeur de cette partie de la these est d’étudier un schéma unifié
d’allocation de bande passante pour gérer le trafic de données a large bande conventionnel
et de déchargement des taches de calcul sur des infrastructures Internet tactiles basées
sur FiWi.

Les services de cloud computing collaboratif permettent aux appareils mobiles a ressources
limitées de décharger leurs taches de calcul intensives sur des serveurs/substituts plus
puissants pour le traitement. Par conséquent, I'un des principaux défis du cloud comput-
ing est de minimiser la latence d’exécution des taches des utilisateurs mobiles. De plus,

en raison des ressources variables dans le temps et des temps d’attente plus longs dans
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un serveur cloud (agent), le serveur cloud initialement sélectionné peut ne pas toujours
satisfaire aux exigences d’exécution des taches de déchargement (p. ex., date limite).
Ainsi, pour répondre aux exigences d’exécution des taches de déchargement, la tache
déchargée d'une MU doit étre migrée d'un serveur cloud a un autre pour étre exécutée.
Notez qu’en tenant compte de la charge du serveur cloud, des exigences des taches, des
latences de migration des taches et de la mobilité des utilisateurs, I'une des questions
de recherche fondamentales pour l'exécution de taches centrées sur HART consiste a
savoir si une tache migre ou non avec la MU. Ainsi, en tenant compte de la mobilité des
utilisateurs, des différentes taches, et des propriétés des nceuds collaboratifs, le troisieme
objectif de cette these est de proposer une stratégie de migration des taches en tenant
compte du contexte pour 'exécution collaborative des taches dans les infrastructures

Internet tactiles basées sur FiWi.

Les avantages du pré-transfert /pré-migration de taches et de la connaissance des ressources
des communauté-cluster n’ont pas été explicitement étudiés pour le déchargement de
plusieurs HART taches sur des infrastructures améliorées FiWi. De plus, l'ordre la
planification optimale des taches par rapport aux ressources et la sélection du service
d’évitement des pannes pour 'exécution de taches HART basées sur le chargement et
le déchargement des taches sont absentes de la littérature existante. Ainsi, en tenant
compte a la fois des capacités de transfert préalable et de tolérance aux pannes ainsi que
de la connaissance des ressources des cluster communautaires, le quatrieme objectif de
cette these est de concevoir un schéma de planification multi-taches adapté a la commu-
nauté et a la latence pour l'exécution de taches HART basées sur le chargement et le

déchargement des taches.

Le cinquieme objectif de cette these est de développer un schéma de coordination des
taches HART prenant en compte les préférences des utilisateurs. Notez que la recherche
dans le domaine de ’exécution des taches HART prenant en compte les préférences des
utilisateurs en est encore 4 ses débuts. A I'heure actuelle, aucune étude existante ne traite
du probleme de la mise en cache et informatique sensibles aux délais et tolérants aux
retards des HART taches I’exécution en tenant compte de la connaissance des ressources
des robots/agents dédié et non dédié et de l'allocation de bande passante basée sur
la priorité préemptif. En tenant compte de différent préférences des MUs tels que le
réduction des colts monétaires et/ou retard pour I'exécution sensibles aux délais et
tolérants aux retards des HART taches, 'objectif final de cette these est de développer
une stratégie appropriée de coordination des taches HART et un schéma d’allocation

des ressources proactif.
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Figure R.3: Méthodologie de recherche.

Méthodologie de recherche

La méthodologie de recherche appliquée dans cette these comprend la modélisation des réseaux,
la conception des mécanismes de coordination ainsi que la modélisation analytique et 'analyse

des performances (voir Fig. R.3) et est décrite plus en détail ci-dessous:

e Architecture de réseau: Dans cette these, de multiples nouvelles architectures de
réseau sont développées pour différents schémas de coordination des taches centrés sur
HART. Une approche descendante est envisagée, ou les différentes exigences de taches
sont d’abord étudiées, puis l'infrastructure réseau est congue pour répondre aux exigences
de service. Il est important de noter que les fonctionnalités des réseaux de communi-
cation, les procédures d’attribution des taches et des ressources, les technologies, et les
protocoles sont étudiés. Les topologies basées sur les arbres et les mailles sont prises en

compte dans la conception d’'infrastructures Internet tactiles intégrées FiWi améliorées.

e Conception de mécanismes: Pour obtenir des performances optimales, différents
algorithmes novateurs sont développés pour l'exécution collaborative de taches HART
dans les infrastructures améliorées FiWi. Plus particulierement, les mécanismes pro-
posés comprennent une stratégie unifiée d’allocation des ressources, la sélection d'un
robot et d’un agent cloud pour exécuter différentes taches HART, un ordre de plan-
ification multitache optimal, un schéma de rapport de pannes ainsi qu’un algorithme
d’allocation dynamique de bande passante (DBA, pour ‘dynamic bandwidth allocation’)

tenant compte du transfert préalable au courant de taches.
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e Analyse des performances: Dans ce travail, une analyse du rendement est effectuée
basé sur différents modeles de files d’attente (par exemple, M/G/1, M/M/M/1, M/M/1,
M/M/c), d’outils analytiques, de formules mathématiques (par exemple, Erlang-C, dis-
tance euclidienne, temps moyen d’acces a la mémoire ou formule AMAT (AMAT, pour
average memory access time), de distributions de probabilités (par exemple, aléatoires
uniformes, Zipf), et d’hypotheses (par exemple, hypotheses de tests binaires). Pour
évaluer la performance du systeme selon différents scénarios, la performance de simula-
tion analytique et de vérification est examinée pour un large éventail d’indicateurs de

performance et de parametres de systéeme variables.

Contributions de la theése

Cette these est basée sur un total de huit publications scientifiques (revues et magazines de

I'TEEE). Les principales contributions de cette these sont examinées ci-apres.

Allocation de taches H2R locales et non locales prenant en charge
les évitement d’échec dans les infrastructures Multi-Robot FiWi

Pour le déploiement réussi d’applications H2R, une répartition efficace des taches entre les
robots est essentielle, ce qui s’est révélé étre un sujet de recherche intéressant en tenant
compte d'une grande variété de taches et de types de robots, de 'emplacement des taches,
de la disponibilité des robots, de la capacité et de I’échec lors de l'exécution des taches.
Les solutions actuelles d’attribution des taches robotiques souffrent généralement de plusieurs
inefficacités au cours de l'exécution des taches (par exemple, temps d’exécution des taches
et gaspillage d’énergie des robots) en raison de 'absence de mécanismes de robots sélection
appropriés et de mécanismes de controle appropriés. L’hétérogénéité des robots et des types
de taches rend la répartition des taches encore plus difficile. Pour accélérer le processus
d’exécution des taches robotiques en temps réel et réduire la consommation d’énergie des
robots a ressources limitées, 1'utilisation des services robotiques pour les taches humaines doit
se faire d’une maniere plus efficace en termes de ressources. La plupart des études antérieures
ne tiennent compte que d'un seul parametre pour la sélection du robot, par exemple, la
distance et I'énergie résiduelle. Un certain nombre de parametres supplémentaires, tels que la
compétence du robot, la disponibilité, et le temps d’exécution des taches, doivent également
étre pris en compte. Dans le passé, un certain nombre d’aspects importants de I'allocation des
ressources et de la mise en réseau des taches robotiques liés a des questions clés de conception,
y compris, mais sans s’y limiter: (i) comment les demandes de taches humaines arrivent aux

réseaux de robots, (i) comment récupérer des pannes de robots, et (iii) comment s’assurer
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que les robots sont conscients de toutes les demandes de taches ont été largement négligés
dans les études précédentes.

Pour surmonter les défis susmentionnés, ce travail développe une architecture réseau multi-
robot basée sur FiWi qui coordonne I'attribution des taches entre les humains, les robots, et
les agents. Pour attribuer efficacement la tache locale et non locale d’un utilisateur humain
donné a un robot approprié, ce travail propose un algorithme de sélection du robot basé
sur la distance, ’énergie résiduelle ainsi que sur la capacité, et la disponibilité du robot.
Il introduit un mécanisme de signalement des pannes assisté par robot voisin pour éviter les
échecs d’exécution des taches. Pour faciliter I’attribution des taches H2R locales et non locales
en méme temps sur notre infrastructure réseau FiWi proposée, ce travail propose un systeme
unifié d’attribution des ressources basé sur I’acces multiple a répartition dans le temps (TDMA,
pour ‘time-division multiple access’). En utilisant ’hypothese de test binaire, ce travail étudie
le taux d’erreur de détection du robot de trois regles de fusion différentes (AND, OR, et
Majorité) et examine leur efficacité respective pendant le processus de détection de défaillance
du robot. Ce travail modélise le délai de transmission de trame maximum en amont (US,
pour ‘upstream’) et en aval (DS, pour ‘downstream’) sur la base d’'un modele de file d’attente
M/G/1 avec réservations et vacances. En tenant compte du délai de transmission des trames
(US et DS) et du délai de sélection des robots, ce travail analyse a la fois le délai d’attribution
des taches locales et non locales de bout en bout. Un modele analytique complet est présenté
pour évaluer la performance de notre schéma proposé avec deux schémas d’allocation de taches
généralisées, c’est-a-dire la sélection de robot basée sur la distance minimale (MD) [12]-[13] et
la sélection de robot basée sur la priorité (PS) [14]-[15]) en termes de débit, de délai d’allocation
de taches, de temps d’exécution, et d’énergie résiduelle. Ce travail étudie le compromis entre
le délai d’attribution des taches et le débit du systeme. De plus, la complexité temporelle de
I'algorithme d’allocation des taches proposé est également analysée. La figure R.4(a) compare
Iefficacité du temps d’exécution des taches de notre méthode MET proposée avec celle des
approches traditionnelles MD et PS pour des charges de travail variables.

La figure montre que l'efficacité maximale réalisable du temps d’exécution des taches de
notre schéma de sélection de robot proposé par rapport au schéma de sélection traditionnel
basé sur PS et MD est respectivement de 11% et 18%. Ceci est du au fait que I'approche
MD sélectionne un robot approprié pour chaque tache en fonction de la distance la plus faible
par rapport a un emplacement de tache donné. Inversement, le schéma PS attribue une tache
donnée au robot ayant I'ID le plus bas ou en utilisant le robot et I’appariement des taches.
Notre approche proposée d’allocation des taches MET sélectionne un robot sur la base du
calcul préalable du temps minimum d’exécution des taches qui inclut le délai d’allocation des

taches des robots, le temps de traversée de 'emplacement des taches, le temps d’occupation des
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Figure R.4: Efficacité du temps d’exécution des taches, délai d’allocation, et évaluation du
taux d’erreur de détection.

robots, et le temps de traitement de la charge de travail des taches. La figure R.4(b) illustre la
variation du taux d’erreur de détection de défaillance des robots pour varier le seuil d’énergie
de signal (A) pour la détection de défaillance du robot sélectionné. Cette figure compare
trois regles de fusion différentes (n sur k rapports de défaillance des voisins coopératifs) afin
d’identifier leur efficacité respective. Nous observons que les regles AND (n = k), Majorité
(n > %), et OR (n = 1) basées sur la détection coopérative des défaillances atteignent un
taux d’erreur minimal pour un seuil d’énergie de signal de détection faible, moyen et grand,
respectivement. Ainsi, les regles AND, Majorité et OR sont optimales pour un seuil d’énergie
de signal de robot faible, moyen et grand, respectivement. Ensuite, les délais d’attribution
des téaches de bout en bout non locales (Dyon—iocar) €t locales (Djpeq;) pour différents nombres
d’utilisateurs (M) et charges de trafic (p"?") sont évalués dans les Fig. R.4(c) et Fig. R.4(d),
respectivement. Les deux retards (Djoeqr and Dyon_0ca;) augmentent avec la charge de trafic
(p"?") et le nombre différent d’'ONU (N) dans le systéme que nous proposons. Dion_iocal

connait un délai d’attribution des taches plus élevé que Dj,eq;. Ceci est dii au fait qu’a coté
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du délai de sélection du robot (taiiec), Dnon—tocar dépend a la fois des délais de transmission des
trames US (D,) et DS (Dy), tandis que Djyy dépend uniquement du délai de transmission
des trames US (D,).

I’informatique collaborative pour les communications Internet tac-
tiles avancées H2R dans les infrastructures intégrées FiWi Multi-
robot

Avec I’émergence de I'Internet tactile et ’avenement des robots télécommandés, la bonne
répartition des taches entre les robots a attiré une attention significative pour permettre
des applications et des services robotiques basés sur le paradigme de communication H2R.
Cependant, les ressources limitées de calcul, d’énergie et de stockage des robots peuvent
entraver le lancement réussi de telles applications. Pour combler ces lacunes, les appareils
mobiles/robots sollicitent de plus en plus souvent ’aide de noeuds de collaboration (p. ex.,
I'informatique cloud mobile, les communications entre appareils mobiles) pour exécuter leurs
taches de calcul, une tendance également connue sous le nom de cueillette informatique [16] ou
d’informatique collaborative [17], [18]. Malgré les progres récents dans l'exécution des taches
robotiques, 'impact des schémas d’exécution de taches conjointes qui tiennent compte a la fois
du robot hote et des nceuds collaboratifs (p. ex., cloud central ou cloudlet) pour le processus
d’exécution des sous-taches de détection et de calcul indépendant de I’emplacement n’a pas
été examiné suffisamment en détail auparavant. Pour plus de clarté, notez que la communica-
tion homme-robot-agent basée sur ’exécution complete des taches se compose généralement
de deux sous-parties. La premiere comprend le traitement initial ou la sous-tache de surveil-
lance physique dépendant de I'emplacement (par exemple, la capture d’une image), qui ne
peut étre exécutée que par le robot hote sélectionné situé dans la zone de tache donnée. La
deuxieme sous-partie de la tache implique le calcul/traitement indépendant de I'emplacement
des données capturées (p. ex., détection d’images/de visages), qui peut étre effectué par le
robot hote lui-méme ou ou bien étre déchargé sur des nceuds cloud collaboratifs (indépendants
de 'emplacement).

La plupart des études antérieures considéraient soit ’attribution d’une tache complete
(c’est a dire., les sous-parties de détection/surveillance physique et de calcul) a un robot,
soit le déchargement du calcul (c’est a dire., la sous-partie de la tache complete) sur des
neeuds cloud (cloud central et cloudlet local) pour exécution, et non les deux. Par conséquent,
la question de savoir comment assigner une tache de détection/surveillance physique et de
calcul locale ou non locale a un robot hote et a un serveur cloud en tenant compte des
différentes taches et types de robots avec leur consommation d’énergie, leur disponibilité, la

distance du robot a ’emplacement de la tache, le traitement, et la vitesse de déplacement, la
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Figure R.5: (a) Structure temporelle et format de la trame de controle et (b) étapes
opérationnelles du processus de déchargement des calculs.

disponibilité des ressources cloud demeure un défi de recherche ouvert. En outre, différentes
situations difficiles doivent étre étudiées pour obtenir de meilleures performances, lorsque les
deux nceuds cloud/cloudlets collaboratifs peuvent satisfaire ou ne pas satisfaire aux exigences
de déchargement des calculs.

Pour relever certains des défis susmentionnés, ce travail développe une stratégie efficace
d’attribution des taches qui inclut la sélection d’un robot hote et d’un nceud collaboratif appro-
prié dans les réseaux multi-robots intégrés de FiWi. Nous proposons d’utiliser non seulement
le cloud central et les cloudlets locaux comme noeuds de collaboration, mais aussi les robots
voisins disponibles pour le déchargement des sous-taches de calcul. Pour réaliser des économies
d’énergie maximales des robots et accomplir les taches dans les délais requis, I'objectif prin-
cipal de ce travail est de sélectionner la politique appropriée pour I'exécution des taches de-
mandées par les humains en évaluant la performance du schéma d’exécution des taches non
collaboratives, dans lequel le robot hote sélectionné exécute la tache complete (sous-tache de
détection et de calcul), et le schéma d’exécution collaborative/conjointe, dans lequel le robot
hote sélectionné exécute seulement la sous-tache de détection tandis que le nceud collaboratif
sélectionné exécute la sous-tache de calcul via le déchargement de calcul. En outre, ce travail
propose un schéma unifié de gestion des ressources capable de gérer le trafic a large bande
conventionnel coexistant et le trafic de données déchargé par calcul. Le schéma de gestion des
ressources proposé utilise un systeme d’acces multiple par répartition dans le temps a deux
couches dans les sous-réseaux optiques et sans fil. La structure générale du chronométrage

est divisée en trois parties: (i) la sélection initiale du robot pour I'attribution des taches, (i)
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Figure R.6: Temps de réponse aux taches et évaluation de la consommation d’énergie des
différents systemes collaboratifs/conjoints et non collaboratifs.

le créneau horaire assigné pour le trafic a large bande conventionnel des utilisateurs associés,
et (4i7) les transmissions de données déchargées. La figure R.5 illustre la structure temporelle
proposée et le processus de déchargement par calcul. Pendant la phase initiale d’attribution
des téaches, I'agent situé a 'ONU-MPP échange trois messages de controle (RTS, CTS, and
ACK)avec ses robots associés pour sélectionner un robot approprié pour chaque demande de
tache complete arrivée. L’agent sélectionne ensuite un robot hote approprié avec un temps
de réponse minimal pour chaque tache qui contient a la fois des sous-parties de détection et
de calcul en fonction de leur disponibilité, du seuil d’énergie pour effectuer la tache et des
criteres de délai d’exécution de la tache. Le robot hote sélectionné exécute d’abord la partie
détection /surveillance physique de la tache (dépend de I'emplacement). Si le robot hote envoie
une demande de déchargement de sous-tache de calcul & I’agent (emplacement indépendant),
I’agent sélectionne un nceud collaboratif approprié pour I'exécution de la sous-tache de calcul
(sous-partie restante) sur la base des critéres suivants: (i) le temps de réponse de la sous-tache
de calcul du neeud collaboratif est inférieur ou égal a la date limite de la sous-tache de calcul,
(1) la disponibilité de ressources suffisantes, et (7i7) la consommation d’énergie minimale.
Les figures R.6(a) et R.6(b) illustrent le temps total de réponse aux taches (délai prévu de
traitement des taches apres l'assignation des taches) et la consommation d’énergie du robot
hote des différents schémas d’exécution des taches pour le scénario 1. Dans le scénario con-
sidéré, on suppose que le cloud central et le cloudlet ont la méme capacité de calcul /puissance
du CPU. Les chiffres montrent que le temps de réponse aux taches et la consommation d’énergie
du robot hote augmentent pour augmenter la taille des données d’entrée des taches dans tous
les schémas d’exécution des taches proposés. La figure montre que le robot hote et le robot

voisin basé sur un schéma d’exécution conjointe de taches montre un temps de réponse de
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tache plus élevé que le robot hote et le cloud central basé schéma d’exécution conjointe de
taches et ne parvient pas a respecter la date limite de la tache. C’est parce que la puissance
CPU du robot voisin (500MHz) est inférieure a la puissance CPU du cloud central (3200MHz).
Ainsi, le délai de traitement des sous-taches de calcul est beaucoup plus élevé dans le robot
voisin que celui de 'exécution du cloud central. En outre, les figures R.6(a) et R.6(b) montrent
que le schéma d’exécution conjointe de taches basé sur le robot hote et le cloudlet dépasse
le schéma conjoint basé sur le robot hote et le cloud central en termes de temps de réponse
aux taches et de consommation d’énergie du robot hote. Ceci est principalement du au fait
que le cloudlet implique un délai de déchargement de calcul plus court que le cloud central.
Le schéma d’exécution conjointe de taches basé sur le robot hote et le cloudlet montre une
augmentation de 36%, 8%, 2% du temps de réponse des taches et une efficacité énergétique de
3%, 15%, 2% plus élevée que le robot hote et le robot voisin schéma d’exécution conjointe, du
robot hote sans déchargement, et robot hote et le cloud central schéma d’exécution conjointe,
respectivement. Ainsi, le schéma d’exécution conjointe de taches basé sur le robot hote et le

cloudlet est optimal pour le scénario considéré.

Schéma de migration de taches HART centré sur des infrastructures
Internet tactiles basées sur FiWi

En poussant plus loin 'idée du déchargement des taches, la migration des taches est apparue
comme une approche prometteuse pour améliorer la qualité de 'expérience (QoE, pour ‘quality
of experience’) des utilisateurs mobiles (MU, pour ‘mobile users’) en minimisant le temps
d’exécution de leurs taches [19]. La migration des taches élargit la portée du déchargement
des taches de calcul conventionnel en transférant non seulement la tache d’une MU sur le
cloud, mais aussi d'un serveur cloud a un autre pour exécution. En général, la migration
des taches entre serveurs cloud n’est considérée comme bénéfique que si le temps d’exécution
des taches prévu au niveau du serveur cloud secondaire est inférieur a celui du serveur cloud
primaire [20]. Notez cependant que la migration des taches entraine un délai de migration
supplémentaire. Par conséquent, pour un gain de migration de tache et un temps de latence
donné, la question de savoir comment et ot une tache doit migrer est essentielle. Pour répondre
a cette question, plusieurs criteres de décision de migration doivent étre pris en compte, tels
que I’état des serveurs de destination actuels et provisoires, les propriétés des taches et la
latence de migration des taches, entre autres.

A T'heure actuelle, il n’existe que quelques études sur la migration collaborative des taches
exploitant les agents basés sur le cloud, par exemple, la sélection des agents cloud pour la
migration des taches basée sur la prédiction de la charge [21], le délai de service [22], la distance

[23], la disponibilité des ressources (c’est a dire., la vitesse du CPU et la charge de travail)

xxi1



10-100 km

FTTx Subscribers

QONU-MPP

3 Internet

Central cloud

¢ core )

10G-EPON
(TDM ar WDM)

oLT

Central office /
Splitter/Combiner(1:N)

MU: Mobile user

MP/MAP: Mesh point/Mesh access point

OLT/ONU: Optical line terminal/Optical network unit
ONU-MPP: Integrated ONU mesh portal point
ONU-eNB: Integrated ONU LTE enhanced nodeB
—— Fiber link Wireless link

Figure R.7: Infrastructure Internet tactile basée sur FiWi, basée sur des cloud-cloudlets in-
tégrés, des cobots, et des MU humaines pour la migration de taches HART.

[24]-[25], 'emplacement de téléchargement des résultats des taches des utilisateurs mobiles
[19], et la consommation d’énergie [26]. Notez que ces études existantes sur la migration des
taches n’ont pris en compte que le probleme de la migration des taches d’'une MU vers un
robot approprié ou vers un agent cloud, plutot que les deux. Aucune des études existantes ne
s’est concentrée sur la participation/coopération active de tous les membres de HART, a savoir
les MU (humains), les agents (cloud central/cloudlet), et les robots collaboratifs (cobots), ce
qui est nécessaire pour 'exécution correcte des taches HART impliquant a la fois des sous-
taches physiques et cognitives. Une autre question ouverte est de savoir comment coordonner
la migration des taches centrée sur HART de MUs vers les noeuds collaboratifs (cobots et
agents) et entre les noeuds collaboratifs (cobot vers agent ainsi que d’agent a agent).

Cette partie de la these vise a aborder certains des défis de recherche ouverts susmention-
nés dans le domaine de la migration des taches. Nous introduisons d’abord une architecture
Internet tactile intégrée a deux niveaux cloud-cloudlet basée sur FiWi pour 'exécution de
taches HART en tenant compte de la couverture cellulaire et WiFi (voir Fig. R.7). Apres
avoir décrit les caractéristiques clés des taches physiques vs. taches cognitives et robot col-
laborative (cobot) vs robot autonome, ce travail présente un schéma de migration de taches
HART approprié, prenant en compte les caractéristiques de différentes taches (délai, charge de
travail, taille des données) et les caractéristiques de noeud collaboratif (disponibilité, vitesse

de traitement des taches, énergie restante), et les caractéristiques de mobilité de 1'utilisateur.
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Figure R.8: Temps de réponse des taches, consommation d’énergie, efficacité du temps de
réponse des taches, et évaluation des retards de bout en bout.

Plus précisément, ce travail analyse la performance de notre projet de migration de taches
HART, en tenant compte de la migration de taches inter-agents (cloud & cloudlet et vice
versa) et intra-agents (cloud a cloud et cloudlet a cloudlet) dans les infrastructures Internet
tactiles basées sur FiWi. Pour déterminer le schéma optimal de migration des taches, nous
étudions les types suivants de schéma de migration des taches en utilisant un certain nombre
de mesures de performance spécifiques a HART: (i) schéma c2a (cobot & un emplacemen-
t de tache donné vers un agent cloudlet qui est proche de 'emplacement de la téache), (ii)
schéma c2a (cobot vers agent cloudlet qui est proche de 'emplacement de téléchargement des
résultats de tache de I'MU), (iii) schéma c2a (cobot vers cloud distant), (iv) pas de migration,
(v) schéma c2¢ (cobot vers voisin cobot) migration.

Les figures R.8(a)-(c) évaluent le temps de réponse aux taches et ’évaluation de la con-
sommation d’énergie des différents schémas de migration des taches en fonction de la taille
totale des données d’entrée des taches. La figure montre que le temps de réponse aux taches
et la consommation d’énergie de tous les schémas comparés augmentent pour augmenter la
taille des données d’entrée des taches. Notez, cependant, que les schémas c2a (cloudlet pres
de 'emplacement de la tache) et c2a (cloudlet pres de 'emplacement de téléchargement des

résultats) atteignent le temps de réponse minimum et la consommation d’énergie minimum de
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la tache dans les scénarios 1 et 2, respectivement. Ceci est dii au fait que dans le scénario 1, la
taille des données d’entrée des taches migrées (s¢) est plus grande que la taille des données de
sortie des taches migrées (s9), alors que dans le scénario 2, la relation entre la taille des données
d’entrée des taches migrées et la taille des données de sortie est inversée. La relation inverse
entre la taille totale des données d’entrée et de sortie des taches se traduit par une latence
minimale de migration des taches (a la fois en amont et en aval) pour le schéma c2a (clouldet
pres de 'emplacement des taches) et c2a (cloudlet pres de 'emplacement de téléchargement
des résultats) dans les scénarios 1 et 2, respectivement. Pour mettre en évidence l'impact de
la migration des taches entre deux agents cloud, la figure R.8(d) compare efficacité du temp-
s de réponse des taches des deux schémas différents : la migration inter-agent (du cloudlet
vers le cloud central) et intra-agent (du cloudlet vers un autre cloudlet). La figure montre
que la migration de I’agent intra-cloud offre un meilleur temps de réponse aux taches que
son homologue de 'agent inter-cloud.Cela s’explique par le fait que la migration intra-agent
souffre d’une surcharge de communication de migration de taches plus faible (dans le scénario
1). Ainsi, la migration intra-agent est plus préférable lorsqu’un échec se produit pendant
I’exécution de la tache de ’agent.

La figure R.8(e) montre que le délai d’exécution de bout en bout des différents schémas
de migration des taches reste faible pour une faible charge de trafic FiWi p;, mais augmente
rapidement pour une charge de trafic plus élevée p;. Notez que le délai d’exécution des taches
de bout en bout est minimal dans le schéma de migration c2a (cloudlet pres de 'emplacement
des taches). Par exemple, pour une taille de données d’entrée de 300 Mo et une charge de
trafic FiWi de 0.8, la migration c2a (cloudlet pres de 'emplacement de la tache) offre un
délai d’exécution des taches de bout en bout de 15% and 21% inférieur a celui du schéma
de migration de non-migration et c2c, respectivement. La figure R.8(f) illustre le retard
d’exécution de bout en bout des différents schémas de migration des taches pour différents
temps de cycle d’interrogation T,. La figure montre que pour les grands T, le délai d’exécution
des taches des différents schémas de migration des taches reste élevé, mais diminue rapidement
pour les petits T.. Notamment, le schéma de migration c2a (cloudlet pres de 'emplacement
des taches) surpasse ses homologues en termes de délai d’exécution des taches de bout en bout

et convient donc mieux a 'exécution de taches HART sensibles aux retards.

Schéma de planification multitdche prenant en compte la commu-
nauté et la latence et le schéma d’allocation de bande passante basé
pré-transfert dans les réseaux améliorés FiWi

La majorité des politiques de planification des taches existantes se concentrent sur le déchargement

de taches numériques a forte intensité de calcul sur des serveurs cloud ou des appareil-
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Figure R.9: Allocation de ressources basée sur le transfert préalable pour le déchargement
multitache.

s mobiles plutot que sur les deux, ce qui fait qu'un nombre important de ces politiques
s’appliquent a la planification hors ligne. Pour ce faire, le planificateur de taches doit dis-
poser d’informations a priori sur les taches futures (p. ex., heure d’arrivée, date limite). Les
schémas d’ordonnancement hors ligne sont bien adaptés aux taches périodiques, mais devien-
nent moins adaptés a I'exécution de taches apériodiques en temps réel [25],[27]. En raison de
leurs besoins incertains en ressources cloud, I'exécution des taches apériodiques en temps réel
exige un schéma de planification des taches en ligne (dynamique) approprié pour maintenir les
assurances de qualité de service (QoS, pour ‘quality of service’). Les schémas de planification
des taches en ligne inadéquats souffrent d’une latence importante de migration des taches en
raison de I'indisponibilité des ressources des acteurs pour le traitement des taches déchargées
[28]. De plus, 'absence d’une stratégie appropriée d’attribution de la bande passante peut
entrainer des temps d’attente plus longs pour la transmission des données et la réception des
résultats pendant le déchargement des taches. Ainsi, 'un des défis de 'ordonnancement des
taches en ligne est de minimiser la latence d’exécution des taches, y compris le traitement des
taches et le délai de communication de déchargement, en atténuant 'incertitude de la gestion
des ressources en nuage/bande passante et 1'évitement des pannes [29].

La plupart des études existantes sur le déchargement des taches de calcul [17],[30],[25],[29]
appliquent la technique de migration conventionnelle, ot la prochaine tache de calcul d'une MU
donnée ne peut étre transférée au serveur cloud qu’'une fois la tache précédemment déchargée.
Par conséquent, le transfert/migration conventionnel souffre d'une latence de déchargement
multitache accrue. Pour surmonter ces lacunes dans le schéma du transfert /migration conven-
tionnel, nous proposons un schéma de gestion des ressources de bande passante conscient du

pré-transfert /pré-migration de taches (voir Fig. R.9) pour décharger plusieurs taches HART,
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ou la totalité ou une partie des données d’entrée de la tache suivante de MU est transférée au
serveur cloud pendant la période de calcul de la tache précédemment déchargée.

Pour réduire la latence d’exécution des taches, cette partie de la these propose un schéma
d’ordonnancement de taches multiples a ressources qui prend en compte non seulement la
conscience de ressources I’hote isolé et des cluster communautaire (robot/agent de cloud), mais
aussi bien le pré-transfert/ pré-migration du déchargement des taches et le schéma d’évitement
des défaillances approprié pour I'exécution des taches HART. Pour déterminer 1’ordre optimal
de planification des taches, cette partie de la these compare les schémas suivants: Premier
arrivé premier servi (FCFS), premier délai limite de la tache en premier (EDF), et politique
concurrente (CP). Nous comparons la performance de nos schémas proposés de déchargement
de taches en fonction des conscience de la communauté et conscience de la latence avec un
schéma de chargement de taches, un schéma de déchargement de tache a la aléatoire, et des
schéma de déchargement de tache sensible a la communication en termes d’une variété de
métriques de performance spécifiques a HART.

Contrairement aux travaux précédents, notre systéme de planification des taches proposé
effectue simultanément la sélection du robot/agent et 'assignation de la bande passante,
réduisant ainsi la latence d’exécution des taches multiples. De plus, dans ce travail, la durée
totale du service des taches HART est calculée en tenant compte du traitement de la charge
de travail, de la transmission et du délai d’attente. Afin d’éviter des frais supplémentaires
de traitement des taches en raison d’une défaillance (par exemple, I'inaccessibilité des robot-
s/agents), nous concevons un schéma de sélection optimal pour éviter les défaillances. Plus
spécifiquement, dans notre schéma de chargement de taches, les échecs d’exécution des taches
peuvent se produire pendant le traitement complet des taches d’un robot et le processus
de transfert des résultats. Inversement, dans notre schéma de déchargement des taches,
les échecs d’exécution des taches peuvent se produire pendant le traitement physique d’un
robot et le traitement des sous-taches numériques d’'un agent ou pendant le processus de
téléchargement des sous-taches numériques et de téléchargement des résultats. Pour détecter
les défaillances pendant I'exécution des taches, le planificateur de taches de 'ONU-MPP diffuse
périodiquement des messages de pulsation & tous les robots/agents et attend leurs réponses
a des points/moments de prédéfinis. Le planificateur de taches est capable de détecter les
pannes d’inaccessibilité d’un robot /agent lorsque les réponses sont absentes a plusieurs points
de controle ultérieurs. Nous appliquons un schéma d’évitement des défaillances, qui peut étre
une récupération apres échec ou un systeme de tolérance aux pannes (sélectionné en fonction
du délai de service minimum prévu).

Ensuite, pour démontrer 'impact de notre schéma d’attribution de bande passante tenant

compte du pré-transfert/pré-migration de taches, la figure R.10(a) compare efficacité du
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Figure R.10: Temps de service moyen des taches, temps de réalisation, et évaluation de
lefficacité du temps de transfert préalable.

temps de pré-transfert de taches (p,) de notre schéma de déchargement de taches proposé
(avec le pré-transfert) vers d’autres schémas pour varier la taille des données d’entrée des
taches de déchargement (d’). Ce chiffre indique clairement que pour les valeurs plus élevées
et plus faibles de la taille des données d’entrée des taches de déchargement, une plus grande
efficacité du temps de pré transfert des taches est obtenue dans notre schéma de déchargement
des taches avec pré-migration, qui est supérieur a celui des autres schémas, y compris le schéma
de déchargement de taches avec transfert/migration conventionnel, schéma de déchargement
de taches aléatoires, et des schéma de déchargement de tache sensible a la communication.

Ceci est di au fait que, contrairement a notre schéma de déchargement proposé (conscient
de la communauté et de la latence), tous les schémas alternatifs reposent sur la transfert con-
ventionnelle pour le déchargement, souffrant ainsi d’une latence de déchargement multitache
plus élevée. De plus, dans le schéma de déchargement des taches que nous proposons, chaque
tache est assignée a un nceud de traitement des taches approprié (hote et communautaire
cluster robot/agent) en tenant compte non seulement des temps de traitement des taches
plus courts, mais aussi des délais de transmission et d’attente. Inversement, dans le schéma
de chargement des taches, la tache HART complete n’est traitée que par le robot hote ini-
tialement sélectionné, souffrant ainsi d’un retard de traitement numérique de sous-tache plus
élevé que le schéma de déchargement des taches proposé. Dans le schéma de déchargement de
tache aléatoire et de communication, les nceuds de traitement de taches sont sélectionnés sur
la base d’une base aléatoire et d'un délai de communication inférieur. Ainsi, les schémas de
déchargement des taches aléatoires et de communication traditionnels ne peuvent pas améliorer
le délai de service moyen de notre schéma de déchargement de tache proposé en raison de leur
surcharge de traitement des taches déchargées plus élevée.

La figure R.10(b) montre la performance optimale de la sélection du service de défaillance
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de notre schéma de déchargement des taches proposé. La figure révele que le temps moyen
de service de tache augmente pour augmenter le temps de récupération de la connexion de
service (R) dans tous les schémas considérés. La figure montre également que notre schéma de
déchargement de tache proposé avec tolérance de panne permet d’obtenir le délai de service
moyen le plus bas. Notez que les schémas de déchargement de taches et de chargement
de taches avec reprise apres échec présentent une durée de service moyenne des taches plus
faible que les schémas avec tolérance de panne. Ceci est du au fait que dans le schéma de
tolérance aux pannes, ’exécution de la tache reprend a partir du dernier point de controle
apres récupération a partir de la défaillance de la connexion. Ainsi, nos résultats suggerent
que, pour éviter une défaillance, notre mécanisme de tolérance de panne proposé est plus
efficace dans le schéma de déchargement de tache considéré que les autres mécanismes de
récupération d’échec.

La figure R.10(c) illustre le temps global d’acheévement des taches de notre proposition de
déchargement des taches et et de chargement de taches schémas en fonction du temps de cycle
de scrutin (¢.). La figure montre que le délai global d’achévement des taches est plus élevé
dans tous les schémas comparés pour les gros t.. Il est important de noter que ce chiffre montre
que les temps de réalisation des taches a distance (ffct’r) et temps de réalisation des taches a
proximité (ffct’n) sont minimes dans notre proposition de schéma de déchargement des taches
tenant compte en fonction des conscience de la communauté et conscience de la latence. Par
exemple, pour ¢, = 400 ms and k = 4, le gain du temps d’achevement des taches a proximité et
a distance réalisé dans notre schéma de déchargement des taches proposé est d’environ 23.7%
and 24.1% plus élevé que dans le schéma de chargement des taches, respectivement. Ainsi,
notre schéma de déchargement des taches prenant en charge la latence et la communauté
proposé, qui s’appuie a la fois sur la capacité de tolérance aux pannes et la capacité de
prétransfert des taches, est une solution prometteuse pour une collaboration HART a faible

latence dans I'Internet tactile émergent.

Coordination des taches en fonction des préférences de
I’utilisateur et allocation proactif de la bande passante
dans les infrastructures d’un réseau FiWi

La recherche dans le domaine de I'exécution des taches HART en fonction des préférences
de l'utilisateur en est encore a ses débuts. Au meilleur de notre connaissance, aucune étude
existante ne traite du probleme de la mise en cache et du calcul de taches HART sensibles aux
délais et tolérants aux retards en tenant compte a la fois de la connaissance des ressources du

robot/agent dédié et non dédié et de l'allocation préemptif de la bande passante. A cette fin,
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Figure R.11: Robots et agents dédiés et non dédiés locaux et non locaux.

en plus d'une sélection appropriée de ’agent cloud, les schémas de déchargement de taches
précédemment proposés [31], [32], [33] visait a résoudre le probleme de la sélection de 'interface
sans fil appropriée (4G LTE Advanced ou WiF1i) pour le données de tache de transfert ou le
données de tache de téléchargement, mais pas les deux en méme temps. Pour éviter des
délais et des couts d’'monétaires supplémentaires tout en atténuant les différentes demandes
de taches d’une utilisateurs mobiles, nous présentons un cadre de coordination des taches
HART conscient en fonction des préférences de 'utilisateur qui sélectionne le robot/agent
(dédié ou non dédié) appropriés pour la mise en cache et ou calcul des exigences d’exécution
des taches HART. De plus, pour faire face a la variation des ressources en bande passante, ce
travail décrit une politique proactif d’allocation de bande passante pour I'exécution de taches
HART sensibles aux délais et tolérants aux retards.

De plus, pour examiner le compromis de performance entre les schémas de réduction des
couts de retard (DCS) et de réduction des couts monétaires (MCS) pour 'exécution de d-
ifférentes taches HART, cette partie de la these développe un cadre analytique en prenant
en compte les agents dédié/non dédié avec/sans capacités de cache et en comparant les trois
schémas de déchargement multitaches DCS et MCS suivants: (i) débit maximale et retard
minimale (MTMD), (i7) débit maximale seulement (MT), and (i77) retard minimale seulement
(MD). Contrairement aux études existantes, ce travail prend en compte les acteurs locaux et
non locaux (dédié/non dédié) pour l'exécution des taches. Contrairement aux acteurs non

locaux du cloud/robot (dédié/non dédié), les acteurs locaux (dédié/non dédié) sont situés
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Figure R.12: (a) Schéma d’allocation de bande passante proactif et (b) schéma de coordination
des taches.

dans la zone de couverture de la station de base hote (ONU; dans la Fig. R.11), ou la tache
physique doit étre exécutée. Alors que les acteurs non locaux sont situés sous n’importe quelle
couverture de station de base (ONU, dans la Fig. R.11) sauf la station de base hote.

La figure R.12(a) illustre plus en détail notre systeme d’allocation de bande passante
proactif a deux couches TDMA pour I'exécution de différentes taches HART. Dans le schéma
que nous proposons, nous divisons les utilisateurs de déchargement de taches en deux groupes
(voir Fig. R.12.b), a savoir les utilisateurs sensibles aux retards (appliquant la politique DCS)
et les utilisateurs tolérants aux retards (appliquant la stratégie MCS). Notez que la sous-tache
physique/numérique des utilisateurs de la politique DCS est assignée a un acteur approprié
qui peut étre un robot/agent de cloud dédié ou non dédié, alors que 'assignation de sous-
tache physique/numérique des utilisateurs de la politique MCS est limitée a un robot/agent
de cloud dédié. De plus, dans le schéma que nous proposons, les utilisateurs de la politique
DCS déchargent leurs sous-taches numériques sensibles au retard vers des agents dédiés ou
non dédiés appropriés pendant le période de déchargement de ’ONU associé. Inversement, les
utilisateurs de la politique MCS déchargent leurs sous-taches numériques tolérantes au délai
a des agents dédiés appropriés uniquement pendant la période de temps d’'une autre ONU en
utilisant les liaisons par fibre optique d’interconnexion point a point (IF). Ainsi, en effectuant
le déchargement de tache tolérant les délais pendant la période de temps d’une autre ONU,
notre schéma proposé est capable d’économiser a la fois la bande passante et le cotut monétaire
pour les utilisateurs de la politique MCS.

La figure R.13(a) illustre I'impact de la durée du cycle de scrutin (¢.) sur le délai moyen

d’exécution des taches de nos politiques DCS et MCS proposées. La figure montre que le délai
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Figure R.13: Temps moyen d’exécution des taches, latence d’acces au contenu de la mise en
cache, et évaluation de la performance du ratio d’économie monétaire.

moyen d’exécution des taches augmente avec 'augmentation de t.. La figure révele que pour
les petites et grandes valeurs de t., la politique DCS (MTMD) permet d’obtenir un gain de
temps moyen d’exécution des taches plus élevé que les politiques alternatives. Ceci est du au
fait que les utilisateurs de la politique DCS donnent un acces préemptif aux acteurs et aux
ressources en bande passante pour exécuter leurs taches sensibles au retard. Par exemple,
pour t. = 0.3 s, le gain moyen de temps d’exécution des taches de la politique DCS (MTMD)
par rapport a la politique MCS (MTMD) est de 15,42%, contre seulement 6,03% pour la
politique DCS (MD). Ce résultat indique que pour I'exécution de taches sensibles au retard,
la politique DCS (MTMD) est la solution supérieure. La figure R.13(b) illustre le délai moyen
d’acces au contenu cache pour nos politiques DCS et MCS policies. La figure montre que
pour une taille croissante des données de mise en cache (s,), le délai d’acces au contenu de
la mise en cache augmente rapidement dans tous les schémas comparés. De plus, la figure
indique que le délai d’acces au contenu du cache devient le plus bas dans la politique DCS,
si le cloudlet local de I’hote récupere le contenu mis en cache a partir d'un autre cloudlet
local. La figure montre également que le délai d’acces au contenu du cache devient le plus
élevé dans la politique MCS, si le cloudlet local de 'hote récupere le contenu mis en cache
sur le serveur cloud distant. Par exemple, pour s, = 80 Mo, m = 1, et n, = 4, le schéma
DCS (cloudlet local vers un autre mise en cache de cloudlet local) permet d’obtenir un gain
de retard d’acces au contenu du cache d’environ 25% et 31% plus élevé que les schémas MCS
(cloudlet local vers un autre mise en cache de cloudlet local) et MCS (cloudlet local vers un
cloud distant), respectivement. La figure R.13(c) montre clairement quune pénurie de robots
dédiés () a un impact négatif sur la performance en matiere d’économie monétaire de nos
politiques proposées en matiere de DCS et de MCS. La figure révele que pour différents 3, le
ratio d’économie monétaire est maximum dans la politique de MCS (MTMD). Il est a noter

que l'utilisation d’acteurs dédiés et non dédiés entraine des cotits monétaires supplémentaires

XXXI11



dans la politique DCS, par opposition a la politique MCS (MTMD). Par exemple, lorsque le
nombre de taches (n;) est de 10 et S = 6, le ratio d’économie monétaire dans la politique MCS
(MTMD) par rapport aux politiques DCS (MTMD) et DCS (MD) est respectivement de 74%
et 80%.

Conclusions

Contrairement a 1'loT sans aucune implication humaine dans ses communications machine-
machine sous-jacentes, I'Internet tactile implique la collaboration centrée sur HART et permet
ainsi une approche de conception centrée sur ’humain pour créer et consommer de nouvelles
expériences immersives via I'Internet. Cette these a tenté de faire la lumiere sur 'augmentation
(c’est a dire., l'extension des capacités) de '’humain par le biais du cadre d’exécution des
taches collaboratives centré sur HART. Pour récolter les bénéfices de la convergence homme-
machine, cette these a présenté un cadre de coordination des taches approprié pour orchestrer
efficacement la collaboration en temps réel entre les utilisateurs mobiles humains, les agents
informatiques centralisés et décentralisés (cloud/cloudlets), et les robots collaboratifs (cobots)
a travers les infrastructures réseau convergentes FiWi. A la lumiere de I’émergence de I'Internet
tactile qui s’oriente vers une décentralisation basée sur I'informatique de pointe, les stations
de base intelligentes, I'informatique cloud collaboratif (robots et cloudlets), les capacités de
traitement et de stockage distribuées inhérentes aux réseaux améliorés FiWi ont été exploitées
pour l'exécution de taches locales et non locales centrées sur HART. La these de doctorat
portait sur la coordination des taches HART sur les réseaux améliorés FiWi en se concentrant
sur trois questions majeures, a savoir l'attribution des taches en fonction de la puissance et
de la latence, I’évitement des pannes et l'attribution des ressources de bande passante en
fonction du pré-transfert. Pour ’exécution rentable des taches HART, le premier chapitre de
la these a examiné les défis de recherche existants, les principales technologies habilitantes et
les différentes techniques de communication et de calcul.

Pour rendre plus efficace le processus d’attribution des taches de 'homme a robot, nous
avons proposé dans le chapitre 2 un schéma d’attribution des taches locales et non locales
pour I'exécution des taches demandées par les utilisateur mobile selon plusieurs parametres
de conception clés tels que la disponibilité, I’ensemble des compétences, la distance par rap-
port a I'emplacement des taches, et I’énergie restante des robots. De plus, pour réduire les
défaillances pendant I'exécution des taches, nous avons présenté un mécanisme de signalement
des défaillances assisté par robot voisin. Nos résultats montrent que le schéma de sélection
du robot basée sur le temps d’exécution minimum estimé surpasse les schémas de sélection

traditionnels basés sur la distance minimale et la priorité en termes de délai de bout en bout
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et d’énergie résiduelle moyenne. De plus, nous avons observé que le délai d’attribution des
taches non locales est plus élevé que le délai d’attribution des taches locales.

Au chapitre 3, nous avons présenté une stratégie de calcul collaboratif qui combine la
sélection d’un robot hote approprié pour l'exécution de sous-taches de surveillance physique
(détection) et la sélection de nceuds collaboratifs pour le déchargement de sous-taches de
calcul. Nous avons exploité des serveurs cloud conventionnels, des cloudlets décentralisés
et des robots voisins en tant que nceuds collaboratifs pour le déchargement des calculs en
support de 'exécution des sous-taches de calcul demandées par un robot hote. Les résultats
des schémas d’exécution des taches collaboratives et non collaboratives démontrent que pour
un scénario typique, le schéma d’exécution des taches collaboratives améliore le temps de
réponse des taches jusqu’a 8.75% et la consommation d’énergie jusqu’a 14.98% par rapport
au schéma d’exécution des taches non collaboratives.

Pour une exécution efficace des taches, le chapitre 4 proposait un schéma de migration
des taches tenant compte du contexte pour orchestrer efficacement la collaboration en temps
réel entre les utilisateurs mobiles humains, les agents informatiques centraux et décentralisés
(cloud/cloudlets), et les robots collaboratifs (cobots, pour ‘collaborative robots’) a travers
les infrastructures de communication FiWi convergentes. Nous avons examiné la question de
savoir si et, dans I'affirmative, quand et o une tache centrée sur HART devrait étre migrée au
mieux. Pour une exécution efficace des taches, la décision de migration est prise en fonction
des capacités de traitement des taches des agents et des cobots, du délai d’exécution des
taches, de la consommation d’énergie des cobots et des appareils mobiles concernés et de la
latence de migration des taches. Nos résultats montrent que pour une sous-tache cognitive
typique de 600 Mo, le schéma de migration des taches cognitives de cobot a agent (cloudlet
pres de emplacement des taches) permet d’améliorer de plus de 20% le temps de réponse des
taches et d’économiser 23% d’énergie par rapport au schéma traditionnel de non-migration.
Les résultats montrent également que la migration sous-taches cognitives intra-agent permet
d’obtenir un gain de temps de réponse aux taches plus élevé que la migration inter-agent.

Dans le chapitre 5, nous avons étudié un schéma de planification de taches HART multiple
sensible a la latence et a la communauté en utilisant des informations en temps réel sur les
demandes de taches arrivant pour les robots/agents en cluster isolés et communautaires. Plus
précisément, nous avons étudié l'ordre optimal de planification multitaches et la stratégie
d’affectation des ressources pour I'exécution de taches HART basées sur le chargement et le
déchargement, avec des capacités de pré-transfert de taches et de tolérance de pannes. Pour
récolter les bénéfices du pré-transfert de taches pour I'exécution de plusieurs taches HART,
nous avons présenté un nouveau schéma d’allocation de bande passante tenant compte du pré-

transfért /pré-migration qui permet de gérer simultanément le trafic de données a large bande
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et de déchargement de taches. Les résultats que nous avons présentés montrent que pour un
systeme type de 32 ONU-MPP et un temps de cycle de vote de 100 ms, notre proposition de
schéma de déchargement de tache pré-transfert permet d’obtenir un gain de temps d’exécution
des taches allant jusqu’a 31.3% et 32.7% par rapport au schéma de chargement des taches pour
I’exécution des taches HART a proximité et a distance, respectivement.

Enfin, au chapitre 6, pour réduire au minimum les délais d’exécution des taches et les cotits
monétaires, nous avons mis au point un cadre de coordination des taches HART en fonction
des préférences de 'utilisateur qui sélectionne les dédié /non-dédié robot/cloud appropriés pour
exécuter différentes taches HART sensibles aux délais et tolérants aux retards (mise en cache et
informatique taches HART). Pour faire face a des ressources en bande passante limitées, nous
avons proposé une politique proactif d’allocation de bande passante pour I’exécution de taches
HART sensibles aux délais et tolérants aux retards. Nous avons observé que pour un nombre
de taches de 10 et 8 robots dédiés disponibles, notre politique DCS (MTMD) proposée présente
un ratio d’économie de temps jusqu’a 30.5% plus élevé et un ratio d’économie d’'monétaire de
63.6% plus bas que la politique alternative MCS (MTMD).

La derniere partie de la these décrit enfin les orientations futures de la recherche qui
s’appuient sur les projets que nous proposons. Pour libérer le plein potentiel des applications
HART, une orientation de recherche future implique le développement de schémas de coordina-
tion des taches HART pour I'exécution de taches physiques et numériques basés sur 1'utilisation
partagée de robots/agents appartenant a l'utilisateur et au réseau. Plus précisément, la ques-
tion de savoir quand, comment et dans quelles circonstances la propriété des robots mobiles
et des agents dans le cloud devient bénéfique en termes de dépenses opérationnelles (OPEX,
pour ‘operational expenditures’) par tache exécutée représente un probleme de recherche in-
téressant. De plus, la recherche dans le domaine de la migration des taches conjointes basées
sur la communication O20 (O20, pour ‘online to offline or offline to online’) ainsi que des
schémas appropriés de partage de la bande passante, est une autre direction prometteuse. Pour
le déploiement rentable d’applications de réalité mixte, le développement de techniques adap-
tatives de synchronisation en temps réel, de communication et de calcul ouvre une multitude

d’opportunités de recherche futures.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Tactile Internet: Vision and Requirements

In the last decade, rapid technological advancement has changed people’s way of living and
their future expectations. We have witnessed tremendous improvements of mobile Internet
technology to connect people anytime and anywhere [1]. Beside voice and data communica-
tions, the mobile Internet enables real-time access to richer content (e.g., video streaming,
instant messaging, file sharing) [2]. In order to provide ubiquitous connectivity for machines
and devices, the research focus of mobile communications has been shifting towards the e-
merging Internet-of-Things (IoT), which enables applications of machine-to-machine (M2M)
or machine type communication (MTC) with a focus on smart devices such as robots, sensors,
actuators, and wearable devices [3]. Once machines/robots become connected to the Internet,
the next natural leap is to control them remotely for delivering low-latency human-machine
interaction centric services (e.g., 3D gaming, powered exoskeleton). This vision of the In-
ternet is now widely known as the so-called Tactile Internet, which has recently emerged to
steer /control virtual and physical objects of our surroundings and environments and allow one
to transmit touch and actuation in real-time [4].

With the advent of commercially available remote-controlled robots/machines, the Tac-
tile Internet may be the precursor of an age of technological convergence, where tasks of our
everyday life (e.g., cognitive assistance in household activities) will be increasingly done by
robots/machines that allow us to see, hear, touch, and manipulate objects in places where we
are not physically present. In various cyber-physical systems (CPSs) that harness real-time
human-machine interaction (e.g., remote training, mission-critical rescue operations), includ-
ing virtual and augmented reality, an extremely low round-trip latency is required to match
human interaction with the environment [3]. An important CPS example is the smart grid and

its fast response time requirements of 1 ms in the event of (cascading) power network failures.



Current cellular and WLAN systems miss this target by at least one order of magnitude. A
very low round-trip latency in conjunction with ultra-high reliability and essentially guaranteed
availability for control communications have the potential to move today’s mobile broadband
experience into the new world of the Tactile Internet for a race with machines (rather than
against) [5]. By offering low-latency communications, the Tactile Internet is expected to cover
a wide range of application fields, including remote health-care, autonomous/assisted driv-
ing, entertainment, and industry automation. In most of these industry verticals, very low
latency and ultra-high reliability are key for realizing immersive applications such as robotic
tele-operation [6]. From the business perspective, a recent market study has predicted that
the Tactile Internet could create commercial value of up to US$20 trillion worldwide, which
is around 20% of today’s overall GDP [34].

The evolutionary leap of the Tactile Internet is shown in Fig. 1.1(a). The convention-
al mobile Internet facilitates voice and data communications and provides the medium for
audio/visual transport. Conversely, the Tactile Internet will enable remote real-time human-
to-machine/robot (H2M/R) interaction by delivering tactile/haptic sensations [35]. It holds
promise of an Internet that will enable the delivery of skills in digital form globally and pro-
vide a true paradigm shift from traditional content-delivery networks to labor/skill-set delivery
networks via tactile/haptic devices [36]. The Tactile Internet envisions to enable reliable and
adaptive networked control systems, where master and slave domains are connected and high-
ly dynamic processes are controlled remotely. Unlike the mobile Internet and IoT, the Tactile
Internet will facilitate haptic communications by providing the medium for transporting hap-
tic senses (i.e., touch and actuation) in real-time in addition to conventional non-haptic data,
video, and audio traffic. Unlike auditory and visual senses, the sense of touch occurs bilater-
ally in haptic communications, i.e., it is sensed by imposing a motion on the environment and
feeling the environment by a distortion or reaction force. Haptic information is composed of
two distinct types of feedbacks: kinesthetic (i.e., force, torque, position, velocity) and tactile
feedback (i.e., texture, friction). The key difference between haptic and non-haptic control is
that haptic feedback is exchanged through a global control loop with stringent latency con-
straints, whereas non-haptic feedback is only audio/visual and there is no notion of a closed
control loop [37].

Beside haptic communication, another distinct aspect of the Tactile Internet is the fact
that it should amplify the differences between machines and humans and drive the symbiosis
between man and machine. This design approach is known as Human-Agent-Robot Teamwork
(HART), in which humans, agents (e.g., cloud servers), and robots work collaboratively to
accomplish different types of task (e.g., remote medical assistance, remote sensing, remote

food supply) [11]. HART differs from the traditional approaches (either human-only activity
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Figure 1.1: (a) Evolutionary leap of the Tactile Internet; (b) the three lenses of IoT, 5G, and
the Tactile Internet: commonalities and differences.

or machine-only activity), which have been viewing humans and machines as rivals, each side
fighting for the other’s job. In HART, humans work with machines to exploit what each party
does best. On the one hand, humans may train and manage machines to perform challenging
tasks, explain machine outcomes, and sustain machines in a responsible manner. On the other
hand, machines may amplify humans’ insights and their intuition by leveraging data analytics,
interact with humans at scale using novel interfaces, and embody physical attributes that help

extend a person’s capabilities. Details on characteristics and challenges of HART-centric task



execution will be further discussed in Section 1.1.4.

To facilitate a better understanding of the Tactile Internet, Fig. 1.1(b) depicts the common-
alities and subtle differences between IoT, 5G, and the Tactile Internet. The high availability,
ultra-fast reaction times, and carrier-grade reliability of the Tactile Internet will add a new
dimension to human-machine interaction by enabling tactile and haptic sensations. On the
other hand, future 5G networks will have to be able to cope with the unprecedented growth
of mobile data traffic as well as the huge volumes of data generated by smart devices enabling
the IoT. Towards this end, the 5G technology vision foresees 1000-fold gains in area capacity,
10 Gb/s peak data rates, and connections for at least 100 billion devices. The key challenge
of 5G wireless access and core network architectures is to make it possible to address novel
machine-centric use cases such as mission-critical traffic safety and control of critical infras-
tructures (e.g., smart power grids), which are currently not addressed by cellular networks.
Some of these envisioned 5G use cases require very low latency and ultra-high reliability with
essentially guaranteed availability. Thus, beside very low latency, 5G has to enable connectiv-
ity, whose reliability will have to be orders of magnitude higher than in current radio access
networks. Unlike the previous four generations, 5G will also be highly integrative. The inte-
grative vision of 5G will lead to an increasing integration of cellular and WiFi technologies
and standards. Another important aspect of the 5G vision is decentralization by evolving
the cell-centric architecture into a device-centric one and exploiting edge intelligence in close
proximity to wireless end users (humans or machines).

Clearly, the discussion above shows that there is a significant overlap among IoT, 5G, and
the Tactile Internet, though each one of them exhibits unique characteristics, as shown in Fig.
1.1(b). The major differences may be best expressed in terms of underlying communications
paradigms and enabling end devices. IoT relies on M2M communications with a focus on smart
devices (e.g., sensors and actuators). In co-existence with emerging MTC, 5G will maintain
its traditional human-to-human (H2H) communications paradigm for conventional triple-play
services (voice, video, data) with a growing focus on the integration with other wireless tech-
nologies (most notably WiFi) and decentralization. Conversely, the Tactile Internet will be
centered around H2M communications leveraging tactile/haptic devices. More importantly,
despite their differences, 0T, 5G, and the Tactile Internet seem to converge toward a common
set of important design goals: very low latency on the order of 1 ms, ultra-high reliability
with an almost guaranteed availability of 99.999 percent, H2H/M2M coexistence, integration

of data-centric technologies with a particular focus on WiFi, and security [5].



1.1.2 Recent Progress

The realization of Tactile Internet applications based on real-time H2R communications will
not be realized without addressing several system design challenges. Real-time H2R based
applications are sensitive to end-to-end latency, which comprises various delay components
(e.g., channel access, queuing, transmission, and propagation delay) experienced during the
communication process between human operators and remotely controlled robots/machines. If
the end-to-end latency exceeds the human reaction time (100 ms for auditory, 10 ms for visual,
1 ms for haptic), the experience becomes less realistic due to the large gap between stimulation
and response [3]. A service can be defined as real-time, when the communication response time
is faster than the time constants of the application. Humans have the ability to react to sudden
environmental changes by using their muscles, e.g., reacting to a sudden unforeseen incident
by hitting the brakes in a car or quickly pulling back a hand after touching a hot platter on
a stove. Note that there are two different time scales of human reaction, depending on being
prepared or unprepared for the situation. If unprepared, the sensing-to-muscular reaction
time is in the range of 500 ms to 1 s. Translating this to comparable situations in technical
applications sets the targets for specifications and design requirements. Clearly, if humans are
prepared for a situation, faster reaction times are needed, such as when driving a formula-1
car in a race [2]. To obtain a low round-trip latency, the authors of [7] emphasized that the
concept of locally available edge-cloud servers/cloudlets will enable us to realize the vision of
the Tactile Internet. Even at the speed of light (e.g., in optical fiber access networks), a round-
trip propagation delay of 1 ms requires a computing/processing server within 150 km distance
from the point of tactile interaction. This computing/processing server (e.g., cloudlet) at the
edge of the mobile radio access network (WiFi/LTE-A base station) is a central part of the
mobile-edge cloud computing concept. Cloudlets may be viewed as decentralized proxy cloud
servers with processing and storage capabilities just one or more wireless hops away from the
mobile user. Cloudlet research has tended to focus on WiFi in the past, though recently there
has been a growing interest among cellular network operators. The importance of cloudlets
can be witnessed in many end-to-end latency-sensitive applications such as augmented reality,
real-time cognitive assistance, or face recognition on mobile devices. Recently, to manage and
offload high volumes of data, Akamai developed the Fdge Redirector Cloudlet, which is an early
example of commercial applications of the cloudlet concept. In September 2014, the so-called
mobile-edge computing (MEC) industry initiative introduced a reference architecture in order
to identify challenges that need to be overcome to facilitate the implementation of cloudlet
servers [8]. MEC provides IT and cloud computing capabilities in the radio access network
(RAN) in close proximity to mobile subscribers. Moreover, MEC aims at transforming mobile

base stations into intelligent service hubs by exploiting proximity, context, agility, and speed
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Figure 1.2: The Tactile Internet: applications, challenges, and enabling technologies.

in order to create a new value chain and stimulate revenue generation. It is expected that
advanced caching, computation offloading, and user-oriented traffic management at the edge
of wireless networks will not only reduce backhaul traffic loads but also improve latency of
Tactile Internet applications.

The Tactile Internet application sets demanding requirements for future access networks in
terms of latency, reliability, and capacity. To achieve the 5G and Tactile Internet key require-
ments of very low latency and ultra-high reliability, in [9], the authors proposed the concept of
so-called FiWi enhanced LTE-A HetNets that unifies coverage-centric 4G mobile networks and
capacity-centric fiber-wireless (FiWi) broadband access networks based on data-centric opti-
cal fiber and wireless Ethernet technologies. By means of probabilistic analysis and verifying
simulations based on recent and comprehensive smartphone traces the authors showed that
an average end-to-end latency of 1-10 ms and almost guaranteed availability can be achieved
via fiber backhaul sharing and WiFi offloading capabilities. Note, however, that only con-
ventional H2H communications was considered in [9] without any coexistent H2R or M2M
communications. To realize low-latency H2R communications in the Tactile Internet, in [5]
the authors discussed the role of several key enabling technologies, including FiWi enhanced
LTE-A HetNets, cloudlets, cloud robotics, network coding, and software-defined networking
(SDN), among others, as shown in Fig. 1.2. To extend the capabilities of both tele-operated

and multi-robot based networked robotics for different Tactile Internet applications, this work



also elaborated on the importance of a cloud robotic system architecture that leverages the
combination of an ad-hoc cloud formed by M2M communications among participating robots
and an infrastructure cloud enabled by machine-to-cloud (M2C) communications between the
robots and the remote cloud. M2M communications was used to enable a team of networked
robots to complete tasks cooperatively in a distributed fashion by sharing computation/storage
resources and exchanging information via a wireless communication network. M2C communi-
cations makes it feasible to learn from the shared history of all cloud-enabled robots. Moreover,
by leveraging on the high throughput, reliability, and in particular delay performance of FiWi
enhanced LTE-A HetNets, the authors reported that integrated FiWi multi-robot infrastruc-
tures based on decentralized cloudlets will be essential for the coordination of Tactile Internet
applications based on H2R communications. For the cost-effective deployment of Tactile In-
ternet applications, the authors also identified several important research challenges such as
the design of adaptive bandwidth resource management techniques for the support of both
H2H and H2R traffic over FiWi enhanced networks with proper service coordination, H2R
task allocation strategies (optimal online/offline scheduling), failure handling, and mobility
management, among others.

To speed up the execution of Tactile Internet applications, in [38], the authors claimed
that the extensive use of a flexible network coding mechanism such as random linear network
coding (RLNC) throughout the network can improve the latency performance and reduce the
frequency of required packet retransmissions. RLNC is the most general form of network cod-
ing, whose main characteristics are recoding and a sliding window based operation. Although
network coding and SDN hold promise to reduce end-to-end latency, further investigations are
needed to explore the use of the sliding window approach in multi-path SDN based networks
to improve their throughput and resilience performance. Additionally, to provide high track-
ing performance between the master (human user) and slave (robot) domains, the authors
of [39] demonstrated that predictive resource allocation is necessary in both upstream and
downstream data transmission. Recently, in [40], the author studied the uplink radio resource
allocation problem for haptic communications, whereby the queueing delay and queueing de-
lay violation probability were taken into account. Recently, the authors of [41] optimized the
number of subchannels, the bandwidth of each subchannel, and threshold for each device to
minimize the total bandwidth required by the system for ensuring the reliability of H2R com-
munications. Further, in [42] and [43], a time division duplex (TDD) based energy-efficient
resource allocation scheme was presented for Tactile Internet users. More recently, in [44] and
[45], the authors investigated the feasibility of IEEE 802.11 hybrid coordination function con-
trolled channel access (HCCA) for delay-sensitive Tactile Internet applications under different

system settings. Note that none of the aforementioned studies considered the co-existence of



latency-sensitive Tactile Internet (haptic and non-haptic) applications and other bandwidth-
intensive H2H applications nor the impact of user mobility. Furthermore, a comprehensive
end-to-end H2R communication delay analysis including queuing delay, task processing delay,

uplink, and downlink transmission delay analysis is missing in the existing literature.

1.1.3 FiWi Enhanced Network Infrastructures

To enable cost-effective solutions for real-time Tactile Internet applications, network operators
have been looking for reliable, fast, low-cost, and future-proof communication infrastructures.
To tackle this challenge, integrated fiber-wireless (FiWi) access networks that combine the
high capacity and reliability of optical fiber networks with the ubiquity and mobility of wire-
less networks represent a promising communication platform [46], [47]. According to the IEEE
Technical Sub-committee on Fiber-Wireless (Sub-TC FiWi) integration, the role of FiWi in-
tegration is defined as follows: “The Sub-TC' on Fiber- Wireless integration addresses architec-
tures, techniques, and interfaces for the integration of fiber and wireless network segments in
a unified wired-wireless infrastructure. It does not address architectures or techniques specific
to individual optical or wireless networks.” Note that in our work FiWi networks are based
on optical fiber (Ethernet passive optical network or EPON) and wireless (wireless local area
network or WLAN) Ethernet technologies [48], which are then integrated with their cellular
counterparts, namely, 4G Long Term Evolution Advanced (LTE-A), to give rise to FiWi en-
hanced LTE-A heterogeneous networks (HetNets) [9]. For illustration, Fig. 1.3(a) depicts the
generic architecture of cloudlet empowered Ethernet-based FiWi enhanced networks, which
are based on the integration of IEEE 802.3ah/av time division multiplexing (TDM)/wave di-
vision multiplexing (WDM) EPON in the optical backhaul and IEEE 802.11ac WLAN and
4G LTE-A technologies in the wireless front-end. The optical fiber backhaul consists of a
passive optical network (PON) with a fiber range of 10-100 km between optical line terminal
(OLT) and optical network units (ONUs). The PON may comprise multiple stages, each stage
separated by a wavelength-broadcasting splitter/combiner (or alternatively a wavelength mul-
tiplexer/demultiplexer). The PON comes in two flavors: (i) TDM PON and (ii) WDM PON.
The OLT is located at the central office to serve three different subsets of ONUs through a
1:N optical splitter/combiner. To provide FTTx services (e.g., fiber-to-the-home/business),
the first subset of ONUs serves a single or multiple attached fixed (non-mobile) wired sub-
scribers, called fixed wired users, that may be located at the premises of residential or business
subscribers. The second subset of ONUs connects to a cellular network base station (BS), i.e.,
LTE macro evolved node B (MeNB), giving rise to a so-called ONU-MeNB. In the third subset,
ONUs have a mesh portal point (MPP) to interface with the WiFi mesh network, whereby
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Figure 1.3: (a) Cloudlet Empowered Ethernet based FiWi Enhanced 4G LTE-A HetNets; (b)
Coexistence of Cloudlet (D-RAN) and C-RAN over FiWi Enhanced 4G LTE-A HetNets.

mesh points (MPs) act as intermediate relay nodes and mesh access points (MAPs) serve mo-
bile users (MUs) within their coverage area. The integration of ONU and MPP (referred to
as ONU-MPP) is realized by using so-called radio-and-fiber (R&F) technologies with medium
access control (MAC) protocol translation taking place at the optical-wireless interface, as
explained in more detail shortly. To provide cloud computing services at the network edge,
cloudlet servers are connected to ONU-MPPs/ONU-MeNBs through point-to-point optical



fiber links.

FiWi networks can be categorized into two different types: (i) traditional radio-over-fiber
networks (RoF) and (ii) radio-and-fiber networks (R&F) [49]. While RoF networks use opti-
cal fiber as an analog transmission medium between a central office and one or more remote
antenna units (RAUs) with the central office being in charge of controlling access to both
optical and wireless media, in decentralized R&F networks access to the optical and wireless
media is controlled separately from each other by using two different MAC protocols in the
optical and wireless media, with protocol translation taking place at their interface. An ex-
ample of traditional RoF based FiWi networks is China Mobile’s cloud RAN (C-RAN), which
relies on a centralized cloud infrastructure and baseband units (BBUs) separated from remote
radio heads (RRHs), rendering the latter ones intentionally as simple as possible without any
processing and storage capabilities [50]. In C-RAN, BBUs that connect a number of macro
BSs or small cells (i.e., femto- and picocells) are centralized via pool baseband processing (i.e.,
BBU pool), while radio frequency (RF) signaling is digitized and transmitted over optical fiber
for fronthauling (i.e., between RRHs and BBUs). Further, the digitized RF signal received by
the RRH is converted into an analog signal before being transmitted to its associated edge
devices in downstream transmissions.

An example of R&F based FiWi networks is the cloudlet enhanced distributed RAN (D-
RAN) [51]. In the cloudlet enhanced D-RAN; the functionalities of RRHs and BBUs are split,
whereby RRHs and BBUs are linked via an Ethernet interface and the baseband processing is
done at a cloudlet server [52]. R&F based FiWi networks may become the choice of emerging
Tactile Internet networks, benefiting from decentralization based on cloudlets and intelligent
base stations. As shown in Figure 1.3(b), note that both the C-RAN and cloudlet enhanced
D-RAN may coexist in FiWi enhanced LTE-A HetNets, whereby the collocated ONU-FeNB
(integration of ONU with femtocell base station) and ONU-PeNB (integration of ONU with
picocell base station) may rely on a WDM-based C-RAN, while an ONU-MeNB (integration
of ONU with macrocell base station) may rely on a cloudlet enhanced D-RAN. Cloudlet
servers are connected to the ONU-MeNB and the scheduling and bandwidth allocation are
typically handled by the ONU-MeNB with the support of cloudlet enhanced D-RAN. In the
coordination of BBUs, the OLT is fully responsible for scheduling transmissions and allocating
bandwidth to each ONU-FeNB and ONU-PeNB in a centralized fashion. To reduce capital
expenditures, C-RAN and cloudlet enhanced D-RAN may use different wavelength channels

for baseband and RF transmissions.
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1.1.4 Human-Agent-Robot Teamwork (HART)

Beside lowering latency and jitter for real-time H2M communications, one of the key aspects
of the Tactile Internet is how we can make sure that its potential be unleashed for a race
with (rather than against) machines. By building on the areas where machines are strong
and humans are weak, Tactile Internet H2M/H2R communication leverages on their “coop-
eratiwe” and “collaborative” autonomy such that humans and robots complement each other
[5]. The goal here is to take advantage of collaborative teams of humans working alongside
machines to create new roles and opportunities for humans. Companies can achieve significant
boosts in performance, when machines and humans work together as allies, not adversaries,
to capitalize on each other’s complementary strengths. For instance, processing and analyzing
copious amounts of data from myriad sources in real time, performing routine tasks, working
in dangerous life-critical conditions, and detecting hidden patterns in an image can be easy
for machines, whereas dealing with unsatisfied customers can be easy for human workers.

In the future, co-working with machines (e.g., robots) will favor geographical clusters of
local production (“inshoring”) and require human expertise in the coordination of the human-
machine symbiosis for the sake of inventing new jobs humans can hardly imagine and did not
even know they wanted done [6]. In fact, Stanford University’s recently launched One Hundred
Year Study on Artificial Intelligence (AI100) released its inaugural report “Intelligence and Life
in 2030,” in which an increasing focus on developing systems that are human-aware is expected
over the next 10-15 years. Unlike the IoT that relies on its underlying M2M communications
without any human involvement, the Tactile Internet involves the inherent human-in-the-loop
(HITL) nature of haptic interaction and thus allows for a human-machine cooperative design
approach towards creating and consuming novel immersive experiences via the Internet [10].
In “Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins,” Garry
Kasparov elaborates on the importance of a superior process in human-machine collaboration,
showing that weak human + machine + better process is superior to strong human + machine
+ anferior process. Thus, a clever process beats superior knowledge and superior technology.
His observation received interest by Google and other Silicon Valley companies and shifted the
research focus from using artificial intelligence (Al) as an automation tool to an augmenta-
tion tool for enhancing human decisions (e.g., IBM’s Watson) instead of replacing them with
autonomous systems. According to Kasparov, this is not just user experience (UX), but en-
tirely new ways of bringing human-machine coordination into diverse fields (e.g., business and
manufacturing processes) and creating the new tools we need in order to do so. Interestingly,
this approach is fully in line with the original vision of early Internet pioneers. Back in 1962,
Douglas C. Engelbart developed a detailed, though rudimentary, conceptual framework with

process hierarchies for augmenting the human intellect by increasing via on-line assistance
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Figure 1.4: Overview of key challenges in HART over the Tactile Internet

the capability of a man to derive solutions to complex problems that before seemed insoluble
[53]. Earlier, in 1960, Joseph C. R. Licklider envisioned man-computer symbiosis, a subclass
of man-machine systems, to enable close interaction between man and computer in mutually
beneficial cooperation [54].

A promising approach toward achieving advanced human-machine coordination by means
of a superior process for fluidly orchestrating human and machine co-activity may be found
in the still young field of HART research, whose specific design goal is to keep humans in
rather than out of the loop [11]. Historically, HART extends the so-called humans-are-better-
at/machines-are-better-at (HABA/MABA) approach, which assigns tasks to either humans
or machines, whereas HART focuses on how humans and machines could work together (see
Fig. 1.4). This collaboration allows weak workers to “punch above their weight” by offloading
tedious tasks to powerful workers for processing. Some of the interesting HART-centric appli-
cations that harness human-machine interactions are autism therapy, elderly people care, op-
eration on the battlefield, where robots can work alongside doctors as surgical teams, complex
search-and-rescue activities in natural disaster/dangerous environments, real-time data-to-
decision problems, remote monitoring, disaster warning, gesture, and face recognition, among

others [55]. Unlike in early-day HART research, which put emphasis only on making machines
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self-sufficient or relying only on autonomous systems, much of the research interest focuses
on the autonomy and interdependence of HART members [56]. Such capabilities could en-
able intelligent systems not merely to do things for humans, but also to work together with
humans and other systems. With regard to underlying human-machine interaction in HART-
centric Tactile Internet applications, the main challenge is to orchestrate how tasks can be
best executed in concert. Collaboration and communication among HART members are es-
sential to cope with dynamic changes in the task environment, thereby improving the task
execution latency. Note that the interdependent activities of HART members may lead to an
increased complexity and resource consumption. To facilitate resource efficient HART task
execution, research in the area of centralized/decentralized network coordination, adaptive
bandwidth resource management for traditional broadband and offloading traffic co-existence,
task requirement and failure-aware task assignment, monetary, time, and energy cost-aware

task offloading design policies, as well as task and resource coordination become mandatory.

1.1.5 Collaborative Computation and Communication Techniques

For the successful deployment of HART-centric Tactile Internet applications (e.g., human
assistive work such as remote monitoring, face detection), efficient task allocation among
robots is essential, which has emerged as an interesting research topic by taking into account
a wide variety of task and robot types, task location, robot availability, capability, and failure
during task execution [6]. Hence, the suitable robot selection may not always be sufficient to
satisfy the real-time requirements (e.g., deadline) of different computation intensive tasks due
to their limited resources (e.g., computation processing speed, storage) [57]. In response to the
aforementioned challenges, mobile devices/robots increasingly seek assistance from powerful
collaborative cloud servers via mobile cloud computing! and device-to-device communications
technology in order to execute their computation-intensive tasks, a technique also known as
collaborative computing [16].

Importantly, collaborative computing allows resource-constrained mobile devices/robots
to migrate full /part of their computation-intensive tasks to collaborative cloud nodes (remote
cloud or decentralized cloudlet?) for execution by means of computation offloading [59]. By
enabling collaborative computing among mobile devices and cloud servers, the executable task
load on each mobile device/robot is reduced, the overall task processing time is minimized,

and the lifetime of the mobile device/robot is extended. However, the interaction between the

'Mobile cloud computing (MCC) is a technology that integrates both cloud computing and mobile com-
puting, where cloud services (e.g., computing, storage) are utilized by mobile devices/robots to speed up the
running of mobile computation and data-intensive applications.

2Cloudlet is a resource-rich computer or cluster of computers that is connected to the Internet and offers
cloud services (processing and storage) at the network edge in close proximity to mobile users [30], [58].
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cloud server and the mobile device/robot incurs an additional communication latency during
offloading the computation-intensive task to the cloud server [17]. Thus, for the cost-effective
deployment of HART-centric Tactile Internet applications, collaborative computing needs to
tackle several challenges such as minimization of task offloading latency by selecting proper
collaborative cloud nodes, selection of non-disruptive network connections for computation
task and data offloading activities, among others. To overcome the aforementioned challenges,
we discuss the involved collaborative computing and communication techniques in greater

detail in the following.

e Data offloading: To cope with the network congestion due to the extraordinary growth
in data traffic on cellular networks, mobile data offloading represents a potential solu-
tion. Mobile data offloading refers to the use of complementary network technologies
(e.g., IEEE 802.11 WiFi, femtocell) for delivering data originally destined for cellular
networks [60], [61]. Among other alternatives, the most widely used data offloading ap-
proach is WiFi offloading due to several benefits such as lower power consumption and
reduced operational expenditures (OPEX) than macrocell base stations. Depending on
who initiates the offloading process, data offloading can be divided into two groups:
a) user-initiated offloading, where the mobile user is responsible for deciding when and
how to offload the data; b) network-initiated offloading, where mobile operators are
responsible for the data offloading decision [62], [63], [64]. Further, based on whether
WiFi technology is used or not, data offloading can be classified into the following two
categories: on-the-spot offloading, where WiFi technology is used for data offloading
only if WiFi connectivity is available, or delayed WiFi offloading, where data offloading
is delayed for an acceptable time period for future WiFi connections [65]. To ensure
seamless data offloading service during handover in both the horizontal and vertical di-
rection, cooperation between cellular and WiFi network service providers is mandatory.
Towards this end, different communication standards and protocols were developed to
cope with network coordination, frequency management, and traffic rerouting in dif-
ferent data offloading services. For example, the third generation partnership project
(3GPP) developed the access network discovery and selection function (ANDSF) [66],
local IP access (LIPA) [67], selected IP traffic offload (SIPTO), and IP flow mobility (I-
FOM) protocols to offer seamless handovers between different access technologies during
offloading. For a detailed discussion of ANDSF, IFOM, SIPTO, and LIPA, the interest-
ed readers may refer to [68]. Importantly, to enable an efficient mobile data offloading
solution for Tactile Internet applications, suitable data offloading techniques need to be

developed by taking into account different task, network, and network element prop-
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erties such as data offloading deadline, availability of WiFi connectivity, mobile device

energy consumption, and amount of data traffic.

Task Offloading: In MCC, task offloading is a technique used to alleviate the burden
of resource limited mobile devices by transferring full/part of a task (e.g., computation
workload processing) corresponding to given application requirements to more capable
devices/surrogates for processing. This capability can take the form of computing power,
memory, system load, as well as battery life [69]. Hence, in MCC the decision of whether
or not to offload the task to a cloud server depends on several important factors such as
why offloading is required (e.g., improve task execution time or save energy), who wants
to offload the task (e.g., robot, mobile device, laptop computer), offloading environment
(e.g., static, dynamic), different task properties (e.g., workload), and offloading infras-
tructure (remote/edge cloud computing), among others [70]. For better task execution
performance, the appropriate task offloading decision is made by analyzing different
important parameters such as available bandwidth, cloud server task processing speed,
storage capacity, remaining task processing burden, offload task workload, data size, and
communication latencies, among others. Different from data offloading, the computa-
tion task offloading life cycle involves the following activities: task input data uploading
from mobile device to surrogate/cloud server, offloaded task processing (computation
workload) by surrogate/cloud server, and task result downloaded by the mobile device
from the surrogate. Hence, in a broad sense, the task offloading process contains the
following four parts: application modeling, profiling, optimization, and implementation.
For application modeling, a graph or tree-based method can be used to highlight the
relation between different sets of tasks corresponding to a given application [71], [72].
Profiling denotes the collection of network device and component information. The col-
lected profiling information (e.g., remaining energy, bandwidth, task processing speed)
can be used for making proper task offloading decisions. The optimization part helps
achieve different design goals (e.g., minimize task execution delay, maximize energy con-
sumption) for given application and system settings [73]. Finally, the implementation

part assigns resources for task offloading and monitors the task execution process.

At present, existing task offloading frameworks can be divided into three categories:
(1) system-level, (ii) method-level, and (ii7) optimization level offloading. System-level
offloading mainly focuses on the usage of either infrastructure-based cloud resources for
offloading (e.g., remote cloud [74], [75], cloudlet [76], [77]) or infrastructure-less cloud
resources for task offloading (e.g., mobile ad-hoc cloud [78]). Conversely, method-level

offloading emphasizes task/code partitioning, migration techniques, and prediction of
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application behavior for parameter variations. The optimization part focuses on achiev-
ing different objectives such as maximizing throughput, minimizing energy consumption
[71], task execution time [73], or makespan for data streaming applications [79]. How-
ever, note that task offloading to remote cloud servers may not always satisfy given
task execution requirements of many delay-sensitive tasks (e.g., face detection, gesture
recognition, real-time video analytics) due to low bandwidth and high wide-area net-
work (WAN) latencies. To overcome the limitations of distant cloud offloading, there is
a growing interest among industries in setting up cloud services (e.g., cloudlet) at the
edge of mobile networks, e.g., Nokia’s Radio Applications Cloud Server (RACS) that is
connected to a 4G LTE base station (eNB) [80], ETSI’s MEC server [81], and Cisco’s
IOx that combines IoT applications with cloudlet servers [82]. Hence, research in the
area of developing suitable task offloading platforms for real-time HART-centric Tactile
Internet applications is an important open challenge in the existing literature, including
several issues such as user-preference aware offloading (e.g., delay and energy awareness),
reducing task offloading latency, priority based bandwidth assignment policy, mobility

awareness as well as resource and failure awareness, among others.

Task Migration: Contemporary mobile devices offload large amounts of computation-
ally intensive tasks to resource-rich cloud servers for processing. MCC enables mobile
devices by offloading tedious tasks to powerful cloud servers [28]. Hence, one of the fun-
damental challenges for task offloading is to minimize the task processing and communi-
cation delay of an MU’s offloaded task, whose location changes due to mobility. Further,
ensuring high quality-of-service for an MU’s task execution is particularly challenging
in the dynamic mobile cloud computing environment due to time-varying bandwidth
resource availability, dynamic resource availabilities of cloud servers, and time-varying

task requests at cloud servers, among others [83].

Task migration broadens the scope of conventional computation task offloading by not
only transferring the task from an MU to cloud servers/surrogates but also from one
cloud server/surrogate to another one for execution. In general, task migration between
cloud servers/surrogates is considered beneficial only if the anticipated task execution
time at the secondary cloud server/surrogate is smaller than that at the primary one
[20]. However, task migration incurs an additional migration delay that requires time for:
(1) stopping task execution at the old server (primarily selected), (ii) transferring the
remaining task data to the newly selected server (secondary), and (iii) starting execution
at the newly selected server. Note that task migration provides a more fine-tuned means
of balancing the load throughout the system, since migration may take place at any

time during the lifetime of a task due to cloud server availability or failure. Hence, there
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exists an inherent trade-off in selecting the optimal strategy for task migration. On
the one hand, it has to offer high quality-of-experience (QoE) to its customers, which
for a particular task indicates lower task execution time. However, due to the residual
processing burden of cloud servers and waiting delay for bandwidth availability, task
migration services may not always improve the task execution time of an MU’s requested
task. On the other hand, cloud providers aim to fully exploit task consolidation in order
to reduce their operating costs (e.g., electricity cost by turning-off underutilized servers)
[19]. Thus, based on the above observations, one of the fundamental research questions
that naturally arises is when and where should an MU’s task migrate [21]. To answer
this question, several aspects need to be investigated for the development of a suitable
task migration scheme, e.g., information about the state of the current host and the
tentative destination server, number of tasks running on each server, user mobility, task
properties, cloud server properties, task migration gain, and latency overhead, among

others.

Task Prefetching: Currently, a vast majority of existing cloud computing studies
apply the conventional fetching technique for task offloading, where a given mobile user’s
next computation task input data can be transferred to the cloud server for processing
only after the completion of the previously offloaded task [84]. As a result, for multi-
task offloading, all other remaining tasks except the first one suffers from higher task
offloading waiting times. Thus, conventional fetching based task offloading may not
always be sufficient to meet the very low-latency requirements of different HART-centric
tasks [85]. To overcome the shortcomings of conventional fetching, the task prefetching
concept has recently been proposed in the context of task offloading, where the full or
a portion of the MU’s next task input data is transferred to the cloud server during the
computation processing period of the previously offloaded task [86]. Note that a suitable
task prefetching technique has the potential to not only reduce the mobile-device energy
consumption by avoiding traditional fetching but also to shorten the program runtime by
employing intelligent prediction techniques for parallel task data transfer and processing
schedule. Hence, due to the lack of proper task prefetching-aware actor (e.g., cloud agent)
selection schemes for task offloading, providing high QoS guarantees is still a major
challenging issue for different HART tasks considering both strict task requirements
(e.g., deadline) and dynamic cloud environments. Moreover, to ensure collision-free and
low-latency HART task execution, research in the area of prefetching-aware dynamic
bandwidth allocation is mandatory by taking different task properties and availabilities

of cloud servers/surrogates resources into account [87].
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1.2 Objectives

The objectives of this thesis are as follows:

e The crucial roadblock toward successful deployment of local and non-local Tactile In-
ternet applications is the lack of proper task allocation strategies among robots. Most
existing multi-robot task allocation studies focus on only one or a few parameters for
robot selection, e.g., a robot’s energy or distance to task location. Clearly, real-time H2R
communications based Tactile Internet applications demand advanced robot selection
schemes, in which additional parameters need to be considered such as heterogeneous
robots and task properties (e.g., robot and task location, robots’ energy consumption,
task workload and deadline). Moreover, the lack of proper robot failure monitoring
strategies during task execution and resource allocation strategies might result in an
increased task execution delay and energy consumption of robots. A number of research
questions such as (i) how human task requests arrive at robot network and (ii) how
robots are aware of all task requests have largely been neglected in previous studies.
Thus, the first objective of this work is to design an efficient failure-aware local and
non-local H2R task allocation mechanism and a unified resource management scheme
that minimizes the task execution time and energy consumption of robots in FiWi based
Tactile Internet infrastructures. To reduce task execution latency overhead, the main
focus of this study is to investigate and compare the performance of different robot

selection strategies.

e Having a suitable robot selection for satisfying mobile users’ task execution requests
may not be sufficient to avoid task execution failures due to given resource constraints
(e.g., task processing capabilities, storage, or remaining energy) of the selected robot.
Note that mobile devices/robots may overcome their resource shortage problem by uti-
lizing the resources of collaborative cloud server (agents). This type of task execution
is also known as collaborative computing, where a resource-constrained robot trans-
fers its computation-intensive task to another more powerful cloud agent or nearby
robot for execution. At present, research in the area of both infrastructure-cloud and
infrastructure-less HART-centric collaborative task execution over FiWi infrastructures
is missing in the existing literature. Thus, to improve the task execution time and energy
consumption efficiency of resource-constrained robots/mobile devices, the second objec-
tive of this thesis is to propose a collaborative computing scheme that jointly selects
a suitable host robot and collaborative cloud agent node for executing different HART

tasks. Another major aim of this part of the thesis is to investigate a unified bandwidth
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allocation scheme to handle coexisting conventional broadband and computation task

offloading data traffic over FiWi based Tactile Internet infrastructures.

Collaborative cloud computing services allow resource-limited mobile devices to offload
their computation-intensive tasks onto more powerful cloud servers/surrogates for pro-
cessing. Hence, one of the major challenges for cloud computing is to minimize the task
execution latency of mobile users. Further, due to time-varying resources and higher
waiting times in a cloud server (agent), the initially selected cloud server may not al-
ways satisfy given offload task execution requirements (e.g., deadline). Thus, to meet
the offload task execution requirements, an MU’s offloaded task needs to be migrated
from one cloud server to another for execution. Note that by taking into account cloud
server load, task requirements, task migration latencies, and user mobility, one of the
fundamental research questions for HART-centric task execution is whether a task mi-
grates along with the MU or not. Thus, by taking user mobility, different task, and
collaborative node properties into account, the third aim of this thesis is to propose a
context-aware task migration strategy for the collaborative task execution in FiWi based

Tactile Internet infrastructures.

The benefits of task prefetching and community-cluster resource awareness have not
been explicitly studied for offloading multiple HART tasks over FiWi enhanced infras-
tructures. Moreover, the optimal task-to-resource scheduling order and failure-avoidance
service selection for both task onloading and offloading based HART task execution are
missing in the existing literature. Thus, by taking both task prefetching and fault tol-
erance capabilities along with community-cluster resource awareness into account, the
fourth aim of this thesis is to design a suitable community and latency-aware multi-task

scheduling scheme for task on- and offloading based HART task execution.

The fifth aim of this thesis is to develop a user preference-aware HART task coordination
scheme. Note that research in the area of user preference-aware HART task execution is
still in its infancy. At present, no existing study deals with the problem of delay-sensitive
and delay-tolerant caching and computing HART task execution considering both ded-
icated and non-dedicated robot/agent resource awareness and preemptive bandwidth
allocation. By taking into account different preferences of MUs such as delay and/or
monetary cost saving for different delay-sensitive and delay-tolerant HART task execu-
tion, the final goal of this thesis is to develop an appropriate HART task coordination

strategy and proactive resource allocation scheme.
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Figure 1.5: Research methodology

1.3 Research Methodology

The research methodology applied in this thesis includes network modeling, coordination
mechanism design as well as analytical modeling and performance analysis (see Fig. 1.5) and

is described below in greater detail:

e Network Architecture: In this thesis, multiple novel network architectures are de-
veloped for different HART-centric task coordination schemes. A top-down approach is
considered, where different task requirements are investigated first and then the network
infrastructure is designed to support the service requirements. Importantly, the function-
alities of communication networks, task and resource allocation procedures, technologies,
and protocols are investigated. Both tree and mesh based topologies are considered in

the design of integrated FiWi enhanced Tactile Internet infrastructures.

e Mechanism Design: To achieve the optimal performance, different novel algorithms
are developed for collaborative HART task execution in FiWi enhanced infrastructures.
Most notably, the proposed mechanisms include a unified resource allocation strategy,
robot and cloud agent selection for executing different HART tasks, optimal multi-
task scheduling order, failure reporting scheme as well as a prefetching-aware dynamic

bandwidth allocation (DBA) algorithm.

e Performance Analysis: In this work, a performance analysis is conducted based on
different queuing models (e.g., M/G/1, M/M/1, M/M/c), analytical tools, mathemati-

cal formulas (e.g., Erlang-C, Euclidian distance, average memory access time or AMAT
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formula), probability distributions (e.g., uniform random, Zipf), and hypotheses (e.g.,
binary testing hypotheses). To evaluate the system performance under different scenar-
ios, the analytical and verifying simulation performance is examined for a wide range of

performance metrics and varying system settings.

1.4 Contributions of the Thesis

This thesis is compiled based on a total of eight manuscripts ([J1]-[J7] and [B1]), all of them
are listed in Section 1.5. The key contributions of this thesis made in [J2-J6] are discussed in

the following.

1.4.1 Failure-Aware Local and Non-local H2R Task Allocation in
FiWi Multi-Robot Infrastructures

The outcome of this research has been published in the following Journal and the main con-
tributions of this work are summarized below:

[J2] M. Chowdhury and M. Maier, “Local and Nonlocal Human-to-Robot Task Allocation
in Fiber-Wireless Multi-Robot Networks,” IEEE Systems Journal, vol. 12, no. 3, pp. 2250-
2260, Sep. 2018.

e A Novel Local and Non-local H2R Task Allocation Scheme: To minimize the
human users’ requested task execution latency, in this work we develop a suitable robot
selection mechanism for local and non-local H2R task allocation in FiWi based multi-
robot networks. For suitable robot selection, we consider several key performance metrics
such as the availability, skill set, distance to task location, and remaining energy of
robots. We tackle existing research issues for H2R task assignment such as (i) how
humans’ task requests arrive at the robot network, (i7) how to ensure that robots are
aware of all arriving task requests, and (7i7) how to assign bandwidth resources to task

requests and result transmission activities.

e Failure Monitoring Scheme: To reduce robotic failures during task execution, we

introduce a neighboring-robot assisted failure reporting mechanism.

e Comprehensive Analysis of System Performance: We develop an analytical model
to evaluate the proposed scheme’s performance in terms of throughput, task allocation
delay, time complexity, sensing error rate, task execution time, and residual energy. In
addition, we analyze the end-to-end delay performance for both local and non-local task

allocation in integrated FiWi multi-robot networks based on M/G/1 queuing analysis.
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1.4.2 Collaborative Computing over FiWi Based Tactile Internet
Infrastructures

The outcome of this research has been published in the following journal and the main con-
tributions of this work are summarized below:

[J3] M. Chowdhury and M. Maier, “Collaborative Computing For Advanced Tactile Internet
Human-to-Robot (H2R) Communications in Integrated FiWi Multi-Robot Infrastructures,”
IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2142-2158, Dec. 2017.

e A Novel Collaborative Computing Based Task Assignment and Offloading
Scheme: To improve the energy efficiency of the selected host robot while satisfying
given task deadlines, we investigate a proper collaborative task assignment strategy that
combines both suitable host robot selection for sensing task execution and collaborative
node selection for computation task offloading. We exploit a conventional cloud, de-
centralized cloudlets, and neighboring robots as collaborative nodes for computation

offloading in support of a host robot’s requested task execution.

e Cloud, Cloudlet, and Collaborative Robot Enhanced Integrated FiWi Net-
work Infrastructure: From an architectural viewpoint, this work introduces an inte-
grated three-level cloud-cloudlet-robot enhanced FiWi network architecture for enabling

the execution of Tactile Internet applications.

e Resource Management Scheme: In order to handle both conventional broadband
traffic and computation offloading traffic at the same time over FiWi network infras-

tructures, we introduce a unified TDMA-based resource management scheme.

e Comprehensive Analytical Framework: We develop an analytical framework to
evaluate the performance of our proposed non-collaborative and collaborative/joint task
execution schemes in terms of task response time efficiency, energy consumption efficien-

cy, task allocation delay, and task offloading delay.

1.4.3 HART-centric Task Migration Scheme over FiWi Based Tac-
tile Internet Infrastructures

The outcome of this research has been published in the following journal and the key contri-
butions of this work are summarized below:

[J4] M. Chowdhury, E. Steinbach, W. Kellerer, and M. Maier, “Context-Aware Task Mi-
gration for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1231-1246, June
2018.

22



e Demonstrate Different Task, Agent, and Robot Properties: In this work, before
describing our task migration scheme, we briefly elaborate on main characteristics of
collaborative robots (cobots) in comparison with traditional robots, agents, and shed
some light on the different types of task properties (e.g., cognitive and physical tasks).

Moreover, the mobility models of both cobots and MUs are described in greater detail.

e A Novel Context-Aware Task Migration Scheme: To render HART-centric task
migration beneficial for MUs, this part of the thesis analyzes and compares the perfor-
mance of different task migration schemes: (i) cobot-to-cobot (c2c), (ii) cobot-to-agent
(c2a) migration, (iii) inter-agent (remote cloud to cloudlet and vice versa) and (iv)
intra-agent (remote cloud to remote cloud and cloudlet to cloudlet) task migration. For
optimal task migration policy selection, we take into account different context informa-
tion such as task properties (e.g., task size, deadline), agent (e.g., availability, capability)
properties, user mobility, and migration latency, among others. We also develop an ap-
propriate bandwidth resource management scheme for the coordination of the proposed

task migration scheme over FiWi based Tactile Internet infrastructures.

e Analytical Model and Performance Evaluation: This part of the thesis develops an
analytical framework for quantifying the different task migration schemes’ performance
in terms of a variety of key performance metrics, including task migration gain-overhead
ratio, deadline-miss ratio, end-to-end task execution delay, task blocking probability,

task response time, and energy consumption efficiency.

1.4.4 Community- and Latency-Aware Multi-Task Scheduling in
FiWi Enhanced Networks

The outcome of this work is currently in revision for the following journal and the key contri-
butions of this work are summarized below:

[J5] M. Chowdhury and M. Maier, “Community- and Latency-Aware Multi-Task Schedul-
ing for HART Collaboration in FiWi Enhanced Networks,” IEEFE Transactions on Cloud
Computing, November 2018 (submitted).

e Optimal Multi-Task Scheduling Order Selection: In this chapter, we investigate
a community- and latency-aware multiple HART task scheduling scheme by taking real-
time information about arriving task requests, isolated cluster, and community cluster
robot /agent resources into account. To reduce the task migration overhead, we incorpo-
rate batch based task scheduling into our online task scheduling scheme. In addition, we

investigate the performance of both task onloading and task offloading based HART task
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execution by taking task prefetching, fault tolerance, and failure avoidance capabilities

into account.

e A Novel Prefetching-Aware DBA Scheme: In this part of the thesis, we develop a
novel prefetching-aware dynamic bandwidth allocation (DBA) scheme for task on- and

offloading based HART task execution over FiWi enhanced networks.

e Analytical Modeling and Performance Evaluation: The performance of proposed
community- and latency-aware multi-task scheduling scheme is evaluated by means
of numerical simulations, which is compared with alternative baseline schemes (e.g.,
communication-aware and random task offloading scheme) in terms of delay and power
saving ratio, task prefetching time efficiency, processing-to-service time ratio, speed up,
and satisfactory ratio. Moreover, a comprehensive analysis of the mean task service time

is presented based on M/M/c queuing model.

1.4.5 User Preference Aware Task Coordination and Resource Al-
location in a FiWi Network Infrastructures

This work is currently in revision for the following journal and the key contributions of this
work are summarized below:

[J6] M. Chowdhury and M. Maier, “User Preference Aware Task Coordination and Proac-
tive Bandwidth Allocation in a FiWi Based Human-Agent-Robot Teamwork FEcosystem,”

IEEE Transactions on Network and Service Management, Oct. 2018 (in revision).

e FiWi Enhanced Tactile Internet Infrastructure for Preference Aware HART:
In this work, we investigate an adaptive FiWi enhanced Tactile Internet infrastructure
for preference aware HART task coordination by considering the presence of both local
and non-local dedicated and non-dedicated robots and cloud agents along with different
task arrival numbers. To avoid additional delay and monetary costs while mitigating
MUs’ different task requests, we propose a user preference aware actor (cloud agent and

robot) selection scheme.

e Proactive Resource Allocation: A proactive resource allocation model is presented

for both delay-sensitive and delay-tolerant caching and computing HART task execution.

e Analytical Framework and Performance Evaluation: A comprehensive perfor-
mance analysis model is developed to asses the performance trade-off between delay
cost saving (DCS) and monetary cost saving (MCS) based task execution schemes in

terms of average task execution time, monetary and energy cost, time and monetary cost
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saving ratio, communication to computation ratio (CCR), and offloading gain overhead
ratio. To achieve the cost-effective performance, we compare the following three different
DCS and MCS multi-task offloading schemes: (i) maximum throughput and minimum
delay (MTMD), (ii) maximum throughput (MT), and (iii) minimum delay (MD) based

schemes.

1.5 List of Publications

[J1]

[B1]

M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The Tactile Internet: Vision,
Recent Progress, and Open Challenges,” IEEE Communications Magazine, vol. 54, no.
5, pp. 138-145, May 2016.

M. Chowdhury and M. Maier, “Local and Nonlocal Human-to-Robot Task Allocation
in Fiber-Wireless Multi-Robot Networks,” IEEE Systems Journal, vol. 12, no. 3, pp.
2250-2260, Sep. 2018.

M. Chowdhury and M. Maier, “Collaborative Computing For Advanced Tactile Internet
Human-to-Robot (H2R) Communications in Integrated FiWi Multi-Robot Infrastruc-
tures,” IEFE Internet of Things Journal, vol. 4, no. 6, pp. 2142-2158, Dec. 2017.

M. Chowdhury, E. Steinbach, W. Kellerer, and M. Maier, “Context-Aware Task Migra-
tion for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1231-1246,
June 2018.
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IEEE Transactions on Network and Service Management, Oct. 2018 (in revision).
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Based Tactile Internet Infrastructures,” Encyclopedia of Organizational Knowledge, Ad-
ministration, and Technologies, Mehdi Khosrow-Pour (Editor), IGI Global (publisher),
USA, Aug. 2018 (submitted).
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1.6 Thesis Organization

The thesis is organized into seven chapters to provide a consistent overview of the entire
research work conducted during the doctoral studies. The rest of the thesis is organized as
follows:

Chapter 1 contains the background, motivation, objectives, research methodology, and
contributions of the thesis. Moreover, this chapter presents the list of publications and a short
outline of the thesis.

Chapter 2 presents a failure-aware local and non-local human-to-robot (H2R) task allo-
cation mechanism in FiWi based multi-robot networks. This chapter presents an analytical
framework that models throughput, task execution time, failure sensing error rate, the residual
energy of robots, time complexity, and end-to-end delay performance. The obtained results
and findings are discussed in great detail.

Chapter 3 explores suitable collaborative computing techniques for executing task requests
of humans over integrated FiWi network infrastructures. This chapter investigates the perfor-
mance of both host robot-based non-collaborative task execution and host robot-collaborative
node (e.g., cloudlet) based joint task execution schemes. It also presents a novel resource
management scheme for collaborative/joint and non-collaborative task execution over FiWi
based Tactile Internet infrastructures. Afterwards, both analytical framework and evaluation
results of the proposed schemes are presented.

Chapter 4 presents a context-aware task migration scheme for efficiently orchestrating
the real-time collaboration among human users, agents, and collaborative robots (cobots)
across converged FiWi communications infrastructures. After describing the key features of
physical vs. cognitive task, cobot vs. stand-alone robot, this chapter investigates the problem
of whether and, if so, when and where a HART-centric task should be best migrated to.
The chapter then evaluates the performance of different task migration scheme, e.g., cobot-to-
agent, cobot-to-cobot, intra-agent, and inter-agent task migration schemes in terms of deadline
miss ratio, task blocking probability, migration gain-overhead, response time, and energy cost,
among others. Finally, simulation results and findings are presented.

Chapter 5 presents a community- and latency-aware task-to-resource mapping scheme for
HART task onloading and offloading. This chapter explores both optimal multi-task schedul-
ing order and suitable task processing node selection for different HART tasks. Importantly,
this chapter presents a novel prefetching-aware bandwidth allocation scheme and evaluates
the performance trade-off between fault tolerance and failure avoidance based HART task ex-
ecution. It presents an analytical framework to study the performance of our proposed scheme
in terms of mean task service time, task prefetching time efficiency, speed up, processing-to-

service time ratio (PSR), and satisfactory ratio, among others.
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Chapter 6 explores a user preference-aware delay-sensitive and delay-tolerant HART task
coordination scheme over FiWi enhanced infrastructures. Specifically, to cope with an MU’s
delay (DCS) and monetary-cost saving (MCS) preference, this chapter investigates preemptive
and non-preemptive resource allocation for different caching and computing HART tasks. It
reports on our analytical model and obtained results.

Finally, chapter 7 concludes the dissertation with a brief review of the key findings. This
chapter also highlights some future research areas that may build upon our work described in

the dissertation.
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Chapter 2

Failure-Aware Local and Non-local

H2R Task Allocation in FiWi
Multi-Robot Infrastructures

2.1 Preamble

This chapter contains material extracted from the following paper:

[J2] M. Chowdhury and M. Maier, “Local and Nonlocal Human-to-Robot Task Allocation in
Fiber-Wireless Multi-Robot Networks,” IEEE Systems Journal, vol. 12, no. 3, pp. 2250-2260,
Sep. 2018.

2.2 Introduction

With the advent of highly skilled and remotely controlled robots, we are moving towards
a world where human tasks of our everyday life will be increasingly done by robots. To
facilitate real-time task execution via remotely controlled robots, the so-called Tactile Internet
has recently emerged to steer/control elements of our surroundings [4]. The Tactile Internet
represents a paradigm shift from traditional wired and mobile Internet based content-delivery
to labor-delivery networks via service robots, which will add a new dimension to the human-
to-machine interaction by delivering tactile/haptic sensations [35]. To realize the Tactile
Internet, recently in [5], we elaborated on the role of several key enabling technologies (e.g.,
cloudlets, mobile-edge computing, and cloud robotics) and reported on our recent results on
the very low latency and ultra-high reliability performance of integrated fiber-wireless (FiWi)
communication infrastructures based on data-centric Ethernet technologies. Note that, the
ultimate end goal of the Tactile Internet should be the production of new goods and services by
means of empowering rather than automating machines that complement humans rather than

substitute for them. By taking into account different areas in which humans are more weaker
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than machines/robots, one of the major challenge for Tactile Internet is that it should amplify
the differences between machines and humans by capitalizing on each other complementary
strengths. A promising approach toward achieving advanced human-machine coordination by
means of a superior process for fluidly orchestrating human and machine coactivity may be
found in the still young field of human-agent-robot teamwork (HART) research, whose specific
design goal is to keep humans in rather than out of the loop [55].

In recent years, many human-machine togetherness based HART applications have been
deployed in industrial plant, natural disaster rescue, and remote surgery operations. Highly re-
liable and secure communications infrastructures along with intelligent coordination and task
allocation strategies need to be developed to minimize the latency and real-time complexity
of such applications. To this end, due to their superior latency and reliability performance
integrated FiWi networks provide an efficient communication solution to support both human-
robot togetherness and quality of service (QoS) for real-time HART applications. The use of
FiWi communication infrastructures in HART applications has several benefits. First and
foremost, a local loop controller placed at the optical-wireless interface may act as agent,
which assigns a given human task to the suitable robot. Second, given the wired/wireless
network integration and decentralization principles of future 5G networks, FiWi communica-
tion infrastructures provide the necessary support of both local and non-local task allocation
requests. Third, the agent at the optical-wireless interface of FiWi networks can dynamically
allocate resources to team members and perform task reallocation in the event of failures.

To tackle the challenges in multi-robot task allocation (MRTA), e.g., suitable robot selec-
tion, proper coordination among robots, and failure avoidance, various solutions have been
proposed [57]. The authors of [88] introduced a role based task allocation mechanism, in
which the appropriate robot selection depends on the matching of task type and robots skill.
In [14], a decentralized framework was proposed, where tasks of higher priority are allocated
before lower-priority tasks. Most of such priority based assignment schemes mainly allocate a
task to a predefined robot based on either the matching of the task identification number and
robot address or only on the robot’s particular task execution capabilities without waiting
for the best eligible candidate robot [89], [15]. The authors of [90] used both distance and
target qualities for their robot selection. None of these models [88]-[90] considered any task
reallocation mechanism nor any failure avoidance procedure. An inter-robot communication-
aware task allocation mechanism without any centralized controller was presented in [12]. In
[91], a comparative study of market- and distance threshold-based task allocation scheme was
investigated. A dynamic task reallocation process was presented in [13], considering robots’
distance to the actual task location for robot selection. In [92], a distributed market based

algorithm was investigated, whereby all robots are able to announce and bid for a task. Note
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that none of these models [12]-[92] consider other important parameters, such as execution
time and robot skill, for robot selection. We note that the research on task allocation and
coordination in multi-robot networks is still in its infancy. To address the above issues, this
chapter proposes an efficient robotic failure aware local and non-local task allocation strategy
for integrated FiWi multi-robot networks. The presented analytical results show that our pro-
posed mechanism outperforms traditional distance and priority based robot selection schemes
in terms of task execution time and average residual energy.

The remainder of this chapter is structured as follows. In Section 2.3, we first elaborate
on the motivation of our work and highlight our major contributions. Section 2.4 describes
our proposed FiWi network architecture, resource management scheme, and task allocation
mechanism, whose performance is analyzed in Section 2.5. Section 2.6 presents our obtained

results and findings. Finally, Section 2.7 concludes the chapter.

2.3 Motivation and Contributions

From the above discussion it is clear that current MRTA solutions typically suffer from several
inefficiencies during task execution (e.g., high task completion time and energy wastage of
robots) due to their lack of suitable robot selection and control mechanisms. Heterogeneous
robot and task types make the task allocation problem even more challenging. To speed up the
real-time robotic task execution process and reduce the energy consumption of resource limited
robots, the utilization of robotic services for human tasks needs to be done in a more resource-
efficient fashion. Most previous studies consider only one parameter for robot selection, e.g.,
distance and residual energy. There are a number of additional parameters such as robot skill,
availability, and task execution time that should be taken into account as well. In the past,
a number of important resource allocation and networking aspects of MRTA related to key
design questions, including but not limited to (i) how human task requests arrive at robot
networks, (i7) how to recover from robot failures, or (iiz) how to ensure that robots are aware
of all task requests, have been largely neglected in previous studies.

In this work, we develop a FiWi empowered human-to-robot (H2R) task allocation mech-
anism and make the following novel contributions. First, to efficiently allocate a given human
task to a suitable robot, we propose a robot selection algorithm based on distance, residual
energy, as well as the robot’s ability and availability. Second, we introduce a neighboring
robot assisted failure reporting mechanism to avoid task execution failures. Further, to fa-
cilitate both local and non-local H2R task allocation at the same time over our proposed
FiWi network infrastructure we propose a unified resource allocation scheme and evaluate its
performance analytically in terms of delay and throughput. Beside robot selection delay, we

analyze the upper end-to-end delay bounds of both local and non-local task allocation. To
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Figure 2.1: FiWi communication infrastructure for H2R task allocation.

the best of the authors’ knowledge, no existing study deals with both the local and non-local

H2R task allocation in integrated FiWi multi-robots networks.

2.4 FiWi Infrastructure for H2R task allocation

A. Network Architecture: The FiWi based network architecture used for our studied
H2R task allocation among humans, robots, and agents is shown in Fig. 2.1. The optical
fiber backhaul consists of an IEEE 802.3av 10G-EPON or IEEE 802.3ah 1G-EPON with an
optical fiber range of 10-100 km between the central optical line terminal (OLT) and the
remote optical network units (ONUs). The OLT connects to the ONUs through a 1:N optical
splitter/combiner at the remote node (RN). We consider three different subsets of ONUs.
The first subset of ONUs serves a single or multiple fixed (non-mobile) wired subscribers. To
interface with the wireless mesh network (WMN), the second subset of ONUs is equipped
with a mesh portal point (MPP). The WMN consists of relaying mesh points (MPs) and mesh
access points (MAPs). Each MAP serves mobile users (MUs) within its wireless coverage
zone, whereby intermediate MPs are used to relay traffic between MPPs and MAPs. The
integration of ONU and MPP into one unit is done by using so-called radio-and-fiber (R&F)
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Figure 2.2: Resource management scheme for H2R task allocation in FiWi multi-robot net-
works.

technologies with protocol translation at the optical-wireless interface [5]. In the wireless front-
end, different readily available WLAN technologies are used to meet given design requirements.
For instance, IEEE 802.11ac WLAN may be used to achieve physical data rates of up to 6900
Mb/s in conjunction with IEEE 802.11e for QoS support. To provide 4G cellular services
to MUs, the third subset of ONUs hosts an LTE enhanced nodeB (eNB), giving rise to an
integrated ONU-eNB [93]. In this work, we focus on WLAN coverage only and leave cellular
coverage for future work.

B. Resource Management Scheme: Fig. 2.2 depicts the resource management scheme
based on TDMA in both the optical fiber (between OLT and ONUs) and wireless subnetworks
(between ONU-MPPs and robots/MUs), which is described in greater detail in the following:

e Similar to [93],[94], in the optical part, the OLT dynamically allocates an upstream (US)
time slot and sends downstream (DS) frames to each ONU via IEEE 802.3ah multi-point
control protocol (MPCP) messages (REPORT and GATE). The GATE message is used by the
OLT to inform ONUs about their US transmission window after ONUs have sent their
individual bandwidth requests to the OLT via REPORT messages. During its assigned time
slot, an ONU sends its US data frames to the OLT and receives DS data frames from
the OLT, which are subsequently forwarded to its associated users (see also Algorithm
1 below).

e In the wireless part, our resource allocation mechanism differs from [93],[94] in several
ways. First, an ONU-MPP allocates bandwidth in sub-slots and schedules transmission
opportunities only for MUs and robots associated with the task allocation process by

means of Beacon and PS-Poll frames, as specified in IEEE 802.11e. Second, for control
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Algorithm 1 Resource allocation algorithm

Consideration: Total number of ONU-MPP (V) and each ONUs attached STAs (M), polling

cycle time T, ONUs requested (T0°?) and maximum allocated timeslot (779 = Ze¢),
MPCP message duration (77%"), vacation period V = (T + T,)

N

msg msg

1: Process executed at the OLT:

2: if Receive REPORT message from the ONU-MPP then

3:  Determine the polling cycle time T, = N(TJ"™ + RTT + 2177 ) and each ONU-MPPs
allocated timeslot time 79" = min(T,, T:}*")

4:  Transmit a GATE message to all ONU-MPPs indicating their timeslot start time and
duration (T9"")

5. Send/receive DS/US data to/from the ONU-MPPs

6: end if

7: Process executed at the ONU-MPP:

8: if Receive GATE message from the OLT then

9:  Determine associated STAs subslot duration 75 by using T9"™ = M (T4, + V)

10:  Send a Beacon message to all STAs indicating their timeslot duration (7% ) and the
ONU-MPPs sleep period (T, = T. — TG™ — 21%% — RTT)

11:  Receive/send US data from/to the STAs/OLT

12:  Collect their own DS data frame from the OLT and broadcast them to its associated
STAs

13:  if Receive T-REQ message from the OLT (non-local task) or STAs (local task) then

14: Select suitable robot for that task via RTS-CTS-ACK message exchange with robots

15:  end if

16:  if Receive PS-Poll message from the STAs then

17: The ONU-MPP update their requested timeslot duration (7.4 =T, + 1.5, + V)

and send a REPORT message to the OLT indicating next timeslot request

18:  end if

19: end if

20: Process executed at the STA:

21: if Receive a Beacon message from the ONU-MPP then

22:  Extract and update their transmission subslot time and the STA sleep duration (T3, =
TS

23: Transmit /receive their US/DS data frames to/from the ONU-MPP

24:  if Receive a T-REQ message from the ONU-MPP then

25: Participate suitable robot selection process via RTS-CTS-ACK message exchange with

the ONU-MPP

26: end if

27: Each STA send their US subslot request (T..,) to the ONU-MPP via PS-Poll message

28: end if

signaling during the task allocation and failure reporting process, we assume that all
robots associated with a given ONU-MPP use a dedicated common control channel (e.g.,
separate frequency channel in the unlicensed ISM band). Each user is equipped with

two transceivers. One of the transceivers operates on a dedicated control channel, while
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the other one works on the data channel. Each user sends her bandwidth request to the
ONU-MPP via a PS-Poll frame. The broadcast Beacon frame is used to inform users
about their respective US subslot duration. Subsequently, MUs send their task allocation
request frames (similar to the cloud offload/H2H data frames in [94]), which contain the
respective task type and task location information, to their associated ONU-MPP during
their assigned subslots. An additional flag is piggybacked in the task request frame by
MUs to indicate to the ONU-MPP whether the task request is local or non-local.

e For non-local task allocation, the MU and robot associated with that task reside under
different ONU-MPPs. After receiving the non-local task request frame from an MU, the
ONU-MPP sends it to the OLT during its transmission period. Once the OLT receives
the frame, it broadcasts it to all ONU-MPPs. After the intended ONU-MPP receives
the frame, it selects a suitable robot for that task by using our proposed task allocation
procedure (to be described shortly in Section 2.4.C). For local task allocation, after re-
ceiving the task request frame from an MU, the ONU-MPP starts the task allocation
procedure immediately without forwarding the frame to the OLT. Network synchroniza-
tion is achieved by using the timestamp mechanism specified in IEEE 802.3ah, whereby
ONUs and their associated users update their local clock to the global clock by receiving

DS control messages.

C. Task Allocation Mechanism: The robot selection for each task is performed by a
coordinating agent located at the ONU-MPP (see Algorithm 2 and Fig. 2.1) according to the

following steps:

e After receiving the task request (T-REQ) message, which includes task location, task
type, remaining energy threshold, and task instruction, the ONU-MPP sends it to all
robots within its coverage. For transmission, the T-REQ message represents a modified

request-to-send (RTS) frame, whose format is shown in Fig. 2.3(b).

e Next, all eligible robots send their task response messages (T-RES) to the ONU-MPP,
which contains information about the remaining energy, robot location, robot type,
availability, moving, and processing speed. The T-RES message is encapsulated in a
modified clear-to-send (CTS) frame, as illustrated in Fig. 2.3(b).

e After receiving the robots’ response, the ONU-MPP selects a suitable robot for each
task by checking robots residual energy, busy time, and predicted minimum execution
time (see Section 2.5.C for cost calculation) and notifies the selected robot by using a

winner notification message (T-WNT), which includes both task instruction and time slot
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Algorithm 2 Task allocation algorithm

Consideration: Number of task arrives (Nyq), number of robots under any ONU-MPP (m),

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

task type (¢!

type . ] )
task (es,), robots distance to task location (d7), processing speed (s7), moving speed (s7,),

), task load (L;), service type of robot (r/,,.), energy threshold for each

robot status before task allocation (s;pusy), initial energy (e!), and selected robot status
during task execution (s;,,,)
for i = 1 to Ny, do
for j =1tom do
The ONU-MPP will check the availability and service type of all participating robots
via exchange of T-REQ and T-RES messages
if (5;pusy==ralse) && (t},,,==r],,.) then
Check residual energy (e/) of participating robots
if (e/ > ey) then
Check task execution time tim of (see eq. 9) all robots j
Allocate task ¢ to robot j with minimum ti“ (MET approach)
All neighbor robots monitor the selected robot status (s},,,,) by using carrier
sensing process and inform the ONU-MPP about robots status
end if
end if
if (s} ,,,,==false) during task execution phase then
ONU-MPP will re-announce the task ¢
Repeat step 1 to 11 to select robot for task ¢
else
No failure occurred during task execution
end if
Each robot (j) calculates its own el by using eq. (8)
end for

end for

information. The T-WNT message is sent in a modified acknowledgment (ACK) frame, as
shown in Fig. 2.3(b).

e Each robot is able to monitor the status of its neighboring robots via periodic carrier

sensing. In the event that a robot fails, the neighboring robot informs the ONU-MPP
about the failing robot such that the ONU-MPP can select another robot for the task.

The failure reporting process consists of the following three steps:

— Step 1: Each robot performs local carrier sensing using an energy detection process
(see Section 2.5.F) with a 1-bit local decision (D;) whether the neighboring robot

operates or not.

— Step 2: Each robot sends the 1-bit local decision to its associated ONU-MPP.
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Figure 2.3: Proposed task allocation mechanism: (a) timing structure and (b) modified control
frames.

— Step 3: After receiving the local decisions from the robots, the ONU-MPP makes

a final decision (Dy) whether the reported robot is fault-free or not.

D. Time Complexity of Task Allocation Algorithm: In this subsection, we analyze the
time complexity of our proposed task allocation algorithm. As shown above in Algorithm 2,
at the beginning of each iteration, the agent node (located at the ONU-MPP) considers the
number of task requests (Ny s, or 1) arrived at any given time. Therefore, the initial for-loop
of our algorithm runs O(7n) times. Next, for each task, the agent node checks the information
consisting of availability, service type, residual energy, and task execution time of each robot
(m). Thus, the second for-loop of our algorithm requires O(m) time to select a suitable robot
for each given task (7). The information checking and robot selection part (steps 3 to 11)
of our algorithm takes constant O(1) time for each given robot. Similarly, the decision on
the working robot status (whether fault-free or not) also requires O(1) time for each selected
robot. Each robot’s residual energy computation is done by the corresponding robot itself
requiring O(1) time. It does not affect the agent node’s own task allocation operation. Hence,
for a total number of tasks (7) and participating robots (m), our task allocation algorithm
takes O(nm) time. For a given n and m, the minimum distance and priority based robot
selection (step 8) requires O(nm) time. As the considered model is distributed, any robot
can announce the task. The task auctioneer robot has the information about n tasks and
requires the information about m robots in that network in order to select a suitable robot,
resulting in an average computation complexity of O(nm). Therefore, our proposed task
allocation mechanism has the same time complexity as the minimum distance and priority

based selection.

2.5 Analytical Model

In this section, we develop an analytical model of the MRTA problem for the allocation of

different tasks to suitable robots, whereby each robot is able to execute only one task at any
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given time. We make the following assumptions:

o Tusk and robot types: We assume that an H2R application is composed of a set of
sensing and computing tasks Ny, similar to [94],]95]. The task types are independent
(e.g., face detection, environment monitoring) and robot types are heterogeneous due to
their varying task processing skills. The task execution consists of task load processing
and transmission of processed data, whereby task i has its own task location (z;,y;)
and task load (L;) that depends on the number of instructions needed to be executed.
All users under a given ONU-MPP are static in nature, while robots are able to move
and change their position towards the task location with very low mobility, depending
on their respective moving capabilities (e.g., pedestrian speed). Robot j is located at
(xj,y;) in a simple 2D space, whereby its energy (), task processing speed (sg;), and
moving speed (s? ) are assigned a scalar value (default values are listed in Table 2.1
below).

e Robot sensing and coverage: We assume that m robots are randomly distributed in an
area a with radius r,,,, (a = 7r2, ) according to a homogeneous Poisson point process.

Hence, the average number of robots per area unit is given by A,,, = ™ and the probability

that a robot has at least k neighbors equals w, where £ =1,2,3,..m.

The cost calculation and our proposed task allocation algorithm (see Algorithm 2) are de-
scribed in greater detail next.
A. Distance Calculation Model: The distance between a given pair of task ¢ and

robot j (d?) is obtained as follows:

& = \/(ﬂ?i —x)? + (Yi — ;)% (2.1)

where (z;,y;) and (x;,y;) represent the task and robot location, respectively.
B. Energy Consumption Model: The energy consumption model in multi-robot net-
works consists of three parts. The first part is the energy required to process the task (e, (i, 7)),

which is given by [96]:

t~

€P<i7j) - pgvg L= = pgvg ’ tpa (22)

NS

S

where pS,., Li, s, and t, denote the average energy consumption during processing (per

p?
second), computation load for task i, processing speed of robot j, and task processing time of

robot, respectively. The second part is the energy required to reach the task location (e, (i, 7)):

77
L
J

m

61”(7’7j) = pZ'Ug : S = qu)g : t?”? (23)
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where d’, s | Pavgs and t,. denote the distance between task 7 and robot location j, moving
speed of robot j, average energy consumption at moving speed s (per second), and time to
reach the task location, respectively. The third part of energy consumption is associated with
the communication overhead (e.(, 7)). This is the energy consumption related to transmitting

(erz(l,d)) and receiving (¢, (1)) a packet (I bit) over a distance (d), which are computed as

follows:
etx<l7 d) - (5elec + Eamp * d2) . la (24)
Cra(l) = €etec * 1, (2.5)
Gc(i,j) = eta:(l7 d) + crx(l)u (26)

where €. and €4, are the energy dissipation of radio electronics and transmit amplifier,

respectively. Thus, the total energy consumption of robot j (eg ) is given by:

el =Y e, )+ Y _eplisi)+ > i), (2.7)
where 1 denotes the number of tasks processed by robot j. By using e{ and the robot’s initial

energy ef , the residual energy of the robot (e) is determined as follows:
el =el —el. (2.8)

) . N
Note that the average residual energy (e’) of robot j is equal to el = # If é, and é. are

expressed as the average residual energy (e!) of our proposed method (minimum execution
time based selection) and the other compared approach (minimum distance/priority based
selection), respectively, then the average residual energy efficiency ratio (7°) of our proposed

€o—éc

€c

method over other compared method can be expressed as follows: 7° = , where subscript
¢ can be either minimum distance or priority based selection, respectively. Details on both
approach are described in performance comparison sub-section (see Section 2.6).

C. Task Execution Time: The task execution time for robot j comprises the time to
reach the task location ¢, and the task processing time t,. Thus, by using Eqs. (2.2) and

(2.3), the task execution time (#/

ex,i

) is calculated as follows:

. & L
towi =l +tp = j + X (2.9)
m P

For a given number of tasks (Ny), the total task execution time (#/) is equal to t! =
D ieN tim If £, and f, are defined as the execution time (/) of our proposed method
(minimum execution time based selection) and the other compared approach (minimum dis-
tance/priority based selection), respectively, then the task execution time efficiency ratio (7°)

of our proposed method over other compared method can be expressed as follows: 4° = foto

c
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where subscript ¢ indicates either the minimum distance or priority based selection approach,
respectively.

D. Throughput vs. Task Allocation Delay: Saturation throughput is one of the
important performance metrics to evaluate network performance. It can be defined as the
fraction of slot time that is utilized for data transmission by robots for their assigned task.
When the number of suitable robots is sufficiently large, the number of successfully executed
tasks is equal to the number of task arrivals in the system. In our analysis, we assume that the
number of the available channels (slots) is equal to the number of tasks successfully assigned
to suitable robots. Note that the average number of task executions during a certain time
period depends on the number of suitable robots available at that time. Robot j may be
either free (s;pusy = false) due to the lack of task assignments (probability Pjpys, = 0) or
busy (s;pusy = true), if one task is already assigned to that robot (probability Pjp.sy = 1).
For proper robot selection, the task type needs to match the corresponding robot’s capability
(11’7’{,”,6 = 1). Moreover, if any robots have sufficient remaining energy (e’) greater or equal to
the minimum energy threshold value (ey,) then that robot is eligible (Pel = 1) for selection,
otherwise it’s ineligibile (Pel = 0). With P} pys,, Pel, and Prfype given, the probability that a

suitable robot is available ( ) is approximated as follows:

s
Jfree

S e = (1= Pjpusy) - Pel - Pri .. (2.10)

J,free

For comparing throughput vs. task allocation/contention delay for robots, note that the
WLAN beacon interval is divided into two phases: contention and task execution, as shown
in Fig. 2.3(a). The task allocation delay during the contention phase includes task request,
reply from robots, and winning robot notification. Let ¢, ¢, and ¢,, denote the duration of
the modified request RTS, reply CTS, and winner notification ACK frame, respectively. Thus,

the average required time for robot selection (t4;) is given by:

_ Ntaskta + mtr + Ntasktw

tsi )
Ntaslc

(2.11)

where Ny, and m are the total number of tasks and robots that participate in the contention
phase, respectively. Hence, the duration of the task allocation (f,0.) during the contention

phase is computed as follows:
Lalioc = tsi(Ntask’ ’ Pﬁfree)' (212)

Similarly, the total number of successful robot selections (n,) during the contention phase
is obtained as n, = t‘;% If the total number of tasks to be completed (N;us) and the

st

probability of suitable robot availability (pi free) are known, the average number of successful
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task allocations (Ng,) during the contention phase is given by:

Ntask N

. . task s i s ask—7%

Navg = Z mm(z,ns) (Z _ 1)( j,free) (1 - j,free)Nt B (213)
i=1

The saturation throughput (S,,,) for different numbers of allocated tasks (Ngy,) without

execution time overhead is obtained as follows:

Nzw T_ta oc
Suvg = it = i ), (2.14)

where T is the WLAN beacon interval. Considering the extra execution time delay overhead

Na'ug (Tftallocftoverhead)
T .

Note that for the calculation of S,,, we assume that periodic messages are small and therefore

(toverhead), the saturation throughput is measured as follows: S,., =

their affect is negligible.

E. FiWi End-to-end Delay Analysis: In this section, we extend the maximum US
(ONU-MPP to OLT) and DS (OLT to ONU-MPP) frame transmission delay model proposed
in [93] in order to calculate both local and non-local H2R task allocation delay. As illustrated
in Fig. 2.2, an ONU-MPP schedules transmission opportunities for its associated users based
on an M/G/1 queuing model with reservations and vacations. We define the aggregated
traffic load as p"?"=\X, where X is the traffic arrival rate and the random packet service time
is denoted by its first moment (X). During a cycle time (7,), the ONU-MPP timeline consists
of data, reservation, and vacation intervals. The H2R traffic time period during transmission
is (1 — p"?"), which equals N(MV + RTT). Thus, T, is equal to T, = %, where M is
the total number of users (e.g., humans, robots), reservation duration V' is equal to 7.+ T,
and RT'T = 27T},,, is the round-trip time between the OLT and ONU-MPP.

If a task allocation request frame arrives after a PS-Poll message, it has to wait for
a polling cycle time T, for reporting. If the frame transmitted in the next cycle sub-slot
Towvst > 1. holds, it takes another queuing delay of T, — Tyups. Thus, the total waiting
time of the frame is 27, — T,p5. Both the propagation time 7)., and US frame transmission
time X, are accounted for the total waiting time in our US frame delay calculation. By
replacing Tyups With T0*? and X, with X0, for X, < X400, the maximum US delay of the
task request frame (D,,) is given by D, = 2T, — T\ + T)y0p + Xpnae- Similarly, we calculate
the maximum downstream frame delay when an H2R task allocation request frame arrives at
the OLT immediately after its transmission of a GATE message to the ONU-MPP. Thus, the
frame has to wait for T, — T;. By adding the maximum DS frame transmission time X,
for Xy < Xomas, Tyrop and frame queuing delay T, — Ty; while considering Ty, > RTT + 277059,

the maximum DS frame delay (D) is approximated by Dy =T, — 21779 — T}, + Xinaa-

pon

For a non-local task allocation request, the H2R task request frame is first transmitted

to the OLT in the US direction. Next, the OLT broadcasts it to all ONU-MPPs. After

40



receiving the task request frame, the corresponding ONU-MPP selects a suitable robot for
the task. Hence, three delay components are part of the non-local task allocation end-to-end
delay (Dyon—1ocal) calculation: US frame transmission delay (D, ), frame DS transmission delay

(D), and robot selection delay (tu0c). Thus, Dyon—iocar is given by:
Dnon—local - Du + Dd + talloc- (215)

Conversely, the local task allocation end-to-end delay (Djoeq) consists of only two components:
US frame delay (D,) required to transmit the frame to the ONU-MPP and robot selection
delay (fanoc). Thus, Djyeq is computed as follows:

Dlocal = Du + Lalioc- (216)

F. Cooperative Sensing for Robot Failure Detection: To make a decision on the
selected robot status, we use the binary testing hypothesis Hy (absence of robot transmission in
the assigned timeslot) and H; (presence of robot transmission) [97]. Hypothesis H; states that
the neighboring robots observed a signal z(n) that contains white Gaussian noise v(n) and the
corresponding robot’s signal S,(n) when the robot operates properly, whereby n = 1,2,3..N
and N denotes the maximum number of samples. Conversely, hypothesis Hy states that x(n)
contains only white Gaussian noise v(n) whenever the robot experiences a failure. The noise
is assumed to be additive white Gaussian with zero mean and variance o2. Hence, the decision
statistic ¢; for energy detector that is employed by neighboring robot j to detect the working
robot’s periodic signal energy is given by [98]: t; = % Zﬁﬁzl |z(n)|?, where X is a predefined
threshold that tests the decision statistic. Subsequently, each neighboring robot makes a local
sensing decision (D;) on the working robot’s status such that D; = 1if ¢t; > A, or 0 otherwise.
Based on all local decisions sent to the agent node (ONU-MPP), the final decision (D) on

robot’s status is determined by applying the n out of k logic rule:

k
>n, H
Df:ZDj{—”’ ! (2.17)
j=1

<mn, H07

where k is the total number of neighboring robots. Further, the false alarm (Pp = P(t; > A |
Hy)) and detection probability (Pp = P(t; > A\ | Hy)) of neighboring robot j are given by:

Pr=Q (SNR«/leS + QY (Pp)V1+ 25NR> (2.18)

- [ Q7'(Pr) — SNRVI,
PDQ( V1T 99N E ) (2:19)
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Table 2.1: Parameters and default values for local and non-local H2R task allocation

Parameter Value
Number of robot (m) 1-50
Number of task (Niqsk) 1-20
Beacon interval (7') 1-100 ms
Area (a) 9 km?
Communication radius 56 m
(Fmaz)

Initial energy of robot (¢;)  2J
Residual energy threshold 0.5 J

(ern)

te, tr, tw 0.17 ps, 0.12 ps,
0.12 us

Li,d, s7, 53, (weight) 0.1to1

Povg and pi, . 4 mJ/sec

Eelec 50 HJ/blt

Eamp 10 pJ/bit/m?

where f, and [, denote the sampling frequency and sensing time, respectively. Hence, we have

signal-to-noise ratio (SNR) given by % and N = I,f,. Then, by using Pr and Pp, the joint

probability of false alarm (Qr) and miss-detection (Qyp) can be calculated as follows:

k

Qr = ; (i) (Pp)"(1 — Pp) (2.20)
Qup=1-Qp=1- Ek: (2) (Pp)™(1 — Pp)k— (2.21)

2.6 Results

In the following, we present results on the performance of our proposed task allocation mech-
anism. Table 2.1 summarizes the key design parameters and their assigned default values in
compliance with [95].

System settings, requirements, and configurations: In this work, the ONUs are locat-
ed at a distance of 20 Km from the central office (OLT). Further, the MAP radius, ONU-MPP

42



Throughput vs. Contention time for varying allocated task
(Pl ree=1)

,free

g=5
=15

NEV

NEV

Throughput (x Data channel rate)

60
Contention time (% of Beacon interval) t

0 10 20 30 40 50 70 80 90

alloc

(a)

Throughput vs. Probability of robot availability (N, , =5)
5

—+— Total robotnumber=10
| 7 Totalrobotnumber=15

—— Total robotnumber=20
“| —=— Total robot number=25

Throughput (><Data channelrate)

03 04 05 0.6 07 0.9 1

Probability of robot availability (P

()

Execution time vs. Task load for varying processing speed
(N, =5, t,=2s, Total robot=20, P =1)

jfree

0z 08

s
J,free)

task

—+—sp=‘5

—w—s =7
P

Total execution time | (s)

0.8

u.‘e
Task load L;

0.4 0.5 0.7

()

Figure 2.4: Throughput, task execution time, and average residual energy variation.

Throughput vs. Total task number for varying robot
(Pre=1)

jfree
Il Total robot number=5
I Total robotnumber=10 |~
[ITotalrobotnumber=15
[ ITotalrobotnumber=20

Throughput ( < Data channel rate)

4
‘ H
5

15 20

10
TasknumberN,

(b)
Total task execution time vs. Total task number
= = = s
(Total robot=20, tr-2s, sp-.25, ije-1)
I Task load=.25

[ Taskload=5
[ ITaskload=1

120

100

40

20

Total task execution time tJ‘ (s)

15
Totaltask numberN,

20

(d)

Average residual energy vs. Number of iterations
(Total robot=20, tr=4s, tp=4s, PS5 =1,1=25, d=10)

j.free

2

Average residual energy éa )]

150

100 250 300 350

Number of iterations

(f)

400 450 500

43



coverage area, and density of MAPs within each ONU-MPP coverage area is set to 100 m, 9
km?, and 3, respectively. The FiWi traffic load is varied within the range between 0.05 to 0.95.
For evaluation, the task workload (L;), robot processing (s}), and moving speed (s},) weight
is assigned randomly from the range between 0.1 to 1. The task request, response, and winner
notification message duration are set to .17us, .12 us, and .12us, respectively. The maximum
frame service time X4, (at ONUs and OLTS) is assumed to be equal to 12.14 pus. The MPCP
messages (REPORT and GATE) duration is set to 64 bytes (7,79 = .512us), whereas the
wireless messages (Ps-Poll) duration is assumed to be 7, = 512 ps. The maximum data
rate at the wired (EPON) and wireless (WLAN) link are set to 10 Gb/s and 6900 Mb/s,
respectively. Note that, the main requirements of the low-latency H2R application execu-
tion (capturing image by using camera at a task location and object detection from captured
image) is availability of robots for task execution and availability of bandwidth resources to
transfer the task request to robot, hardware/software interface to transfer the task request,
connectivity of both mobile users device and robots with networks (WLAN at front-end), and
robots failure avoidance, among others.

A. Throughput Performance Analysis: As shown in Fig. 2.4(a), for a given average
task allocation number (Ng,,) and probability of robot availability (P7,,..), the saturation
throughput (5,,,) increases as the contention time (f4,c) increases until it reaches the peak
value given by Eq. (2.14), whereby the contention time is long enough to allocate all tasks to
suitable robots. Further increasing the contention time reduces the task processing and da-
ta transmission time and thereby negatively affects the throughput performance. Fig. 2.4(b)
shows the throughput variation for different numbers of tasks (N, ) and robots (m). Provided

that sufficient robots are available (P = 1), the network is able to achieve high throughput

only when the number of robots par&iipating in the contention phase is equal to the number
of different tasks. This is because higher robot participation results in a long contention time,
which in turn leads to a reduced data transmission time. For increasing task arrivals, enough
robots are needed to process a large number of task, whereby task load and robot properties
(e.g., distance, processing speed, moving speed) are assumed to be independent. We observe
from Fig. 2.4(c) that initially a larger number of robots result in an increased throughput
for a fixed number of tasks due to the lower probability of robot availability (Fj,..). For
sufficiently available robots, a small number of robots achieves higher throughput compared
to a large number of robots.

Figs. 2.4(d) and 2.4(e) depict the variation of total task execution time (¢/) for different
task load (L;) and processing speed (s,) values, respectively. From Fig. 2.4(d) we observe
that the total task execution time increases for an increasing task number and task load

value. Fig. 2.4(e) indicates that a robot with high processing speed (s,) results in a lower
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task execution time. Fig. 2.4(f) shows the average residual energy (e!) for different task and
iteration numbers (see Eq. (2.8)). A large number of tasks (per iteration) results in a lower
average residual energy for each robot than for a small number of tasks.

B. Performance Comparison: In this subsection, we compare the performance of our
proposed scheme with two generalized task allocation schemes: (7) minimum distance based
robot selection (MD) [12]-[13] and (i) priority based robot selection (PS) [14]-[15]. More
specifically, their performance is compared in terms of total task execution time, average
residual energy, and average throughput. The MD approach selects a suitable robot for each
task based on the lowest distance to a given task location. Conversely, the PS scheme allocates
a given task to the robot with the lowest ID or by using robot and task ID matching. Our
proposed MET task allocation approach selects a robot based on the pre-calculation of the

minimum execution time t/_ (see Eq. (2.9)). For fair comparison, we relate both generalized

PS and MD mechanism to 01’1r analytical model and test their performance based on the same
system settings as listed in Table 2.1. Moreover, to evaluate the performance of the MD,
PS, and our proposed MET selection schemes, we randomly assign different robot properties,
including a robot’s moving speed, processing speed, distance associated with each task and
robot, as well as task load. Next, we select an eligible robot for each task using the MD,
PS, and MET robot selection processes. As shown in Fig. 2.5(a), for a small number of
tasks and highly available robots, MET results in a smaller total task execution time than
the MD and PS approaches. This is because both MD and PS approaches neglect additional
selection criteria other than the minimum distance and the robots’ own priority. Note that
the execution time difference between the three methods decreases as the number of tasks
increases. For the same number of tasks and robots, the execution time difference between
the three approaches equals zero. In Fig. 2.5(b), we vary the task load to show its impact
on the task execution time. Clearly, the task execution time increases with the task load for
all three methods. We observe that the PS approach performs better than the MD selection
scheme under high task loads. This is because the robot selected by the MD scheme exhibits
a lower task processing speed and moving speed than that robot selected by the PS scheme.
Fig. 2.5(b) also indicates that our MET approach outperforms both MD and PS approaches.
Fig. 2.5(c) depicts the average residual energy variation of the robots for the three methods
under consideration. The average residual energy of the robots decreases as the number of
iterations increases. Due to its smaller execution time our proposed MET approach is able to
achieve a superior average residual energy performance than the alternative two methods.
Fig. 2.5(d) compares the throughput performance of our proposed MET method with
that of the MD and PS approaches for different robot availability probabilities. Clearly,
the throughput of all three approaches increases with growing robot availability probability.
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However, both MD and PS schemes achieve a smaller throughput than our MET approach
due to their higher task execution time overhead. Fig. 2.5(e) and (f) illustrate the overall task
execution time and average residual energy efficiency of our proposed method in comparison
to that of the MD and PS selection schemes. Fig. 2.5(e) shows that for high task loads
our proposed method achieves a superior execution time efficiency than the PS approach.
For instance, at a task load of 1, the task execution time efficiency of our proposed method
outperforms the PS and MD selection scheme by 11% and 18%, respectively. Similarly, we
observe from Fig. 2.5(f) that the average residual energy efficiency of our proposed method
outperforms both MD and PS approaches for increasing task loads. For smaller task loads, our
proposed method shows a higher residual energy efficiency than both PS and MD approaches.
Note that under a high task load our proposed method achieves a significantly better residual
energy efficiency than the PS and in particular the MD approach.

C. Failure Sensing Error Rate and End-to-End delay Analysis: Fig. 2.6(a)
depicts the variation of the robots’ total failure sensing error rate for different energy thresholds
(M) (see Egs. (2.20) and (2.21)). We compare three different fusion rules (n out of k sensing
neighbors) to identify their respective effectiveness. We observe that the AND (n = k),
Majority (n > %), and OR rule (n = 1) achieve minimal error rate for a low, medium, and
large threshold, respectively. Thus, the AND, Majority, and OR rules are optimal for a low,
medium, and large threshold, respectively. Next, the non-local (Don—iocar) and local (Djoear)
H2R task allocation end-to-end delay for different numbers of users (M) and traffic loads (p"*")
are shown in Fig. 2.7(a) and Fig. 2.7(b), respectively. Both delays (Djocar and Dyon—iocal)
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Figure 2.7: Local and non-local task allocation end-to-end delay evaluation.

increase with the traffic load (p"?") and different number of ONUs (N) in our considered
FiWi multi-robot networks (see Egs. (2.15) and (2.16)). We observe from these figures that
Don—10cal €xperiences a higher task allocation delay than Dj,.,;. This is because that beside
the robot selection delay (taioc), Dnon—tocat depends on both US (D,) and DS (D) frame

transmission delays, while Dj,.,; depends on the US frame transmission delay (D,,) only.

2.7 Conclusions

In this chapter, we proposed a suitable robot selection mechanism for H2R task allocation in
integrated FiWi multi-robot networks. Unlike existing solutions, we investigated both local
and non-local task allocation. To reduce robotic failure during task execution, we introduced
a neighboring robot monitoring based failure sensing scheme, whereby both human users and
robots are synchronized and incorporated into a TDMA-based resource management process.
We developed a comprehensive performance analysis model to evaluate system throughput,
task allocation delay, task execution time, and robots’ average residual energy. Importantly,
we showed that there exists a trade-off between task allocation delay and system throughput.
Our results indicate that the minimum execution time based robot selection achieves a supe-
rior total task execution time and average robot residual energy performance than minimum
distance and priority based selection when the number of tasks is smaller than the total num-
ber of available robots. Further, we investigated the total sensing error rate of three fusion
rules and examined their respective effectiveness during the failure sensing process. By taking
frame transmission delay (US and DS) and robot selection delay into account, we also analyzed

both local and non-local task allocation end-to-end delay. Our obtained results show that the
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proposed H2R task allocation represents an important stepping stone towards ensuring QoS

for future HART-centric Tactile Internet applications [4].
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Chapter 3

Collaborative Computing over FiWi
Based Tactile Internet Infrastructures

3.1 Preamble

This chapter contains material extracted from the following paper:

[J3] M. Chowdhury and M. Maier, “Collaborative Computing For Advanced Tactile Internet
Human-to-Robot (H2R) Communications in Integrated FiWi Multi-Robot Infrastructures,”
IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2142-2158, Dec. 2017.

3.2 Introduction

With the emergence of 5G mobile networks and rapid development of smart devices, it is ex-
pected that a wide variety of real-time machine-centric applications are finding their way into
our life. To unleash their full potential, some of those 5G applications (e.g., cognitive assis-
tance) require low-latency communications with ultra-reliable, ultra-responsive, and intelligent
network connectivity. To meet the aforementioned requirements, we recently evaluated the
performance gains obtained from unifying coverage-centric LTE-Advanced (LTE-A) heteroge-
neous networks (HetNets) with capacity-centric fiber-wireless (FiWi) access networks based
on data-centric Ethernet passive optical network (PON) and Gigabit-class WLAN technolo-
gies [9]. We showed that very low latency on the order of 1 ms and ultra-high reliability with
almost guaranteed network connectivity can be achieved in FiWi enhanced LTE-A HetNet-
s. Note that both very low latency and ultra-high reliability are not only crucial for future
5G networks but are also essential design goals of the emerging Tactile Internet to remotely
steer /control virtual and/or physical objects (e.g., remote-controlled robots) [35].

In order to realize Tactile Internet robotic applications, the feasibility of several key en-
abling technologies such as FiWi enhanced 4G mobile networks, cloudlets, mobile-edge com-

puting (MEC), and cloud robotics were identified in [5]. Moreover, the subtle differences
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between 5G, Internet of Things (IoT), and Tactile Internet were outlined based on their d-
ifferent underlying communications paradigms. IoT and 5G leverage on machine-to-machine
(M2M) and human-to-human (H2H) communications, respectively. Conversely, the Tactile
Internet relies on human-to-robot (H2R) communications to facilitate the interaction between
human operators and tele-operated robots. Note that, in [5], we introduced the concept of
FiWi enabled H2R communications for Tactile Internet applications and identified specific
H2R communications requirements apart from low latency and high reliability, most notably
efficient H2R task allocation. However, we did not elaborate on how H2R communications
may be realized in technically sufficient detail.

Taking the respective areas where robots are strong and humans are weak into account,
FiWi enabled H2R communications aims at leveraging on their “cooperative” and “collab-
orative” autonomy such that humans and robots may complement each other. This design
approach is also known as Human-Agent-Robot Teamwork (HART) [55]. The potential ben-
efits of real-time HART applications are immense, ranging from industrial applications (e.g.,
coal mining) to emergency response operations (e.g., food supply and human rescue). Howev-
er, highly reliable and secure communication platforms along with intelligent task allocation
and service coordination strategies are needed to meet their stringent quality-of-service (QoS)
requirements. To ensure proper coordination in both local and non-local HART task alloca-
tion processes, integrated FiWi multi-robot communication infrastructures play a crucial role,
whereby humans (H), agents (A), and robots (R) perform the following respective functions.
A human user delegates her task request to a robot through a nearby agent. The agent in
turn coordinates the task allocation/robot selection process, while the selected robot executes
the human’s task. Note that typically the agent is placed at the optical-wireless interface of
integrated FiWi multi-robot networks.

For the efficient utilization of robotic resources, proper task allocation among robots is
crucial by taking the different capabilities of robots and the specific task requirements such
as task execution deadline and energy consumption of robots into account [57]. Most existing
multi-robot task allocation (MRTA) studies focus on only one or a few parameters for robot
selection, e.g., the robot’s energy [99], distance to task location [12], or task priority [89].
Clearly, in more advanced robot selection schemes, additional parameters need to be considered
such as the robot’s ability, availability, and task execution time. More importantly, note that
the aforementioned MRTA schemes suffer from several shortcomings, most notably, the lack
of control and coordination as well as task re-allocation mechanisms, thus resulting in an
increased task execution delay and energy consumption of selected robots. Further, some
H2R tasks may involve location dependent sensing sub-tasks (e.g., image capturing) and/or

location independent computation sub-tasks (e.g., processing of sensed data). For these types
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of task, different challenging scenarios may arise, where the available robots may fail to execute
either the sensing or computation sub-tasks or both due to their limited computing and storage
resources.

To address these shortcomings, mobile devices increasingly seek assistance from collabo-
rative nodes (e.g., mobile-cloud computing, mobile device-to-device communications) for ex-
ecuting their computation tasks, a trend also known as cyber-foraging [16] or collaborative
computing [18], [17]. Despite recent progress on MRTA | the impact of collaborative/joint task
execution schemes that consider both the host robot and collaborative nodes (e.g., central
cloud or cloudlet) for the H2R task execution process has not been examined in sufficient
detail previously. For clarification, note that the H2R task execution process typically con-
sists of two sub-parts. The first one comprises the initial processing or sensing sub-task (e.g.,
capturing an image), which can be executed only by the selected host robot located in the
given task area. The second sub-part of the task involves the location independent computa-
tion/processing of the sensed data (e.g., image/face detection), which can be done by the host
robot itself or alternatively be offloaded to collaborative nodes. Computation task offloading
to collaborative nodes comes in three flavors: System-based, method-based, and optimization-
based offloading. System-based offloading is used to decide whether to offload the computation
task to an infrastructure-based cloud (e.g., central cloud [74],[75], cloudlet [76], [77]) or an ad-
hoc virtual cloud [78], [30]. Method-based offloading [71] involves application partitioning and
code migration to an infrastructure-based cloud. Optimization-based task offloading, on the
other hand, aims at achieving objectives related to minimizing energy consumption [75] and
task response time [77] of mobile devices, though computation task offloading might not al-
ways be beneficial for mobile devices. Several studies showed that computation task offloading
can help save energy of mobile devices only if they consume less energy during offloading the
computation task to a central cloud than executing the task by themselves [74],[75].

Most previous studies considered either full task (i.e., both sensing and computation sub-
parts) allocation to a robot or only computation offloading (i.e., sub-part of the full task) onto
cloud nodes (central cloud and local cloudlet) for execution (also see Table 3.1 for details).
Hence, the question of how to assign a local/non-local H2R task to a host robot considering
different tasks and robot types with their respective energy consumption, availability, distance
to task location, processing, and moving speed remains an open research challenge. Moreover,
how to coordinate both task allocation among robots and computation sub-task offloading
onto collaborative nodes represents another unaddressed research challenge. Further, different
challenging situations need to be investigated, where both collaborative cloud/cloudlet nodes

may satisfy or fail to satisfy given computation offloading requirements.
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Table 3.1: Comparison of proposed scheme with existing task allocation schemes

Scheme Main Features Robot Selection | Resource| Task Al- | Other Com-
and Computa- | Man- location | ments
tion Offloading | age- and Of-
ment floading
Coordi-
nation
Minimum | Used only robots | Used only for | Not ad- | Not con- | May  suffer
Distance distance value for | robot selection | dressed sidered from  higher
based task allocation, | based task ex- task  execu-
robot  s- | not considered | ecution, not tion latency
election task re-allocation | considered task
[12] offloading
Fixed task | Used only robot i- | Not considered | Not ad- | Not con- | May  suffer
assignment | dentification num- | task offloading dressed sidered from  higher
scheme ber for task alloca- task  execu-
[89] tion tion latency
Remote Used min energy | Used only for lo- | Not ad- | Not con- | Not consid-
cloud consumption of | cation independent | dressed sidered ered location
based mobile device for | offloading task dependent
system [75] | cloud offloading task
Delay op- | Minimized compu- | Used only for com- | Not ad- | Not con- | Not consid-
timal com- | tation task execu- | putation offloading | dressed sidered ered location
puting [77] | tion time, consid- | task, did not con- dependent
ered cloudlet for | sider any robot se- H2R task
offloading lection scheme execution
Hybrid Minimized energy | Only offload com- | Not ad- | Not con- | Not consid-
cloud consumption of | putation task to | dressed sidered ered location
based sys- | host mobile device, | suitable cloud dependent
tem [76], | considered remote | server, did not H2R task
[78] cloud and cloudlet | consider any robot execution
for offloading selection scheme
Our pro- | Host robot selec- | Considered both | Addressed| Considered| H2R task
posed tion for sensing | suitable host robot includes both
scheme task based on dif- | selection and com- sensing  and
ferent parameters | putation sub-task computation
(e.g., distance, | offloading task
energy, skill)
Considered multi- | Offload compu-
ple collaborative n- | tation  task to
odes for computa- | collaborative node
tion offloading that satisfies re-

source availability,
deadline, and en-
ergy consumption
criteria
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Towards this end, in this chapter we develop an efficient H2R task allocation strategy
that includes both suitable host robot and collaborative node selection in integrated FiWi
multi-robot networks. We propose to use not only the central cloud and local cloudlets as
collaborative nodes but also available neighboring robots for computation sub-task offloading.
To achieve energy savings of the robots and accomplish H2R tasks within their required time,
the main objective of this chapter is to select the proper policy for H2R task execution by
evaluating the performance of a non-collaborative task execution scheme, in which the selected
host robot executes the full H2R task, and the collaborative/joint H2R task execution, in which
the selected host robot performs only the sensing sub-task while the selected collaborative node
executes the computation sub-task via computation offloading.

The main contributions of this chapter are threefold. First, we present a suitable host robot
selection policy for sensing sub-task allocation by taking different parameters such as robot
availability, remaining energy, and task execution time into account. Second, to improve the
task response time and energy consumption of robots, we propose an efficient collaborative
node selection scheme for computation offloading. Third, we investigate a unified resource
management scheme that is able to handle coexisting conventional broadband traffic and
computation offloaded data traffic.

The remainder of this chapter is structured as follows. Section 3.3 describes our proposed
FiWi multi-robot network architecture, unified resource management, and task allocation
scheme in technically greater detail. Section 3.4 presents our developed analytical model.
Section 3.5 reports on our obtained results and findings. Finally, Section 3.6 concludes the

chapter.

3.3 FiWi Multi-Robot Network infrastructure for H2R
Task Allocation

3.3.1 Network Architecture

In this section, we re-design the generic FiWi network architecture introduced in [9] for co-
ordinating the local and non-local allocation of H2R task that consist of both sensing and
computation sub-parts, whereby humans, robots, and agents actively participate in the task
allocation process, as shown in Fig. 3.1. We exploit the central cloud, cloudlets, and neighbor-
ing robots as collaborative nodes for computation sub-task offloading. Note that the generic
FiWi network architecture proposed in [9] was designed only for H2H communications and
did not examine any H2R task allocation and computation offloading capabilities.

In our proposed collaborative computing based FiWi multi-robot network architecture, the
optical fiber backhaul consists of an IEEE 802.3av 10 Gb/s Ethernet Passive Optical Network
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Figure 3.1: Integrated FiWi multi-robot network architecture for coordinating local and non-
local H2R task allocation.

(10G-EPON) with an optical fiber range of 10-100 km between the central optical line terminal
(OLT) and remote optical network units (ONUs). The OLT is located at the central office
and connects to three different subsets of ONUs via a typical tree-and-branch topology. The
first subset of ONUs provides services to a single or multiple attached fixed (i.e., non-mobile)
wired subscribers via FTTx access, e.g., fiber-to-the-home/business (FTTH/B). To provide
an interface with the wireless mesh network (WMN), the second subset of ONUs is attached
to an IEEE 802.11s mesh portal point (MPP), referred to as ONU-MPP. The WMN consists
of wireless mesh points (MPs) and mesh access points (MAPs), whereby intermediate MPs
relay traffic between MPPs and MAPs. Each MAP serves associated mobile users (MUs)
and robots within its wireless coverage area. Note that the integrated ONU-MPP is realized
by using so-called radio-and-fiber (R&F) technologies with medium access control (MAC)
protocol translation taking place at the optical-wireless interface [94]. The third subset of
ONUs, each connecting to an LTE enhanced nodeB (eNB) base station, giving rise to ONU-
eNB, in order to provide 4G cellular services to MUs [93]. The central cloud servers are
connected to the OLT via dedicated fiber links. In addition, to provide mobile-edge computing
(MEC) services to MUs and robots at the edge of our integrated FiWi multi-robot network,
cloudlet servers are placed at the optical-wireless network edge and connected to separate
ONU-MPPs or ONU-eNBs via dedicated fiber links.

In the following, we focus on WLAN coverage only, whereby MUs and robots connect to
the ONU-MPPs via IEEE 802.11ac WLAN, and leave cellular coverage for future work.
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Figure 3.2: Proposed resource management scheme.

3.3.2 Resource Management Scheme

3.3.2.1 A. General Operation

Similar to [94], our proposed resource management scheme uses a two-layer time division mul-
tiple access (TDMA) based operation in both optical and wireless sub-networks, as illustrated
in Fig. 3.2. However, our proposed resource management scheme differs from [94] in several
important ways. First, in the wireless part, we split the overall timing structure into three
parts: (¢) initial robot selection for task allocation, (ii) assigned time slot for associated users’
conventional broadband traffic, and (ii7) computation offloaded data transmissions. Second,
apart from the central cloud and local cloudlets, we consider available neighboring robots for
computation sub-task offloading. Third, our resource management scheme flexibly accommo-
dates H2R task execution both with and without computation offloading onto a collaborative
node.

To better understand the basic operation during a polling cycle, Fig. 3.3(a) illustrates the

proposed resource allocation and control signal exchange process, which operates as follows:

e During the initial task allocation phase, the agent located at the ONU-MPP exchanges
three control messages (RTS, CTS, and ACK) with its associated robots to select one
suitable robot for each H2R task (to be described in greater detail in Section 3.3.3).

e The resource management operation in the optical fiber backhaul uses IEEE 802.3av
multipoint control protocol (MPCP) messages (REPORT and GATE), whereby the REPORT
message is used by ONU-MPPs to report their upstream (US) transmission demands
to the OLT and the GATE message is used by the OLT to inform ONU-MPPs about

their US transmission windows (i.e., start time and duration) for the next polling cycle.
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Figure 3.3: (a) Timing structure and control frame format, and (b) operational steps of
computation ofloading process.

The REPORT message contains the ONU-MPPs’ US bandwidth requests in terms of buffer
backlogs expressed in time units. In this work, the traditional REPORT message is extend-
ed by using its reserved bits (32 bits) for carrying the computation offloading time slot
request information, which contains the time instant up to which a given ONU-MPP
can schedule its associated wireless users’ computation offloaded data transmissions.
The computation offloading bandwidth request information embedded in the REPORT

message is used by the OLT to assign ONU-MPPs computation offloading transmission
time slots in the next polling cycle.

In the wireless part, the resource management operation is realized via the exchange
of IEEE 802.11ac WLAN frames (i.e., Beacon and PS-Poll), whereby associated users
(MUs/robots) report their bandwidth requests by sending an extended PS-Poll mes-
sage to their corresponding ONU-MPP. The PS-Poll frame is extended by using its
pad/reserved bits to include an offload flag bit. The offload flag bit is embedded in the
PS-Poll frame to inform the ONU-MPP about the MUs/robots’ computation offload-
ing time slot requests. After receiving the GATE message from the OLT, the ONU-MPP
assigns conventional broadband US traffic and computation offloaded data transmission
opportunities to its associated users, resets its clock time, and then sends the broadcast
Beacon frame to inform all associated MUs/robots about their US transmission time

slots (i.e., start time and duration).
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e Subsequently the ONU-MPP receives the US transmissions from its associated users
and forwards them to the OLT. At the same time, the ONU-MPP receives its intended
downstream (DS) frames from the OLT and forwards them to its associated users. Note
that each MU /robot sends/receives its US/DS data traffic to/from the ONU-MPP during

its assigned time slot.

3.3.2.2 B. Computation Offloading Operation

e In this work, the transmission opportunity for computation ofoading is kept separate
from conventional broadband transmissions to permit both broadband and computa-
tion offloading operations within a polling cycle. Fig. 3.3(b) depicts the computation
offloading process to a collaborative node, which might be a remote cloud server, decen-
tralized cloudlet, or neighboring robot. Initially, the MU sends her H2R task execution
request to the agent located at the ONU-MPP. The agent then selects a suitable host
robot for the H2R task that contains both sensing and computation sub-parts via our
task allocation algorithm (to be described in greater detail in Section 3.3.3). Next, after
completing the sensing sub-task (e.g., image capturing), provided that the selected host
robot requires assistance from a collaborative node (central cloud, cloudlet, or neigh-
boring robot) to process the remaining computation sub-task (e.g., image detection),
it sends a computation offloading request to the ONU-MPP in an extended PS-Poll

message.

e After receiving the computation offloading request from a given host robot, the ONU-
MPP selects where (i.e., cloud node or neighboring robot) to offload the computation
sub-task onto subject to given computation sub-task offloading requirements (see Section
3.3.3) and sends an extended REPORT message to the OLT, which embeds the computa-
tion offloading request. Once the ONU-MPP receives the GATE message from the OLT
that contains the ONU-MPPs’ conventional broadband and computation offloading time
slot map, it immediately schedules the host robots’ computation offloading opportunities.
The ONU-MPP then notifies all host robots about their computation offloading time s-
lot information via a broadcast Beacon message (i.e., computation offloading time slot
start time and duration). A given host robot then transmits the computation sub-task
data frame (see Section 3.4.1 for details) to the ONU-MPP via its assigned offloading
time slot. After receiving the computation sub-task input data frame from the task
offloading host robot, the ONU-MPP forwards them to the selected collaborative node

(central cloud/cloudlet/neighboring robot) for further processing.
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e In case of cloudlet/neighboring robot offloading, the ONU-MPP sends the computation
sub-task input data frame to a cloudlet/neighboring robot via the fiber/wireless link
for processing. Once the ONU-MPP receives the results of the computation sub-task
from the cloudlet/neighboring robot, it immediately sends them to the task offloading
host robot. For central cloud offloading, the ONU-MPP sends the computation sub-task
input data frame to the OLT. Then, after receiving the computation sub-task input
data, the OLT transfers them to the central cloud. The OLT receives the computation
sub-task results from the central cloud after processing and sends them to the ONU-
MPP. Once the ONU-MPP receives the computation sub-task results from the OLT, it

immediately forwards them to the corresponding host robot.

3.3.3 Proposed Task Allocation Algorithm

We consider the following two different task execution schemes: () a non-collaborative scheme,
where the suitable host robot executes the full task, and (i7) a collaborative scheme, where
the suitable host robot and collaborative node (central cloud, cloudlet, or neighboring robot)
conduct the sensing and computation sub-task, respectively. Our proposed task allocation
algorithm, which performs both the suitable host robot and collaborative node selection,

comprises the following four steps:

e Step 1: Initially, an MU sends her H2R task request message (T-REQ) to the agent node
during her assigned US transmission time slot containing the following information: task

location, task type, remaining energy threshold, and task deadline.

e Step 2: When the agent at the ONU-MPP receives the task request (T-REQ) from the
MU, it first checks which robots in its wireless coverage area satisfy the given availability,
energy threshold to conduct the task, and task execution deadline requirements. Towards
this end, the agent first broadcasts a task announcement message (RTS) to all nearby
robots. The RTS frame is extended by using its pad/reserved bits in order to include
additional task request information (T-REQ), similar to [100]. After the reception of a RTS
frame, the available robots in that network send reply messages (T-RES) embedded in CTS
frames to the agent containing the following information: remaining energy, location,
moving and processing speed, and pre-calculation of task execution time of each robot.
After checking each robot’s reply, the agent selects a suitable host robot according to
the following criteria: robot availability, remaining energy, and minimum task execution
time. The selected host robot is notified by the agent via a winner notification (T-WNT)
embedded in the ACK message. The modified RTS, CTS, and ACK frames are depicted in
Fig. 3.3(a).
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Algorithm 3 Task allocation algorithm

Considerations: Number of task arrives (n), number of available robots before task allo-

1:
2:
3:

8:

9:
10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:

cation (m), residual energy of robots (e/), required energy threshold to process the task
(ésn), required CPU cycles to process the sensing (S.,) and computation (c.,) sub-task,
full task execution time of robot (¢;), computation sub-task response time of central cloud
(), cloudlet (t), neighboring robot (¢2), and deadline (¢¢), energy consumption of host
robot considering own (ef), cloud (e<), cloudlet (e!), and neighboring robot computation
sub-task execution (€2).
for i = 1ton do
for j =1 tom do
The agent node at the ONU-MPP will check the residual energy (el) and pre-
calculation of task execution time (t;) of participating robots in that network via
exchange of modified RTS and CTS messages
if e/ > ey, then
Allocate task 7 to host robot 7 with minimum task execution time ¢;
The selected host robot executes the sensing sub-task (I5) of the full task and sends
a PS-Poll message to agent for computation offloading
The agent checks the availability and resource type of central cloud (cl), cloudlet
(ct), and neighboring robot (o) for computation sub-task (s.,,) execution
if e <et <el & e <e?<el &t <t then
Offload the computation sub-task to central cloud
else if e < e < el & e < e < el & t<t? then
Offload the computation sub-task to cloudlet
else if t° < t? then
Offload the computation sub-task to a suitable neighboring robot in that network
else if t > td &t > td & 12 > t¢ then
Execute the computation sub-task () locally in the selected host robot (see
step 5)
end if
else
Go to step 1
end if
end for
end for
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e Step 3: The selected host robot first executes the sensing sub-part of the task. If the host
robot sends a computation sub-task offloading request to the agent, the agent selects a

suitable collaborative node for the computation sub-task execution (remaining sub-part).

e Step 4: The agent checks the computation sub-task response time, resource availabili-
ty, and energy consumption of all collaborative nodes (i.e., central cloud, cloudlet, and
neighboring robots with minimum execution time and energy consumption value). The
agent then selects the most suitable collaborative node for computation sub-task exe-
cution based on the following criteria: (i) computation sub-task response time of the
collaborative node is less than or equal to the computation sub-task deadline, (ii) suf-
ficient resource availability, and (i74) minimum energy consumption of task offloading

host robot among all collaborative nodes.

The pseudocode (see Algorithm 3) of our proposed task allocation algorithm executed
by the ONU-MPP (agent node) is described below in a more formal way by defining the
various parameters used in our analytical model. First, the agent node broadcasts the H2R
task request message RTS (total number of arrived tasks is n and available robots is m) to
all available robots under the ONU-MPP and receives the robots’ response CTS messages
from all available robots (lines 1-2). Next, the agent node extracts the robots’ residual energy
information and pre-calculation of task execution time information from each robot’s response
message and allocates the H2R task to the robot that has sufficient residual energy to process
the task (el > ey) and satisfies the minimum task execution time requirements (lines 3-5).
Then, if the selected host robot executes the sensing sub-task of the full task and sends a
PS-Poll message to agent node for collaborative node selection to perform the computation
sub-task execution, the agent checks the available resource type of all collaborative nodes (lines
6-7). If only one collaborative node (central cloud, cloudlet, or neighboring robot) satisfies the
given task execution deadline, the agent at the ONU-MPP offloads the computation sub-task
onto that collaborative node. If more than one collaborative node is able to meet the given
computation sub-task execution deadline, the agent offloads the computation sub-task onto
the most suitable collaborative node based on its minimum energy consumption (lines 8-13).
Conversely, if all available collaborative nodes fail to satisfy the given computation sub-task
deadline, the computation sub-task is executed locally at the initially selected host robot (lines
14-15). Further, if the selected host robot fails to execute the computation sub-task, a new
host robot needs to be selected for the computation sub-task execution (lines 16-18) and the

process is repeated starting at step 1.
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3.4 Analytical Model

In this section, we first briefly discuss the assumptions of our analytical model. We then
evaluate the performance of our suitable host robot selection scheme in terms of task allocation
delay and task execution time. Afterwards, we analyze the end-to-end local/non-local task
allocation and computation sub-task offloading delay. Finally, we assess the performance of
our proposed collaborative and non-collaborative task execution schemes in terms of task

response time and energy consumption efficiency.

3.4.1 Assumptions

The H2R application is assumed to consist of one fine-grained task that includes both the
sensing (e.g., image capturing) and computation sub-task (e.g., image/face detection), sim-
ilar to [94] and [95]. Each robot is able to execute a single task at any given time. Unlike
MUs, robots are assumed to be static, though they are able to move and change their position
towards task location at low speed (e.g., pedestrian speed). Furthermore, robots are heteroge-
neous with regard to their remaining energy e/ (given in Joule), moving speed v; (m/s), CPU
clock speed p; (MHz), and position (x;,y;). The request from a given MU for a particular task
i includes the task location (z;,;), total or full task input size (I; = ls+1,) that contains both
the sensing (l5) and computing ([,) sub-task input data size (kBytes), total CPU clock cycles
(Megacycles) required to process the full task input data size, including both the sensing and
computation sub-task CPU cycles (tepu = Sepu + Cepu), Tequired robot energy threshold for each
task (es), and deadline (t4) to complete the full H2R task. We also assume that the output
of the sensing sub-task is the input of the computation sub-task. The computation sub-task

considered for offloading is defined as follows: ¢; £ (cepu, t4, My, Ly, 1), Where cop, t2

c) mT?

l,, and [, indicate the number of required CPU cycles to process the computation sub-task,

deadline, required memory, input, and output size of the computation sub-task, respectively.

3.4.2 Task Allocation Delay

The calculation of the average task allocation delay involves the transmission times of several
control messages that are exchanged between the ONU-MPP (agent) and robots, namely,
task announcement via an extended RTS (t,.), robot response via an extended CTS (f.s),
and winner notification via an extended ACK (t,.) message, similar to the IEEE 802.11 DCF
analysis in [101]. Hence, the probability that a given robot sends a response message in a
random time slot is given by p, = k%l, where k denotes the constant backoff window size.
For a total number m of robots participating in the task allocation, the probability that at

least one robot transmits a response in a random time slot equals p;,. = 1 — (1 — pg)™. Thus,
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the probability that a single robot transmits a response in a time slot is then obtained as

m—1
Pes o

_ mpk(1—pk
Ptr
For computing the average robot selection delay per task (), we assume that the agent

sends an RTS message to robots after waiting for DCF interframe space (tprrs), while robots
send a CTS message after waiting for short interframe space (tgrps). After tgrpg, the agent
sends an ACK message to the selected robot. By using the values of tprrs, tsrrs, trts, tets, and
tack, both successful (ts, = tprrs + trs + Mitsirs + Mtws + tsips + taer) and unsuccessful task
allocation time periods (., = tprrs+ts+misips+mieqs) can be evaluated. Consequently, the

_ pertpstactiitie where p, — (1—py),
Ds = PtrPes, and p, = py-(1 — pes) denote the empty, successful, and unsuccessful transmission

average robot selection delay per task (tg;) is equal to t;

probabilities in a time slot, respectively, and o denotes the length of an idle time slot.

Next, we calculate the saturation throughput of our network. Assuming that n is the
total number of task requests arriving at a given agent and m is the number of available
robots in the network with sufficient remaining energy, the robot availability probability per
task payy can be approximated by pa,, = min(1,”). Further, by taking into account t;
and pgyg, the total task allocation delay (fauoc) can be calculated as tauoe = tsi(N -+ Davg)-
Additionally, if the total task allocation duration (¢4,.) is known, the total number of suitable
robots (n,) selected during task allocation is given by n, = t‘;ﬁ Similarly, by using n,
Pavg, and n,, the total number of allocated tasks (n,) during task allocation is given by
ne = Yo min(i,n,) - (%) (Pavg) (1 = Pavg)"*. Thus, given the total data transmission
duration (t44), number of allocated tasks (n,), and task allocation duration (f,.c), the

saturation throughput (sy,) is obtained as follows:

natoa _ta oc
Sy, = (ttl U ) (31)

Zftotal

3.4.3 Task Execution Time Without Offloading

The task execution/response time for different robots (¢;) is a crucial performance metric in
the suitable host robot selection process that consists of the following four delay components:
task allocation delay (fq0c), time delay to reach the task location (#2), time delay to process
the sensing sub-task (#Z), and time delay to process the computation sub-task (#/). Thus, ¢;
is given by
i i i dij Scpu Cepu
tj — talloc + tan + té + ti — talloc +—+ —+ " (32)
Yj Hj Hj
where d;j, vj, ltj, Scpu, and cqp, denote the distance between task 7 and location of robot j,
moving and processing speed of robot j, required CPU cycles for sensing and computation

sub-task, respectively. The distance between task and robot location (d;;) is calculated via
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the Euclidean distance as follows: d;; = /(z; — x;)? + (y; — y;)?, where (z;,y;) and (2;,9;)
denote task ¢’s and robot j’s position in the two dimensional space, respectively. For local
(i.e., MUs and robots are associated with the same ONU-MPP) and non-local task (i.e., MUs

and robots are associated with different ONU-MPPs) allocation, the calculation of the total

l

wloe) and non-local task allocation delay

task execution time considers the end-to-end local (¢

(t",.) instead of tu0.. By accounting for both ¢, . and %, . (see Section 3.4.4), the end-
to-end local (] ;) and non-local (#/ ) task execution time for selected host robots are
given byt =t\, 4+t +tl+tland ! =17 4t 4] 4 11, respectively.

3.4.4 FiWi End-to-End Task Allocation and Offloading Delay

In this section, we present the end-to-end delay analysis for both local and non-local task
allocation based on the US (from ONU-MPP to OLT) and DS (from OLT to ONU-MPP)
frame transmission delay model in [93]. Note, however, that we had to modify the analytical
model in [93] in order to accommodate our proposed resource allocation process, as explained
in the following.

As shown in Fig. 3.2, the ONU-MPP time cycle (7.) consists of the task allocation delay
(tatioc), MPCP message duration (t:,?), conventional broadband traffic transmission (¢3}),
computation offloading data transmission (t%), guard band (¢,), reservation (V =t/ + t,),
and vacation period. Recall that the considered FiWi network serves N ONUs and M users
(humans and robots) at each ONU-MPP. We assume that H2R packets arrive at the ONU-
MPP with an aggregate arrival rate of A according to a Poisson process and M/G/1 queue.
The random packet service time is given by the first moment (X). Further, the aggregate
H2R traffic load is equal to p"**=AX. During each cycle time T}, the vacation duration equals
(N —1)ty and RTT = 2t,,,, denotes the round-trip time between OLT and ONU-MPPs. The
non-data traffic transmission time during T, is equal to N(MV + tauoee + t557). Thus, T, is

al u + l ij j talloc m(;n
C P . (3.3)
2 — 1 9h2’l

Recall from above that an MU sends her US bandwidth request via a PS-Poll message.

If the H2R task request is generated at the MU after the current PS-Poll message, it waits
during the first delay component 7. (polling cycle time) for the next PS-Pol1l message to report
to the ONU-MPP (agent) about her US sub-slot request (see Fig. 3.2). After the MU sends
the task request frame to the ONU-MPP during the next time cycle sub-slot (¢7 > ¢"9), the
total queuing delay time is equal to 27, — ¢,
with the US frame transmission are the US frame service time at the ONU-MPP (Yu < Tiaz)
and the propagation delay (f,.p). Thus, the maximum US frame transmission delay (t,) is

given by t, = 2T, — 79 + tprop + Timaz- Next, we compute the DS frame delay. If the OLT

. The other two delay components associated
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receives the MU’s task request frame after the GATE message, the frame has to wait for T, —tg;.
The other delay components are the DS frame service time delay at the OLT (Yd < Tpaz)
and the associated propagation delay (t,,,,). Given that ty > 2t,.,, + 2t7%59, the DS frame

transmission delay (t4) is equal to tg = T. — 267059 — t10p + Trnae- ’

By using US and DS frame delays, we are able to measure the end-to-end local and non-local
task allocation delay as follows. If the MU requests a non-local task allocation, the associated
ONU-MPP first sends the US task request frame to the OLT. The OLT then broadcasts the
task request frame to all ONU-MPPs, whereby only the intended ONU-MPP processes the

task request frame and initiates the non-local task allocation process. For the calculation of

tnl

moe), both US and DS frame transmission delays are

the non-local task allocation delay (
required along with the task allocation delay (o). Thus, we have tg‘llloc =ty + tqg + tasioe-
Conversely, if the task request is local, the agent at the associated ONU-MPP receives the
task request frame from the MU and starts the task allocation process immediately. Thus, for

the calculation of the local task allocation delay (t.;,,), only the US frame transmission delay
I

wlloe 1s obtained as th =ty + taioe-

alloc

(t,) is required along with the t,0.. As a result, t

Next, we analyze the maximum offload packet delay that incurs during the computation
sub-task offloading process. By assuming that a computation offload sub-slot is assigned to
all devices M during each time cycle T, and the collaborative nodes’ traffic load is equal to
(p?, p°, p°), the computation offload sub-slot duration (%) can be expressed as t% = %,
where subscript cn can be either the central cloud (cl), a local cloudlet (ct), or a neighboring
robot (o), respectively. Asshown in Fig. 3.2, if the computation offload request (a) is generated
at the host robot after a PS-Poll message, it experiences the maximum computation offoad
packet buffering delay. For an upcoming transmission opportunity, the computation sub-task
offload packet needs to wait.

Note that the end-to-end maximum computation sub-task offload packet delay consists of
four delay components, as shown in Fig. 3.2. The first delay component is the time difference
between the computation offload request arrival (a) and the transmission of offload reservation
request (r) via a PS-Poll frame (dy = (M —1)t%+(N — 1)+t +tauoct+ s+t ?). The second
delay component is the time gap between the transmission of offload reservation request (1) and
the reception of offload grant (g) or MPCP frame (dy = (M —1)t%+Mt+(N —1)ta+tauoct+tmss).
The third delay component is the time gap between the last grant (¢) message and the start
time of the offload () slot (d3 = [,/ +M¢t™). By summing up the first three delay components
(dy, dy,ds), we observe from Fig. 3.2 that the maximum computation offload packet delay for
cloudlet (d,; < 27.) and neighboring robot offloading (d, < 27..) is equal to 27,. Whereas for

central cloud offloading, the fourth delay component (d, = 2t,r0p) along with the first three
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components of the maximum offload packet delay calculation is given by dy < 27, + 2t prop,

whereby (t,,4,) denotes the one-way propagation delay between OLT and central cloud.

3.4.5 Performance Analysis of Computation Offloading and Collab-
orative Task Execution

In this subsection, we analyze the performance of non-collaborative and collaborative task
execution schemes in terms of task response time and energy consumption efficiency. The first
part of this subsection presents the calculation of computation sub-task response time and
energy consumption of a host robot for different offloading schemes to decide whether or not
computation sub-task offloading to a collaborative node is useful for the task offloading robot.

The computation sub-task response time for central cloud offloading (t<) consists of two
parts: offloading delay (tglfl) and computation sub-task processing delay at the central cloud
(td = %) The central cloud offloading delay considers the uplink communication delay
(ty = bl_L—'—é_Zz—'—é_Z)’ downlink communication delay (t7, = J—L—I—é—;—i—é—;), and total propagation
delay, including both air (wireless part) and fiber (optical part) propagation delays. The uplink
delay (t%) consists of the time required to transfer computation sub-task offloading packets
from the host robot to the agent across the wireless link and further from the agent (ONU-
MPP) to the OLT and to the central cloud. The downlink delay (¢7,) measures the time period
required to transfer the resultant offloading packet from the central cloud to the host robot

via OLT and agent, respectively. Thus, t¢ is computed as follows:

20y +1,)  (la+1) c
cl _ el c U T u r cl cpu
tc - tofl + tex - bcl + bwl + tprop + Lhel . (34)

Similarly, the computation sub-task response time for cloudlet offloading (<) comprises the
offloading delay (t;) and computation sub-task processing delay at the cloudlet (tg, = ).
The cloudlet offloading delay involves the uplink (t% = bl;l + é—“t) and downlink (¢7, = bl—;l + bl—’“t)

communication delay along with the total propagation delay (t.,,) that incurs during the

offloading process. The uplink delay (t%) includes the offload packet transmission time from

the host robot to the agent and from the agent to the cloudlet by using the wireless and fiber
link, respectively. The downlink delay (¢7,) captures the resultant offload packet transfer time
period from the cloudlet to the host robot via the intermediate agent. Thus, < is given by

lu lrr- lu lr cpu
Gt le)  utl) e Com (3.5)

prop
bct bwl Het

te = top +to, =

The computation sub-task response time for neighboring robot offloading (¢9) also accounts
for both offloading delay (2 fl) and computation sub-task processing delay at the neighboring
robot (2, = %) The neighboring robot offloading delay (t7,,) includes the suitable neigh-
boring robot selection delay (faoc), uplink delay (t* = 2) downlink delay (t7 = 2), and

bt - buwi
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total propagation delay (t;,,,) that occurs during the ofloading process. The uplink delay (t;)
comprises the offload packet transfer time from the task offloading host robot to the agent
and from the agent to the selected neighboring robot by using the wireless link. The downlink
delay (t7) consists of the resultant packet transfer time from the neighboring robot to the
task-offloading host robot across the agent. Thus, ¢ is obtained as follows:

2(L, +1
(U«+ T)+to

C
0 =120 + 12, = talioe + + ==, 3.6
c ofl ex Il bwl prop L ( )

o

Next, we analyze the total task response time of the following three collaborative task
execution schemes: (i) host robot-central cloud, (i) host robot-cloudlet, and (iii) host robot-
neighboring robot. If the sensing sub-task is executed by the selected host robot and the
computation sub-task is offloaded onto the central cloud, by using Eqgs. (3.2) and (3.4) the
total task response time (¢;.;) for the host robot-central cloud based joint task execution is
given by

tic = talioc + 0 + ] 4+ 2. (3.7)

If the sensing sub-task is executed by the host robot and the computation sub-task is ofloaded
onto a nearby cloudlet for execution, by using Eqs. (3.2) and (3.5) the total task response

time for the host robot-cloudlet (¢;.;) based joint execution is obtained as follows:
tj,ct = z(:alloc + ti + ti + tit (38)

Further, if the sensing sub-task is performed by the host robot and the computation sub-task is
offloaded onto a neighboring robot, then by using Eqs. (3.2) and (3.6) the total task response

time (t;,) for the host robot-neighboring robot based joint execution is equal to
tj,o = 2ta,lloc + ti + t'; + tg (39)

By taking the local and non-local task allocation delays (see Section 3.4.4) into account, the

then =ty +ti+1je) and local task response time (" =t, +j.en)

end-to-end non-local (¢°" , local

for the case of collaborative task execution are obtained, whereby the subscript c¢n can stand
for either cl, ct, or o, respectively. Using both collaborative total task response time (¢ .,)
and maximum offload packet buffering delay (d.,,), we are able to assess the maximum total
task response time for the host robot-central cloud (%j,cl = d, + tjc), host robot-cloudlet
(tjet = d + tict), and host robot-neighboring robot (¢;, = d, + tj0) based joint execution
schemes. Note that in the non-collaborative host robot based task execution the maximum
response time (Z;) is equal to ¢; since there is no offloading delay.

Energy consumption of host robot for computation sub-task offloading onto the collabo-

rative node (central cloud, cloudlet, or neighbor robot) consists both energy consumption for
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offloading communication delay and computation sub-task processing delay. Next, by using
Egs. (3.4)-(3.6) and Table 3.2, the energy consumption of the host robot for computation
sub-task offloading onto the central cloud (el = ey, + ed,), cloudlet (el = el + eg.), and

neighboring robot (ef = eg,, + €2,) is obtained as follows:

20, Ly o0, 1, c
cl pu u
TP\ by Ty ) T b )t piae t 3.10
“ b (bcl * bwl) * b (bd + bwl) + Pidt ( el + pv"op) ( )
[ l l [ c
C=pul ) Ao ) F P | 2t 3.11
- Y (bct * bwl> TP (bct + bwl) + Pid (,uct + prop) ( )

21, 21, Cepu 4
u r idle t g 3.12
() on () el n) e om

where e/ denotes the energy consumed during the task allocation process. From Egs. (3.10)-
(3.12), we can calculate energy consumption of host robot for computation sub-task processing
delay at central cloud (€%, = pige - t), cloudlet (e = pige - t), and neighbor robot (€2, =
Didie - t2,), where p;q. is the average idle energy consumption of host robot for computations
sub-task processing at collaborative node. Similarly, from Eqgs. (3.10)-(3.12), we can obtain
energy consumption of host robot for central cloud (S}, = €& —eg,), cloudlet (e, = esf —ec,),
and neighbor robot (eg;, = e — eg,) offloading communication delay.

For the power consumption (p.) and time (#/) to process the computation sub-task given
by Eq. (3.2) and Table 3.2, the energy consumption of the host robot for executing its own
computation sub-task (e?) is equal to el = p. -t = p, - CC’”‘.

In the following, we analyze the total energy consumption of the host robot for both
collaborative and non-collaborative full-task execution schemes, which involves four parts.
The first part of the task allocation process (el) corresponds to transmitting (eq(I,d) =
(Setec + Eamp - d%) - 1) and receiving (e,.(I) = €epee - ) the robot selection control packet (I
bit) over a distance d, whereby &... and €4, represent the energy dissipation of the radio
electronics (¢ = 50 nJ/bit) and transmit amplifier (€4, = .0013 pJ/bit), respectively [95].
Hence, €/ is given by e/ = e, (I, d) + €,+(1). The second part is the energy consumption (e?)
of selected host robot to reach the task location. For the average power consumption (p,)
and time (#/) to reach the task location given in Eq. (3.2) and Table 3.2, ¢/, is obtained as
eé =p, -t =p,- %, where d;; and v; denote the distance between robot and task location
and the speed of the moving robot, respectively. The third type of energy consumption is
related to the sensing sub-task. For a given average power consumption (ps) and time (#/)

to process the sensing sub-task, the energy consumption of the host robot for executing the

sensing sub-task (el) is given by e/ = p, - tJ = p, -

Scpu

. Finally, the fourth type of energy
K

consumption related to the computation sub-task was computed above in Egs. (3.10-3.12).
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By summing up the above four energy consumption parts, the total energy consumption

of the robot (e!) during the full-task execution is obtained as follows:

e{?zZeﬂ—i—Zeg—l—Zefl—i—Zeg—i—Zeg”, (3.13)
ien ien ien ien ien

where n is the number of processed tasks and the subscript cn stands for cl, ct, and o,
respectively. Taking the host robot’s initial energy (e}) and total consumed energy (e],) into
account, the residual energy of a robot (e]) equals e} = e? — e},. Note that if the full task
is executed by the host robot itself, the total energy consumption of the host robot for the
resultant non-collaborative task execution is given by e; = ei#—eg—l—eg—keg. Hence, if the sensing
sub-task is performed by host robot itself while the computation sub-task is offloaded onto a
collaborative node, the energy consumption of the host robot for such a collaborative/joint

. . . j J cn
task execution is equal to €., = €] + el + e, + e,

3.4.6 Task Response Time and Energy Consumption Efficiency

As the total task response time and energy efficiency ratio are key performance metrics, we
analyze both of them in this subsection. In our calculation of the total task response time
efficiency (t.ss), we use the total task response time of the collaborative execution (¢;.,) and
non-collaborative host robot execution (¢;). The energy efficiency of the full-task execution
(ecrr) is obtained from the energy consumption of the host robot for collaborative (e; ) and
non-collaborative task execution (e;). The total task response time (t.ss) and energy consump-

tion (e.rys) efficiency ratio taking both collaborative and non-collaborative task execution into

e;—

“en where subscript cn may stand for the

€j

account are given by t.;; = 2 7;3’“" and e.rr =
central cloud (cl), cloudlet (ct), or neighboring robot (o), respectively.

Hence, the offload gain-overhead ratio (7.,) for computation sub-task offloading to a collab-
orative node is given by the ratio of computation sub-task offload gain (¢! —¢<") and overhead
(den + 1) |

te —t"

o< (3.14)
dcn + tofl

Yen =

3.5 Results

In this section, we investigate the performance of our proposed collaborative and non-collaborative
task execution schemes leveraging on the different capabilities of the central cloud, cloudlets,
and robots. Table 3.2 summarizes the key system parameters and their assigned default values

in compliance with previous studies [17], [30], [94], [95], [101].
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Table 3.2: Notation and default values for evaluation of collaborative computing based task
execution scheme

Symbol Definition Value/Unit

d;j, 6;-, Ein Distance (robot to task location), initial energy of | 1-10 m, 200 KJ, 50
robots, and required energy threshold J

Des Pos Ps Robot average power consumption for processing, | .5 W, .5 W, .5 W
moving, and sensing sub-task

Lils, Ly, L, Total task input (full), sensing sub-task input, | KB (vary)
computation sub-task input, and output data size

Vi, tepus Sepus Robot moving speed, total task, sensing, and com- | .1-1 m/s, Mega cy-

Cepu putation sub-task CPU cycles (workload) cles (vary)

Met, Mo, My Available memory space of cloudlet, neighboring | MB (vary)

robot, and required size for offloading

iy fels fets o | CPU clock frequency of host robot, central cloud, | MHz (vary)

cloudlet, and neighboring robot

cl ct o :

torops Lprops tprop To'tal prgpagatlon delay ‘for cloud, cloudlet, and | ms (vary)
neighboring robot offloading

Didies Pus Pr Average energy consumed by robot during idle, da- | .001 W, .1 W, .05
ta transmission, and reception W

buwis bers bet, Transmission capacity of wireless and fiber link for | 6900 Mb/s, 10 G-
cloud, cloudlet offloading b/s, 10 Gb/s

System settings, requirements, and configurations: In this work, we assume
that robot can only perform location dependent sensing sub-task (capturing image at a task
location) due to their movement and workload processing capabilities, whereas both cloud
agent and robot can execute location independent computation sub-task (object detection from
captured image). The output of sensing sub-task (e.g., capturing image) is the input data of
computation sub-task (object detection from captured image). The main requirements of the
low-latency H2R applications (move to task location, capturing image, and face detection from
captured image) is the availability of robot and cloud server resources for the requested task
processing, satisfaction of the task execution deadline and lower energy consumption criteria,
priority based cloud/robot and bandwidth resource assignment to HART applications users
and worker nodes, transmission at the speed of light, placement of edge cloud server within 20
Km distance from the decentralized ONUs to achieve very low round-trip latency (i.e., 1 ms),
connectivity of robot, MUs, and cloudlet server with ONUs, hardware/software interface to
transfer the task request and task result, among others. The decentralized task coordinator
is located at the ONU-MPP to assign the MU’s task to suitable robot or cloud server for
processing. Further, note that the robots are connected with the task coordinator (ONU) by
using WLAN connectivity, whereas the cloudlets are connected to ONUs through dedicated
point-to-point fiber links. In addition, the EPON based fiber backhaul (20 Km) is used for
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ONU to OLT connectivity. Moreover, the remote cloud server is connected with the OLT
through dedicated point-to-point fiber links. Each task request is served based on first-come-
first-served (FCFS) manner. For polling cycle time and queuing delay analysis, the ONU-MPP
incorporates M/G/1 queue with reservations and vacations. The maximum clock speed (CPU
speed) of cloudlet and central cloud server is varied within the range between 1800 MHz to
5000 MHz. The CPU speed of robots is varied within the range between 500 MHz to 1600
MHz. The EPON transmission capacity between the link of ONU-MPP and cloudlet, OLT
and central cloud, ONU to OLT is set to 10 Gb/s, whereas maximum line rate at the wireless
medium is set to 6900 Mb/s. The optical fiber length between the ONU and OLT, the ONU
and cloudlet server, and the OLT and central cloud server is set to 20 Km, 1 Km, and 10 Km,
respectively. The total STA number per ONU-MPP coverage, total ONUs, MAP radius, ONU-
MPP coverage area, and density of MAPs within each ONU-MPP coverage area, maximum
transmission capacity at fiber and wireless link is set to 10, 16, 100 m, 10 km?, 4, 10 Gb/s, and
6900 Mb/s, respectively. The FiWi traffic load is varied within the range between .05 to .95.
The MPCP (REPORT and GATE) and WLAN messages (Ps-Poll) duration is set to 64 bytes
and 20 bytes, respectively. Average energy consumption cost (per second) of robots/MUs
during idle (p;q.) state, data transmission (p,,), workload processing, and task result reception
(pr) activities are set to .001W, .1W, .5W, and .05W, respectively. Both sensing (sgp,) and
offloaded sub-task (c.,,) workload is varied within the range between 40 to 960 Mcycles. The
offloaded sub-task input data size (I,) and output data size (I,) is varied within the range
between 40-800 KB and 16-400 KB, respectively.

3.5.1 Collaborative vs. Non-collaborative Task Execution

In this sub-section, we compare the performance of the non-collaborative (i.e., without offload-
ing) and collaborative/joint task execution schemes, whereby the sensing sub-task is conducted
by the selected host robot and the computation sub-task is offloaded onto a collaborative node.
To examine the impact of our proposed collaborative computing based task execution scheme,
we studied different evaluation scenarios based on different H2R task input and output data
sizes, required workload (in terms of CPU cycles) to process the task, and collaborative nodes’
resource conditions (i.e., processing power, available memory size, availability), similar to [17],
[30], [94]. The parameter settings related to each particular scenario are given in Figs. 3.4-3.7.
Moreover, for a particular H2R task that includes both sensing and computation sub-parts,
four different types of task execution schemes were considered: selected host robot based full-
task execution without offloading, host robot (sensing sub-task) with central cloud execution
(computation sub-task), host robot (sensing sub-task) with cloudlet execution (computation

sub-task), and host robot (sensing sub-task) with neighboring robot execution (computation
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sub-task). The total task response time for the three collaborative and one non-collaborative
schemes are calculated by using Eqgs. (3.7)-(3.9) and Eq. (3.2), respectively. The energy con-
sumption of the host robot for the collaborative (e, = eﬁ—i—ei—keiﬁ—egn) and non-collaborative
(e; = el + el + ¢+ ¢l) total task execution is calculated by using Eq. (3.13) (see Section
3.4.5).

Figs. 3.4(a) and (b) illustrate the total task response time and host robot energy con-
sumption of the different task execution schemes for scenario 1. In this scenario 1, both the
central cloud and cloudlet are assumed to have the same computation capability /CPU power.
The figures show that the task response time and energy consumption of host robot increase
for increasing task input data size in all proposed task execution schemes. We notice that the
host robot-neighboring robot based joint task execution scheme shows a higher task response
time than the host robot-central cloud scheme and fails to meet the task deadline requirement.
The reason for this observation is the fact that the neighboring robot CPU power (500MHz) is
lower than the central cloud CPU power (3200MHz). Thus, the computation sub-task process-
ing delay is much higher in the neighbor robot than that of the central cloud execution, which
additionally results in a longer total task response time for the host robot-neighbor robot
scheme. For instance, for a typical total task input size of 240KB, the total task response
time in the host robot-neighbor robot and host robot-central cloud scheme equals 4.56 and
2.95 seconds, respectively, whereas the computation sub-task processing delay of the neighbor
robot (¢2,) and central cloud (<) equals 1.92 and 0.3 seconds, respectively. Hence, the compu-
tation sub-task offloading delay of the neighbor robot (tJ;,) and central cloud (t%},;) are equal
to 0.049 and .056 second, respectively. However, the energy efficiency gain of the host robot-
neighbor robot compared to the host robot-central cloud is negligible, less than 1%. This is
because the difference between the energy consumption of the host robot for the central cloud
(e = pige - t1) and neighbor robot (€2, = piq. - t°,) computation sub-task processing delay
is very small. The average energy consumption of the host robot (per second) is very low
during the neighbor robot (in host robot-neighbor robot scheme) and central cloud (in host
robot-central cloud scheme) computation sub-task processing, e.g., pjge=-001W (see Table
3.2), as the host robot is idle at that time. Therefore, the difference between the host robot
energy consumption for the host robot-neighbor robot and host robot-central cloud total task
execution is also very low. Due to the lower energy consumption of the host robot for central
cloud computation sub-task processing in Fig. 3.4(b), the host robot-central cloud execution
shows 1% higher energy efficiency gain compared to the host robot-neighbor robot scheme.
For instance, for a typical total task input size of 240KB, the host robot energy consumption
in the host robot-neighbor robot and host robot-central cloud scheme equals 1.72J and 1.71J,

respectively, whereby the host robot energy consumption for computation sub-task processing
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collaborative task execution schemes versus total task input data size for three different sce-
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73



at the neighbor robot (e2,) and central cloud (e) is equal 0.00192J and 0.0003J, respectively.
Note, however, that the host robot energy consumption for neighbor robot (egﬂ) and central
cloud (eglﬂ) offloading equals 0.00418J and 0.0049J, respectively.

Furthermore, we observe from both figure 3.4(a) and (b) that the host robot-cloudlet based
joint task execution scheme outperforms the host robot-central cloud based joint scheme in
terms of task response time and energy consumption of host robot. This is mainly due to the
fact that the cloudlet implies a smaller computation ofloading delay than the central cloud.
The host robot-cloudlet based scheme shows a 36%, 8%, 2% increase of task response time
efficiency and a 3%, 15%, 2% higher energy efficiency than the host robot-neighbor robot,
host robot without offloading, and host robot-cloud based scheme, respectively. Thus, the
host robot-cloudlet based joint task execution scheme is optimal for scenario 1.

Interestingly, Figs. 3.4(c) and (d) indicate that the neighboring robot can also be select-
ed as a collaborative node for computation sub-task offloading since the sensing sub-task is
restricted to the initially selected host robot. In scenario 2, the central cloud CPU power
and task workload (required CPU cycles to process the task) are smaller than in scenario
1. Hence, the cloudlet is unsuitable in this task execution scenario due to its insufficient
available memory size. further, from Fig. 3.4(c) we notice that, in comparison with the host
robot without offloading scheme, the host robot-neighbor robot scheme experiences a longer
response time (15% less gain than host robot without offloading scheme for 1600 KB total
task input data size). This is because the host robot CPU power (1;=1600MHz) is high-
er than that of the neighbor robot CPU power (1,=1200MHz), which eventually causes a
longer total task response time in the host robot-neighbor robot scheme compared to the host
robot without offloading scheme. However, the host robot-neighbor robot scheme achieves
a higher energy efficiency gain than host robot without offloading scheme by offloading the
computation sub-task to neighbor robot. Host robot consumes very little average idle energy
consumption (p;ge=.001W per second) during neighbor robot computation sub-task execution
in the host robot-neighbor robot scheme, which is smaller than the host robot average energy
consumption (p.=.5W per second) for its own computation sub-task processing in the host
robot without offloading scheme. By contrast, Fig. 3.4(d) shows that the energy savings of
the host robot for the host robot-neighbor robot scheme compared with host robot without
offloading is not that significant for the following two reasons. First, the longer computation
sub-task processing time at the neighbor robot causes an increased idle energy consumption
that reduces the host robot’s energy savings in the host robot-neighbor robot scheme. Second,
due to the smaller computation sub-task response time during the host robot’s own execution,
the energy consumption of the host robot in the host robot without offloading scheme is less.

Thus, in Fig. 3.4(d), the energy efficiency gain achieved by the host robot-neighbor robot

74



scheme compared with host robot without offloading is very low. For instance, in Fig. 3.4(d),
for a typical total task input size of 1600KB, the host robot energy consumption for its own
computation sub-task execution in the host robot without offloading scheme equals 0.0625J,
while that of the neighbor robot computation sub-task execution in the host robot-neighbor
robot scheme is equal to 0.0292J. Hence, the host robot energy consumption of the total task
(sensing and computation) execution equals 1.53J in the host robot without offloading and
1.49J in the host robot-neighbor robot scheme, respectively.

Further, from both Figs. 3.4(c) and (d) we observe that the host robot-neighboring robot
based joint task execution scheme exhibits an improved task response time compared to the
host robot-central cloud based joint scheme (1%) due to its lower computation offloading delay.
The host robot-neighboring robot scheme achieves a 1% and 3% higher energy efficiency than
the host robot-cloud and host robot without offloading scheme, respectively. Thus, the host
robot-neighboring robot based joint task execution scheme is the most suitable one for this
scenario by providing the lowest energy consumption while satisfying the task deadline.

Figs. 3.4(e) and (f) depict the task response time and energy consumption of our task
execution schemes for a different scenario 3. In this scenario, the total task workload (CPU
cycles to process the task) is higher than in the previously considered scenario 2. More
specifically, the central cloud is assumed to be more powerful than the collaborative node
(i.e., neighboring robot). We observe that the host robot-neighboring robot based joint task
execution is unable to meet the task deadline requirement. In addition, the cloudlet is unable
to execute the task due to insufficient available memory. By contrast, the host robot-central
cloud based joint task execution scheme is the best choice for this scenario as it offers a
smaller task response time and energy consumption of host robot than its counterparts. The
host robot-cloud based scheme shows a 38% and 11% higher task response time efficiency than
the host robot-neighbor robot and host robot without offloading scheme and a 1% and 15%
higher energy efficiency than the host robot-neighbor robot and host robot without offloading
scheme, respectively.

In Figs. 3.5(a) and (b), we compare the performance of our collaborative and non-
collaborative schemes with previously proposed minimum distance [12] and fixed assignment
[89] based robot task execution schemes in a setting referred to as scenario 4. Note that these
task offloading schemes examined only computation task for execution, while location depen-
dent sensing sub-task was considered out of their scope. In this work, the considered H2R
task consists of both sensing and computation sub-tasks, whereby location-dependent sensing
sub-tasks are restricted to robots and location-independent computation sub-tasks can either
be done by robots or offloaded to a collaborative node (central cloud/cloudlet /neighbor robot)

for execution. For fair comparison, we consider only existing robot based full task (sensing and
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Figure 3.5: Average task response time and energy consumption comparison of our collab-
orative (host robot-central cloud, host robot-cloudlet, host robot-neighbor robot) and non-
collaborative (host robot without offloading) schemes with existing schemes.

computation sub-task) execution schemes. In scenario 4, both central cloud and cloudlet are
assumed to have the same CPU power. However, the neighbor robot CPU power is assumed
to be smaller than that of the central cloud and cloudlet. Other parameters settings are shown
in Figs. 3.5(a) and (b).

Figs. 3.5(a) and (b) clearly show that for scenario 4 the host robot-cloudlet based joint task
execution achieves a significantly improved average task response time and energy consumption
efficiency than the other schemes. For instance, for a typical task input size of 240KB, the
host robot-cloudlet based joint execution shows a 30%, 12%, 1%, 25%, and 31% improved task
response time with regard to the host robot-neighbor robot, host robot without offloading,
host robot-cloud, minimum distance [12], and fixed assignment [89] based scheme, respectively.
Moreover, for the assumed task input size of 240 KB, the host robot-cloudlet based joint
scheme achieves a 2%, 18%, 1%, 28%, and 33% higher energy efficiency than the host robot-
neighbor robot, host robot without offloading, host robot-cloud, minimum distance [12], and
fixed assignment [89] based scheme, respectively.

Next, we investigate the total task response time and energy efficiency of collaborative
schemes that satisfies the task deadline for scenario 1. The task response time efficiency of
our collaborative full task execution scheme is defined as the ratio of the collaborative task
response time gain (t; — ¢;,) and the task response time of non-collaborative (¢;) execution.
The energy consumption efficiency of our collaborative full task execution scheme is defined
as the ratio of the energy consumption gain of the host robot for collaborative execution
(ej — ejen) and the energy consumption of the host robot for non-collaborative (e;) scheme.

The host robot-central cloud and host robot-cloudlet based joint task execution gain over

non-collaborative host robot task execution scheme are depicted in Figs. 3.6(a) and (b),
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Figure 3.6: (a) Task response time efficiency versus total task input data size; (b) energy
consumption efficiency versus total task input data size; (c) offload gain overhead ratio versus
computation sub-task input data size.

respectively. Both figures clearly indicate that for scenario 1, the host robot-cloudlet based
joint task execution achieves a superior task response time and energy efficiency than the host
robot-central cloud based joint scheme. For instance, for a typical total task input size of 240
KB, the host robot-cloudlet based joint task execution shows an 8.75% improvement of task
response time and a 14.98% improvement of energy efficiency than the host robot based non-
collaborative task execution scheme. Hence, the host robot-central cloud based joint execution
achieves a 7.81% decrease of task response time and a 14.72% increase of energy efficiency
in comparison with the non-collaborative scheme. Further, in Fig. 3.6(c), the computation
sub-task offload gain-overhead ratio of both central cloud and cloudlet execution are shown.
The computation sub-task offload gain-overhead is defined as the ratio of the offload gain for
collaborative node based computation sub-task execution (#/ — ¢<*) and the offload overhead
(den + op) incurred by the communication protocols (see Eq. 3.14).

Importantly, we observe from the figure 3.6(c) that under the assumption that both the
central cloud and cloudlet have same computation power, the cloudlet based computation
sub-task execution achieves a higher offload gain than the central cloud. For instance, for a
typical computation sub-task input data size of 120 KB, the offload gain overhead ratio of
central cloud (3200 MHz) and cloudlet (3200 MHz) is 34% and 36%, respectively. However, if
the computation power of the central cloud (5000 MHz) is assumed to be higher than that of
the cloudlet (3000 MHz), the central cloud shows a much better offload gain (48%) than the
cloudlet execution (32%).

Finally, we evaluate the end-to-end local (tj,eq;) and non-local (¢,0n—10car) task response
time under different FiWi traffic loads, as shown in Figs. 3.7(a) and (b). Local (MU and

robot for task execution are located under the same ONU-MPP) task response calculation
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Figure 3.7: End-to-end local and non-local task response time variation versus FiWi traffic
load.

accounts for the US frame transmission delay of an MU’s task request transmission (see Section
3.4.4), task allocation delay for robot selection, time to reach the task location, sensing, and
computation sub-task execution. Conversely, non-local (MU and robot for task execution are
located under different ONU-MPPs) task response time calculation takes into account both
US and DS frame transmission delay of an MU’s task request transmission (see Section 3.4.4),
robot selection delay for task allocation, required time for selected robots to reach the task
location, sensing, and computation sub-task execution. Recall from Section 3.4.5 that for
the collaborative task execution scheme, the non-local and local task response time is equal
t0 thon—tocal = tu + td + tjen and tiocar = ty + tjen, respectively. by contrast, for the non-
collaborative host robot task execution scheme, the non-local and local task response time is
equal to tpon—iocal = tu +ta +1t; and toeq = 1y, + t;, respectively.

Note that, both local and non-local task response times increase for increasing traffic loads
in our considered FiWi network scenario in Fig. 3.7(a) and (b). Both figures clearly indicate
that the host robot-cloudlet based scheme provides an improved task response time than host
robot-central cloud (2%) and host robot without offloading (10%) schemes. This is because
the host robot-central cloud based scheme incurs a higher computation offloading delay than
the host robot-cloudlet based execution. Moreover, the host robot based non-collaborative
task execution experiences a much higher task response time than the alternate collaborative
schemes. This result is expected given that the host robot is less powerful than the central
cloud and cloudlet. We also note that the end-to-end local task response of all compared
schemes (collaborative and non-collaborative) are lower than their non-local task response

time. The reason behind this is that beside task execution delay, the calculation of ,,,_1ocal
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involves both US and DS frame transmission delays for end-to-end task allocation, while ¢;,.4

involves only the one-way US frame transmission delay.

3.6 Conclusions

Efficient task allocation among robots, computation offloading onto collaborative nodes, and
adaptive resource allocation schemes represent key design challenges for reducing the end-to-
end latency in advanced Tactile Internet H2R communications. In this chapter, we presented
a collaborative computing enhanced task allocation mechanism that combines suitable host
robot and collaborative node selection in integrated FiWi multi-robot networks.

To improve the energy efficiency of the selected host robot while satisfying a given task
deadline, we investigated both host robot based non-collaborative and joint task execution
schemes, in which the sensing sub-task is conducted by a suitable host robot and the com-
putation sub-task is offloaded onto one of the collaborative nodes consisting of central cloud,
cloudlets, and neighboring robots. In order to handle both conventional broadband and com-
putation offloading traffic at the same time, we introduced a unified TDMA-based resource
management scheme. Moreover, we developed an analytical framework to evaluate the perfor-
mance of our proposed non-collaborative and collaborative task execution schemes in terms
of task response time efficiency and energy efficiency of host robots. Unlike previous studies,
we also analyzed the end-to-end local /non-local task response time for both collaborative and
non-collaborative task execution schemes.

Our results provide insight into finding the optimal task execution scheme for a variety
of use case scenarios with different task, robot, and collaborative node availability character-
istics. The results of both collaborative/joint and non-collaborative task execution schemes
demonstrate that for a typical task input size of 240 KB, the collaborative task execution
scheme decreases the task response time by up to 8.75% and the energy consumption by up to
14.98% compared to the non-collaborative task execution scheme. The introduced collabora-
tive computing based task allocation and resource management scheme represents a promising

solution for enabling low-latency Tactile Internet applications.
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Chapter 4

HART-centric Task Migration Scheme
over FiWi Based Tactile Internet
Infrastructures

4.1 Preamble

This chapter contains material extracted from the following paper:

[J4] M. Chowdhury, E. Steinbach, W. Kellerer, and M. Maier, “Context-Aware Task Migration
for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1231-1246, June 2018.

4.2 Introduction

Mobile cloud computing (MCC) has emerged as a promising technology that allows mobile
devices to offload part or all of their computation tasks onto resource-rich surrogates through
a process known as computation task offloading [102]. However, computation task offloading
onto remote cloud servers may not always improve the task execution latency and energy
consumption of mobile devices due to the involved communication overhead. Alternatively,
computation-intensive tasks may be offloaded onto so-called cloudlets located at the network
edge in close proximity to mobile users (MUs). Recent studies on task offloading mainly
focused on whether to offload computation-intensive tasks onto an infrastructure-based cloud
(remote cloud [17], [74] or cloudlet [77]) or mobile ad-hoc cloud formed by nearby mobile
devices [30] in order to reduce both task response time and energy consumption of mobile
devices.

Taking the idea of task offloading a step further, task migration has emerged as a promis-
ing approach to improve the quality of experience (QoE) of MUs by minimizing their task

execution time [19]. Task migration broadens the scope of conventional computation task
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offloading by not only transferring the task from an MU onto the cloud, but also from one
cloud server to another one for execution. In general, task migration between cloud servers is
considered beneficial only if the anticipated task execution time at the secondary cloud server
is smaller than that at the primary one [20]. Note, however, that task migration incurs an
additional migration delay. Hence, for a given task migration gain and latency overhead, the
question of how and where a task should migrate to is key. To answer this question, several
migration decision criteria need to be considered such as the state of the current and tentative
destination cloud servers, task properties, and task migration latency, among others.

Task migration has the potential to speed up the execution of tasks running not only
on hand-held devices, e.g., smartphones, but also on commercially available remote-presence
robots, which allow humans to see, hear, touch, and manipulate objects in places where
they are not physically present. These remote-presence robots may be the precursor of an
age of technological convergence, where important human tasks will be increasingly done by
low-latency networked robots. This vision of real-time human-to-robot (H2R) interaction-
centric applications gives rise to the so-called Tactile Internet, which has recently emerged
as a new paradigm to remotely steer/control virtual and/or physical objects such as robots
via the Internet [35]. Recently, we explored the performance gains obtained from unifying
coverage-centric 4G LTE-Advanced (LTE-A) heterogeneous networks (HetNets) and capacity-
centric fiber-wireless (FiW1i) access networks based on data-centric Ethernet technologies with
resulting fiber backhaul sharing and WiFi offloading capabilities for enabling the future Tactile
Internet [9]. Importantly, we showed that a very low latency on the order of 1 ms and
ultra-high reliability with an almost guaranteed FiWi network connectivity of MUs can be
obtained in FiWi enhanced LTE-A HetNets. More recently, we advocated that multi-robot
FiWi network infrastructures leveraging central cloud and decentralized cloudlet resources will
be instrumental for ushering in low-latency Tactile Internet applications [5].

In this chapter, we build on our previous studies and extend their scope by investigating
task migration for different types of task and cobot/agent in technically greater detail. Note
that depending on the context-awareness of future Tactile Internet applications, tasks may be
classified into two different categories. Specifically, a task may be either a location-dependent
physical task (e.g., image capturing at a given physical location), a location-independent cog-
nitive task (e.g., face recognition from a captured image, which might be offloaded for com-
putation at a remote cloud or nearby cloudlet), or it may include both types of tasks (e.g.,
face recognition where the image was captured).

Another crucial aspect of the Tactile Internet we pay particular attention to in this chapter
is the overarching goal that cobots should complement humans rather than substitute for them,

giving rise to a cooperative and collaborative design approach known as human-agent-robot
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teamwork (HART) [55]. HART differs from the traditional humans-are-better-at/machines-
are-better-at (HABA/MABA) approach, which only divides up work between humans and
machines without driving any symbiotic human-robot development in search for synergies.
Conversely, with a HART-centric Tactile Internet design approach, humans and cobots with
the support of central cloud and decentralized cloudlet resources together acting as intelligent
multi-agent systems exploit the different characteristics of physical and cognitive tasks and
jointly execute them by means of smart orchestration techniques. To render HART-centric
task migration beneficial to MUs, however, context information about the task (e.g., task size,
deadline, type), collaborative agent/cobot (e.g., availability, capability), user mobility, and
migration latency needs to be taken into account properly.

The contributions of this chapter are as follows. We first introduce an integrated two-
level cloud-cloudlet FiWi based Tactile Internet architecture for HART task execution. After
describing the key features of physical vs. cognitive task and cobot vs. stand-alone robot types,
we present a suitable HART-centric task migration scheme, taking different task (deadline,
workload, data size) and collaborative node (availability, task processing speed, remaining
energy) characteristics into account. Next, we develop a unified FiWi resource management
scheme that is able to handle both traditional broadband and task migration data traffic
at the same time. Finally, we present an analytical model to evaluate the performance of
our proposed scheme in terms of end-to-end task execution delay, migration gain-overhead,
deadline-miss ratio, task response time, and energy consumption efficiency, while paying close
attention to its performance comparison for both with and without task migration. Note
that the focus of this chapter is on the performance evaluation of the different task migration
schemes for the execution of a single full HART task that includes both physical and cognitive
sub-tasks. The problem of optimizing the performance of simultaneously executing multiple
full HART tasks in a resource and time efficient manner is outside the scope of this chapter.

The remainder of the chapter is structured as follows. The state of the art and open
challenges of task migration are discussed in Section 4.3. Section 4.4 describes FiWi based
Tactile Internet infrastructures for HART-centric task migration in greater detail. In Section
4.5, we elaborate on the specific characteristics and key parameters of cobots and tasks.
Section 4.6 describes our proposed context-aware HART-centric task migration scheme, whose
performance is analyzed in Section 4.7. In Section 4.8, we present our obtained numerical

results and findings. Section 4.9 concludes the chapter.
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4.3 Task Migration: State of the Art and Open Chal-
lenges

Research in the area of task migration in the context of HART-centric Tactile Internet ap-
plications is still in its infancy. The authors of [57] showed that suitable cobot selection for
task execution requests by humans is essential in order to achieve good performance by reduc-
ing the various latency components of a given task, e.g., task execution delay. The authors
also emphasized that most of the existing work on suitable cobot selection focused on the
involved cobots’ task processing power or remaining energy for task migration. To render
the HART-centric task migration process more effective, additional task properties (e.g., task
deadline or type) and cobot properties (e.g., availability, skill, distance to task location, mo-
bility, or minimum energy consumption) have to be taken into account for suitable cobot
selection. Importantly, note that suitable cobot selection for task migration may not be suf-
ficient to avoid task execution failures due to the constrained resources (e.g., task processing
capabilities, storage, or remaining energy) of the selected cobot. To do so, however, cobots
may overcome their limited resources by utilizing the ones of other collaborative HART mem-
bers, e.g., cloud based agents. The resultant HART-centric task execution approach is also
known as collaborative computing, where a resource-constrained cobot migrates its assigned
task to another more powerful agent or cobot for execution [17], [59]. At present, only a few
studies exist on collaborative task migration exploiting cloud based agents, e.g., cloud agent
selection for task migration based on load prediction [21], service delay [22], distance [23],
resource availability information (i.e., CPU speed and workload) [24]-[25], mobile user task
result download location [19], and energy consumption [26]. Note that existing studies on
task migration considered only the problem of task migration from an MU either to a suitable
robot or to a cloud agent, rather than both. None of the existing studies has focused on
the active participation/cooperation of all HART members, namely, MUs (humans), agents
(central cloud/cloudlet), and collaborative robots (cobots), which is necessary for the proper
HART task execution involving both physical and cognitive sub-tasks. Hence, existing studies
cannot be directly applied to HART task execution.

Further, note that most of the aforementioned studies considered either infrastructure-
based task migration, e.g., remote cloud and local cloudlet, or infrastructureless task migration
onto local ad-hoc clouds comprising nearby cobots. These previous studies did not include
important decision variables such as different task types (e.g., physical vs. cognitive task),
task properties (e.g., total number of task arrivals, task input and output sizes, or task dead-
lines), collaborative node properties (e.g., availability, distance, or CPU speed), and human

user mobility to reduce HART task execution delay and energy consumption. Another open
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question is how to coordinate the HART-centric task migration from MUs to collaborative
nodes (cobots and agents) and among collaborative nodes (cobot to agent as well as agent to
agent). Similarly, the development of adaptive integrated FiWi resource management schemes
in support of coexistent traditional triple-play traffic and data traffic stemming from HART-
centric task migration remains an open research challenge. Furthermore, there is also a lack
of an analytical framework for evaluating HART task execution performance in terms of task
response time and energy consumption, while providing sufficient fault recovery via cellular
and/or WLAN networks.

In this chapter, we aim at addressing some of the aforementioned open research challenges
in the area of task migration. Specifically, we analyze the performance of our proposed HART-
centric task migration scheme, considering both inter-agent (cloud to cloudlet and vice versa)
and intra-agent (cloud to cloud and cloudlet to cloudlet) task migration in FiWi based Tac-
tile Internet infrastructures. In addition, we compare the performance of the following three
different task migration schemes: (i) no migration, (ii) cobot-to-cobot (c2c¢) migration, and
(1i1) cobot-to-agent (c2a) migration. Note that in the non-migration scheme, only the initially
selected cobot locally executes an MU’s requested task, which in turn may comprise physical
and cognitive sub-tasks. Conversely, in the c2c migration scheme, the initially selected cobot
executes the physical sub-task and migrates the cognitive sub-task to a suitable nearby cobot
for execution. Whereas in the c2a task migration scheme, the initially selected cobot executes
the physical sub-task and migrates the cognitive sub-task to a suitable agent (local cloudlet
or remote cloud) for execution. Furthermore, to determine the optimal task migration scheme
we investigate the following three types of c2a scheme using a number of HART-specific per-
formance metrics: (¢) cobot at a given task location to cloudlet that is near the task location,
(1) cobot to cloudlet that is near the location of the MU downloading the computation result,

and finally (iii) cobot to remote cloud.

4.4 FiWi Based Tactile Internet Infrastructure for HART-
Centric Task Migration

4.4.1 Network Architecture

In this section, we extend the generic FiWi enhanced LTE-A HetNet architecture introduced
in [9] for enabling and coordinating HART-centric task migration, whereby humans, cobot-
s, and agents actively participate in the joint task execution process. For convenience, we
briefly review the salient features of the FiWi enhanced LTE-A HetNets architecture, which
aimed at removing the traditional barriers between coverage-centric 4G mobile networks and

capacity-centric FiWi broadband access networks based on low-cost data-centric optical fiber
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Figure 4.1: FiWi based Tactile Internet infrastructure based on embedded cloudlets, cobots,
and human MUs for HART-centric task migration.

and wireless Ethernet technologies. It was shown that a very low latency on the order of 1 mil-
lisecond and ultra-high reliability can be achieved in unified FiWi enhanced LTE-A HetNets
with resultant fiber backhaul sharing and WiFi offloading capabilities. By complementing
fast evolving LTE-A HetNets with FiWi access networks, low-cost high-speed mobile data
offloading is achievable in FiWi enhanced LTE-A HetNets using high-capacity fiber backhaul
(e.g., IEEE 802.3av 10G-EPON) and Gigabit-class IEEE 802.11ac WLAN technologies. The
interested reader is referred to [9] for further details on FiWi enhanced LTE-A HetNets.

Next, we describe our proposed network extensions in greater detail. Note that the generic
FiWi enhanced LTE-A HetNets architecture proposed in [9] considered only human MUs.
Unlike in our proposed architecture, important HART-centric architectural components such
as cobots and agents were not studied in [9]. Furthermore, the authors of [9] concentrated on
mobile data offloading rather than task migration, which is the main focus of this work.

As shown in Fig. 4.1, our proposed FiWi based Tactile Internet infrastructure consists
of a time division multiplexing (TDM) or wavelength division multiplexing (WDM) IEEE
802.3av 10 Gb/s Ethernet Passive Optical Network (10G-EPON) with a fiber backhaul range
of 10-100 km between the central optical line terminal (OLT) and remote optical network
units (ONUs). The OLT collocated with the central office serves three different subsets of
ONUs, which are connected through a 1:N optical splitter/combiner at the remote node. The
first subset of ONUs provide FTTx services, e.g., fiber-to-the-home/business (FTTH/B) to a
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single or multiple fixed wired subscribers. To interface with the WiFi mesh network (WMN)
at the wireless front-end, the second subset of ONUs are equipped with a mesh portal point
(MPP) and are henceforth referred to as ONU-MPPs, whereby mesh points (MPs) act as
intermediate relay nodes between MPPs and mesh access points (MAPs). Each MAP serves
both MUs and WiFi enabled cobots within its respective wireless coverage area. Note that
the integrated ONU-MPP is realized by using so-called radio-and-fiber (R&F) technologies
with medium access control (MAC) protocol translation taking place at the optical-wireless
interface. To provide 4G cellular services to MUs, the third subset of ONUs are connected
to an LTE enhanced nodeB (eNB) base station, giving rise to so-called ONU-eNB. All BSs
together are assumed to provide ubiquitous wireless connectivity to MUs. For enabling direct
communication between ONU-MPP and ONU-eNB, we also make use of so-called interconnec-
tion fiber links between a subset of selected pairs of neighboring ONU-MPP and ONU-eNB.
The central cloud servers are connected to the OLT via dedicated fiber links. In addition,
local cloudlets are connected via dedicated fiber links to ONU-MPPs at the edge of our FiWi
based Tactile Internet infrastructure in order to provide cloud services in close proximity to
nearby MUs and/or cobots. In general, we assume that only one cloudlet is attached to an
ONU-MPP. However, multiple cloudlets may be connected to an ONU-MPP depending on
the given number of arriving task requests, cloudlet capacity, and number of ONU-MAPs,
among other network design parameters. For further details on cloudlet network planning and
optimal placement of ONU-MPP/ONU-eNBs in cloudlet enhanced FiWi access networks we

refer the interested reader to [52].

4.4.2 Mobility of Cobots and Human MUs

We assume that the WiFi mesh access points (MAPs) are randomly distributed according
to a Poisson point process with density Ay ap throughout the cellular coverage area (Acey).
Similarly, human MUs are assumed to be randomly distributed with density Ay/. Further, we
assume that each MAP has a circular coverage area a with radius 7yrap (ie., @ = 713, 4p), in
which m cobots are randomly distributed according to a homogeneous Poisson point process.
Note that the cobots have limited mobility and can move at pedestrian speed only to a given
physical task location that resides in the same MAP coverage area. In contrast, a human MU
can move from one MAP or BS to another one according to a certain moving pattern based
on her current position, speed, and moving direction. In doing so, a given human MU can
send her task requests and receive the corresponding task results via the cellular and/or WiFi
network along her trajectory, depending on whether she is inside or outside the coverage area
of a traversed MAP. For modeling the WiFi connectivity of MUs, we adopt the mobility model

based on recent smartphone traces in [9], whereby the complementary cumulative distribution
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Figure 4.2: Random waypoint (RWP) model of human MUs for predicting location of task
request transmission and task result reception.

function (CCDF) of both WiFi connection time (time period an MU stays within a given
MAP coverage area) and WiFi interconnection time (time period after an MU leaves an MAP
coverage area until she returns or enters another MAP coverage area) was shown to fit a
truncated Pareto distribution.

For predicting the location of a given MU’s task request transmission and task result
reception, we adopt the widely used random waypoint (RWP) model [102]. As shown in Fig.
4.2, in our considered RWP model a given MU traverses several waypoints at different pre-
defined speeds, whereby the initial position of the MU is chosen randomly. For a given set of
n different speeds v; at time instants ¢; along the MU’s trajectory, the average speed between

the randomly selected initial point and the final point (i.e., location of task result reception)

Do q vty

1=1"

equals v, = . Accordingly, the predicted location of the MU’s task result reception is
given by
DPusAt = Pu + Uy - AL, (4.1)

where pyias, Pu, Vu, and At denote the MU’s final position, initial position, average speed,
and required time to travel from the initial to the final position, respectively. Note that the
distance traveled by the MU between her initial and final positions is equal to Ap = pyia¢ -
Pu = Uy - At (see also Fig. 4.2). Then, based on MUs task request transmission time delay

(treq), MUs required travel time At, and task result reception delay (t}” the requested

gﬁmu) ?

task execution deadline (t4) can be calculated as follows: tg=t,cq+1}",,,, + At, where subscript

0 stands for k (initially selected cobot), a (agent), and k* (nearby cobot), respectively.
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Table 4.1: Cobots vs. robots

Criteria Cobots Robots
Definition Collaborative robots (cobots) can sense the | Traditional stand-alone
environment around them and have the abil- | robots cannot sense the
ity to work with other cobots environment around
them
Connectivity | Connected with other cobots and humans | Not connected with other
through infrastructure (e.g., WiFi) robots/humans
Context Avoid task execution failures through task | Suffer from task execu-
awareness migration to other cobot /agent and machine- | tion failures due to lack of
learning capability with strict QoS support | collaboration
Flexibility Programmable and able to learn indepen- | Traditional robots require
dently from environment manual support
Task type Accomplish multiple types of task (e.g., | Only execute specific
household work, teaching, healthcare, and | types of manual task
entertainment) (e.g., car manufacturing)
Movement Cobots can move anywhere with advanced | Restricted to a fixed place
navigation, obstacle avoidance, and path | without any movemen-
planning capabilities t capabilities (e.g., in-
dustrial robot enclosed in
safety cage)
Repetitive Execute both mobile and non-mobile repeti- | Execute only non-mobile
task tive tasks repetitive tasks
Task loca- | Cobots can execute both location- | Traditional robots can
tion independent  cognitive and location- | only execute location-
dependent manual task dependent manual task
in industry
Safety Cobots can be controlled or programmed to | Humans can be injured
protect humans during possible encounter in | by  traditional robots
a shared workspace (e.g., YUMI cobots) due to lack of intelli-
gence/control
Key perfor- | Task migration gain-overhead ratio, energy | Manual task response
mance indi- | efficiency, task response time with failure re- | time, average utilization,
cators covery, task processing speed, and mobility | and deadline miss ratio

4.5 Cobots and Tasks:
tions

88

Characteristics and Assump-

In this section, we first briefly elaborate on the main characteristics of cobots in comparison
with traditional robots and shed some light on the different types of cognitive and physical
tasks. Subsequently, we introduce several parameters to formally define the various types of

cobot and task, which will then be used to describe our proposed context-aware HART-centric




task migration scheme in the next section.

4.5.1 Characteristics

Table 4.1 highlights the major differences between cobots and traditional robots. The com-
parison between cobots and robots is best made according to their ability to act and their
ability to learn. In the first category, we look at their ability to perform different types of
task, i.e., physical vs. cognitive tasks. Typically, a physical task is a manual repetitive task
that can be executed at a specific location (e.g., manipulation of a given physical object),
whereas a cognitive task involves location-independent decision making or computation that
might be offloaded onto remote entities such as cloud servers or nearby cloudlets. We observe
from Table 4.1 that traditional industrial robots are typically standalone entities that perform
only a single type of stationary manual (physical) task (e.g., manufacturing). Conversely,
advanced cobots are in general programmable, mobile, and able to execute multiple types
of task, including both physical (e.g., image capturing, delivery service) and cognitive tasks
(e.g., intrusion detection from captured image). In the second category, there exist differences
between cobots and robots based on their ability to learn from their environments, most no-
tably in terms of their repetitive task execution as well as context awareness and learning
capabilities. Unlike advanced cobots, the state of knowledge of traditional standalone robots
cannot grow based on new experiences or changing conditions. Thus, traditional stand-alone
robots typically can only execute repetitive manual tasks and also suffer from possible task
execution failures due to their inability to migrate the interrupted task to other robots. In
contrast, cobots are able to execute both repetitive and context-aware tasks (e.g., mobility,
machine-learning) by monitoring their performance and making adjustments to what they
observe and experimenting with other possibilities that might perform better. This flexibility
enables cobots to avoid task execution failures via task migration to collaborative cobots or
agents.

Table 4.2 compares the aforementioned cognitive and physical tasks in greater detail. One
of the major differences is the fact that location-dependent physical tasks that require move-
ment capability can only be done by cobots, whereas location-independent cognitive tasks
that require only computation and/or storage capability rather than physical presence can
be done by cobots and in particular agents such as central cloud and cloudlet with typically
more powerful computation/storage resources. Another important aspect of cognitive tasks
lies in the fact that most of them are rather non-repetitive and therefore much harder to be
automated. Furthermore, to provide MUs with strict QoS support for non-repetitive cognitive
tasks, collaborative cobots/agents may benefit from advanced artificial intelligence (AI) and

machine learning capabilities for task migration. Note that several of the key performance
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Table 4.2: Cognitive vs. physical tasks

Criteria Cognitive Tasks Physical Tasks

Definition Deal with perception, interaction, | Follow specific instructions (man-
planning, memory, learning, and | ual), do not require sophisticated
reasoning phenomena judgment

Human vs. ma- | Humans are better at perform- | Machines are better at executing

chine ing cognitive tasks, e.g., intelli- | repetitive and routine tasks, e.g.,

gent decision making

precise physical movement

General tasks

Analyze numbers, digest words
and images, perform digital tasks

Remote operation in specific
places (e.g., manipulation of ob-
jects in hostile environment)

HART-centric
tasks

Both location-dependent and
-independent decision making
(e.g., face detection)

Only location-dependent manual
operation such as heavy machin-
ery transport or image capturing

Cobot vs. agent

HART-centric cognitive task can
be done by both cobot and agent
(cloud, cloudlet)

HART-centric physical task is re-
stricted to only cobot located in
given task area

Al/machine Require artificial intelligence | Do not require Al/machine learn-
learning capabil- | (Al)/machine learning capability | ing capability for repetitive man-
ity for non-repetitive task ual task

Predictability Non-repetitive cognitive jobs are | Physical (manual) repetitive jobs

and automation

non-predictable and harder to au-
tomate (e.g., financial analysis,
intrusion detection)

are predictable and easy to auto-
mate (e.g., assembly line jobs)

Key performance
indicators

Deadline miss ratio, task migra-
tion latency, and communication-
computation ratio (CCR)

Response time for moving and
processing task, task blocking
probability

indicators listed at the bottom of Tables 4.1 and 4.2 will be investigated in our analysis below

in Section 4.7.

4.5.2 Assumptions

Our HART-centric task considered for migration includes both physical (image capturing at
task location) and cognitive sub-tasks (image recognition). More specifically, we describe a
HART-centric task d; by using the following notation: &; = (u;, S;, So, ta, €, tl;, wl;, mt), where
s + s§ that

includes both physical (s?) and cognitive (s¢) sub-task input data (given in megabytes), s, is

u; is the requested task type, s; denotes the total task input data size s; =
the task output data size (s, = s? + s¢), e, is the required energy to process the requested

task (in Watt), tl; represents the two-dimensional location of the task (x;,v;), wl; = wl, + wl.

is the task workload or amount of CPU cycles (in million instructions) required to process the
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physical sub-task (wl,) and cognitive sub-task (wl.), tq = t}, + t5 is the total task deadline
(in seconds), and mt denotes the MU’s trajectory given by mt = (py,t,,vy), whereby p, is
the initial position where the MU pauses for t, seconds before moving onwards to the next
waypoint at speed v,. Hence, we assume that the selection of a suitable agent/cobot for each
HART task request arriving at the ONU-MPP (task location) is done in a first-come-first-
served (FCFS) manner. Note that an available cobot/agent is assumed to be able to perform
only one HART task at any given time. Furthermore, we assume that the output of a physical
sub-task (captured image at task location) is the input of the corresponding cognitive sub-task
(image recognition).

Moreover, we assume that a cobot executes both physical and cognitive sub-tasks by taking
its movement and computation capability into account. Accordingly, we assume that cobots
are heterogeneous using the following notation: my = (ag, U, vs, €k, pli), where ag, vy, and
vs denote the cobot type (ability to process a specific task), moving speed, and task processing
speed, respectively. Further, e, is the remaining energy and ply is the two-dimensional location
of the cobot (g, Y ).

Finally, we assume that an agent (remote cloud or local cloudlet) can execute only location-
independent cognitive sub-tasks for cobots and human MUs. Let us use the following notation:
cly = (v4,0,), where v, and o, denote the CPU capacity and availability of the agent, respec-

tively.

4.6 Context-Aware Task Migration Scheme

Before describing our task migration algorithm in more detail, let us first consider a couple of
illustrative examples to demonstrate our proposed method. Consider an MU who would like to
obtain information about a painting currently at display in a museum or temporary exhibition.
To do so, the MU sends a HART task request (capturing image of painting and recognizing
the authenticity of the captured image) to the ONU-MPP at the corresponding task location.
After receiving the HART task request, the ONU-MPP at the task location assigns a suitable
cobot to perform the HART task by conducting the physical sub-task (moving to task loca-
tion and capturing image at task location) and subsequently assigning the cognitive sub-task
(recognition of captured image) to a suitable agent (cloudlet/central cloud). The agent then
performs the cognitive sub-task and sends the cognitive sub-task result (authenticated image
information) back to the MU. Another practical example would be the transport and delivery
of a product such as pizza delivery (physical sub-task) and confirming the authenticity of the
intended recipient by means of speech and face recognition (cognitive sub-task). To perform
the MU requested HART task that includes both physical and cognitive sub-task in an time

efficient manner, our proposed context-aware HART-centric task migration algorithm, which
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performs the selection of both suitable cobot and agent, comprises the following five steps (see
also Algorithm 4):

Step 1: A given MU sends a HART task request message during her assigned upstream
(US) transmission subslot. The MU’s task request message contains the following information:
task location (tl;), task type (u;), required energy for task execution (e, ), task workload (wl;),
MUs average speed (v,), initial location (p,), task result download location (pyia¢) of MU,
and task deadline (¢,).

The ONU-MPP/ONU-eNB associated with the MU receives the task request frame and
forwards it to the OLT in the upstream direction. Subsequently, the OLT broadcasts the MU’s
task request message to all ONUs. The ONU-MPP serving the corresponding task location
processes the task request message and allocates the task to a suitable cobot for execution.

Step 2: For suitable cobot selection, the ONU-MPP transmits the task request message
to all cobots within its coverage area. Upon reception, each associated cobot sends a task
response message to the ONU-MPP, which includes the following information about the cobot:
availability (ay), location (ply), remaining energy (ey), and precalculated task response time
(tx). Next, the ONU-MPP selects a suitable cobot for each task by taking the following decision
variables into account: task deadline (t; > t;), remaining energy threshold (e; > e,), and
minimum task response time (¢;). Note that each task consists of two sub-tasks: a location-
dependent physical (e.g., image capturing) sub-task and a location-independent cognitive sub-
task (e.g., image recognition from captured image). Clearly, the cognitive sub-task is executed
after the physical sub-task. Hence, the cognitive sub-task may be executed by the selected
cobot itself or may be migrated to a suitable agent (cloud/cloudlet) for execution. Note that
cognitive sub-task migration is done if either the cobot suffers from a failure or the agent is
able to reduce the total task response time.

Step 3: To select a suitable agent for executing the cognitive sub-task, the ONU-MPP
nearest to the corresponding task location checks the availability (o,) and cognitive sub-task
response time (t¢) of all agents. If more than one agent satisfies the cognitive sub-task deadline
(t9) and availability criteria, a suitable agent is selected based on the minimum cognitive
sub-task response time (t$). After selecting a suitable agent, the cobot that performs the
physical sub-task (wl,) migrates the cognitive sub-task input data (s{) to the selected agent
for processing.

Step 4: Note that in the event of an agent failure or unavailability, a cognitive sub-task
migration takes place from the failing /unavailable agent to another intact agent/nearby cobot

in order to improve the overall task response time.
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Algorithm 4 Task migration algorithm

Considerations: Number of arrived task request () and cobots (m), a set of ONU-MPP
(N) and agent (z), cobot type (ay), task type (u;), remaining energy cobot (e ), required
energy for full task (e,) and agent cognitive sub-task (e$), full (¢4) and cognitive sub-task
deadline (t), cobot response time for full task (¢;) and cognitive sub-task (t¢), cognitive

sub-task response time for cloud (), cloudlet near physical sub-task location (t¢

) and

cty

result download location (t¢; ;), and selected agent (%)
1: for each n;eN do

2:  for each arrived task request i€ do

3 for each cobot kem do

4 if (Oék == ’U,Z) & (ek Z 67«) & (tk S td) then

5 Select available cobot (k) with minimum ¢

6: if 1 <tS & el > ef &t <t then

7 Selected cobot executes full task (wl;)

8 else

9: Execute only physical sub-task (wl,)

10: Go to step 11 for cognitive sub-task migration (wl.) to suitable agent (a€z)

11: if 15, > 15, >ty & 1 < 15 then

12: Select available central cloud server (cl) as agent (a) for cognitive sub-task
migration

13: else if ) > tg, ;> 15, & 15, <15 & aeri # aerq then

14: Select available cloudlet near physical sub-task location (ct,i) as suitable
agent (a)

15: else if 15 > 15, > 15, , & 15, 5 < 15 & acri # aeq then

16: Select available cloudlet near MUs result download location (a. q) as suitable
agent

17: end if

18: The selected agent receives other agent information during cognitive sub-task

execution
19: if the selected agent finds other suitable agent with lower task response time
tc then

20: Migrates the cognitive sub-task (remaining) to new agent with minimum ¢

21: if the selected suitable agent (a) can not execute the assigned cognitive
sub-task then

22: Go to step 10

23: else

24: Go to step 1

25: end if

26: end if

27: end if

28: end if

29: end for

30: end for
31: end for
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Figure 4.3: HART-centric task migration: (a) timing structure and (b) operational steps.

Step 5: Finally, after executing the cognitive sub-task (wl.), the selected agent sends the
processed data (s¢) to the MU’s predicted result download location (p,ia¢), as depicted in
Fig. 4.3(b).

Fig. 4.3(a) depicts the signaling and timing structure of our proposed polling-based re-
source management scheme, which operates as follows. In the optical fiber backhaul, the
OLT allocates an US transmission opportunity to each ONU-MPP/ONU-eNB by exchanging
IEEE 802.3ah multipoint control protocol (MPCP) messages (REPORT and GATE) and broad-
casts downstream (DS) frames to all ONU-MPPs/ONU-eNBs. The REPORT message is used
by each ONU-MPP/ONU-eNB to report its current US bandwidth demand to the OLT. Upon
reception, the OLT transmits a GATE message to inform the ONU-MPP/ONU-eNB about its
granted US transmission slot. In the wireless front-end, ONU-MPPs and ONU-eNBs allo-
cate US transmission opportunities to their associated users (MUs/cobots) via IEEE 802.11
WLAN Beacon/PS-Poll messages and LTE-A random access preamble (RAP) /random access
response (RAR) messages, respectively [103].

After receiving the GATE message from the OLT, the corresponding ONU-MPP/ONU-eNB
of a given task location first selects a suitable cobot for each task request, divides its allocat-
ed US bandwidth into subslots among its associated users (MUs/cobots), and broadcasts a
Beacon/RAR frame to them. The task request message arriving at the ONU-MPP/ONU-eNB
is sent by MUs during their previous polling cycle’s broadband time subslots. Moreover, the
broadcast Beacon/RAR frame contains the associated users’ US transmission map, i.e., subslot
start time and duration. Each associated user sends its US transmission subslot request to
the ONU-MPP/ONU-eNB by using an extended PS-Pol1/RAP frame, which contains an extra
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migration flag bit (0 or 1) to notify the ONU-MPP/ONU-eNB about its task migration subslot
request.

Prior to starting task migration, the corresponding ONU-MPP/ONU-eNB at a given task
location selects a suitable agent for cognitive sub-task migration via DHCP protocol messages
[104] (Discover-0ffer-Request-Ack) between ONU-MPP and agent node (cloud/cloudlet).
The selected cobot that executes the physical sub-task then migrates the cognitive sub-task
input data to the selected agent for execution during its task upload subslot. In the opposite
direction, after receiving the cognitive sub-task result data from the selected agent, the ONU-
MPP/ONU-eNB at the MU’s result download location transfers the cognitive sub-task result
back to the MU during the corresponding result download subslot.

4.7 Analysis

In this section, we investigate the performance of our context-aware HART-centric task mi-

gration scheme in terms of a variety of key performance indicators.

4.7.1 Polling Cycle Time and Task Migration Subslot

We model the polling system of Fig. 4.3 as an M/G/1 queueing system with reservations
and vacations. Let N denote the number of ONUs, whereby each ONU provides service to
M associated users. More specifically, each ONU-MPP/ONU-eNB serves (i.e., broadband
and migration) FiWi traffic of a given user during her assigned timeslot. We assume Poisson
distributed FiWi traffic with mean arrival rate X\. Hence, the aggregate FiWi traffic load equals
pi=AX, where X denotes the average service time. Furthermore, each ONU-MPP/ONU-eNB
divides its polling cycle into data, reservation (R = t.79 + t,), and vacation intervals, i.e.,
V = (N — 1)ty. Note that the non-data traffic time within 7, is denoted by (1 — p;) and is
equal to N(MR + tos + tes +thed +1.77). Thus, T is obtained as

wl

N(MR + tos+ tes + 059 + 9
TC — ( 1 p 'Ll)l )’ (42)
— Pt

where t,s and t.; represent the agent and cobot selection time, respectively.

For M users with an US transmission opportunity during 7., each ONU’s timeslot duration
is equal to tyg = T./(N - M - p;), where p; denotes the FiWi traffic load (p; < 1), including
both broadband traffic load (p,,) and task migration traffic load (p.). Similarly, timeslot tg
includes both broadband (¢, s) and task migration (. ) along with the time needed for cobot
(t.s) and agent (t,,) selection. Hence, the broadband (¢7) and task migration (t¢, = % + t%)

m pm't"L,Sl d c __ pc'tc,sl
7 and 1y

subslot duration of an associated user equals t7} = = =57, respectively, where

t% and t% denote the task upload and result download duration during a polling cycle.
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Figure 4.4: Task migration packet delay components.

4.7.2 Task Migration Packet Delay

As shown in Fig. 4.4, an US task migration packet experiences four different delay com-
ponents during migration. The first delay component d; is the time interval between task
migration packet arrival (a) and transmission of the task migration subslot reservation (r)
request (PS-Poll). Thus, we have

dy = (M = 1)t + (N = D)ty + 759 4 tog + 75 4 47 (4.3)

wl sl

where t$; denotes the task migration subslot duration.
The second delay component (ds) is the time interval between transmission of the re-
source reservation request (r) and reception of a grant (g) message (Beacon/RAR) for the task

migration subslot. Thus, ds is given by
dy = (M = 1)t +tas + Mty + (N — D)ty + 1559 (4.4)

The third delay component is the time that elapses between the received grant message
(¢9) and transmission time of the corresponding task migration data packet (m). It is given by
ds = tes + 1077 + Mt + tos.

Finally, the fourth delay component (d,) is the average waiting time of a migrated packet.
Note that d4 includes both queueing (d,) and service time (dy = i) at the corresponding
collaborative node. Hence, we have

1 Clw,7)

d4:d8t+dqt:—+

PRt (4.5)

where w, p, and A represent the number of servers at the collaborative node, its service rate,

and task arrival rate per server, respectively. C'(w, 7) denotes the well-known Erlang-C formula

)
Clw,7)= . 4.6
=0 1l w! 1—7
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Summing up all four delay components and considering that d; + ds + ds < 2T, yields the

mean task migration packet delay d,, as follows:

1
g, —or, + L W)

R (4.7)

4.7.3 Task Response Time

Given that in general a task consists of physical and cognitive sub-tasks, we analyze the task

response time for execution with and without task migration.

4.7.3.1 Task Execution Without Migration

In this scenario, the initially selected cobot executes the full task (i.e., both physical and
cognitive sub-tasks) and then transfers the task result to the MU. Thus, the task response
time ¢ is given by

th=th + 107 =10 15 + 172, (4.8)

where ¢} and t§ denote the cobot’s physical and cognitive sub-task processing time, respec-
tively, and ¢;* is the required time to transfer the task result from the cobot to the MU.

Hence, the physical sub-task response time ¢} of a cobot, including both the time ¢ to reach a

wlp

k
task location and time ¢, to process the physical task workload, equals ¢, = 5—; + —2, where

Vs

wly, v, and v represent the physical sub-task work load, moving and processing speed of the

cobot, respectively; d¥ denotes the distance between the cobot (, ) and the corresponding

task location (x;,v;), which is equal to the Euclidean distance df = \/(x; — x%)2 + (y; — yr).
Further, the cognitive sub-task response time of the cobot equals t§ = wl./vs, where wl,. is

the cognitive sub-task workload. Thus, the result transfer delay (¢;*) is given by

s¢ s¢ s¢ o
T e T e (4.9)

bo—)é bZ}lu

re o __
t, = b
wl
prop
k—mu

process, and h'?, . is the hop distance between ONU-MPP/ONU-eNB at the task and result

0—0
download location. Further, b¥,, b, 5, and b™" denote the transmission capacity of the link
between cobot and ONU-MPP at the task location (b%,=b,,;), ONU-MPP at the task location

wl™

to ONU-MPP/ONU-eNB at the result download location (b,—;=bys;), and ONU-MPP/ONU-
eNB at the result download location to the involved MU (b} = max{by, b%,}), respectively.

where s¢ is the task output data size, ¢ is the propagation delay of the task result transfer
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4.7.3.2 Task Execution With Migration

Next, let us consider task execution with migration for the following two different cases:

e Case 1 — c2a and c2c migration: Recall that with c2a task migration, the selected
cobot executes only the physical sub-task while the cognitive sub-task is migrated to a suitable
agent, i.e., cloud/cloudlet near the task location or result download location. The full task
response time of c2a task migration is equal to ¢y, = t} + t5, where ¢} and t¢ represent the
cobot’s and agent’s physical and cognitive sub-task response time, respectively. Further, note

that ¢¢ is given by t¢ = ti*, +tc* 7 where t}7, . t<*, and /"

g a toF, or . mu denote the cognitive sub-

task upload delay (cobot to agent), processing time at agent (t<* = “<), and result reception

Va

delay (agent to MU), respectively. For migration to local cloudlet (a = ct) and remote cloud

(a = cl) migration, ¢, is computed as follows:
sg te | _S§ 2 prop e
po [ e s i T a=t (410
k—a — 85 285 prop ifa—=cl : )
. T oy T lha ifa=d,

where subscript a = ct stands for ct,i and ct,d for cloudlet near task location and result

download location, respectively, A, denotes the hop distance between ONU-MPP near the

0—0

tpTOP

cobot’s and agent’s locations, and is the propagation delay incurred during the cogni-

k—a
tive sub-task upload process. Hence, the cognitive sub-task result download delay %, for
cloudlet/cloud migration is obtained as
rT bs_fl + hz;ia ) bosia + big“ + tgf;;ﬂu lf a = Ct’
ta—>m'u, et 252 s(c) prop wl f _ l (411)
bfl W+ta—>mu Ira=c,

where ¢P7% ~is the propagation delay incurred during the result download process to the

involved MU.

Conversely, with c2c¢ migration, the initially selected cobot and a nearby cobot perform
the physical and cognitive sub-tasks, respectively. Thus, the total task response time tj - is
given by ty g+ = t§ + 7., where ¢} and t{. denote the primary cobot’s (k) physical and nearby

cobot’s (k*) cognitive sub-task response time. Note that ¢{. is given by

TR T (4.12)
where t§7, ., t&, 7%, represent the cognitive sub-task upload delay (primary cobot to near-
by cobot), nearby cobot’s cognitive sub-task processing time (t{% = wvéf), and result download
delay (secondary cobot to MU), respectively. For ¢2¢ migration, t{*,,. and ¢%_,  are given
by

¢ ¢

ok = o T e T ke (4.13)

wl wl
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c c c
S

re S0y pre | S0 4 S0y yprop (4.14)

k*—mu Jo* 0—0 k*—mu>
bui boss by

where 0¥, 7"% . and 7 denote the transmission capacity between the nearby cobot and

its associated ONU-MPP (b¥,=b,,), uplink and downlink propagation delay, respectively.

e Case 2 — inter-agent and intra-agent migration: Inter-agent migration transfers a
cognitive sub-task from one type of agent to a different one, e.g., cloudlet to cloud or vice versa.
Whereas intra-agent migration transfers an uncompleted cognitive sub-task from one agent to
another agent of the same type, e.g., cloudlet to cloudlet. In either case, the physical sub-task
is done by the cobot. The total task response time for inter-agent (a* = @) and intra-agent

(a* = @) migration is equal to tg o = tg o + 15 — 0%, — wle

. o
omsmu — > Where £g. denotes the cognitive

sub-task response time of the newly selected agent (a*) given by t&. = %, . + % +¢/%
with % [ A being the cognitive sub-task upload, execution time at migrated agent

a—a*’ Ya*) Ya*—mu

a* (t&% = “e) and result download delay (migrated agent to MU), respectively. Hence, we

have )
2s7 te | _S§ prop e x>
tta: . bfl + h0_>6 bo—ss + t(l*)a* lf a a” (4 15)
a—a* ) 3s§ 4prop if a*=a ’
7 + 1 o I a"=a,
3_2 oo, 86 Sg prop : *__
e _ ) by + h0~>5 bo—5 + b + ta*—>mu if a =a, 4 16)
a*—mu 2sS s tprop if a*=a ( ’
bt T et smu tha=a,
whereby 2", and 7. =~ are the propagation delay incurred during task upload and result

download for intra-agent (a* = a@)/inter-agent (a* = @) migration, respectively.

4.7.4 Energy Consumption

In the following, we analyze the energy consumption of MUs and cobots for task execution
with and without migration. In the latter case, we account for the cobot’s energy consumption
for executing the full task and MU’s energy consumption for receiving the task result. Thus,

their total energy consumption e, without task migration is given by

e =€ +ep e + e (4.17)

mu?
where €}, e}, and e}” represent the cobot’s energy consumption for executing the physical
wly

k
sub-task (e}, = pp, - iy Ds v—) and cognitive sub-task (e, = p, -

Um

wle) " and transferring the
Vs

result (ej"= p,-t;"°) to the MU, respectively; e/? denotes the MU’s energy consumption for
receiving the task result (e/* = pq-t}*).

With task migration, the energy consumption of MUs and cobots in the case of agent
migration (c2a) is equal to e, = €} + €5, where €} and e denote the energy consumption
for executing the cobot’s physical and the agent’s cognitive sub-task, respectively. With el =

Puth, A Didie S +pa- o=, .., the energy consumption of MUs and cobots for the case of nearby
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cobot migration (c2c) equals ey g+ = €} +€5., where e} and ef. stand for the energy consumption

for executing the physical sub-task of the initially selected cobot and the cognitive sub-task

T

of the nearby cobot, respectively. Finally, we have e§. = py, - t4%, 1. + Diagte - tE + DPa - 5 o

4.7.5 Task Response Time and Energy Efficiency

Let us define the task response time efficiency S5 ¢ of the migration based scheme, e.g., agent
(0 = a) and nearby cobot migration (6 = k*), with regard to the non-migration scheme as the
ratio of response time gain obtained from task migration and the response time ¢, obtained

without task migration. Hence, S is given by

~ trog— 1T
Bro = =% — x 100%, (4.18)
k

whereby t; ¢ is the task response time in the case of task migration. Similarly, the energy
consumption efficiency & of task migration with regard to non-migration is obtained as

€k,0 —€k
€

Erpo = x 100%, where ey and e denote the energy consumption of STAs with and

without task migration, respectively.

4.7.6 Migration Gain Overhead Ratio

The task migration gain overhead ratio 77 of task migration is calculated by taking the ratio of
task response time gain with regard to non-migration (t¢ — t;) and the communication cost

for task migration, which in turn consists of the mean task migration delay d,,, task upload

rT
f0—mu-

delay t}”,,, and result download delay ¢ In case of agent (# = a) or nearby cobot (6 = k*)

migration, 77 is computed as follows:

tko — Tk
I 1+ 8

f—mu

(4.19)

ﬁ:

4.7.7 Deadline Miss Ratio

Next, we calculate the task deadline miss ratio M R as the ratio of the number of tasks
missing the task deadline according to their corresponding assignment to a cobot/agent and

the number of task requests. Hence, we have

Sy N M,

MR = 5 5 ,
Zz‘:l NM; + Zi:l NSZ’

(4.20)

where NM and NS denote the number of tasks that are completed with and without missing

the deadline, respectively.
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4.7.8 Task Blocking Probability

For the calculation of the task blocking probability py,, we note that if the number § of arriving
task requests is smaller than the number of available collaborative nodes, a given task can be
assigned to an available cobot/agent (N,=N; - ps) without blocking. However, if § > N,,, the
first 7 tasks are assigned to available cobots/agents while the remaining task requests 6 — i are

blocked. Thus, p, is computed as follows:

0 if Ny, > 6,
- ° ; : 4.21
i’ S ()(pe)i(1 —pa) otherwise, (4.21)
i=Ny+1

where V; and ps; denote the total number of collaborative nodes and the probability that a
suitable cobot/agent is available, respectively. The average utilization rate w,, of a collabora-
tive node is obtained as the ratio of number of utilized nodes N, = ¢ - ps and total number of

nodes N, translating into u,, = %—“: x 100%.

4.7.9 Communication-to-Computation Ratio (CCR)

Another important performance metric is the so-called communication-to-computation ratio
(CCR). CCR is defined as the ratio of communication latency and task processing time of a
selected collaborative node and is given by

th +tg* ’

CCR = (4.22)

T

s try and t5° denote the mean task migration waiting delay, cognitive

where d,,, ti*.,,
sub-task upload delay, result download delay, physical sub-task execution time, and cognitive

sub-task execution time, respectively.

4.7.10 End-to-End Task Execution Delay

In this subsection, we analyze the end-to-end task execution delay with and without task
migration, taking into account task response time, task migration waiting delay as well as
US and DS frame delay. If a given MU generates a task request message after her current
bandwidth request message, the MU has to wait for polling cycle T, to report her task request.
After transmitting the task request in the next cycle timeslot ¢7} the MU experiences an
additional delay of T.—t!"*9 since t77 > "9, Thus, the total US waiting delay equals 27, —¢7.
The corresponding ONU-MPP/ONU-eNB receives and forwards the incoming task request to

the OLT in the US direction, which leads to the maximum US frame transmission delay t,.
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Table 4.3: Parameters and default values for evaluation of context-aware task migration s-

trategies
Notation Description Default val-
ue/unit
T.,N,M,m Polling cycle time, number of ONUs, STAs, and | ms, 32, 10, 5
cobots
Vs /Vsx, Vg CPU clock speed (cycles/second) of cobot (k)/nearby | 100-500 MHz, 3.2

cobot (K*) and agent (a)

GHz

T -
Um7 dz ) 6;67 67‘7

Cobot’s moving speed, distance between cobot and

1-5 m/s, 1-10 m,

1770

input, and output data size

AU task location, cobot’s initial energy, and required en- | 500 KJ, 1-5 Joule,
ergy for full task, density of MU within cellular cov- | 1-50
erage

P> Pss Pes Vu Cobot’s average power consumption during moving, | 0.7 W, 0.5 W,
physical, and cognitive task processing, MUs average | 0.5 W, 1-10 mph
speed (vary)

si, st /s¢, sP/s¢ | Total task input data size, physical/cognitive sub-task | KB

bui /Uy, by

Transmission capacity of WLAN/cellular link for
cobot (b¥;) and MU (b™%), fiber link

6900/300 Mbps,
10 Gb/s

wli? wlpa wlca Ds

Full task, physical, cognitive sub-task workload, work-
er node availability probability

CPU cycles, 0-1

tpTOP tpTOP
k—mu’ “k* —mu?
tpTOP
a—a*

Total propagation delay between cobot and MU, n-
earby cobot (k*) and MU, primary agent (a) and sec-
ondary agent (a*)

2.66 us, 2.66
ps, 50 ms (in-
ter)/0.02 ms
(intra)

tpTOP tpTOP

Total propagation delay between cobot (k) and a-

0.010/0.012/50

s in cloudlet or remote cloud/mean task service
rate/task arrival rate per server, total arrived task
request

k—a’ "k—k*>

(AR gent (a=cloudlet task location/result download lo- | ms, 0.6 us, 50 ms
cation/remote cloud), cobot and nearby cobot, sec- | (inter)/0.02  ms
ondary agent and MU (intra)

Dus Pds Pidle Cobot’s average power consumption in upload, down- | 0.1W, 0.05W,
load, idle state (per second) 0.001W

s toord s Las, WLAN message length (e.g., PS-Poll), MPCP mes- | 0.231us, 0.512us,

les, tg sage length (GATE,REPORT), cobot, and agent selection | ms, 46 us
delay, guard time between two slots

ht /R, Number of hops between initial and final ONU during | 2
data transmission and reception

TMAP, Acar, | MAP radius, cellular coverage area, density of MAPs | 100 m, 3-3 km?, 3

AMAP within cellular coverage area

Nu/Ni,treq/ total number of collaborative nodes, task re- | 1-20,

tres/tack quest/cobot response/ack message duration 0.17us/0.12pus/0.12

1S
Ay TN Mean task migration packet delay, number of server- | ms, 1-10, 1-20
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By taking into account the US waiting delay 27, — ¢/, service time delay X,,q. at the ONU-

wl

MPP/ONU-eNB, and US propagation delay t,,.p, t, is obtained as t,, = 2T, —t, 7 +tprop+Xmaz-

Next, we calculate the maximum DS frame delay. The DS waiting delay is equal to T, —t.
The maximum DS delay t; is calculated by summing up the DS waiting delay, service delay
Xmaz, and associated propagation delay t,.,,, which yields t; = T, — 27039 — ¢, + Xpnaa

with tg > 2ty + 267,09, After receiving the task request from the OLT,pthe corresponding
ONU-MPP starts the cobot selection if there is no task migration. Otherwise, the ONU-MPP
selects both a cobot (f.s) and an agent (t,s) for ¢2a migration. Thus, the end-to-end task
execution delay ¢¢%¢ without task migration equals t{%¢ = t,, +tq+tes + t£ +d,, + 1", where ti,
t2¥, dp,, and t.s denote the cobot’s full task processing time, task result transfer time, mean
task result buffering delay, and cobot selection delay, respectively.

Similarly, the end-to-end task execution delay for c2a migration (tﬁf) and c2c¢ migration
(ti%6.) is obtained as tg%=t, +tq+tes + b + dm +tas + 1 and t26. =ty +ta+ 2tes + 1) + dpp + 1.,
where 2,4, t;, and 7. denote the agent selection delay and the cognitive task response time of

an agent and a nearby cobot, respectively.

4.8 Results

In this section, we investigate the performance of our proposed task migration scheme. For
convenience, Table 4.3 summarizes the key parameters and their assigned default values in
compliance with [17], [30], [9], and [105]. To examine the performance of our proposed task
migration scheme, we consider multiple task execution scenarios with different task workload,
input, and output data size values. More specifically, in scenario 1 we consider a lighter full
task workload with smaller input and output data sizes than in scenario 2. Note that the
specific parameter settings for Scenario 1 is given by: wl, = wl. = 100, 200, 300, 400, 500 M
cycles, s¥=s¢=100,200,300,400,500 KB, s¢=40,80,120,160,200 KB, ¢,=1.5,2,2.5,3,3.5s. Where-
as, Scenario 2 parameter settings is described as follows: wl,=wl.= 160,320,480,640,800 M
cycles, sf=55=120,240,360,480,600 KB, s¢=240,480,720,960,1200 KB, ¢;,=1.8,2.6,3.4,4.2,5s.

Simulation Setup: In this section, we present results by means of Matlab based comput-
er simulations. The physical (move to a task location and image capturing) and cognitive
sub-task (face detection form captured image) workload, cognitive sub-task input data size
(output of physical sub-task), cognitive sub-task output data size, and full task deadline
ranges from 100-800 M cycles, 100-600 KB, 40-1200 KB, and 1.5-5s, respectively. Further,
the maximum CPU clock speed of an cloud agent (central cloud/cloudlet server) is set to 3.2
GHz. A cobot’s distance to the task location, CPU clock speed, and moving speed is chosen
randomly from an interval of 1-10 m, 100-500 MHz, and 1-5 m/s, respectively. Note that,
at the wireless front-end both the MU’s device and cobot can be attached to both cellular
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and WLAN interface via connectivity with ONU-MPP and ONU-eNB, respectively. The fiber
backhaul length between ONUs and the central office (OLT) is 20 Km long. Whereas, the
optical fiber length between the ONU and cloudlet server is 2 km long. The transmission
capacity of a fiber link, WLAN, and cellular link is set to 10 Gb/s, 6900 Mbit/s, and 300
Mbit/s respectively. The MPCP (GATE,REPORT) and PS-Poll messages are of size 64 and 20
bytes, respectively, i.e., t729=0.512 ps and ¢;;/=0.231 pus. The number of ONUs, associated
STAs, and hop distance between ONU for MU’s trajectory (initial and final location of MUs)
is set to 32, 10, and 2, respectively. The FiWi traffic load and polling cycle time is varied
in an interval of 0.05-0.95 and 100-800 ms, respectively. Further, the MAP radius, cellular
coverage area, and density of MAPs within each cellular coverage area is set to 100 m, 3 - 3
km?, and 3, respectively. Note that the total number of task request arrivals and number of
collaborative nodes (agents/cobots) is varied in the range of 1-20 in order to investigate their
impact on the performance. The remaining default values and parameter settings related to
each particular evaluation scenario are provided in Table 4.3 and Figs. 4.5-4.7, respectively.
Importantly, for low-latency HART task execution the main requirements are as follows: the
availability of cobot and cloud server resources for requested task processing, satisfaction of
the task execution deadline criteria, transmission at the speed of light, edge cloud server with-
in 20 Km distance from the decentralized ONUs for processing, connectivity of cobots/MUs
with ONUs via a wireless interface, connectivity of cloudlet server with ONU via a fiber link,
hardware/software interface to transfer the task request to cobot/cloud agent and task result
reception by MUs from cobot/cloud agent, among others. We also note that in the event of
multi-task arrivals, we assume that the task requests are served in a first-come-first-served
(FCFES) fashion. Furthermore, we assume that an available agent/cobot can execute only one
cognitive/physical sub-task at any given time.

We first investigate the task response time and energy consumption, which are the two
key performance metrics that determine whether the initially selected cobot should execute
the full task (without migration) or migrate the cognitive sub-task to a collaborative agent
(cloudlet or cloud in ¢2a migration) or nearby cobot (c2¢ migration) for execution. Figs.
4.5(a)-(c) show the task response time and energy consumption evaluation of the different
task migration schemes for varying total task input data size (single full HART task input
data size that includes both physical and cognitive sub-task). We observe that the task
response time and energy consumption of all compared schemes increase for increasing full
task input data size. Note, however, that the c2a (cloudlet near task location) and c2a
(cloudlet near result download location) schemes achieve the minimum task response time
and energy consumption in scenario 1 and 2, respectively. The is due to the fact that in

C

scenario 1 the migrated task input data size (s

) is larger than the migrated task output
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Figure 4.5: Task response time, energy consumption, task response time, energy efficiency,
and migration gain-overhead ratio vs. task input data size (s;) evaluation of different task
migration schemes under scenario 1 and 2.
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c

¢), whereas in scenario 2 the relation between migrated task input and output

data size (s
data size is reversed. The opposite relation between total task input and output data size
results in the minimum task migration latency (both upload and result download delay) for
the c2a scheme (cloudlet near task location) and c2a scheme (cloudlet near result download
location) in scenario 1 and 2, respectively. Moreover, we note that the central cloud based
c2a migration scheme experiences a higher task response time and energy consumption than
in both cloudlet based c2a schemes. This is because the central cloud based task migration
scheme suffers from a higher task migration latency (upload and download delay) than both
cloudlet task migration schemes, whereby the central cloud and cloudlet servers are assumed
to have the same processing capability in terms CPU speed. Further, we observe that the
task response time of all considered schemes except the c2¢ migration (nearby cobot) satisfy
the task deadline criteria of both scenarios, whereas the c¢2¢ migration can only meet the
task deadline criteria of scenario 1. We also note that the task migration to nearby cobot
(c2c) is able to improve the energy consumption of the initially selected cobot (without task
migration). Hence, due to the nearby cobot’s lower task processing speed, the ¢2c¢ scheme
results in the worst task response time performance among all compared schemes.

To highlight the impact of task migration between two agents, Fig. 4.5(d) compares the
task response time of the two different schemes: inter-agent (cloudlet to central cloud) and
intra-agent (cloudlet to another cloudlet) migration. The figure shows that in scenario 1 the
intra-agent migration provides a shorter task response time than its inter-agent counterpart.
Clearly, this is because intra-agent migration suffers from a lower task migration communi-
cation overhead. Thus, intra-agent migration is more preferable when a failure occurs during
agent task execution.

To demonstrate the suitability of task migration, Figs. 4.5(e) and (f) depict the task
response time and energy consumption efficiency of different task migration schemes in com-
parison with the non-migration scheme. Clearly, for increasing task input data size, the task
response time and energy consumption efficiency rise rapidly for all considered c2a migration
schemes. Both figures indicate that the c2a (cloudlet near task location) scheme is the best
choice in scenario 1 since it offers the maximum task response time and energy consumption
efficiency. For instance, for a typical case of 600 MB in scenario 1, the ¢2a migration (cloudlet
near task location) yields the highest task response time (20%) and energy efficiency (23%),
whereas the second best c2a (cloudlet result download location) scheme achieves approximate-
ly 17% and 21% improvement of the task response time and energy efficiency compared to
the non-migration scheme. Hence, the task response time and energy efficiency of c2a mi-
gration (central cloud) is equal to 13% and 20%, respectively. In addition, note that the c2c¢

migration results in a negative task response time and positive energy efficiency gain over the
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non-migration scheme. Fig. 4.5(g) shows that the maximum task response time efficiency is
achieved with intra-agent migration. For instance, for a task input data size of 600 MB in sce-
nario 1, the task response time efficiency gain over the non-migration scheme is approximately
15% with intra-agent migration, as opposed to only 11% with inter-agent migration.

In Fig. 4.5(h), we examine the task migration gain-overhead ratio of the different task
migration schemes for varying task input data size. Note that a higher task migration gain-
overhead ratio indicates the suitability of a particular task migration scheme over other com-
pared schemes. From Fig. 4.5(h) we observe that for an increasing task input data size the task
migration gain-overhead ratio increases in all considered c2a migration schemes and decreases
in the c2c migration scheme. For instance, for a task input data size of 600 MB in scenario
1, ¢2a migration (cloudlet task location) shows the highest task migration gain-overhead ra-
tio, which is approximately 48%, 5%, 18%, 73% higher than that of the non-migration, c2a
migration (cloudlet result download location), c2a migration (central cloud), and ¢2¢ migra-
tion schemes, respectively. Further, Fig. 4.5(i) illustrates that for varying task input data
size the task migration gain-overhead ratio is smaller with inter-agent rather than intra-agent
migration. For instance, for a typical task input data size of 400 MB in scenario 1, intra-agent
migration provides a 12% higher task migration gain than inter-agent migration.

Next, Fig. 4.6(a) investigates the impact of task input data size on CCR for different task
migration schemes. We notice that for increasing task input data size CCR decreases in all
considered schemes. This is because the migrated task execution time is inversely proportional
to CCR (see Eq. (4.22)). Also note that a task migration scheme with a lower CCR involves a
lower communication overhead for a given migrated task execution. In scenario 1, we observe
that the c2a (cloudlet near task location) and intra-agent migration schemes offer a smaller
CCR than their counterparts. Furthermore, note that CCR is the highest with c2a migration
(central cloud) and inter-agent migration.

Fig. 4.6(b) sheds light on the average collaborative node utilization ratio by varying
the total number of collaborative nodes (cobots and agents) for different collaborative node
availability probability p,. The figure clearly shows that for a fixed number § of arriving
tasks, the average utilization ratio increases with the total number of available collaborative
nodes N,, = N, - ps until it levels off at 6 = N,,. The average utilization ratio then decreases
for N, > §. Further, we note that the average utilization ratio is higher for large p,. Fig.
4.6(c) shows how the average task blocking probability p, varies with the total number N
of collaborative nodes and collaborative node availability probability p,. Interestingly, note
that p, is higher at smaller numbers of available collaborative nodes, i.e., N, = N; - ps.
Furthermore, we observe that for fixed non-zero values of p, and increasing N; the blocking

probability decreases and reaches zero for N,, = . Fig. 4.6(d) depicts the deadline-miss ratio
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Figure 4.6: Communication-to-computation ratio (CCR), average utilization of collaborative
node, task blocking probability, deadline-miss ratio, and end-to-end task execution delay e-
valuation of different task migration schemes.
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Figure 4.7: Task response time efficiency of proposed task migration scheme over non-
migration scheme for Scenario 3 task workload settings.

with and without task migration for varying total number ¢ of arriving tasks, with N,, fixed.
Fig. 4.6(d) reveals that for increasing ¢, the deadline-miss ratio increases rapidly in both
schemes with and without task migration. Note, however, that the non-migration scheme
results in a higher task deadline-miss ratio than the migration scheme in both scenarios. The
reason behind this is that the non-migration scheme considers only cobots for task execution,
whereas the migration scheme utilizes both cobots and agents as collaborative nodes for task
execution. As a result, more task requests can be served by the migration scheme. Fig. 4.6(e)
shows that the end-to-end task execution delay of the different task migration schemes remains
low at light FiWi traffic load p;, but rapidly increases for high p,. Note that the end-to-end
task execution delay is minimum in the ¢2a migration (cloudlet near task location) scheme.
For instance, for a given task input data size of 300 MB and FiWi traffic load of 0.8, c2a
migration (cloudlet near task location) offers a 15% and 21% lower end-to-end task execution
delay than the non-migration and c2c¢ migration scheme, respectively. Fig. 4.6(f) depicts
the end-to-end task execution delay performance of the different task migration schemes for
varying polling cycle time T,.. We observe that for a large T, the task execution delay of the
different task migration schemes remains high, but rapidly decreases for smaller T,.. Notably,
c2a migration (cloudlet near task location) outperforms its counterparts in terms of end-to-end
task execution delay.

Finally, Fig. 4.7 sheds some light on the task response time efficiency evaluation of our
proposed c2a task migration (cloudlet near task location) scheme over non-migration scheme
under different physical and cognitive sub-task workloads for a full HART task. We notice that

the highest task response time efficiency is achieved in our proposed task migration scheme
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for a full HART task with light physical and heavy cognitive sub-task workload in Scenario 3
(wl;=200, 400, 600, 800, 1000 M cycles, s”=s¢=100,200,300,400,500 KB, s¢=40,80,120,160,200
KB, t4=1.5,2,2.5,3,3.5s). Thus, a full HART task with light physical sub-task and heavy
cognitive sub-task is most suitable for our proposed scheme. Further note that among all three
different task workload settings the achievable task response time efficiency in our proposed
scheme is significantly lower for a full HART task with heavy physical and light cognitive sub-
task workload. This is because in our proposed c2a migration scheme, the physical sub-task is
performed by a cobot that is computationally less powerful, whereas the cognitive sub-task is
executed by a more powerful agent (cloudlet). By contrast, in the non-migration scheme, the
full task (involving both physical and cognitive sub-tasks) is performed by the cobot. Thus, the
observed task response time difference between our proposed scheme and the non-migration
scheme is lower for a HART task with heavy physical and light cognitive sub-task workload.
Whereas the task response time difference is higher for a HART task with light physical and
heavy cognitive sub-task workload. Furthermore, Fig. 4.7 illustrates that for increasing task
input data size, the task response time efficiency increases in our proposed scheme for a full
HART task under all three different task workloads. For instance, for a typical case of 1000
MB, our proposed scheme achieves up to 18%, 23%, 29% higher task response time efficiency
than the non-migration scheme for a full HART task with heavy physical and light cognitive
sub-task workload, equal physical and cognitive sub-task workload, light physical and heavy

cognitive sub-task workload, respectively.

4.9 Conclusions

In this chapter, we examined the performance of our proposed context-aware task migration
scheme for HART-centric task execution in FiWi based Tactile Internet infrastructures. To
improve the task execution latency, our proposed scheme not only selects a suitable cobot
and collaborative node for HART-centric task execution, but also migrates a task from one
collaborative node to another. Further, we presented an adaptive resource allocation scheme
to handle both traditional broadband and task migration data traffic at the same time. We
developed an analytical model to investigate the performance of our proposed task migration
scheme in terms of task response time, energy efficiency, communication-to-computation ratio,
and task migration gain-overhead ratio, among others. The presented results help determine
the optimal task migration schemes under a variety of use case scenarios with different task,
agent, and cobot characteristics. Our obtained result show that for a typical task input data
size of 600 MB, the c2a task migration (cloudlet near task location) scheme exhibits up to
20% task response time and 23% energy efficiency improvement over task execution without

migration. The results also indicate that in the case of an agent node failure, intra-agent task
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migration offers a higher task response time gain than inter-agent migration. Our proposed
task migration scheme is thus well suited to provide low-latency performance for emerging

Tactile Internet applications.
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Chapter 5

Community- and Latency-Aware
Multi-Task Scheduling and
Prefetching-Aware DBA in FiWi
Enhanced Networks

5.1 Preamble

This chapter contains material extracted from the following paper:

[J5] M. Chowdhury and M. Maier, “Community- and Latency-Aware Multi-Task Scheduling
for HART Collaboration in FiWi Enhanced Networks,” IEEE Transactions on Cloud Com-
puting, November, 2018 (submitted) [106].

5.2 Introduction

With the proliferation of smart mobile devices, a wide variety of emerging mobile applica-
tions such as 3-D interactive games and gesture/object recognition are increasingly turning
into indispensable assets. Despite their ongoing development, many latency-sensitive mobile
applications (e.g., face detection) cannot be efficiently run on mobile devices due to their lim-
ited computing and storage resources. In response to this challenge, mobile cloud computing
(MCC) has been a promising solution, where resource-limited mobile devices transfer their
latency-sensitive and computation-intensive tasks to resource-rich cloud servers for remote
execution through a process known as computation offloading [17].

Most existing MCC based task offloading solutions are based on the following platforms:
centralized cloud [17], decentralized cloudlet [28], or mobile ad-hoc cloud [30]. Remote cloud
based task offloading may not always satisfy the QoS requirements of many real-time mobile

applications due to the higher propagation delay. To lower the latency of centralized cloud
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offloading, cloudlets may placed at the network edge to offer cloud services in close proximity
to mobile subscribers. The importance of decentralized cloudlets can be witnessed in many
real-time human-machine interaction based applications (e.g., remote surgery), where an ex-
tremely low round-trip latency of 1-10 ms is required to match humans’ interaction with their
environment. This vision of very low-latency communications gives rise to the so-called Tactile
Internet, where the remote control of virtual /physical objects via the Internet allows humans
to accomplish their tasks in places in which they don’t have to be physically present [5].

The overarching goal of the Tactile Internet is the production of new goods/services that
complement humans rather than substitute for them. This collaborative human-machine
co-activity approach is part of the still young field of human-agent-robot teamwork (HART)
research, where humans, robots, and intelligent agents play complementary roles in accom-
plishing different latency-sensitive tasks, e.g., crowd sensing [55]. HART tasks may be either
a physical task, a digital task, or may include both. Physical tasks are location dependent
and follow specific manual instructions (e.g., capturing image at a given task location). Con-
versely, digital tasks are location independent and require sophisticated judgement capability
for making intelligent decisions (e.g., intrusion detection from captured image). In general,
the task assignment to unsuitable robots/agents may lead to unnecessarily increased delays
and resource consumption. To avoid these problems, only mobile robots near a given task
location can be selected to execute physical task, whereas digital tasks may be executed by
either the robot or a nearby agent. To the best of authors knowledge, no existing works deals
with the problem of minimizing the real-time execution overhead of multiple HART tasks by
means of multi-task scheduling, community cluster resource awareness, task prefetching, and
failure avoidance.

The majority of existing task scheduling policies focus on offloading computation-intensive
digital tasks either onto cloud servers or mobile devices rather than both, whereby a significant
number of these policies apply offline scheduling. This in turn requires that a-priori informa-
tion about future tasks (e.g., arrival time, deadline) is available to the task scheduler. Offline
scheduling schemes are well suited for periodic tasks, but become less suitable for executing
aperiodic tasks in real-time [25],[27]. Due to their uncertain cloud resource requirements,
the execution real-time aperiodic tasks demands a suitable online (dynamic) task scheduling
scheme to maintain QoS assurances. In contrast, online task scheduling may cause significant
task migration latency [28]. Further, the lack of a proper bandwidth assignment strategy may
cause higher waiting times for data transmission and result reception during the task offload-
ing process. Thus, one of the key challenges for online task scheduling is to minimize the total

task execution latency, including both task processing and offloading communication delay,
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Figure 5.1: Resource block allocation in task offloading: (a) prefetching vs. (b) conventional
fetching.

by mitigating the uncertainty of cloud /bandwidth resource management and failure avoidance
[29].

Importantly, most of the existing computation task offloading studies [17],[30],[25],[29] ap-
ply the conventional fetching technique, where a given mobile user’s (MU) next computation
task can be transferred to the cloud server only upon the completion of the previously offload-
ed task, as shown in Fig. 5.1(b). As a result, conventional fetching suffers from an increased
multi-task offloading latency. To overcome this shortcoming of conventional fetching, task
prefetching has been recently applied in the context of task offloading, as illustrated in Fig.
5.1(a), where the full or a portion of the MU’s next task input data is transferred to the cloud
server already during the computation period of the previously offloaded task [85],[86]. Note,
however, that both studies [85] and [86] considered only remote cloud (agent) based computa-
tion task offloading rather than multi-cloud agent (e.g., cloudlet, robot) based heterogeneous
HART task offloading in an online setting. Furthermore, most existing studies considered on-
ly dedicated remote clouds or isolated host cluster resources (mobile devices/cloudlets within
the coverage zone of a single wireless access point) for the MUs’ task assignment. Clearly,
relying only on isolated cluster resources may not always satisfy different given task execu-
tion requirements when arriving task requests exceed available isolated cluster resources. To
overcome these shortcomings, a promising solution is to utilize available nearby community
cluster resources (mobile devices/cloud servers under multiple nearby wireless access point

coverage areas) for low-latency HART task execution. Notwithstanding, the task assignment
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to available community cluster resources may sometimes experience extra task execution over-
head due to the higher task location traverse time and task offloading communication latency.
Thus, to improve task execution performance by selecting the optimal task processing node,
further investigation of adaptive HART task scheduling schemes with isolated and community
cluster resource awareness is mandatory.

In this chapter, we propose a community- and latency-aware task scheduling scheme that
selects a suitable robot and cloud agent for HART task execution by collecting time-varying
robot/cloud resource information in an online manner. Unlike previous work, our goal is
to minimize both task execution latency and power consumption for multiple HART tasks.
To reduce the task migration overhead, we incorporate batch based HART task scheduling
into our online scheme. In addition, we investigate the performance of both task onloading
and task offloading based HART task execution while benefitting from task prefetching and
failure avoidance. Further, we develop a prefetching-aware dynamic bandwidth allocation
scheme for multiple HART task execution. We present an analytical framework to evaluate
the performance of our proposed schemes in terms of mean task service time, delay and power
saving ratio, task prefetching time efficiency, processing-to-service time ratio, speed up, and
satisfactory ratio.

The remainder of the chapter is structured as follows. Section 5.3 reviews related work
and outlines open challenges. In Section 5.4, we introduce our considered fiber-wireless (FiWi)
enhanced Tactile Internet infrastructure and describe our proposed adaptive task scheduling
scheme in greater detail. Sections 5.5 and 5.6 present our analytical model and obtained

results, respectively. Section 5.7 concludes the chapter.

5.3 Related Work and Open Challenges

In recent years, a significant amount of research efforts on online task scheduling aimed at
scheduling real-time aperiodic tasks of MUs. In [18], the authors outlined a heterogeneity-
aware task scheduling scheme that selects only suitable peer mobile devices for computation
task offloading based on their respective skills and task processing times. In [107], the au-
thors devised a location-aware task scheduling algorithm that leverages on infrastructure-based
cloud resources for computation task offloading, trying to keep a balance between user equip-
ment energy consumption and load balancing. The study in [108] and [109] investigated how
to minimize bandwidth usage and queuing delay of different cloud tasks, respectively. In [110],
the authors proposed an online resource management scheme that jointly optimizes cloud task
offloading profits and user equipment battery lifetime. The authors of [111] presented a real-
time task scheduling mechanism, where a suitable cloud server is selected for offloaded tasks

according to their minimal energy consumption cost while meeting given task deadlines. The
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problem of parallel task scheduling in a remote cloud with the objective to reduce task work-
load processing time was addressed in [112]. In [113], a suitable cloud server selection scheme
for offloaded task assignment was developed to lower transmission delay. Note that [112] and
[113] minimized either task offloading communication delay or task processing delay, but not
both.

All aforementioned studies focused on the decision whether or not to offload a single us-
er’s computation-intensive task to a dedicated/isolated host cluster cloud node (cloudlet/peer
mobile device). Furthermore, they assumed that task offloading can be performed imme-
diately without considering the availability of cloud servers and bandwidth resources. An
important issue little addressed in previous work is how to collect information about different
cloud/robot resources for online task scheduling. More specifically, none of the previous stud-
ies investigated the problem of minimizing task service/execution time and user equipment
energy consumption jointly for real-time HART task scheduling. There is also a lack of task
prefetching-aware bandwidth allocation policies in order to minimize HART task offloading
latency. Moreover, previous work has not explicitly studied failure-avoidance service selection
and optimal resource scheduling order for the execution of different HART tasks. Furthermore,
the question of how to coordinate the execution of multiple HART tasks using infrastructure-
based and infrastructure-less isolated /community cluster resources remains an open research
issue. Clearly, to analyze the task scheduling performance a proper HART task service delay
calculation model needs to be developed by taking the different delay components, including
task workload processing, transmission, and waiting time, into account.

In this chapter, we aim at addressing open research challenges related to the real-time
multi-task scheduling for HART collaboration across FiWi enhanced Tactile Internet infras-
tructures. Our proposed task scheduling scheme considers not only isolated host and commu-
nity cluster resource awareness but also both prefetching-aware task offloading and suitable
failure avoidance for HART task execution. To determine the optimal task scheduling or-
der, we compare the following schemes: First Come First Serves (FCFS), Earliest Deadline
First (EDF), and Concurrent Policy (CP). We compare the performance of our proposed task
offloading schemes with task onloading, random, and communication-aware task offloading

schemes in terms of a variety of HART-specific performance metrics.

5.4 FiWi Enhanced Tactile Internet Infrastructure for
HART Task Scheduling

In this section, we describe the considered FiWi enhanced Tactile Internet infrastructure and

our proposed adaptive HART task scheduling and bandwidth allocation scheme.

116



Central cloud 10-100 km

Single cr Multiple Subscribers

Central Office
& I

I 10G-EPON

. (TDM or WDM)

] [ OLTl

IMU: Mebile user

IAP/IIAP: Mesh point/Mesh access point

7

Splitter/Combiner(1:M}

CLT/ONU: Ogtical line terminal/Optical network unit
ONU-MPP: Integrated ONU mesh portal point

— Fiberlink —=— Wirgless link Cloudl=t

Figure 5.2: FiWi enhanced Tactile Internet infrastructure for adaptive HART task scheduling.

5.4.1 Network Architecture

Fig. 5.2 depicts the FiWi enhanced Tactile Internet architecture, which is based on low-cost,
data-centric Ethernet passive optical network (EPON) and WLAN technologies. Specifically,
the fiber backhaul is based on an IEEE 802.3av 10 Gb/s EPON (10G-EPON), which consists
of the central optical line terminal (OLT) and remote optical network units (ONUs). The
OLT connects to the ONUs at the customer premises via a tree-and-branch topology. The
distance between the central OLT and remote ONUs ranges between 10-100 km. A subset of
ONUs are located at residential or business subscriber premises, offering FTTx services, e.g.,
fiber-to-the-home/business (FTTH/B) to a single or multiple subscribers. To interface with
front-end WiFi mesh network (WMN), another subset of ONUs are equipped with a mesh
portal point (MPP), giving rise to a so-called ONU-MPP. Intermediate mesh points (MPs)
serve as relay nodes between MPPs and mesh access points (MAPs), each being associated
with one or more MUs and robots.

The integration of ONU and MPP is done by using decentralized radio-and-fiber (R&F)
technologies, where medium access control (MAC) protocol translation is performed at the
optical-wireless interface. A subset of selected ONU-MPPs are connected to each other via
inter-connection fiber (IF) links for redundancy. Further, to provide low-latency cloud services
to MUs at the network edge, cloudlets are attached to ONU-MPPs via dedicated fiber links
[94].
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Figure 5.3: (a) Adaptive batch model for proposed HART task scheduling and (b) community-
cluster architecture.

5.4.2 Adaptive HART Task Scheduling Scheme

5.4.2.1 Community/Latency-Aware Task Assignment

Given that task request and robot /agent availability information isn’t known a priori, we apply
a distributed approach where the task scheduler at the ONU-MPP makes task scheduling
decisions by exchanging control messages with each robot/agent. The process comprises the
following three steps:
1) Task Request Collection: The first step of our proposed scheme collects a given MU’s
task request that arrives during a FiWi polling cycle, as shown in Fig. 5.3. Each MU sends a
full HART task request message to the associated ONU-MPP during the assigned broadband
sub-slot. The task scheduler at the ONU-MPP may receive multiple task requests from MUs
arriving during a FiWi time cycle and stores all task requests in a batch queue. Note that each
HART task request includes information about the full HART task workload (i.e., physical
and digital sub-tasks) in terms of required CPU cycles to process the task, task location, task
input and output data size. Next, the task scheduler selects a suitable robot/agent for each
arriving task request. For enhanced performance, we select suitable task execution scheme
with both community- and latency-aware task offloading and onloading, as explained next.
(1) Community- and Latency-Aware Task Offloading: In this scheme, multiple nearby
ONU-MPPs form a community cluster and utilize their available robot/agent resources for
each HART task execution (see also Fig. 5.3). The physical and digital sub-tasks are assigned
to the most suitable robot and agent, respectively, by evaluating all robots/agents within the
coverage area of the host and community ONU-MPP. For selecting a suitable robot/agent,
our community- and latency-aware offloading scheme distinguishes the following cases. If the
number of arriving task requests is smaller than/equal to the number of available host ONU-

MPP resources (e.g., robots, agents), then a suitable robot/agent can only be selected from
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Algorithm 5 Adaptive multiple HART task scheduling

Notation: Number of full task request (k = n, + ns), physical (n,)/ digital sub-task (ns),
total robots (¢ = h, + ¢,)/agents (z = h, + ¢4), scheduling policy P =EDF, FCFS, and
CP, robot(h,)/agent(h,) under host ONU-MPP, robot(c,)/agent(c,) under community
ONU-MPP

1: while arrived task request k# @ do

2:  if there exist multiple scheduling policy then

3 for each policy p; € P do

4 go to step 10 to 25 for ¢, calculation

5: end for

6: Compare t% ., of all policy Vp; € P

7 select optimal policy with minimum £,

8 Go to step 26

9: end if

10:  for each arrived full task Vvy,€k do

11: if 7, <0 then

12: select suitable robot r€h, with min (¢:Npt)
13: ! =t

14: else if 7, > 0 then

15: for each physical sub-task [;€n, do

16: select suitable robot r€g with min (t.Npl)
17: for each digital sub-task v;ens do

18: select suitable agent a€z with min (¢,Np,)
19: thr =t + ta,

20: end for

21: end for

22: ti=min{t, t,,;}, where i € 1,2, ..k

23: th =max{t}, t2, ..tk

24: end if

25:  end for
26: end while

the available host ONU-MPP resources. If the number of arriving task requests is greater
than than the number of available host ONU-MPP resources, then a suitable task processing
node can be selected from both host and nearby ONU-MPP resources.

(17) Task Onloading: In our task onloading scheme, a suitable host ONU-MPP robot is selected
for full HART task execution without involving any digital sub-task offloading onto the agent
(see Algorithm 5, lines 10-13). Note that in this case task onloading doesn’t save power of the
initially selected robot (n; < 0).

2) Optimal Multi-Task Scheduling Order Selection: To optimize multi-task scheduling
performance, the task scheduler decides which task is executed first. To determine the optimal

multi-task scheduling order, the task scheduler compares the overall task service time (t’;mt) of
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the task offloading and onloading schemes using the following three scheduling policies (Alg.
5, lines 1-9):

(1) First Come First Served (FCFS): The task scheduler assigns resources to HART tasks
based on their arrival order.

(ii) Earliest Deadline First (EDF'): The task with the earliest deadline is scheduled first.
(i1i) Concurrent Policy (CP): The task scheduler assigns resources randomly to all arriving
task requests.

3) Task Processing Node Selection: For selecting a task processing node in our
task offloading scheme, the task scheduler at the host ONU-MPP initially sends the full task
request message to all robots. Their response messages to the task scheduler contain each
robot’s respective remaining energy, location, moving and processing speed information. After
collecting all robots’ response messages, the task scheduler first computes the physical sub-
task service time (¢!) and power consumption (p’) for each robot. Subsequently, it selects the
most suitable robot with minimum #. and p!. required for the given physical sub-task execution
(Alg. 5, lines 14-16) in out task offloading scheme (7;>0). To do so, we extend the DHCP
protocol messages Discover, Offer, and Ack using their pad/reserved bits to include the
aforementioned task request, robot/agent response, and robot/agent selection messages [104].
For assigning the digital sub-task to an agent, the task scheduler broadcasts a task offloading
request message to all agents, which comprises the digital sub-task input and output data
size as well as workload information. After receiving the task offloading request, each agent

sends a response message back to the task scheduler, containing information about the agent’s

Task result ’_l
Task request “ i
MUs/Human g Robot full task | Download | Failure and
(a) HART with task onloading
MUs/Human
Task request Task result
Failure and Recovery

availability and task processing speed. The task scheduler calculates each agent’s digital sub-
execution output data Recovery
[ * ' ]
Robot physical L Upload digital L Agent digital | Download digital
task execution task to agent task processing task output data
(b) HART with task offloading

Figure 5.4: HART task execution model with failure avoidance.
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Figure 5.5: Space-time diagram of prefetching-aware dynamic bandwidth allocation (DBA).

task service time (¢,) and power consumption (p,) and then selects the optimal agent with

minimum ¢, and p, (Alg. 5, lines 17-21).

5.4.2.2 Minimization of Processing Overhead

Unlike previous work, our proposed task scheduling scheme performs robot /agent selection and
bandwidth assignment simultaneously, thus reducing multi-task execution latency. Further,
in this chapter, full HART task service time is calculated taking task workload processing,
transmission, and waiting delay into account. To avoid extra task processing overhead due
to failure, we design an optimal failure avoidance selection scheme, whereby task execution
failures may occur due to unreachability of robots/agents. More specifically, in our task on-
loading scheme, task execution failures may occur during a robot’s full task processing and
result transfer process. Conversely, in our task offloading scheme, task execution failures may
happen during a robot’s physical and an agent’s digital sub-task processing or during the dig-
ital sub-task upload and result download process, as depicted in Fig. 5.4. To detect failures
during task execution, the task scheduler at the ONU-MPP periodically broadcasts heartbeat
messages to all robots/agents and waits for their responses at pre-defined checkpoints. The
task scheduler is able to detect un-reachability failures of a robot/agent when heartbeat re-
sponses are absent at several subsequent checkpoints. For failure recovery, we apply a failure
avoidance scheme that selects the minimum task service time ', which can be either a failure
recovery or a fault tolerance scheme. In the failure recovery scheme, the faulty task execution
restarts from beginning after recovering from a connection failure. In contrast, in the fault
tolerance scheme, the faulty task execution resumes from the latest checkpoint rather than

beginning (to be explained in further detail below in Sections 5.5.4 and 5.5.5).
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Algorithm 6 Dynamic bandwidth allocation (DBA) at OLT

1: for each ONU-MPP ien do
2:  if the OLT receives REPORT message then

3: Extract ONU-MPP’s bandwidth demand (¢;?) from REPORT and assign
toh =ty 42t 4+ RTT

4:  else

5: Assign minimum bandwidth 5! = 20000, + RTT

6: end if

7. Generate and transmit a GATE message to ONU-MPP including their timeslot s-

tart time/duration (t5 ,, t*L ), broadband (%

" onu’ onu onu’’onu
. . . . . s
time/duration, tg;7, polling cycle start time t7, .,

8 if (ths, <tk < b5 4% ) then

onu — Yolt onu

9: Receive US broadband frames from ONU-MPP
10:  else if (25, <tk <o +¢2 ) then

onu onu

t? ) /ofload (% t% ) slot start

onu’’onu

11: Receive offload input/output data frames from ONU-MPP/agent, send to
agent/ONU-MPP

12:  end if

13: end for

5.4.3 Prefetching-Aware Dynamic Bandwidth Allocation

Fig. 5.5 depicts the space-time diagram of our prefetching-aware dynamic bandwidth allo-
cation (DBA) algorithm. In both optical and wireless domains, bandwidth is allocated in
a TDMA manner. Specifically, in the fiber backhaul, the OLT allocates bandwidth to each
ONU-MPP via exchange of the IEEE 802.3ah MPCP messages REPORT and GATE. In the wire-
less front-end, each ONU-MPP allocates bandwidth to its associated stations (STAs), which
comprise MUs and robots, by exchanging IEEE 802.11 WLAN Beacon and PS-Poll messages.

1. DBA operation at OLT: Initially, the OLT polls all ONU-MPPs and assigns minimal
bandwidth for enabling each ONU-MPP’s REPORT transmission (see Algorithm 6). In every
recurring time cycle, the OLT receives the REPORT message from each ONU-MPP, indicating
its current bandwidth demand (¢.;?). Next, the OLT allocates bandwidth to each ONU-MPP
based on its demand (¢;*) by sending a GATE to the ONU-MPP. The GATE message contains the
ONU-MPP’s broadband (%, ¢ ) and offload timeslot map (2, ¢, ) for the next time cycle.
During the ONU-MPP’s broadband timeslot, the OLT receives/sends upstream/downstream
(US/DS) broadband data frames from/to the ONU-MPP. Conversely, during the ONU-MPP’s
offload timeslot, the OLT receives/sends the offloaded task input/output data frames from and
to the ONU-MPP /agent.

2. DBA operation at ONU-MPP: A given ONU-MPP starts its upstream transmis-
sion after receiving the GATE message from the OLT (see Algorithm 7). More precisely, the

ONU-MPP extracts its broadband/offload transmission window information from thes GATE
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Algorithm 7 DBA operation at ONU-MPP

1: if the ONU-MPP receives GATE message from OLT then
2. Extract ONU-MPP’s timeslot start time/length (¢t ), broadband (¢ % ) and

S
tonu’ onu onu’’onu

offload (25, t% ) transmission start time/length, and ¢} synchronize ONU-MPP clock

onu’) “onu

time with OLT (t¢k =¢cik)

3. Determine ONU-MPP’s sleep time (¢35 =t5 st =59 =ts 50 ) wake-up time

onu onu onu cycle “onu
(tws —58 +tsd

ws —t5s +t5¢ ), robot/agent selection time/length (¢ +t2°" t.,), REPORT transmis-

S
; tonu msg’
. . s __ 18 S _{pbon
sion time (27,00t =tonuTtonu-thaey)

4:  Assign broadband and offload sub-slot to STA’s evaluating their last PS-Pol1, 5! task

» Yonu?

scheduling policy, and agents offload task processing start time (¢3), processing duration
(t?), and finish time (¢/)

5: t%?al = tgfl’lﬂ tgiall = tZ;G,l? t;;ésal = t%:lu’ tgtla1 = t:l;znal

6: tsfal - tgfal + tgtal + tzju? tstal - tszﬁnal

7. for i=2 to m do

b b bl bl b

8: ts;fqai = tsiai_l + tstai_ﬂ tstai = ts:ai

9: Go to step 10 for task offload sub-slot assignment

10: if tyy, >1; | then

11: Assign both prefetching based task upload sub-slot (¢37, t;‘éai) and fetching based
remaining task data upload sub-slot (t?ai, t'ﬁai) with download sub-slot start
time/duration (tds t%.)

]‘2: tqsiis(ll :th‘,l 7t?tlaizt21,1 Y tgfal :tgfai,1 +t§l£a¢,1 Y

13 tgtlal :tgz‘al - t?;aﬂtgfal :t£27 t,tslgal :tg;al

14: else if ¢/, <t;  then

15: Assign prefetching based task upload (t3;, , t?gai) sub-slot and result download sub-
SlOt (tgfaﬂ tgiaz) tﬁl, :tZ,L,l ? tgtlaZ :t’gg‘aﬂ tglfal :tgﬂ tgial :tg;az

16: end if

17:  end for
18:  Generate a Beacon message with STA’s (MUs/robots) broadband sub-slot {(t%

stay?
tgéal)...(tgiam,tgéam)}, task upload {(tfjfal,t?gal)..(tg‘fam,tﬂam)}, and download sub-slot

map {(t45, ¢4 Y. (tds pdl Yy gul qul o ogul glk s sl and send to STA’S

bsta17 sttlzé i)stam7 sicllm ) Vsta; ) Vsta; sta;? “onu’ “onu’ “onu)’
. : S c S
19: else if (2, <tor, <t2 +tu.) then

20:  Receive US/DS broadband data frames from STAs/OLT and sends them to OLT/STAs
21:  Extract STA’s broadband (¢, ) and task offload bandwidth (¢, ,t% ) request from

PS-Poll message, update ;7 — t0;7 + ¢0 4 tur 4 td 4t + 00
22: else if (25, <tk < o5 4 ¢° ) then

23:  Receive offload task input/output frames from STAs/agents and transfers them to a-
gents/STAs

24: else if (t5% ==t:,,.,) then

25:  Send a REPORT message to OLT with ¢/

26: end if

message (lines 1-2, Alg. 7). Next, the ONU-MPP determines its next sleep start time/duration
(tss . t2d ), wake-up time (% ), and REPORT transmission (5 .) times (line 3). The ONU-

onu’ “onu onu report
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Figure 5.6: Illustration of prefetching-aware task offload sub-slot assignment.

MPP in turn assigns broadband and offload sub-slots to its associated STAs based on each S-
TA’s bandwidth request (PS-Poll), ts! = and agent offload task processing schedule (5, %, /).

» Yonu? a’’a’Va
tbl

Next, STA;’s broadband sub-slot start time (¢, ) and duration (%, ) are calculated according

to the ONU-MPP’s broadband slot start time (%, =t ) and STA;’s requested broadband

stay onu
sub-slot (¢% =¢b

stay stay ) and result

), respectively (lines 5-6). STA;’s assigned task upload (t%

stay
ds
tstal

) duration correspond to the ONU-MPP’s offload slot start time (9%, ), STA;, offload

onu

t’u,l

tia,;) and result download sub-slot

download sub-slot (¢%° ) start time, and task upload (

(£5ta,
task processing completion time at agent (¢4, +t%, +t% ), STA;’s requested upload (¢, ),
) sub-slot length, respectively. Next, the ONU-MPP assigns a broadband

) and length (%

sta;

td'r

and download (57,

tbs

sub-slot start time to the remaining STAs (i = 2 to m) ( ) according to

sta;
the previous STA’s broadband sub-slot (¢%, =t%, ~ +t% ) and requested broadband sub-
slot (% =tbr

ota; =lata,), Tespectively (lines 7-8). The ONU-MPP assigns the next STA’s task offload
sub-slot based on the earlier STA’s offload task processing start time (£; ), agent offload
task processing duration (2 ), and ST A; required task upload (¢¥, ) duration (lines 9-17).

a;—1 sta;

If the next STA’s required task upload sub-slot duration (¢, ) is smaller than or equal to

the previous STA’s offload task processing (at agent) duration (¢, ), then the ONU-MPP
assigns a prefetching-based task upload sub-slot to the next STA (lines 14-15). If the next
STA’s required task upload sub-slot duration (¢%, ) is greater than the previous STA’s offload

sta;

task processing duration (¢7, ), the ONU-MPP assigns both task upload (prefetching) and
task upload (fetching) sub-slots to the next STA (lines 10-13). The next STA’s task upload
) and length (£

sta;

prefetching) sub-slot start time (¢% are equal to the previous STA’s of-
g

sta;

fload task processing start time (37, =t5 ) and offload task processing duration (at agent)

(tm =ty ), respectively, e.g., STAy’s prefetching subslot duration lasts from 75 to Tg, as

sta;

illustrated in Fig. 5.6. Note that the next STA’s task upload (fetching) sub-slot start time

(t% ) and duration (tfztlai) are equal to the previous STA’s task result download completion
(to =t +td ) and next STA’s remaining task data upload time (¢4, =t —t% ), re-

spectively, e.g., STAy’s fetching subslot duration lasts from 77 to Ty in Fig. 5.6. The next

tds

¢12,) and duration correspond to the

STA’s assigned task result download sub-slot start time (
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next STA’s offload task processing completion time (at agent) (] ) and required task result

th

sta; ) ) TeSpeCtively,

download time (

The ONU-MPP sends a Beacon message to the STA in oder to inform it about its broad-
band and offload sub-slot information in the next cycle (line 18). The ONU-MPP receives
US/DS broadband data frames from the STA/OLT and forwards them immediately during
its broadband timeslot (lines 19-21). During its assigned offload timeslot, the ONU-MPP
receives offloaded task input/output data frames from the STAs/agents and transfers them
to the agents/STAs (lines 22-23). Finally, the ONU-MPP transmits a REPORT message to the

OLT at end of its task offload sub-slot (lines 24-26).

5.5 Performance Analysis

In this section, we present our analytical model to evaluate the performance of the task
offloading and task onloading schemes. The performance metrics of interest include mean
task service delay, speed up, task pre-fetching efficiency, power saving, and satisfactory ratio,

among others.

5.5.1 HART Task Service Time Analysis

In this subsection, we compute the multiple full HART task service delay for both proposed
task offloading and task onloading schemes. The task service delay is the total time dura-
tion required for full HART task (physical and digital sub-tasks) workload processing by the
assigned robot/agent and task result reception by the MU. Specifically, the full HART task
service time calculation comprises the following three delay components: (i) physical and
digital sub-task workload processing delay, (i) transmission delay (Section 5.5.2 below), and
(7i1) waiting delay at robot/agent (Section 5.5.3 below). In the task onloading scheme, the
selected host robot executes the full task and transfers the task result to the MU. Thus, the

task service delay in the task onloading scheme (t! =t’) is given by
t o=ttt =ttt (5.1)

where ¢7, t,, and t¢ denote the waiting delay at the robot, the robot’s full task workload
processing delay, and the task result transmission delay (from robot to MU), respectively.
Further, we have #,=t!4+t¥, where ¢, and ¥ represent the robot’s physical sub-task (e.g.,
capturing image at task location) and digital sub-task (e.g., face recognition from captured
image) processing time, respectively. Whereas t! includes both the robot’s task location

traverse time (. ) and physical sub-task workload processing time (t. ) and is given by

tra

th=tl tl =9 1Y where wy, s

l
T Y
St Sp m

and s; are the physical sub-task workload, the robot’s
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moving speed, and its computation processing speed, respectively; d; denotes the Euclidean

distance between the selected robot (7, yr) and task location (xl,y}). The robot’s digital

Wy
)
Sp

workload and the robot’s computation processing speed, respectively.

sub-task processing time is denoted by ¢;=*, where w, and s, stand for the digital sub-task

In the task offloading scheme, the selected robot executes only the physical sub-task and
offloads the digital sub-task to a suitable agent for processing. Thus, the full HART task

service time (tf)f f) in the task offloading scheme is given by
i d 4l | v of f | 4o
of f _tﬂa_‘_tﬁ}_‘_toff - tr+ta+tw +tb +trf—>fmu7 (52)

where ¢, ,, ty, and tglf s denote the full HART task processing delay, the robot /agent’s wait-
ing delay (ty=t" +t%), and the transmission delay for task offloading. We have t,,=t.+t!,
where ¢! and ¥ denote the robot’s physical and the agent’s digital sub-task processing time,

respectively; &g is given by t;=%, where w, and s; are the digital sub-task workload and the

5
agent’s computation processing speed, respectively. Note that the main difference between the

task onloading and task offloading schemes is their digital sub-task execution time. Given the

digital sub-task execution time in task onloading (t;=t},-t.-t;,) and task offloading (t,=t/;-t.-

on r "w

t" ), the digital sub-task execution time efficiency in the task offloading scheme is computed as
Bi="t=t2 x 100%. The optimal task execution policy is determined by using the minimum full

task service time of the task onloading (t},,) and offoading (¢};) schemes: t{=min{t;,,t’}.

on?

The overall task service time for processing task k is then given by ¥, =max{t},¢2..,t5}.

Next, given t}, and t/,, the mean task service time for multiple HART task service is cal-

culated for the task onloading (t¥,=t}, ,) and task offloading (t ,=ts ;) schemes as follows:

on,a

th, = Zle tt - +. Finally, if both th, o and tﬁfﬂa are known, the mean task service time

ko 4k
fomaoia o 100%) between task offloading and task onloading can be

tlgn,a

delay saving ratio (4=

obtained.

5.5.2 Transmission Time Delay

In addition to the task workload processing delay, the full HART task execution involves

transmission delay. In the task onloading scheme, the transmission delay (¢4 =t¢"+to", )

on
tr—>mu

includes the task result buffering delay (¢7") and task result transfer ( ) delay (from

do do

robot to MU), whereby t¢ is given by ¢4 = to" +¢on, = ¢on + wota =t 0, Where
g, ¢ 5 ce...,and t?_ - denote digital task output data size, transmission capacity at link

between robot and host ONU-MPP, host ONU-MPP and MU, and propagation delay for task

result transfer, respectively. In task offloading scheme, transmission delay (tglf f:tzf ! +toff )

consists offload packet buffering (¢2/) and communication delay (to/f =t*  +t? . Y where

r—mu r—a
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tv, and t¢,  denote the digital task upload (from robot to agent) and result download delay

(from agent to MU), respectively; t* ., and t¢, — are computed as follows:
( dt dt .
v P —
e t oI +1 . it a =hg,
d hd, d: :
v+ -+ if a =c,
v = G Ch_so Ch—a r—a 5.3
r—a d:, d:, p . ( : )
oW + o + tr%a lf a :hpT‘7
2 B
U v v p 3 —
\ &0 + e, t o T if a =cpr,
(  J° de .
7o+ T + tg—ﬂnu if @ =h,
Co—o o—mu
ds hdo de .
p _
td C({j}o + Cf ’Uf + ngﬂl’)mu + ta%mu lf a —CCt7 5 4
g 0—0
a—mu de i de Lgp if @ —=h ( . )
C}zu—m }SU—wnu a—mu ha= prs
ag” L hd 4y ‘
if a =c
\ Cg_m + C({*}a + cg)%mu + a—mu pr

where he, Cot, hyr, and ¢, stand for cloudlet (host), cloudlet (community), peer robot (host),
and peer robot (community), respectively. Further, di, d°, ¢l_./c¥. .. b o/cl s, ¢l 5/ s,
h,t?_ ., and t?_  denote the digital task input and output data size, transmission capacity of
the link between host ONU-MPP and agent (fiber/wireless link), host and community ONU-
MPP (fiber link), agent and host ONU-MPP (fiber/wireless link), hop distance between host
and community ONU-MPP, and propagation delay during digital task up- and downloading,
respectively.

Next, we analyze the transmission packet buffering delay (t;) that consists of three delay
components in task offloading (t;//) and onloading (tJ") schemes. The first delay component
(tg1) is the time interval between the arrival (A) of transmission packet and transmission of
bandwidth reservation (R) request (see also Fig. 5.5). If the transmission packet arrives after
STA’s broadband sub-slot, t4; is equal to polling cycle time t.. The second delay component
(ta2) is the time interval between the bandwidth request (R) and grant message (G). For
ST A1, tg is equal to t. — tﬁiai. In the task onloading scheme, the third delay component
(t%,) is equal to the time interval between the bandwidth grant message (G) and broadband
transmission (task result transfer) start time (7'). Hence, in the task offloading scheme, the
third delay component (t%;) equals the time interval between the bandwidth grant message
(G) and offload start time (U). For STAy, t3; is equal to >, t% . Summing up all three
delay components, the packet buffering delay in the task onloading and offoading schemes is

given by th ! =tg1+ta+ty, and tg”:td1+td2+t33, respectively.

5.5.3 Waiting Time Delay

Beside task processing and transmission delay, each task execution may experience a certain

waiting time delay before getting access and being served by the selected agent /robot [22]. To
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calculate the average waiting delay, we model the robot/agent is as a M/M/c queue, where
¢ denotes the number of processors available at each robot/agent for processing the assigned
task request In our M/M/c queue model, the occupancy rate of a robot/agent server is given
by 7==%- where w is the task arrival rate and y is the service rate of the robot/agent. With

cand T, the waiting probability at a robot/agent () is obtained as follows:

A= (C'C!> (1—T Zl (c- !T) >_1. (5.5)

=0

By using A, 7,¢, and p, the average waiting delay (t¢,) for task processing at a robot (¢ =
r)/agent (¢ = a) is then given by t& = X- (1 —7)7' - (c-p)~ ' + i

5.5.4 Task Service Time With Failure Recovery

For failure recovery during the HART task processing procedure, we assume that a connectivity
failure (robot/agent) is detected by the task scheduler as soon as it has occurred and the task
execution process needs to be relaunched [114]. Hence, the full HART task service time

(t'=to,) with task onloading is given by

5 t if F >t
t,, = (5.6)
F+d+ R+t +t +to" otherwise,

r—mu?

where I denotes the failure duration, d* is the disconnection duration, ¢, is the HART task
workload processing time with waiting delay (£,=t,+t"), and R is the failure recovery time
for nested failure R;=F+R;,_,. If F' > ¢!

on?’

the full task is executed without any failure and

the service time equals ¢’ . If F < ¢! the robot connection failure occurs before the full task

on’
is executed. In this case, the task needs to be started from beginning at another robot and
the service time equals F+d*+R+t,+tg"+t2", . Hence, the task service time (t{=t} ) with

failure recovery in the task offloading scheme is given by

N i if [ >t
fogr =4 70 ! "= el (5.7)
F+d"+R+t.+t.+ toff, otherwise,

where t.. and tV. represent the robot’s physical sub-task (t.+t") and the agent’s digital sub-
task (tU+t%) processing time. If F' > tof s> the full HART task completely executed without
any failure and the task service time equals ¢,,,. Conversely, if F' < .., the failure occurs
before full task execution is complete. The recovered full task execution again starts from
beginning in the task offloading scheme (f;; = F + d* + R+ th. + 2. +12;,).
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5.5.5 Task Service Time With Fault-Tolerance

With our fault-tolerance policy, after recovering from a connection failure recovered the HART
task execution restarts from the latest checkpoint, rather than from beginning as done in [114].
Thus, the task service time (t.=t’ ) with fault tolerance in the task onloading scheme is given
by

t., ifF >t
~ wiooif F <,
ton =94 " .- _ (5.8)
LAl < F < 10 0
L Attt < F <t
where 7", . is robot’s task result transfer time to the associated ONU-MPP. If F' > tﬁm, full

task execution is completed without failure (! = ¢! ). If F < t,, a connectivity failure
occurs before full task processing is done by the robot. For failure avoidance, the full task is
executed by an initially selected robot after connection has been regained, translating into a
task service time equal to w!,, = F+d*+ R+t, —t; +tJ" +t2", ..., Where t* denotes the portion
of task that has been already processed before the failure occurs. If a robot connection failure
happens during the task result transfer, the full task service time with fault tolerance is given
by @i, =t + 17" + == -+d"+ R+ dy—dy 'wopgon  where d*, R, d°, d°, c,_5, and c

the disconnection duratlon, failure recovery time (process re-start), already transferred task

"5 denote
output before failure, total output data size, and transmission capacity of the link between
robot (r) and ONU-MPP (0) before and after failure, respectively. If a connection failure
occurs during task result transfer from ONU- MPP (0) to MU, the task service time with fault
tolerance is given by ! =, + tJ" + 0", + —— —— 4 d”

Co

O*)’H’L’U,

represent the transmission capacity of the link between ONU—MPP and MU before and after
failure, respectively.
The HART task service time (t{=t,;,) in the task offloading scheme with fault tolerance

is computed as follows:

(

b HF 2t
Whpp, if F <t

opr = Ghsps L < F<tho 4607 e, (5.9)
XZ)ff? lftl +t0ff+t:f—>a§F<toff tg—)mu

g Attt < F <t

If FF'>t),,, the full task is completed without failure (t;; = t ;). If the selected robot’s
connection fails before the physical sub-task is completed, task execution is restarted by the
initially selected robot after connection recovery. In this case, the task service time equals

Weoff = =t —t A F+d*+ R+t +t% +t? ., where t. is the already processed portion of
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the physical sub-task before failure. If the connection failure occurs during the digital sub-task
input data transfer to the agent, the process restarts after re- establishing the connection. Thus,
the task service time (¢!,,) is given by ¢!, = th. + 77/ + 4 -+ d" + R+ 2 Ldy 4 go il
where d!, d, c.—,, and c;_,, denote the already uploaded and full digital sub task input
data size, transmission capacity of the link between robot and agent before and after failure,
respectively. For recovery from a connection failure occurring during the digital sub-task
execution at an agent, the digital sub-task processing again restarts at the selected agent
after the connection has been re-established (x) ;= ti. +tbf Tt 4 d + R4t AL, ). T a
connection failure occurs during digital sub-task output data transfer (agent to MU), the fuil
task service time is equal to wf)ff. wf)ff =t + tsz +i,ttee + ——+d +R + domdy

where df, d?, co—ymu, and c

a—>mu

Y mu denote the already downloaded and total output data size,

transmission capacity of the link between agent and MU before and after failure, respectively.

5.5.6 Task Completion Time

The task completion delay is the time interval between the generation of a given MU’s task
request to the reception of the task result. Thus, both task request arrival time (from MU
to task scheduler at host ONU-MPP) and task service time in the task onloading/offloading
schemes need to be considered for computing the task completion delay. Depending on the
MU’s requested task location, the full HART task can be remote or nearby. For nearby
tasks, both MU and task location are within same ONU-MPP coverage area. For remote
tasks, both MU and task location are associated with different ONU-MPPs. Thus, the re-
mote task request packet arrival time (¢%,,=t,+t,,+t4,) comprises three delay components: (7)
task request packet buffering delay at MU (%), (i7) upstream (MU to OLT), and (i) down-
stream communication delay (OLT to ONU-MPP). The task request packet buffering delay
(ty=tq1+tao+15;) refers to the time period between generation of the MU task request packet
(A) and its transmission time (77) (see also Fig. 5.5 and Section 5.5.2 above). Note that the
remote task request packet experiences a US packet delay (t,,=t%,, . i+t0. ..;) during task
request transfer from MU to OLT and a DS packet delay (¢4,) during task request transfer
from OLT to ONU-MPP (¢4, =td"+td,  +t", ), where t! o, and
denote US/DS packet transmission and US/DS propagation delay, respectively, and 4" is the

mu—solt)? olt—>o7 olt—o

waiting delay experienced at the OLT. If the task request packet arrives at OLT immediately

after its GATE transmission, 9" is given by t&"=t ¢!

onu?

and t*! is the ONU-MPP’s time-slot length. Given a non-data traffic duration of 1 — ug, t.

onu

. -(t t t -t N v
is given by p,=nltrat b“f_’x“ﬁm “”), where n, m, ug, A\, X, tmpep, RIT, tra, tra, and tp, de-

note the number of ONU-MPPs in our FiWi network, STAs associated with each ONU-MPP,

traffic load (ug=AX), traffic arrival rate and first moment of the packet service time at the

where t. is the polling cycle time
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ONU-MPP, MPCP message exchange time (2tP" +RTT), round-trip time (RTT=2t"

msg olt—>5)7

robot /agent selection (t.,=t,s+t.s), STA’s reservation (trd:tlr'jfsg%—tg), and bandwidth grant

duration (tba:t%sg), respectively. Similarly, we calculate the nearby task request packet ar-

rival time (t],,,=t% +t3), consisting of both transmission packet buffering (t,) delay and US

(MU to ONU-MPP) communication delay (¢ =ty ,on,tth

D sonw)- Using task request ar-

rival and task service time (t,), we are able to compute the remote (%} ,=t.,+t,) and n-
earby (t}..,=thq,+t.) task completion delay. For multiple HART tasks (i = 1,2,..,k), we

also compute the overall remote (¢}, ,=max{t;, ., ...t} ,}) and nearby task completion delay
({fct,n:max{t%ct,n7 * Zfllfgct,n )

5.5.7 Power Saving Ratio

The power consumption of STAs (i.e., MUs and robots) in the task onloading (p’,) and

offloading (pf)f f) schemes can be computed as follows:

1 1 v on on :
. -+ -+ -+ -+ > lf S = 0n
7 {ptra Pex Dy Pod Promu (510)

oL poiF o py 4 pedt if s = of f.

In the task onloading scheme, the selected robot executes the full HART task. Thus, a given

on

STA’s power consumption (p!, =pi) is given by pi =pl  +pl +pi+pi+p,, .., where pl. .. p\
pr, por, and po”, - denote the power consumption for a given robot’s task location traversing
(Pl =em-t. ), physical (p!,=e;-t. ) and digital sub-task processing (pi=e,- tV), overhead delay

(ph=eiae-ty"), and task result reception by the MU (p2%,,,.=€rz to" ), Tespectively. The

r—mu

STA’s power consumption in the task offloading scheme is given by p £ f:pfA—pi;f +pl4pot!

r—mu’
where pl, p?, pggf oS denotes the power consumption for a given robot’s physical (pL=p! +p',)
and an agent’s digital sub-task processing (pY=é;q.- t), offloading buffering (ngf :eidle-tgf f ),
and communication delay (p2/f =e;- t“, +etd.,..), respectively. Further, the power
consumption efficiency (7;) of digital sub-task offloading over task onloading is equal to
N = 7% x 100%, where p, and p, represent the power consumption of the digital sub-
task in task onloading (p,=p},, — pi) and offloading (pa=p};;-p..) schemes, respectively. The
total power consumption (p¥) of task k in the task onloading and offloading schemes equals
pE =" pi, and Pl f:Zle Phyy> tespectively. Finally, the power saving ratio (o) for exe-

ko k
cuting task k via task offloading over onloading is given by o = % x 100%.

on

5.5.8 Task Prefetching Time Efficiency and TSO Ratio

Next, let us analyze the task prefetching time efficiency and task service time gain to overhead
ratio (T'SO). The task prefetching time efficiency (p,) is defined as the ratio of the digital sub-

task execution time gain obtained from our proposed prefetching-aware offloading scheme
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(ta =max{tl t2...t}) and the digital sub-task execution time of the conventional fetching

(ter = SOF 1) based offloading scheme: p, = t“ta—_t“ x 100%. Hence, the TSO ratio (6;)
is obtained by comparing the HART task service time gain in our proposed task offloading
scheme (¢! —t! 1) to the task onloading scheme and communication overhead cost in the task
offloading scheme (£ 0f1 .
th, —t
= —n oS (5.11)
to 42

5.5.9 Satisfactory Ratio, Speed Up, and PSR

We conclude our analysis by introducing three more important performance metrics: satisfac-
tory ratio, speed up, and processing-to-service time ratio (PSR). The satisfactory ratio sy is
defined as the ratio of number of full HART tasks that meet their task execution deadlines in

the task onloading/offloading scheme and the total number of arriving HART task requests:

sp=(1- n:rnf) x 100%, where ng and n; denote the number of tasks that meet and miss
their task deadlines, respectively. The speed up ratio is defined as the ratio of sequential
B it

task service time (t;) and parallel (¢;) task service time and is given by s, = n= S

Finally, the PSR is calculated by taking the ratio of HART task workload processing time
and its service time. If the task workload processing (t}) and service time (t},) are known,
the mean PSR for multiple tasks (k) is calculated in the task onloading scheme (fis=fi,,) as
flon = £-3°F | ti’; =1.5F % Similarly, the mean PSR in the task offloading scheme

i d
~ . . N 1 k t;* 1 k tf)ff_t“_)_toff
(,uoff) is obtained as Moff_k Zi:l tf)ff_k Zi:l tr,a-‘rtu‘;-‘rtgff :

5.6 Results

In this section we present results of our proposed community- and latency-aware task offload-
ing scheme and compare it with the following three baseline schemes: (i) task onloading, (i)
random and (i7i) communication-aware task offloading [25]. Table 5.1 lists the parameters
and their default values taken from [17], [28], [30], [94].

System settings and configurations: In our work, each full HART task consists of a
physical (location dependent image capturing) and a digital (location independent face de-
tection from captured image) sub-task. For evaluating our proposed scheme, multiple full
HART task workload, the offload (digital) sub-task input/output data size, and full task
deadline values are chosen randomly and can be found in the caption of Fig. 5.7. The CPU
clock speed of robots and cloudlets are set to 500 and 3200 MHz, respectively. The IEEE
802.3av 10Gb/s EPON based optical backhual (20 Km long) connects central office (OLT)
with ONU’s. The optical fiber range (distance) between the ONU-MPP and cloudlet server
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Table 5.1: Parameters and default values for community- and latency-aware multi-task on-
loading and offloading scheme evaluation

workload processing

Notation Description of Parameters Default val-
ues/units
Wy, Wy, ', d° Physical and digital sub-task workload, digital | M cycles (vary), K-
sub-task input and output data size B (vary)
€tay Eray Cidles Ems €1, €] STA’s (MU /robot) average power consumption | 0.1W), 0.05W,
for task upload, result download, idle state, task | 0.001W, W,
location traversing, physical and digital sub-task | .5W, .5W

Sa

T T
n,m, ka dl7 S 8p7 D

Total ONU number, total STA in each ONU,
total arrived task number, robot’s distance to
task location and moving speed, robot and agent
computation processing speed

1-64, 1-100, 1-12,
1-500m, 1-100m/s,
500/3200 MHz

tm Ca/cr> ha/hra Uq

Polling cycle time, number of host and commu-
nity agent/robot, FiWi traffic load

50-800 ms, 1-50, 1-
50, 0-1

w i
cm—>y7 cx—)y

Transmission capacity of WLAN and fiber link
(x,y=agent,robot,mu,OLT ,ONU-MPP)

6900 Mbps, 10 G-
b/s

k * 3
ps? d 9 R7 CCCA)’!,H Cq}—)y

Total power consumption (STA’s), disconnec-
tion duration and connection failure recovery
time, transmission capacity link between sender
and receiver before and after failure

J (vary), s (vary),
Mbps (vary)

MPP, inter ONU-MPP, MU and ONU-MPP

t%’sg,tﬁ;‘g,tm,tg,h WLAN (e.g., PS-Poll), and MPCP message | 0.512us, 0.231us,
length(GATE ,REPORT), robot/agent selection de- | us, 46 pus, 14
lay, guard time, hop distance (host and commu- | (vary)
nity ONU-MPP)

st oyt onu | Propagation delay between OLT and ONU- | 0.02 ms, .001 ms,

.00033 ms

A h c
57l’ Hss Qonyy Aony

TSO ratio and PSR ratio, coverage area of host
and community cluster ONU-MPP

% (vary), 100 m,
500 m

LU/ILL/C, trqa tres7
tacka [ th

r—a’ a—mu

Task request arrival rate/service rate/number
of processor per agent/robot, task re-
quest /response/ack message duration, Propa-
gation delay (robot—agent, agent—MU)

1-12 (vary),
0.17/0.12/0.12, ps
(vary)

is 1 Km, whereas the fiber range between the remote cloud server and OLT is 10 Km. Note
that, in this work ONU’s are inter-connected by interconnected fiber links. The requirements
of the requested HART task execution is to satisfy the task execution deadline requiremen-
t and improve the end-to-end latency. The total number of ONU-MPPs, STAs under each
ONU-MPP, and generated task request are varied within the range of 1-64, 1-100, and 1-
12, respectively. The length of PS-Poll and MPCP messages (GATE,REPORT) are set to 20
bytes (17" =.23us) and 64 bytes (1%

msg- msg

=.51pus), respectively. FiWi traffic load and polling cy-
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cle time are varied from 0.3-0.8 and 50-800 ms, respectively. The transmission capacity of
WLAN and fiber links are set to 6900 Mbps and 10 Gb/s, respectively. Other parameters
and default values are given in Figs. 5.7 and 5.8. The specific system settings for scenario
1 (h,=20,¢,=10,h,=20,c,=10) and scenario 2 (h,=4,c,=8,h,=4,c,=8) with multiple arrived
task properties is given by: w;=50,25,100, 75,150, 125, 175, 200, 250, 225, 300, 275M cycles,
w,=200, 100, 400, 300, 600, 500, 700, 800, 1000, 900, 1200, 1100M cycles, t;=4,3.5,5,4.5,6, 5.5,
6.5,7,8,7.5,9,8.5s, d =200, 100, 400, 300, 600, 500, 700, 800, 1000, 900, 1200, 1100KB, d°=80, 40,
160, 120, 240, 200, 280, 320, 400, 360, 480, 440KB.

Performance evaluation: First, let us evaluate the mean task service time and total pow-
er consumption performance for scenario 1 described in Fig. 5.7(a) and (b). Note that in
scenario 1, the number of robots (h,) and agents (h,) available at the host ONU-MPP is
higher than the number of arriving task requests (k). Both figures clearly indicate that both
mean task service time (¢¥ ) and total power consumption (p¥) increase with increasing task
arrival number (k) in all compared schemes. We observe that the minimum mean task service
time and power consumption are achieved in our proposed community- and latency-aware
task offloading scheme, as opposed to the alternative schemes (i.e., traditional random and
communication-aware task offloading schemes). This is due to the fact that in our proposed
task offloading scheme, each physical and digital sub-task of a full task is processed by a suit-
able robot and agent (e.g., cloudlet), respectively. Further, each task is assigned to a suitable
task processing node (host and community cluster robot/agent) by taking into account not
only lower task workload processing time but also both incurred transmission and waiting
delay. Furthermore, from Fig. 5.7(a) we observe that the task onloading scheme shows the
second lowest mean task service time. This is because in the task onloading scheme, the full
HART task is processed only by the selected host robot. Note that the host robot requires
additional digital sub-task processing time due to its lower computation processing speed than
the selected agents in the proposed task offloading scheme. Fig. 5.7(a) also shows that both
traditional random and communication-aware task offloading schemes cannot improve the
mean task service time of our proposed task offloading scheme due to their higher offload task
processing overhead that includes offloading communication delay, digital sub-task processing
time, and waiting delay. In the communication-aware task offloading scheme, the selected host
robot performs the physical sub-task, while the digital sub-task is offloaded onto the nearest
peer robot that resides within the host ONU-MPP coverage area. Conversely, in the random
task offloading scheme, the physical sub-task is assigned to the selected host robot, whereas
the digital sub-task is offloaded onto a randomly selected agent (host cloudlet or peer robot).
Moreover, Fig. 5.7(b) shows that the task onloading scheme suffers from a higher STA power

consumption than its counterparts. This is because in the task onloading scheme, the full
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task is processed by the initially selected robot without any digital sub-task migration to the
agent, which is the case in the alternative schemes.

Fig. 5.7(c) investigates the suitable multi-task scheduling order in our proposed task
offloading scheme by comparing its mean task service time performance using three scheduling
policies, namely, EDF, FCFS, and concurrent policies. Fig. 5.7(c) demonstrates that for
a varying task number k, the deadline delay priority (EDF) based task scheduling policy
outperforms both FCFS and concurrent scheduling policies in terms of mean service time delay
and is thus suitable for our proposed task offloading scheme. Fig. 5.7(d) and (e) compare
the mean task service time delay saving (4) and power saving ratio (o) of the different task
execution schemes. The figure reveals that for a varying task number £, our proposed task
offloading scheme offers the highest delay and power saving ratio. For instance, for a typical
task number k=12, our proposed task offloading scheme yields approximately a 19%, 59%,
and 45% higher delay saving ratio than the task onloading, communication-aware, and random
task offloading schemes, respectively. Hence, for k=12, the achieved power saving ratio of our
proposed task offloading, communication-aware, random task offloading schemes and task
onloading scheme is approximately 50%, 41%, and 45%, respectively.

Fig. 5.7(f) examines the satisfactory ratio of our proposed task offloading scheme in com-
parison with the alternative task execution schemes. The figure depicts that generally the sat-
isfactory ratio (sy) is higher for larger values of the task deadline (¢4). We notice that for both
small and large t4, our proposed task offloading scheme exhibits a satisfactory ratio superior
to that of the compared schemes. Next, to demonstrate the impact of our task prefetching-
aware bandwidth assignment scheme, Fig. 5.7(g) and (h) compares the task prefetching time
efficiency (p,) of our proposed task offloading scheme with prefetching with the alternative
schemes for varying task number (k) and offload task input data size (d!), respectively. Both
figures clearly indicate that for both higher and lower task number and offload task input
data size values, a task prefetching time efficiency is obtained in our proposed task offload-
ing scheme with prefetching that is superior to that of the other schemes, including our task
offloading scheme with conventional fetching, random, and communication-aware offloading.
For instance, in Fig. 5.7(g) for task number set to k = 10, our proposed task offloading
scheme with prefetching yields an approximately 25%, 65%, and 77% higher task prefetching
time efficiency than the conventional fetching, random, and communication-aware offloading
scheme, respectively. This is because unlike our proposed scheme, all alternative schemes
rely on conventional fetching for offloading, thus suffering from a higher multi-task offloading
latency.

Fig. 5.7(i) shows that more available host ONU-MPP robots can improve the mean task

service time (t’;a) performance of both proposed task offloading and task onloading schemes.
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Mean task service time vs. task number for scenario1 Power consumption vs. task number for scenatrio 1 Multi-task scheduling order selection scenario 1
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Figure 5.7: Mean task service time, power consumption, delay and power saving ratio,
prefetching time efficiency, and satisfactory ratio evaluation for scenario 1 and scenario 2.
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The figure indicates that the mean task service time delay difference between the proposed
task offloading and onloading schemes increases rapidly with a decreasing host ONU-MPP
robot number (h,). We note that the proposed task offloading scheme that relies on the
available host and community robots/agents significantly reduces the mean task service time,
as opposed to the task onloading scheme that relies only on host ONU-MPP robots. Next,
Fig. 5.7(j) sheds light on the mean task service time performance of both proposed task
offloading and onloading schemes for scenario 2. In this scenario, the number of available
host ONU-MPP robots (h,) is fixed, being equal to or less than the varying task number (k).
The figure depicts that with increasing task number (%), the task onloading scheme leads to
a higher mean task service time than the proposed task offloading scheme. We observe that
the mean task service time delay gain of task offloading over task onloading becomes lower
when h, is equal to arriving task requests (k). Note that the maximum mean task service
time delay gain in our proposed task ofHoading scheme is achieved when the number of task
arrivals (k) is much larger than the number of available host and community robots (¢;,) to
tackle the additional task request (k—h,). Fig. 5.7(k) and (1) quantify the impact of host and
community cloudlet (agent) selection on our proposed task offloading scheme. Both figures
clearly indicate that the mean task service time (t’;a) increases in all schemes for increasing
number of offloaded tasks (k) and offload task input data size (d!). We observe that when
both host and community cloudlets are available, our proposed task offloading scheme results
in a lower mean task service time for host cloudlet based digital sub-task execution compared
to community cloudlets. For instance, in Fig. 5.7(1), for d’ set to 500 MB, task offloading
with host cloudlet achieves a 6.17% and 10.69% higher mean task service delay saving than
task offloading with community cloudlet (hop 2) and community cloudlet (hop 4), respectively.
This is because the community cloudlet causes additional task offloading communication delay.

Fig. 5.8(a) examines the task service time gain to overhead (TSO) ratio (¢;) of our proposed
task offloading scheme with prefetching and task onloading scheme. We observe that with an
increasing offload task input data size (d'), the TSO ratio grows more rapidly in our proposed
task offloading with prefetching scheme than its counterpart. For instance, for an offload task
input data size of 500 MB, the TSO ratio for task offloading with prefetching and fetching
scheme is approximately 32% and 21%, respectively. In Fig. 5.8(b), we investigate the optimal
failure avoidance service selection for our proposed task offloading scheme. The figure shows
that the mean task service time increases for increasing service connection recovery time (R)
in all considered schemes. We also observe that our proposed task offloading scheme with fault
tolerance achieves the lowest mean task service time delay. Note that both task offloading and
task onloading schemes with failure recovery exhibit an inferior mean task service time than

the schemes with fault tolerance. This is due to the fact that in the fault tolerance scheme,
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Figure 5.8: Task service time gain to overhead ratio (T'SO), speed up ratio, mean task service
time with failure avoidance, PSR, and overall task completion time evaluation of our proposed
community and latency-aware task offloading scheme.
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task execution re-starts from the last checkpoint after recovery from the connection failure.
Fig. 5.8(c) reveals that for an increasing offload task input data size (d!), the maximum speed
up ratio (s,) is obtained with our proposed community and latency-aware task offloading
scheme. For instance, for d’ set to 100 MB, the speed up ratio of our proposed scheme,
communication-aware, and random task offloading schemes equals 4.7, 3.6, 3.9, respectively.
Fig. 5.8(d) examines the mean task PSR (ji5) performance of different HART task exe-
cution schemes. Importantly, note that a small mean PSR value indicates the suitability of
a HART task execution scheme. The figure shows that the mean PSR value increases for an
increasing task number (k) in all considered schemes. We observe that our proposed task of-
floading scheme achieves a lower PSR value (fi,7¢) than its counterparts. This is because both
minimum task workload processing time and task service time result in a smaller mean PSR

value. Next, Fig. 5.8(e) depicts the overall task completion time (£, ) variation in our pro-

tet,n
posed community- and latency-aware task offloading scheme under varying FiWi traffic loads
(uqg) and ONU-MPP numbers (n). We observe that small values of n and u, translate into a
shorter task completion delay in our proposed community- and latency-aware task offloading.
Finally, Fig. 5.8(f) highlights the overall task completion time performance of our proposed
task offloading and onloading schemes versus polling cycle time (t.). The figure shows that
the overall task completion time delay is higher in all compared schemes for large t.. Im-

k

portantly, we observe that both remote (¢

tr,) and nearby (£}, ) task completion times are

minimal in our proposed community- and latency-aware task offloading scheme. For instance,
for t. = 400 ms and k = 4, the gain of the nearby and remote task completion time achieved
in our proposed task offloading scheme is approximately 23.7% and 24.1% higher than in the

task onloading scheme, respectively.

5.7 Conclusions

We proposed a community- and latency-aware multi-task scheduling scheme for collaborative
HART task execution across FiWi enhanced Tactile Internet infrastructures. To accomplish
multiple HART task execution in a resource- and time-efficient manner, our proposed task
scheduling scheme selects both optimal multi-task scheduling order and suitable task process-
ing nodes for different HART tasks. To reap the benefits from task prefetching to execute
multiple HART tasks, we presented a novel prefetching-aware bandwidth allocation scheme
that copes with both conventional broadband and task offloading data traffic at the same
time. We developed a comprehensive analytical model to investigate the performance of our
proposed community- and latency-aware task offloading scheme in terms of mean task service
time, delay and power saving ratio, task prefetching time efficiency, task service time gain to

overhead ratio, among others. Our presented results provide insights into selection of suitable
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robot /agent resources for our proposed community and latency-aware task offloading scheme
by taking different arrived HART task number, task requirements, and host and community
robot /agent resource availabilities, into account. Our obtained results show that for a typical
system of 32 ONU-MPPs and a polling cycle time of 100 ms, our proposed task offloading
scheme achieves up to 31.3% and 32.7% task completion time gain over the task onloading
scheme for nearby and remote task execution, respectively. The results demonstrate that for a
typical task offload input data size of 500 MB, our proposed task offloading scheme with task
prefetching capability offers a 11% higher task service time gain to overhead ratio than a con-
ventional fetching based scheme. Furthermore, our findings suggest that for failure avoidance,
our proposed fault tolerance mechanism is more effective in the considered task offloading
scheme than alternative failure recovery mechanisms. Thus, our proposed community- and
latency-aware task offloading scheme leveraging on both fault tolerance and task prefetching
capability is a promising solution for low-latency HART collaboration in the emerging Tactile

Internet.
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Chapter 6

User Preference Aware Task

Coordination and Proactive
Bandwidth Allocation in a FiWi
Network Infrastructures

6.1 Preamble

This chapter contains material extracted from the following paper:
[J6] M. Chowdhury and M. Maier, “User Preference Aware Task Coordination and Proactive
Bandwidth Allocation in a FiWi Based Human-Agent-Robot Teamwork Ecosystem,” [FEFE

Transactions on Network and Service Management, Oct. 2018 (in revision)[115].

6.2 Introduction

With the rise of smart mobile devices, demands for mobile applications in our everyday life
have experienced significant growth during the last decade. Due to their resource limita-
tions, however, many mobile devices may not be able to provide high quality-of-experience
(QoE) to human users for computation-intensive task execution. To alleviate the burden of
resource-constrained mobile devices, the concept of mobile-edge computing (MEC) has recent-
ly emerged, which allows mobile devices to offload computation tasks to nearby edge cloud
servers for processing. MEC offers several cloud services, e.g., caching, computation process-
ing, to mobile devices via decentralized cloudlets at the edge of the network, e.g., base station
[22]. Decentralized cloudlets generally experience a lower task offloading communication la-
tency than traditional remote clouds. Hence, task offloading to edge cloudlets is beneficial
for handling many interactive cyber-physical system (CPS) applications that harness human-

machine interaction, including virtual and augmented reality.

141



The importance of decentralized cloudlets is also witnessed in emerging Tactile Internet
applications, where ultra-low latency communication services allow humans to remotely s-
teer/control virtual /physical objects (e.g., robots) in real time in order to perform non-local
tasks [5]. Note that the ultimate long-term goal of the Tactile Internet is to enable new goods
and services that require human expertise in the coordination of human-robot symbiosis for the
sake of complementing humans rather than substituting for them. The resultant collaborative
human-machine activities are the object of human-agent-robot teamwork (HART) research,
where the efficient allocation of task requests of humans to suitable machines (e.g., robots)
and agents (e.g., cloudlets) is essential [55]. In a HART ecosystem, a task can be either (i)
a physical task (e.g., lifting an object), (i) a digital task (e.g., object detection), or (iii) a
hybrid task that includes both physical and digital subtasks (e.g., sensing object at a given
task location and detecting the sensed object). Note that unlike performing a physical task,
the execution of a digital task does not necessarily require the presence of a robot/agent at the
given task location. Further, note that a digital task may comprise either caching (e.g., au-
dio/video/data content download), computation (e.g., object detection), or both (e.g., object
detection from a captured image and caching content of the detected object).

While collaborative HART holds great promise for mobile users (MUs) requesting task
execution, an unsuitable task assignment to robots/agents may lead to a higher task execution
delay and inefficient resource utilization. To avoid these shortcomings, design of a suitable
robot selection strategy for the allocation of both local and non-local tasks, taking a variety of
different task characteristics (e.g., execution deadline) and robot properties (e.g., computation
speed) into account is mandatory. Nevertheless, limited resources of robots may become a
crucial bottleneck for the proper execution of different computation-intensive HART tasks.
To render the execution of HART tasks more efficient, a collaborative computing strategy,
where both robots and cloud agents jointly process a given MU’s HART task may be suitable.
Note that only robots residing near the given task location are eligible for executing physical
tasks, whereas digital tasks may be offloaded to any suitable agent, either nearby or remote,
for processing. Hence, to the best of authors knowledge, performance evaluation of multiple
HART tasks by taking into account both dedicated and non-dedicated robot/cloud resources
and MUs different preferences (delay vs. monetary cost saving preferences) was missing in the
existing literature.

e Delay Preference: When requesting the execution of a delay-sensitive HART task (e.g.,
face recognition for real-time food/pizza delivery), a given MU may prefer a lower task exe-
cution delay over the incurred monetary cost. Hence, to meet the low-delay requirement, the
utilization of both dedicated and non-dedicated robot/cloud resources as well as the preemp-

tive bandwidth assignment for a given delay tolerance may become mandatory. Note that the
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difference between dedicated and non-dedicated robot/cloud resources is that a robot/cloud
server may be dedicated to a single task, i.e., only a single user can use the robot/cloud server
or shared (i.e., non-dedicated) and thus used by multiple users. However, MUs have to pay
an additional monetary cost for utilizing both dedicated and non-dedicated robots/clouds and
preempting bandwidth resources.

e Monetary Cost Saving Preference: Beside delay-sensitive tasks, HART tasks (e.g.,
participatory sensing, image recognition) may not require time-critical execution. For such
delay-tolerant tasks, monetary cost saving may be the primary concern for MUs. Thus, MUs
may utilize only dedicated robots/clouds and non-preemptive bandwidth resources for the
execution of their delay-tolerant tasks.

At present, no existing study deals with the problem of delay-sensitive and delay-tolerant
caching and computing HART task execution considering preemptive/non-preemptive band-
width allocation. To avoid additional delay and monetary costs while mitigating MUs’ differ-
ent task requests, in this work we propose a user preference aware task coordination strategy.
Our proposed strategy not only enables the proper selection of dedicated /non-dedicated robot-
s/agents for different HART tasks but also allows for efficient task offloading by exploiting a
given MU’s cost saving preferences. Specifically, we develop an analytical framework to ex-
amine the performance trade-off between delay cost saving (DCS) and monetary cost saving
(MCS) schemes for the execution of different HART tasks, taking dedicated/non-dedicated
cloud agents with /without caching capabilities into account and comparing the following three
different DCS and MCS multi-task offloading schemes: (i) maximum throughput and mini-
mum delay (MTMD), (4¢) maximum throughput (MT), and (i7) minimum delay (MD).

The remainder of the chapter is structured as follows. In Section 6.3, we review prior art
and outline open research challenges. In Section 6.4, we describe our proposed preference
aware HART task coordination policy along with the considered communications network
infrastructure. Section 6.5 presents the analytical model to evaluate the performance of our
proposed scheme. Section 6.6 presents our obtained results and findings. Finally, Section 6.7

concludes the chapter.

6.3 Prior Art and Open Challenges

A significant body of research studies exist in the literature that focus on the problem of
whether or not to utilize infrastructure-based cloud [29], cloudlet [28], [107] or infrastructure-
less mobile ad-hoc cloud [116] resources for the execution of an MU’s computation task. Some
computation offloading studies investigate the problem of whether to offload the full or only
a part of the MU’s task to a suitable cloud agent for processing [30], [102]. The majority of

these studies aim at selecting a suitable cloud server for task offloading with the objective of
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minimizing either the task response time [28], [30] or the mobile device’s energy consumption
[74], [17]. For instance, in [112] and [113], a suitable cloud server is selected for computation
task execution to minimize the task workload processing delay and offloading communication
delay, respectively.

Investigations of selecting a suitable task offloading node while achieving both lower task
workload processing and communication delays for executing different caching and computing
HART tasks are not available. Furthermore, most existing studies focused on evaluating the
task offloading performance by assuming available bandwidth resources for task ofHoading
(upload and download) activities. Note, however, that immediate task offloading to cloud
servers may not always be possible due to the lack and uncertainty of available bandwidth
resources and network connectivity. Thus, for designing a proper task offloading node se-
lection scheme, the waiting delay for an upcoming transmission opportunity, task offloading
communication delay, workload processing delay as well as involved monetary cost need to be
taken into account as well. Toward this end, beside proper cloud agent selection, previously
proposed task offloading schemes [31], [32], [33] aimed at resolving the problem of selecting
the suitable wireless interface (4G LTE-Advanced or WiFi) for either task data uploading or
downloading, thought not both at the same time. Further, the authors in [117] proposed an
energy-efficient delayed network selection scheme that optimizes the trade-off between energy
consumption and transmission delay during the task data uploading process. In [118], an on-
line task offloading policy was proposed that maximizes the amount of data offloaded through
the WiFi network interface. The work in [119] aimed at achieving maximum throughput for
caching content download through the suitable wireless network interface. Investigations of
achieving both maximum throughput and minimum task execution delay for multiple HART
tasks over integrated fiber-wireless (FiWi) network infrastructures, which consist of a fiber
backhaul and wireless front-end, is an open research challenge. Moreover, the question of how
to design an adaptive bandwidth allocation policy for the execution of an MU’s delay-sensitive
and delay-tolerant HART tasks without affecting their conventional broadband access services

remains another open research challenge.

6.4 FiWi Enhanced Tactile Internet Infrastructure for
Preference Aware HART Task Coordination

6.4.1 Network Architecture

Fig. 6.1 depicts our considered FiWi enhanced Tactile Internet infrastructure for HART task
coordination leveraging both dedicated and non-dedicated cloud agent/robot resources. The
optical fiber backhaul consists of time and wavelength division multiplexing (T/WDM) IEEE
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Figure 6.1: FiWi enhanced Tactile Internet infrastructure for preference aware HART task
coordination.

802.3av 10 Gb/s Ethernet Passive Optical Network (10G-EPON) with a fiber backhaul range
of 10-100 km between the central optical line terminal (OLT) and remote optical network
units (ONUs). The central OLT connects to three different subsets of ONUs through a 1:N
optical splitter /combiner. The first subset of ONUs serves fixed wired FTTx subscribers, e.g.,
fiber-to-the-home (FTTH). To provide MUs with WLAN and cellular services, the second and
third subsets of ONUs are attached to an IEEE 802.11s mesh portal point (ONU-MPP) and
a cellular base station (ONU-eNB), respectively. At the wireless front-end, the ONU-MPP
connects with the wireless mesh network (WMN) through intermediate mesh points (MPs) and
mesh access points (MAPs). MPs serve as relay nodes, which forward packets between MPPs
and MAPs. MAPs provide wireless access services to associated MUs as well as WiFi enabled
robots. To allow inter-ONU communication with broadband and cloud offloading services,
so-called interconnected fiber (IF) links may be used between pairs of neighboring ONUs. For
remote cloud services, central cloud servers are attached to the OLT via dedicated fiber links.
Further, to provide cloud computing and caching services to MUs/robots at the network edge,
multiple dedicated /non-dedicated cloudlets are connected to the ONU-MPPs/ONU-eNBs via
dedicated fiber links [52].

6.4.2 Preference Aware HART Task Coordination

In this section, we present our proposed user preference aware HART task coordination scheme,

whose pseudo-code is given in Algorithm 8. In our proposed task coordination scheme, initially
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Algorithm 8 Preference-Aware HART Task Coordination

Notation: A set of full task request (n;), physical (nsen;)/digital sub-task (n.€n;) number,

1:
2:

10:

11:

12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:

23:
24:
25:

26:

27:
28:
29:
30:
31:
32:

33:
34:
35:

total dedicated robot (), non-dedicated robot (), dedicated local cloudlet agent (@),
non-dedicated local and non-local cloudlet agent (o), dedicated remote cloud (7) agent,
preference policy P=delay cost saving (DCS)/monetary cost saving (MCS)
for each arrived full task request Vo,€n; do
collect each dedicated and non-dedicated robots (re f=£+0) and agents (f€ti=a+oc+T7)
busy time, distance, and CPU cycles information
check user preference (P) for each task request (4;)
if user preference P == M(C'S then
for each physical sub-task s;en, do
compute physical sub-task (s;) processing delay (¢, ,) for each dedicated robot (r€g3)
assign s; to dedicated robot (r€f) with lower ¢!
end for
for each digital sub-task c;en,. do
compute digital sub-task (c;) processing delay (t.) for each dedicated agent
(fez=1+a), assign ¢; to dedicated agent with lower t9
the agent completes the computation sub-part of dlgltal sub task and checks caching
content availability of digital sub-task
if caching content is available then
transfer the caching content of ¢; to MU
else
collect caching content from other agent with min distance and transfer to MU
end if
assign delay-tolerant task offload time slot for ¢; based on proactive bandwidth
assignment policy
end for
end if
if user preference P == DC'S then
for each physical sub-task s;en, do
compute dedicated and non-dedicated robots (r€f) physical task processing delay
(t6,s), assign s; to the robot (r€f) with lower tg , value
end for
for each digital sub-task c;en,. do
compute dedicated and non-dedicated agents (0€v) digital sub-task processing de-
lay (t4,,.), assign ¢; to the agent (f€0) with lower ¢, , value
the agent completes the computation sub-part of digital sub-task and checks caching
content availability of digital sub-task
if required caching content is available then
transfers the caching content of ¢; to MU
else
collect caching content from another agent with min distance and transfer to MU
end if

assign delay-sensitive task offload time slot for ¢; based on proactive bandwidth
assignment policy
end for
end if
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Figure 6.2: Local and non-local dedicated /non-dedicated robots and agents.

an MU sends a full HART task execution request (physical and digital sub-tasks) to the task
coordinator co-located at each ONU. Next, the task coordinator selects a suitable robot and
cloud agent for the execution of each physical and digital sub-task, respectively. Note that
to satisfy given user preferences our proposed HART task coordination applies the following
two policies: (i) minimizing task execution delay and (i) maximizing monetary cost saving

for different HART tasks, as explained in greater detail in the following.

A. Delay Cost Saving Policy (DCS): In this policy, after receiving a given MU’s HART
task request message, the task coordinator sends the task request message to all dedicated and
non-dedicated actors (i.e., local and non-local robots/agents). Then, all actors send their task
response message to the task coordinator, which comprises information abouth their busy time,
location, and task processing speed (CPU cycles). After collecting all actors’ response message,
the task coordinator calculates their predicted task processing delay. Subsequently, the task
coordinator selects a suitable robot offering minimum processing time £, ; for the physical sub-
task and a suitable agent offering minimum processing time t?l,c for executing the digital sub-
task, respectively. Note that unlike non-local actors, local actors are located within the ONU’s

coverage area, where the physical sub-task needs to be performed, as illustrated in Fig. 6.2. For
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the selection of suitable actors, our proposed task coordination scheme considers the following
cases. If local dedicated actors are available, the task coordinator selects suitable actors
only from the set of local dedicated actors. Otherwise, the task coordinator selects suitable
actors from both dedicated and non-dedicated (local and non-local) actors. The selected robot
executes the physical sub-task, generates the physical sub-task output (digital sub-task input),
and offloads the digital sub-task input to the selected agent for further processing. The selected
agent executes the computation sub-part (e.g., face detection) of the digital sub-task and
checks whether caching the content (e.g., information about detected face) of the computation
sub-part result is possible or not. If caching is possible, the selected agent transfers the cached
content back to the MU during the task result download sub-slot. Otherwise, the initially
selected agent first fetches the cached content from another agent (cloudlet or remote cloud)
and then transfers it back to the corresponding MU.

Due to the use of different cloud agents for executing digital sub-tasks, our proposed
DCS policy can be divided into two categories: (i) DCS with local /non-local cloudlet caching
and (#i) DCS with remote cloud caching. In addition, given different priorities for executing
multiple HART tasks, we consider the following three variant schemes of our DCS policy:
(1) maximum throughput and minimum task execution delay (MTMD) based scheme, (i7)
maximum throughput (MT) based scheme, and (i¢¢) minimum task workload processing delay
(MD) based scheme. Note that in the case of a multiple-task request arrival, maximum
throughput can be ensured by using the network interface offering the higher data rate for task
request transmission and task up/downloading, whereas minimum task workload processing
delay can be achieved by selecting the most powerful robot/cloud agent for each task.

B. Monetary Cost Saving Policy (MCS): In this scheme, after receiving a given
MU’s task execution request, the task coordinator sends the task request message only to
dedicated actors. The dedicated actors in turn send their task response message to the task
coordinator, including information about their busy time, location, and task processing speed
(CPU cycles). Next, the task coordinator computes the required physical (¢} ;) and digital sub-
task (tg’c) processing time for each dedicated robot and agent, respectively. Subsequently, the
task coordinator selects a suitable dedicated robot that provides a lower ¢ . for the physical
sub-task and a suitable agent that provides a lower t?c for executing the digital sub-task,
respectively. The selected robot then executes the physical sub-task and offloads the digital
sub-task to the selected cloud agent for further processing. Next, the selected agent processes
the computation sub-part of the digital sub-task and checks whether caching the content of the
computation sub-part result can be done or not. If caching the content is possible, the initially
selected agent transfers the cached content to the MU during the task result download sub-slot.

If the caching content isn’t possible, the initially selected agent collects the cached content
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Figure 6.3: (a) Proactive bandwidth allocation scheme and (b) task coordination scheme.

from another dedicated agent and transfers it to the intended MU. Note that depending on
the selection of different dedicated agents, there exist two variations of our MCS policy: (i)
MCS with cloudlet caching and (7i) MCS with remote cloud caching. Hence, given different
priorities for task execution there exist the following three schemes of our proposed MCS
policy: (i) maximum throughput and minimum delay (MTMD), (i) maximum throughput
(MT), and (7i7) minimum task workload processing delay (MD) based schemes.

6.4.3 Proactive Bandwidth Allocation Scheme

Fig. 6.3(a) depicts our two-layer TDMA based proactive bandwidth allocation scheme in
greater details for execution of different HART tasks. It differs from the traditional TDMA
based model in several ways. First, in our proposed scheme, we divide task offloading users
into two groups (see Fig. 6.3(b)), namely, delay-sensitive users (applying the DCS policy) and
delay-tolerant users (applying the MCS policy). Second, in our proposed scheme, DCS policy
users offload their delay-sensitive digital sub-tasks to suitable dedicated or non-dedicated
agents during the associated ONU’s offload time-slot. Conversely, MCS policy users offload
their delay-tolerant digital sub-tasks to suitable dedicated agents only during another ONU’s
time-slot by using the dedicated point-to-point IF fiber connections. Thus, by performing
delay-tolerant task offloading during another ONU’s time-slot, our proposed scheme is able to
save both bandwidth and monetary cost for MCS policy users.

In our proposed two-layer TDMA scheme, the first TDMA layer is used for the optical fiber
backhaul, whereby the OLT allocates upstream (US) timeslots to all ONUs via IEEE 802.3ah
multipoint control protocol (MPCP) messages (REPORT and GATE). The second TDMA layer
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is used to operate the wireless part, whereby ONUs assign both broadband and task ofHoad
sub-slots to their associated MUs/robots via IEEE 802.11 messages (Beacon and PS-Poll).
Note that each ONU sends a REPORT message to the OLT in order to notify the OLT about its
bandwidth requirement in the next polling cycle, whereas a GATE message is sent downstream
by the OLT to inform all ONUs about their assigned time-slot. After receiving the GATE
message from the OLT, each ONU extracts its broadband and task offload time-slot sched-
ule. Subsequently, each ONU assigns a broadband and task offload sub-slot to its associated
MUs/robots based on their instantaneous traffic demand via a PS-Poll message. Next, the
ONU broadcasts a Beacon message to its associated MUs/robots to inform them about their
broadband and task offload sub-slot schedule.

6.5 Performance Analysis

In this section, we develop an analytical model to evaluate the performance of our proposed

user preference aware task coordination scheme in terms of various key performance metrics.

6.5.1 Delay Analysis

First, we analyze the aggregate task execution delay ti7 ., for both DCS and MCS policies, which
comprises the following three delay components: (i) task request message dissemination delay
t2,, (ii)Aactor selection delay ¢, ., and (i) full HART (physical and digital) task processing
delay ¢!, .

(i) Task request dissemination delay: The task request message dissemination delay
tfq denotes the time interval between task request message generation by the MU and task
request message reception by the task scheduler at the host ONU. Thus, tfq includes two delay
components, namely, the waiting delay for transmission opportunity (%) and communication
delay (#7,,) for transferring the task request from the MU to the task scheduler. The calculation
of t and ¢, will be described in greater detail in Section 6.5.3.

(it) Actor selection delay: After receiving the task request message from the MU,
the task scheduler at the host ONU selects suitable actors (robot and agent) for each full
task execution. The process of selecting suitable actors involves the exchange of task request
(tr4), actors’ response (4, ), and task assignment confirmation (,.) messages between the task
scheduler and selected actors. If the total number of active users k (for DCS policy k= f+o
and for MCS policy l%zz#—ﬁ), latency (task processing time) comparison time of two actors

tep, and total number of selected actors y are known, the actor selection delay in DCS (tgvm)
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and MCS policy (# ,..) are given by

40 _{(f+ﬁ)-(frq+tar+tcp)+y-tac, if k=0 61)

eer (ﬁ + Z) ’ (tArq + tar + tcp) + y- Zfaca if k=7.

(ii7) Task processing delay: Next, we calculate the full task processing delay (tg ,.) that
comprises both the robot’s physical sub-task (¢}, ;) and the agent’s digital sub-task processing
delay (¢% ), whereby t  is given by t =t} 4t =t’41+t2+t! .. The robot’s physical sub-

task processing time is equal to tgsztﬁi—i-tf—i-tf:t,’i—l—‘é—f—l—lj—f, where 2, t¥ t2 dy, wg, ¢, Uy

denote the robot’s busy time, task location traverse time (¥ :C;—‘f), physical sub-task workload
processing time (tf:%), Euclidean distance between task and robot locations, physical sub-

task workload, and the robot’s moving and computation processing speed, respectively. For
the DCS policy, a suitable robot is selected by checking all dedicated and non-dedicated
robots’ physical sub-task processing times as follows: taszmin{t}z’s, "t{),s}7 r=12,...,f.
Conversely, for the robot selection using the MCS policy, only dedicated robots are examined:
t;szmin{t}%s, ..tﬁs}, r=12,...,0.

For the digital sub-task execution using the DCS and MCS policies, the robot that ex-
ecutes the physical sub-task initially uploads the digital sub-task input to the cloud agen-
t. Next, the selected cloud agent processes the computation and caching sub-part of the
digital sub-task. Thus, by taking the task offloading communication, computation pro-
cessing, and caching delays into account, the digital sub-task processing delay is given by
tz’cztqutg:tg%—t}gﬁ—i—tg—i—tg—|—t$+tg, where t, 2y, t4, 17, t?, and t¢ represent the agent’s busy
time, transmission opportunity delay, digital sub-task uploading, digital sub-task computa-
tion processing ( g:%), cache lookup, and task result download delays, respectively. In the
case of our DCS policy, a suitable cloud agent 6 is selected by comparing all dedicated and
non-dedicated agents’ digital sub-task processing time as follows: t&czmin{t%}’c, .. ﬁﬂ,c}v where

0 =1,2,...,0. Whereas for our MCS policy, a suitable agent is selected only from the ded-

1
7767

transmission, actor selection as well as physical and digital sub-task processing delays into

icated agents: t?c:min{t ..tic}, where 6 = 1,2,..., 2. Finally, by taking the task request
account, the full task execution delay in the case of our DCS (1, ,,) and MCS policies (t), ) is

obtained as follows:

Kyp

1 {tiq + t??,ser + trQ,s + t?},c? if k=1 (62)

g+ 1 e+ 410, if k=7

v,s€er ¥,¢?

6.5.2 Caching Content Access Latency

In this section, we analyze the caching content access latency by using the so-called average

memory access time (AMAT) formula, in which the cache hit h and miss ratio 7 play a
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significant role. To see this, note that if the caching content is available at the initially
selected agent (m=0), the caching content access latency is equal to the agent’s cache look-up
delay t}, i.e., the time required to match a request to the related response. Otherwise, if the
caching content is unavailable (7h=1) at the initially selected agent (6), an additional time is
required to fetch the caching content from another agent (*). Thus, considering both cases,
the total caching content access latency is equal to tg’:tle—l—m-( 0o —I—tgﬁe*—l—tl@*), where tj .
and t} /t}. denote the access delay (maximum ¢.) and cache lookup delay at the initially /newly
selected agent, respectively. For instance, for a face recognition cache, we have th=t}.=f(s,),
where f(s,) is a monotonically increasing function of the cache size s, [120]. Further, tg o

denotes the communication delay for fetching the caching content from another agent, which

is given by
fulie | duboe g, if 0% =l
I R e R wa if 0% =ne, (6.3)
hy - St 4 debie 4 Gubee 45 i 0 =ng,

where gy, Sy, hS /RS, t,/ts/tye, and Doy /P /Y 51/ Py represent the computation sub-part output
data size, caching content data size, hop distance between host ONU and nearby ONU (non-
local cloudlet location)/host ONU and the OLT (remote cloud location), propagation delay
for local cloudlet [.;/non-local cloudlet n./remote cloud n. caching, transmission capacity of
the link between the ONU and cloudlet, inter ONU, the ONU and OLT, OLT and remote
cloud, respectively.

To compute the cache miss ratio, we assume that agents’ caching content files (e.g., audio,
text, video of the recognized face) available for download are stored in the form of a library ¢ =
1,2,...,V. More specifically, each file has an average size of s, bits and different popularity.
The probability of cached content v = 1,2...,V being requested for download follows a Zipf
distribution [121], given by Py(v)=2, where o=( S %)71 and € describes the steepness of
the distribution Py(v). Provided that ny=% is the total number of caching content files at

Sv

the agent, n, is the agent’s number, and ¢y is the agent’s caching content capacity, the cache
Vv 1

. . 2 N =ng- €
hit ratio equals h =1 —1m = 1 — =~
v=1 p€

6.5.3 Mean Task Offload Delay

A task offload packet may suffer from offloading delay during its transmission to an agent,
as shown in Figs. 6.4 and 6.5 for the DCS and MCS policies, respectively. The mean task
offload delay generally comprises three delay components. The first delay component (¢,;) is
the time interval between the arrival of a task offload packet (A) at an MU and the bandwidth
reservation request (PS-Poll) transmission (R). If the task request packet is generated by the

MU after the current cycle PS-Poll message, the MU waits for the maximum cycle period
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Figure 6.4: Mean offload packet delay components in DCS policy.

(ty1=t.) to transmit a bandwidth reservation (PS-Poll) message. On average, t,; is equal to
%‘ The second delay component refers to the time interval between the bandwidth reservation
(R) and grant (G)) messages. In the following, let STA be either an MU or a robot. For ST Ay,

ty2 is then equal to (t. —t% ). For the m-th STA, t,5 equals (t. — m - t% ). Thus, on average
we have t,, = M — (+2+. ”:;Hm)tglm =t. — M. The third delay component differs

in the DCS and MCS policies. In our DCS policy (see Fig. 6.4), the third delay component
(tu4) denotes the time interval between a STA’s grant (G)) message and delay-sensitive task
offload sub-slot start time (O). For STA;, t,4 is equal to m - t% + tm9. For ST Ay, t,4

sta pon

equals m - t% + Loory + tol . If the total delay-sensitive task offload sub-slot (2

°.) s h, we
(04+1+42+...+h—=1)-£3}

obtain on average t,4 = m - t% + Loory T = =m- -t + toore T M. By

contrast, in our MCS policy (see Fig. 6.5), the third delay component (¢,5) is equal to the

time interval between the grant (G) message and delay-tolerant task offload sub-slot start
time (O). For the first STA, we have t,5 = 5 — tms9 — 79 If the total delay-tolerant

onu pon
task offload sub-slot (%) is k& and delay-sensitive offload sub-slot is h, we obtain on average

_4sl  _ ytmsg __ msg (04+1+42+4...+k—1)-2
tU5 zfonu tpon t + k s

. By summing up all three delay components, the
mean task offload delay in DCS (1§ 4) and MCS (t7,) policies is given by

tw tu tw, ifrk=0Q
w_{ 1+t ttua, UK (6.4)

mo tul + tu2 + tu57 if K ="7.

Next, let us calculate the STA’s task request dissemination delay (2 4), which includes the
bandwidth opportunity delay (t) and upstream (US) task request traverse time (¢£.,). If the
task request packet is generated by the STA after the current cycle broadband sub-slot, then
ti’uztu1+tu2+tu3 includes three delay components, where t,; is the time interval between the
task request packet arrival at the STA (A) and bandwidth request transmission (R), .o is
the time interval between the bandwidth request transfer (R) and grant (G) message, and
tus is the time interval between the grant (G) message and the STA’s broadband (7°) sub-
slot start time. Note that for STA;, t,3 is equal to zero. Whereas for STA,,, t,s3 equals

( —1)tbl _ (01424 4m— 1)tglm (m—1)t%

ora- On average, we have ¢,3 p 5. By summing up all three
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Figure 6.5: Mean offload packet delay components in MCS policy.

which
denotes the required time to transfer the STA’s task request message from the MU to the
task scheduler at the host ONU. Hence, we have: t7 =tb =t*
and t; ., denote the US transmission and the total propagation delay that incurs during

the task request transfer process, respectively.

delay components, t© is obtained as t’ = t,; + tuo + tu3. Finally, we calculate %,

p u
ho +tmu—>h0’ where tmu%h

6.5.4 Communication Delay

In this subsection, we compute task offloading communication delay t3 = t¥ + t¢, which
comprises both the digital sub-task upload delay (¢j) from robot to cloud agent and the task
result download delay (¢4) from agent 6 to MU. Hence, t§ is obtained as follows:

gzz;;;sv + g1+s'u + t lf 9 :lct7

tg — gz+5v + h% gz(;;ls'u + gz+5v + t lf 6 =Nt (65)
z+ v itSv 1+ v o —
St Ty S g iy 10 =na,

where g;, Sy, he, hS, Yo/ P/ 051/ 11/ Parsy tp,, tp,, and t,, denote the digital sub-task input
and output data size, hop distance between host ONU h,, (physical task location) and nearby
ONU d, (non-local cloudlet location), hop distance between host ONU and OLT (remote cloud
location), transmission capacity of the link between STA and ONU, ONU and cloudlet, inter-
ONU, ONU and OLT, OLT and remote cloud, total propagation delay for task offloading to
local cloudlet Iy (t,,=2t,_,, +2t, _, ), non-local cloudlet ny (t,,=2t,_, +2t, _, +2t; ),

and remote cloud ny (tp,,=2t7_, +2t) _ . 42" ), respectively.

olt—ry

6.5.5 Monetary Cost

In this subsection, we analyze the expected monetary cost for both DCS and MCS policy based
HART task execution. Note that the monetary cost calculation the execution of multiple full
HART tasks consists of two parts: (i) monetary cost of using actors (cloud agents and robots)
for physical and digital sub-task processing (mw) and (7i) monetary cost of using bandwidth

resources for task request transmission and task offloading (py, ;). The monetary cost of the
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physical and digital sub-task workload processing using DCS and MCS policies is given by

(ﬁs -1 .ﬁd.trg’s+ﬁs.d}2.ﬁn.t67s+
Phuw =M V1 Pa-th,+Nc vy Pn-th,), ifrk=0 (6.6)
(ﬁs'al'ﬁd'tg,s_{-ﬁc'vl'ﬁd'tg?c), if/{:'%

where 15 /ns and 7. /7. denote the number of physical and digital sub-tasks that use dedicated /non-
dedicated robots and agents (ns,ns€ns and fi.,n.En.), respectively. Further, @y /Wy and vy /vy

represent the monetary cost per unit time (second) for using dedicated /non-dedicated robots

r
,Y7S

agent’s digital sub-task processing time in our DCS/MCS policy, respectively. Moreover, let

and agents, respectively, while tg, /17 & and t%’c / tic denote the selected robot’s physical and
Pa/Dn and pg/py be the probability that a dedicated /non-dedicated robot and agent is selected,
respectively. Note that the probability that a dedicated/non-dedicated actor (robot/agent)
selected is equal to 1, if the corresponding robot’s/agent’s physical/digital task processing
time is minimum among all actors.

Similarly, the total monetary cost of using bandwidth resources in our DCS and MCS

policies is obtained as follows:

(Al'pw‘t:tvrs'ﬁt_'_AQ'pc'ttxrs'ﬁt
—i—ﬁc-Al~pw-t3+ﬁc-pc~/\2-tg), k=90
(AI.pW'tfra'ﬁt—'—AQ'pc'tfra'ﬁt
+ﬁc'pw'>\1't3+flc'pc-)\2-t§), if/{:’y,

p;,b = (6'7)

where 73;/7; and 7i./n. denote the number of tasks that use the WiFi/cellular network inter-
face for task request transmission and task offloading, respectively. Furthermore, 7 , and ¢3
represent the task request transmission and task offloading communication (ty=t4+t%) delay,
respectively. Moreover, A; and A, represent the monetary charge per unit time for task re-
quest transmission using the WiFi and cellular interface, respectively. Let A;/As and " / As
be the monetary cost per unit time for delay-sensitive and delay-tolerant task offloading using
the WiFi/cellular interface, respectively. The probability that the WiFi and cellular network
interface is used for task request transmission and task offloading is given by p,, and p., respec-
tively. We note that an MU uses the WiFi network interface (p,, = 1) only if its utilization
(ty > tﬂi’u > Ei,;) provides the minimum task execution delay and the MU’s associated MAP
residence time is sufficient (t% = ﬁ) to perform task execution. Otherwise, the MU uses
the cellular network interface (tiw = fi ,.) provided it offers the minimum task execution de-
lay (t& > fi’u > f,i#). Note that ffw and fi# denote the task execution delay, if the WikFi
t, = f,‘i ) and cellular interface (t), = 2% ) is used as a wireless medium for task request

transmission and offloading, respectively.
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6.5.6 Time and Monetary Cost Saving Ratios

In the following, we calculate the time saving ratio (TSR) p%, and monetary cost saving ratio
(MSR) p?, for both DCS and MCS policy based HART task execution. We define p?,, as the
ratio of monetary cost gain using our MCS policy for task execution (p{w — p&w +Pay — p;’b)
and the total monetary cost for the case of DCS policy based execution (p?sz + p,). With

n; denoting the total task number, pJ  is given by

Zzzl (pgl,w - p‘?‘y,w + pg),b - p;,b)
2?21 (pg),w + pgl,b)

Hence, pf; is defined as the ratio of time cost gain for DCS policy based task execution (tfﬁ e

t{, ) and task execution time cost for our MCS policy (0 ,=t0, +t . +t7 +t¢ ). Thus, pg; is

v,ser

x 100%. (6.8)

D
psm_

given by
n 1 1)
Q2 2;1 (t%u — tQ,u)
sd — ne r
Zi:l (tiq + ti‘y,ser + t'y,s + t?y,c)

x 100%. (6.9)

6.5.7 Energy Cost

Next, we compute the energy consumption cost of both DCS (eg, ,) and MCS (e ,) policy

based task execution given by

. {Z?il (€5 Efper + €0 ), i H=0) (6.10)

Ryl nt 4 4 T 0 1 —
> it (erq T ser T s T e%c)? if k=7,

4 1 r

rq) efi,ser’ em,s’

request dissemination, actor selection, and physical/digital sub-task execution, respectively.

where e and ezyc are the STA’s (i.e., MU or robot) energy consumption during task
Further, note that efq is given by efq = e, + eyg = € - tfu + ey - tf,, where e, and e,
denote the energy consumption of task request buffering and transmission delay, respectively.
We calculate the STA’s energy consumption during actor selection using our DCS (6?2,567“ =
€rg+€ar+€ac = [ trg+ f ey -tar +ea-to) and MCS policy (eivser = CrgtECart+Eoe =P
trgt By tar+ea tac), Where €,4/,q, €ar/Car, Cac/Cac, and f /3 denote the energy consumption
during task request reception, response transmission, assignment message reception, and total
number of robots, respectively. Hence, the STA’s energy consumption during physical sub-
task execution (e],,) is equal to e], ;=e,-t. . =el+el+el=¢;tl+e, t!+e,t?, whereby ¢,

represents the physical sub-task execution time. For our DCS and MCS policy, ¢, ; is equal to
b

ry

r r : v :
0. and t7  , respectively. Moreover, let ey, €, €,’, and e? be the average energy consumption

(per second) during physical sub-task execution, the robot’s busy state (¢! = ¢é; - t), task

location traverse (e} = e, -tV ), and physical sub-task workload processing delay (e? = e, - t?),

respectively. The STA’s energy consumption during digital sub-task execution is obtained as

156



e . in DCS (el . = e, ) and MCS policy (e, = €f ). Further, e/, is given by el . = &, 1% . =
eh+ ey +egt+el ey =6 (th+tl) +ey th+ e ti+é - (15 + 1)), where &, and ¢, are
the average energy consumption and time required for digital sub-task execution, respectively,
and e}, e¥, €9, €7, and eg’ denote the energy consumption in the agent’s busy state (e5=¢é;-t}),
offloading waiting (ef = é; - t%y), communication delay (e§ = ey - t§ + eq - t3), computation

processing (ej = é; - tj), and cache look-up delay (e? =é; - tﬁ), respectively.

6.5.8 Communication to Computation Ratio

In this sub-section, we analyze another important performance metric: the communication to
computation ratio (C2R). C2R is defined as the ratio of task execution communication delay
(t?) and task workload processing time (t<) and may be applied in our DCS (k = Q) and MCS
(k = ) policies, whereby C2R,, is given by

tz Zzil tiq + ti,se?‘ + ti:@ + tg

C2R, = £ = ’ . 6.11
te Sr Aty -ty o1

6.5.9 Task Offload Gain to Overhead Ratio

Finally, we introduce another major performance metric, namely, the so-called task offloading
time gain to overhead ratio (TGO). For the computation of TGO, we consider both task
offloading and non-offloading versions of our DCS and MCS policies. More specifically, in
the non-offloading version of our DCS/MCS policy, the selected robot executes the full task.
Conversely, in the task offloading version of our DCS/MCS policy, the selected robot and
agent process the physical and digital sub-task, respectively.

TGO is defined as the ratio of task execution time gain (fin — ti#) and offloading com-
munication overhead in DCS/MCS task offloading policy. Thus, TGO is obtained as fellows:

0t

TGO, = 28 (6.12)
t5 o té
K,od K,0d

where ¢, , and tipd represent the full task execution delay and communication overhead (ti’od =
12,410 sop 12 o+1tg) in the DCS (k=) and MCS (k=) task offloading policies. Consequently,

K,ser

tAiw and tiod denote the full task execution delay and communication overhead in the non-

offloading version of our DCS and MCS policies. Further, note that fi}od is given by fi,od =

tfq + 8+ ler + t? where 10 denotes the suitable robot’s selection time in the non-

K,ser K,ser

offloading version of DCS (i ... = f -t + [ tar + f - tep + Y - tac) and MCS (&

ti ser
G- frq + B tar+ B tep+y-tac). Let t? denote the task result transfer delay in the non-offloading

version of our DCS and MCS policies, which is given by t¢ = j}—l + ;—1 + tpa. Moreover, fi’ L 18
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Table 6.1: Parameters and default values for evaluation of user preference-aware task and
resource assignment scheme

for digital task upload, task result download, wait-
ing delay, physical task location traversing, task
workload processing

Notation Definition Default val-
ues/units
Ny Wry Wes, Sy Task number, digital and physical sub-task work- | 1-20, M cycles, KB
load, digital sub-task output data size (vary)
€y, €d, €, €0, €, | STA’s average energy consumption (per second) | 0.1W, 0.05W,

0.001W, .7TW, 5W

task input, and computation sub-part output data
size, task deadline

m, g, dy, €, STAs under each ONU, robot moving speed and | 1-20, 1-10m/s,

Vr/ Ve, Co distance from task location, steepness of Zipf dis- | 1-100m, b-1,
tribution, robot/agent task processing speed, a- | 500/3200MHz,
gent storage capacity 3-10GB

B/6,z/0 Number of dedicated/non-dedicated robot, dedi- | 1-20, 1-6 (vary)
cated/total cloud agent

T, Yf, )0 T Transmission capacity of Wireless and fiber link | 6900(WLAN)/
(T = Y, Yr = Pt/ P51/ 1/ D), dedicated local | 300(cellular) Mbps,
cloudlet /non-dedicated cloudlet/dedicated remote | 10 Gb/s(fiber),1-3
cloud server number

te, 86 /1Y Polling cycle time, STA’s cellular/WiFi residence | 100-800 ms, 0-15s
time (random)

tzlsg,t;'}jlg,tijsw Wireless (e.g., PS-Poll), MPCP message length | 0.512us,  0.231us,

Jis Sws ta (GATE,REPORT), actors selection delay, digital sub- | us, 50-1000 KB,

5-100 KB, 5-15s

ing WiFi/cellular interface

he e,V ng, Hop distance between host ONU and nearby | 2/4, 1000/4, ms
oy [tps [t ONU/OLT, number of caching content/cloudlet, | (vary)

propagation delay for local cloudlet/non-local

cloudlet/cloud offloading
@1 /we, v1/vg, | Monetary cost (per second) for dedicated/non- | .002/.008 $ and
Ay/As,A1/As, | dedicated robot and agent, task request transfer, | .002/.008 $, .01$,
Xl / A delay-sensitive, delay-tolerant task offloading us- | .01$, .001$

trq/ta’r/tcp/tac
tp/tﬁ/t;;a

Task request/response/comparison/ack message
duration, propagation delay caching (local —local
cloudlet /local—non-local cloudlet/local cloudlet
— remote cloud),

0.17/0.12/.20/0.12
ps, ms (vary)
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given by fg u= t,‘fq +#°

physical sub-task (t], , = t0 4+t +1?) and digital sub-task (¢, , = 7+t +12,.+1!) in the non-

w
KT

+1y, ¢+t ., whereby ¢}, . and ] . represent the execution time of the

offloading version of our DCS and MCS policies, respectively, whereas t2, t¥, t¢, 7, t¢, ¢
and t¢ denote the robot’s busy time, task location traverse time, physical sub-task workload
processing, and digital sub-task workload processing ({7 = f—:), cache look-up (¢ = t}), task

result buffering (¢, = t\/), and task result transfer delay, respectively.

6.6 Results

In this section, we present numerical results to investigate the performance of our proposed
DCS and MCS based task execution schemes. Table 6.1 summarizes the parameters and their
default values in accordance with [30], [17], [119], [120], and [121].

Assumptions and simulation setup: We assume that each full HART task request con-
sists both physical (capturing an image at a location) and digital (detection of object from
captured image and caching content access of the detected object) sub-task. Due to movement
facilities physical sub-task can be executed only by robots, whereas location independent dig-
ital sub-task can be executed by robots/cloud agents based on their computing and caching
abilities. Note that, output of the physical sub-task (captured image) is the input data size
of digital sub-task that can be offloaded to cloud agent/nearby robots for processing. For
delay-sensitive DCS policy users, the main requirements of the HART task execution are the
selection of suitable actors from both dedicated and non-dedicated actors and preemptive
bandwidth resource assignment. Whereas, for the delay-tolerant MCS policy users, the main
requirements of the HART task execution are the utilization of only dedicated actors for suit-
able actors selection and non-preemptive bandwidth resource assignment. Note that, in this
work ONU’s are inter-connected by interconnected fiber links. Robots and MU’s device is
connected with the ONU-MPP/ONU-eNB’s through the wireless link. Whereas, ONU’s use
dedicated point-to-point fiber links to transfer/receive their offloaded task input/output data
to/from cloudlet server. The computation processing speed of the CPU of each robot and
cloud agent server is set to 500 and 3200 MHz, respectively. The fiber backhaul transmission
capacity is set to 10 Gb/s in both uplink and downlink, whereas the fiber backhaul length
between the OLT and ONUs is 20 Km. At the wireless front-end, maximum data rates of
300 Mb/s (cellular link) and 6900 Mb/s (WLAN physical line rate) is considered. The fiber
backhaul range between the ONU to cloudlet server and OLT to remote cloud server is 1
Km and 10 Km, respectively. Hence, the MAP radius, ONU-MPP/ONU-eNB coverage area,
and density of MAPs within each ONU-MPP coverage area is set to 100 m, 9 km?, and 3,
respectively. The full HART task arrival number, physical and digital sub-task workload,

offloaded (digital) task input and output data size values are chosen randomly in the range of
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1-20, 50-1000 M cycles, 50-1000 KB, 10-200 KB, respectively. A STA’s average energy con-
sumption (per second) for digital sub-task upload, result download, waiting (idle) time, task
workload processing is set to 0.1W, 0.05W, 0.001W, and 0.5W, respectively, similar to [17].
The polling cycle time and task deadline values are varied within the range of 100-800 ms and
5-30s, respectively. Moreover, we assume that the monetary cost of using non-dedicated actors
(owned by network operators) is higher than that of dedicated actors (owned by MUs). We
also assume that the usage of a delay-sensitive offload time sub-slot implies higher monetary
costs than the usage of a delay-tolerant offload time subslot. Thus, to highlight the impact
of the examined cloud/robot selection and usage of bandwidth resources on the performance,
the average monetary cost value (per second) for dedicated /non-dedicated actor usage as well
as delay-sensitive and delay-tolerant task offloading via the WiFi/cellular interface are set
to 0.002$/0.008%, 0.01$/0.001%, respectively. To visualize the effect of the actors’ impact on
the performance, the number of dedicated/non-dedicated robots and cloud agents is varied
within the range of 1-20 and 1-6, respectively. The duration of the MPCP (#2°" ) and WLAN

msg

messages (t2,,) is set to 0.512ps and 0.231ps, respectively, similar to [105]. The remaining
parameters and their default values are described below in Figs. 6.6 and 6.7. The system
settings used in the evaluation (Scenario 1) is given by: § = 20, © = 12, z = 2, 0 = 6,
w, = we = 100, 50,200, 150, 400, 300, 250, 350, 450, 500, 600, 550, 650, 800, 750, 700, 950, 1000,
850,900 Mcycles, s, = 20, 10, 40, 30, 80, 60, 50, 70, 90, 100, 120, 110, 130, 160, 150, 140, 190, 200,
170, 180KB.

Performance analysis: Figs. 6.6(a) and 6.6(b) depict the average aggregate task ex-
ecution time performance for our proposed DCS and MCS based task execution policies,
respectively. Both figures indicate that for an increasing task arrival number, the average task
execution delay increases in all compared versions of DCS and MCS policies, i.e., MTMD,
MT, and MD. Specifically, we observe that for both DCS and MCS based task execution, the
MTMD based scheme achieves a significantly lower time delay than its counterparts. Fur-
ther, we observe that for both DCS and MCS based task execution, the MD based scheme
results in the second lowest average task execution time. By contrast, the MT based scheme
shows an inferior average task execution time performance. This is due to the fact that in
the MTMD based scheme both robot and cloud agent are selected by taking not only their
task workload processing delay but also the incurred waiting and communication delay into
account. Furthermore, the network interface (wired/wireless) providing the highest data rate
is selected for multiple-task offloading activities. In the MTMD based scheme, robot/cloud
agent and bandwidth resources are assigned to multiple tasks based on their lower task ex-
ecution deadline requirement. Hence, in the MT based scheme, the selection of the highest

available data rate is ensured for each task offloading activity. Note that the MT based scheme
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Figure 6.6: Average task execution time, monetary cost, task execution time cost saving ratio,
monetary cost saving ratio, and total energy consumption cost performance for scenario 1
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assigns suitable actors (robot/cloud agent) for each task based in random order. Hence, in
the MD based scheme, the task scheduler selects suitable actors with a higher task processing
speed for each arriving task. As a result, the MD based scheme minimizes the task workload
processing delay rather than the full task execution time, which consists of both the task
workload processing and offloading communication delays. From Figs. 6.6(a) and 6.6(b) we
also observe that for varying task numbers, the DCS task execution policies outperform their
MCS based counterparts in terms of task execution time. This is because DCS policy users
give preemptive access to actors and bandwidth resources for executing their delay-sensitive
tasks.

Fig. 6.6(c) examines the suitability of different cloud agent selections for the execution
of digital tasks using our proposed DCS and MCS policies. The figure shows that for an
increasing caching content data size (s, ), the average task execution time increases rapidly for
all compared DCS and MCS policies. The figure also indicates that if the priority is achieving
a lower task execution delay, the DCS (local cloudlet caching) scheme is more suitable than
all its counterparts. We notice that the MCS (remote cloud caching) scheme experiences the
maximum task execution delay due to its higher task offloading communication overhead.
For instance, for n; = 6 and s, = 60 KB, the DCS (local cloudlet caching) scheme yields
approximately a 3.46%, 8.45%, 23.67%, and 32.52% higher task execution delay gain than the
DCS (non-local cloudlet caching), DCS (remote cloud caching), MCS (local cloudlet caching),
and MCS (remote cloud caching) schemes, respectively. Fig. 6.6(d) depicts the monetary
cost versus total task number (n;) performance for both DCS (MTMD) and MCS (MTMD)
policies. The figure reveals that for both DCS (MTMD) and MCS (MTMD) policies, the
monetary cost remains low for low values of n;, but rapidly increases for larger n,. Moreover,
for varying task numbers, the MCS (MTMD) policy outperforms the DCS (MTMD) policy in
terms of minimum monetary cost. This is because unlike the DCS (MTMD) policy, the MCS
(MTMD) policy relies on dedicated robots/agents and non-preemptive bandwidth resources for
their requested task execution. Fig. 6.6(e) shows the monetary cost versus caching content
data size (s,) performance for different DCS and MCS policies. We observe that for both
higher and lower s,, the MCS (cloudlet caching) and DCS (remote cloud caching) schemes
offer the lowest and highest monetary cost, respectively.

Figs. 6.6(f) and 6.6(g) clearly show that a shortage of dedicated robots () has a detrimen-
tal impact on the task execution time and monetary cost saving performance of our proposed
DCS and MCS policies. Both figures show that for different 3, the time and monetary cost
saving ratio is maximum in the DCS (MTMD) and MCS (MTMD) policies, respectively. Note
that a lower dedicated robots availability results in a higher task execution delay in the MCS
(MTMD) than DCS (MTMD) policy. Hence, the use of both dedicated and non-dedicated
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actors cause additional monetary cost in the DCS policy, as opposed to the MCS (MTMD)
policy. For instance, n, = 10 and § = 6, the time cost saving ratio in the DCS (MTMD)
policy compared with the MCS (MTMD) and MCS (MD) policies is approximately 34% and
45%, respectively. Hence, for n; = 10 and S = 6, the monetary cost saving ratio in the MCS
(MTMD) policy compared with the DCS (MTMD) and DCS (MD) policies is 74% and 80%,
respectively.

Fig. 6.6(h) examines the impact of varying caching content data sizes (s,) on the energy
consumption cost for different DCS and MCS policies. We observe that the energy consump-
tion cost is lower for small s, and higher for large s, in the considered DCS and MCS policies.
We also note that the DCS (cloudlet caching) scheme achieves the minimum energy consump-
tion cost of all compared approaches. Fig. 6.6(i) depicts the energy consumption cost versus
task number (n;) for both DCS and MCS based policies. The figure shows that the energy
consumption cost rises rapidly for an increasing n; in all compared policies. Note that for
different n;, the DCS (MTMD) policy offers a lower energy consumption cost than the alter-
native policies. Also note that due to the higher task execution delay, the MCS based policies
suffer from a higher energy consumption cost than the alternative policies. For instance, with
ny = 12, the energy consumption gain of the DCS (MTMD) policy over the MCS (MTMD),
DCS (MD), and MCS (MD) policy equals 6.71%, 3.4%, and 9.42%, respectively.

Next, in Fig. 6.7(a), we investigate the mean task offload delay performance of our proposed
DCS and MCS policies. The figure shows that for varying task numbers, the mean task offload
delay is the lowest in our DCS (MTMD) and highest in our MCS (MTMD) policies. This is
because MCS policy users can offload their tasks to a dedicated cloud agent only after the
completion of DCS policy users’ task offloading. Fig. 6.7(b) quantifies the impact of a varying
task number (n;) on the TGO performance of both DCS (MTMD) and MCS (MTMD) based
task offloading policies and compares it with their non-offloading (only robot based execution)
counterparts. We notice that for an increasing task number, the TGO ratio increases rapidly
in all compared schemes. We observe that for small and large values of n;, the maximum
TGO ratio is obtained in the DCS (MTMD) policy due to its lower digital task processing
overhead. For instance, for n; = 4, the TGO ratio in the DCS (MTMD) and MCS (MTMD)
policies is approximately 62% and 46%, respectively. Fig. 6.7(c) depicts the average caching
content access delay for our DCS and MCS policies. We observe from the figure that for an
increasing caching content data size (s, ), the caching content access delay grows rapidly in all
compared schemes. In addition, we note that the caching content access delay becomes the
lowest in the DCS policy, if the host local cloudlet fetches cached content from another local
cloudlet. The figure also shows that the caching content access delay becomes the highest in

the MCS policy, if the host local cloudlet fetches cached content from the remote cloud server.
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Mean task offload delay evaluation for scenario 1

TGO ratio vs. task number for scenario 1
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For instance, for s, = 80 MB, m = 1, and n;, = 4, the DCS (local cloudlet to local cloudlet)
scheme achieves an approximately 25% and 31% higher caching content access delay gain than
the MCS (local cloudlet to local cloudlet) and MCS (local cloudlet to remote cloud) schemes,
respectively.

Fig. 6.7(d) depicts the impact of varying task numbers on the mean C2R ratio for DCS
and MCS based policies. Note that a task execution scheme with a lower C2R ratio incurs a
lower communication overhead, which is more beneficial for executing delay-sensitive HART
tasks. The figure shows that the mean C2R ratio decreases for an increasing task number.
This is is due to the fact that the task workload processing time is inversely proportional to
the C2R ratio in all compared policies. Note that the DCS (MTMD) policy offers a smaller
mean C2R ratio than the other alternative policies. Fig. 6.7(e) examines the mean C2R ratio
versus task offload input data size (g;) performance for different DCS and MCS policies. The
figure shows that for varying g;, the mean C2R ratio becomes minimum in the DCS (cloudlet
caching) policy, as opposed to both DCS (remote cloud caching) and MCS (cloudlet caching)
policies. This is because the DCS (cloudlet caching) policy experiences a smaller digital task
offloading delay than both DCS (remote cloud caching) and MCS (cloudlet caching) policies.
For instand, for g; = 400 KB and n; = 2, the DCS (cloudlet caching) scheme achieves a 7% and
12% lower mean C2R ratio than the DCS (remote cloud caching) and MCS (cloudlet caching)
schemes, respectively. Finally, Fig. 6.7(f) illustrates the impact of the polling cycle time
(t.) on the average task execution delay of our proposed DCS and MCS policies. We notice
that the average task execution delay increases for increasing t.. Furthermore, we observe
that for small and large values of ¢., the DCS (MTMD) policy achieves a higher average task
execution time gain than the alternative policies. For instance, for t. = 0.3 s, the average
task execution time gain of the DCS (MTMD) policy over the MCS (MTMD) policy equals
15.42%, as opposed to only 6.03% over the DCS (MD) policy. This result indicates that for
the execution of delay-sensitive tasks, the DCS (MTMD) policy is the superior solution.

6.7 Conclusions

In this chapter, we investigated the performance of user preference aware HART task execution
over FiWi enhanced network infrastructures for the emerging Tactile Internet. To minimize
the task execution delay of DCS policy users, our proposed task coordination scheme selects
suitable actors by using both dedicated and non-dedicated actors. Conversely, to maximize
the monetary cost saving of MCS policy users, our proposed scheme selects appropriate actors
only from the set of dedicated actors. Furthermore, we presented a proactive bandwidth
allocation scheme that assigns preemptive and non-preemptive bandwidth resources to DCS

and MCS policy users, respectively. We also developed an analytical framework to evaluate
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the performance of our DCS and MCS policy based task execution in terms of monetary cost
and task execution time saving ratio, energy consumption, mean task offload delay, TGO and
C2R ratios, and caching content access delay. Our obtained results show that for a typical
number of 10 tasks and 8 available dedicated robots, the DCS (MTMD) policy exhibits a
higher task execution time saving ratio of 30.5% and a lower monetary cost saving ratio of
63.6% than the MCS (MTMD) policy. Unlike alternative approaches, our findings indicate
that the MTMD policy is useful for both DCS and MCS policy users due to its minimum task
execution time and monetary cost. Our proposed user preference aware task coordination
policy thus represents a promising solution to reduce both task execution delay and monetary

cost for emerging Tactile Internet applications.
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Chapter 7

Conclusions and Future Research

This chapter summarizes the contributions of this thesis and outlines some future research
directions in the field of HART-centric task coordination over FiWi enhanced network infras-

tructures.

7.1 Conclusions

Unlike the IoT without any human involvement in its underlying machine-to-machine commu-
nications, the Tactile Internet involves the HART-centric collaboration and thus allows for a
human-centric design approach towards creating and consuming novel immersive experiences
via the Internet. This thesis tried to shed some light on the augmentation (i.e., extension of
capabilities) of the human through the HART-centric collaborative task execution framework.
To reap the benefits from human-machine convergence, this thesis presented a suitable task
coordination framework for efficiently orchestrating the real-time collaboration among human
mobile users, centralized and decentralized computational agents (cloud/cloudlets), and col-
laborative robots (cobots) across converged FiWi enhanced network infrastructures. In light
of the emerging Tactile Internet moving towards decentralization based on edge computing,
intelligent base stations, collaborative cloud computing (robots and cloudlets), the inheren-
t distributed processing and storage capabilities of FiWi enhanced networks were exploited
for the execution of local and non-local HART-centric tasks. The doctoral thesis focused on
HART task coordination over FiWi enhanced networks focusing on three major issues, namely,
power and latency-aware task assignment, failure avoidance, and prefetching-aware bandwidth
resource assignment.

For the cost-effective HART task execution over FiWi enhanced networks, delay and power
saving issues must be handled in a comprehensive fashion by taking into account task proper-
ties, dynamically changing bandwidth availabilities, and collaborative node resources (robot

and cloud agents). To do so, this thesis proposed a novel HART task coordination scheme
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for FiWi enhanced networks that assigns not only tasks to suitable actors but also bandwidth
resources for task offloading/result transfer activities. The proposed HART task coordination
scheme achieves more than 53% delay cost saving while saving monetary costs of more than
48% (in typical scenarios).

Different problems were explored and suitable schemes were proposed for the latency-aware
HART task execution over FiWi enhanced networks. More specifically, to render the human-
to-robot task allocation process more efficient, in Chapter 2 we proposed a local and non-local
task allocation scheme for MUs’ requested task execution according to several key design
parameters such as the availability, skill set, distance to task location, and remaining energy
of robots. Furthermore, to reduce failures during task execution, we presented a neighboring
robot assisted failure reporting mechanism. Our results show that the estimated minimum
execution time-based robot selection outperforms traditional minimum distance and priority
based selection schemes in terms of end-to-end delay and average residual energy. Moreover,
we observed that the non-local task allocation delay is higher than the local task allocation
delay.

In Chapter 3, we presented a collaborative computing strategy that combines suitable host
robot selection for sensing sub-task execution and collaborative node selection for computation
sub-task offloading. We exploited conventional cloud servers, decentralized cloudlets, and
neighboring robots as collaborative nodes for computation offloading in support of a host
robot’s requested computation sub-task execution. The results of both collaborative and non-
collaborative task execution schemes demonstrate that for a typical scenario the collaborative
task execution scheme improves the task response time delay by up to 8.75% and the energy
consumption by up to 14.98% compared to the non-collaborative task execution scheme.

For resource-efficient task execution, Chapter 4 proposed a context-aware task migration
scheme for efficiently orchestrating the real-time collaboration among human mobile users,
central and decentralized computational agents (cloud/cloudlets), and collaborative robots
(cobots) across converged FiWi communications infrastructures. We investigated the problem
of whether and, if so, when and where a HART-centric task should be best migrated to.
For resource-efficient task execution, the migration decision is made according to given task
processing capabilities of cloud/cloudlet agents and cobots, task execution deadline, energy
consumption of involved cobots and mobile devices, and task migration latency. Our results
show that for a typical cognitive sub-task input data size of 600 MB, the cobot-to-agent
(cloudlet near task location) cognitive task migration scheme achieves more than 20% task
response time improvement and 23% energy savings over the traditional non-migration scheme.
The results also show that intra-agent cognitive sub-task migration achieves a higher task

response time gain than inter-agent migration.
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In Chapter 5, we investigated a community- and latency-aware multiple HART task
scheduling scheme by using real-time information about arriving task requests for both iso-
lated and clustered robots/agents. More specifically, we investigated the optimal multi-task
scheduling order and resource assignment strategy for task on- and offloading based HART task
execution with task prefetching and fault tolerance capabilities. To reap the benefits from task
prefetching for the execution of multiple HART tasks, we presented a novel prefetching-aware
bandwidth allocation scheme that copes with conventional broadband and task offloading data
traffic at the same time. Our presented results show that for a typical system of 32 ONU-
MPPs and a polling cycle time of 100 ms, our proposed prefetching-aware task ofHoading
scheme achieves up to 31.3% and 32.7% task completion time gain over the task onloading
scheme for nearby and remote HART task execution, respectively.

Lastly, in Chapter 6, to achieve minimum task execution delay and monetary cost, we
developed a user preference-aware HART task coordination framework that selects appropriate
dedicated /non-dedicated robot/cloud agents for executing different caching and computing
delay-sensitive and delay-tolerant HART tasks. Further, to cope with limited bandwidth
resources, we proposed a proactive bandwidth allocation policy for both delay-sensitive and
delay-tolerant HART task execution. We observed that for a task number of 10 and 8 available
dedicated robots, our proposed DCS (MTMD) policy exhibits an up to 30.5% higher time
saving ratio and a 63.6% lower monetary cost saving ratio over the alternative MCS (MTMD)

policy.

7.2 Future Research

Due to their coverage and capacity advantages, FiWi enhanced networks have great potential
to ensure QoS for several emerging local and non-local HART-centric applications, thus creat-
ing new opportunities for several industries including manufacturing, industrial automation,
education, transport, entertainment, and health-care. Importantly, the integration of human
users, robots, remote cloud and decentralized cloudlet resources over FiWi enhanced networks
creates a powerful paradigm for not only the emerging Tactile Internet but also for future
network and communications research. Consequently, the contributions made in this thesis
can be extended for additional improvements. Some interesting future research directions that
may build on our proposed schemes are described below in greater detail.

(7) Self-aware HART task coordination: With the advent of safe collaborative robots
and agents, their seamless integration into human teams as teammates starts to gain steam as
part of the vision of the emerging Tactile Internet, which lies at the nexus of computerization,
automation, and robotization. While necessary, low task execution time and ultra-reliable

human-robot-agent connectivity are not sufficient to unleash the full potential of the resultant
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human-agent-robot teamwork (HART') applications. The automation of various physical and
digital HART tasks with self-aware requirements is doable by state-of-the-art agents and
robots. Regardless of whether a technological advance is labor-saving or capital-saving, skill-
biased or not, and regardless of the speed with which robots or other machines approach or
exceed human skill sets, the key to the effect of the new technologies on human wellbeing
is who owns the technologies [122]. If other persons owned our replacement technologies,
we would become jobless. Instead, if users owned them, humans would have their current
earnings and their time freed from labor to seek other productive activity. To unleash the
full potential of HART applications, one future research direction involves the development
of self-aware HART task coordination schemes for physical and digital task execution based
on the shared use of user- and network-owned robots/agents. HART members are assumed
to be self-aware about their respective goals, application needs, capabilities, and constraints.
Further, through communication, they can establish a collective context-awareness with the
objective of minimizing the completion time of tasks by robots and agents, which may be
either user-owned or network-owned. Beside the minimization of the task completion time,
another major objective of this work may be the minimization of energy consumption and
operational expenditures (OPEX) of physical/digital task execution by mobile robots and
agents. Specifically, the question of when, how, and under which circumstances user-ownership
of mobile robots and cloud agents becomes beneficial in terms of OPEX per executed task
represents an interesting research problem.

(i7) Online-to-Offline/Offline-to-Online (020) communication: The increasing de-
mands for online resources (e.g., cloud, cloudlet resources) create a huge challenge for MUs’
task execution due to their preferred energy consumption and data usage cost plan. As a
solution, online-to-offline/offline-to-online (020) communication allows HART members to
utilize both online (e.g., cloud resources) and offline resources (e.g., own or nearby mobile
devices) for task execution. 020 communications aims to maximize the use of offline and
online resources by allowing collaboration and communication among each HART member in
order to achieve win-win situations [123]. By leveraging O20 service migration with resource
awareness, HART members may share their bandwidth, computation, and storage resources
to stimulate beneficial cooperation, which can cut down users energy consumption and da-
ta usage cost. Hence, to cope with an insufficient energy and data usage budget of MUs,
research in the area of O20 based joint task migration along with appropriate bandwidth
sharing schemes is another promising direction.

(¢i7) Human-machine interaction based on mixed reality applications: Virtual re-
ality (VR) creates a computer generated 3D environment, which can be experienced by human

users. VR enables users to observe not only the defined objects but also the real environments
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and its objects based on their choices. Remote robotic surgery simulation, flight simulation,
and science fiction movies are some application areas of VR [124]. In augmented reality (AR),
the real environment is augmented by computer-generated virtual data (e.g., visual, auditory,
haptic). AR represents the immersive aspects of the real environment [125], [126]. AR changes
people’s perception about the real-world environment. Conversely, VR technology changes the
real environment with a 3D simulated environment. Mixed reality (MR) integrates the im-
mersive capabilities of VR with AR so that data can be transferred back into the physical
world. More specifically, MR allows not only the combination of real and virtual worlds but
also allows the coexistence of real and virtual objects and their real-time interaction. Thus,
by allowing for the collaboration and interaction of humans with real and virtual worlds (e.g.,
machines), MR creates a new medium for both consumer and enterprise domains [127]. For
the cost-effective deployment of mixed reality applications, the development of adaptive real-
time synchronization, communication, and computation techniques opens up a multitude of
future research opportunities.

(iv) Optimization techniques for human-machine coactivity: Another future scope of
our work is to develop and implement suitable optimization techniques (e.g., particle swarm
optimization) to minimize both network and cloud resource usage cost for human-machine
coactivity based task execution, while satisfying the task execution requirements, i.e., the
deadline.

(v) Realization of very low-latency and high reliability requirements for haptic
communications based applications: To achieve very low end-to-end latency of 1 ms for
real-time haptic communications based applications (e.g., remote robot steering and control,
transfer of touch senses), different challenges and requirements need to be addressed properly.
For example, at the physical layer one way packet transmission needs to satisfy the trans-
mission duration of 100 ps (packet lengths). To meet this requirement, each packet duration
should not over 33-ps packet duration. This is because for one-way packet transmission laten-
cy calculation some additional latencies need to be included: protocol processing, encoding
at the transmitter, and decoding at the receiver. Note that, in current LTE cellular system-
s, the duration of one orthogonal frequency division multiplexing (OFDM) symbol alone is
close to 70-ps long. Thus, research in the area of cellular physical layer for very low-latency
haptic communications needs to be revisited. To achieve 1 ms round-trip latency, another
major requirement is that the control server needs to be placed within 150 Km distance from
the tactile point of interaction. Further, the satisfaction of carrier grade reliability (failure
rate of 1077) for haptic/tactile senses transmission/reception over cellular networks is another
key challenge. To achieve optimal results for real-time haptic communication research in the

area of development of advanced tactile/haptic devices, perception-based encoder/decoder,
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advanced visual-haptic multiplexing scheme, collaborative multi-user haptic operation man-
agement, and priority based radio resource management scheme is mandatory.

(vi) Advanced artificial-intelligence (AI) based prediction techniques for hap-
tic applications: Development of advanced caching, computing, and user-oriented traffic
management system at the network edge (cellular/WiFi base station) would improve the
de-congestion problem of the core network [35]. Most importantly, development and imple-
mentation of artificial-intelligent engines at the network edge can lower the end-to-end latency
by predicting the haptic/tactile experience, i.e. acceleration of movement on one end and the
force feedback on the other. Note that, currently simple linear regression algorithms are used
to predict the movement and reaction for fairly repetitive skill set driven actions between
tactile/haptic devices that requires 10-100 milliseconds. Hence, more advanced artificial In-
telligence based prediction technique needs to be developed to reduce the end-to-end latency
in different real-time scenarios where the predicted action/reaction values are deviating from
the real-time values, so that some coefficients of the predicting models are need to be updated

and transmitted to the other end for corrections and damage recovery.
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