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Abstract

The demands of increasingly latency-sensitive applications create challenges for pervasive mo-

bile devices/robots to execute the involved computation-intensive tasks in a resource-efficient

manner. Cooperative human-agent-robot teamwork (HART) holds promise to serve as a pow-

erful paradigm to tackle the challenges of real-time task execution of mobile devices/robots.

Integrated fiber-wireless (FiWi) enhanced networks play a pivotal role in ensuring quality-

of-service (QoS) for several HART-centric applications due to their coverage and capacity

advantages. In this work, integrated FiWi access networks consist of optical fiber (Ethernet

passive optical network or EPON) and wireless (wireless local area network or WLAN) Ether-

net technologies, which are integrated with their cellular counterparts, namely, 4G Long Term

Evolution Advanced (LTE-A), to give rise to FiWi enhanced LTE-A heterogeneous networks

(HetNets).

To unleash the full potential of HART task coordination over FiWi enhanced 4G networks,

this thesis first provides a detailed study of recent progress, enabling technologies, and briefly

describes important open research challenges. To render the human-to-robot task allocation

process more efficient, this thesis presents a local and non-local human-to-robot task allocation

scheme for FiWi-based infrastructures according to several key design parameters such as the

availability, skill set, distance to task location, minimum task processing time, and remaining

energy of robots. To reduce failures during task execution, a neighboring robot assisted

failure reporting mechanism is also proposed. Our obtained results show that, compared with

traditional priority-based schemes, a task execution time efficiency of 18% can be achieved in

our proposed local and non-local human-to-robot task allocation scheme.

Due to limited computing, energy, and storage resources, robots can not always meet the

task execution time and energy consumption requirements of many delay-sensitive applica-

tions. To improve the energy efficiency of the selected host robot while satisfying a given

task deadline, this thesis presents a collaborative task execution scheme, in which the sensing

sub-task is conducted by a suitable host robot and the computation sub-task is offloaded onto

one of the suitable collaborative nodes consisting of central cloud, cloudlets, and neighboring

robots. The presented results demonstrate that for a typical task input size of 240 KB, the

collaborative task execution scheme decreases the task response time by up to 8.75% and the
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energy consumption by up to 14.98% compared to the only host robot based non-collaborative

task execution scheme.

Taking the idea of task offloading a step further, task migration among mobile HART mem-

bers has emerged as an important research topic to improve the quality of experience (QoE)

of mobile users (MUs) by minimizing their task execution time. Task migration broadens the

scope of conventional computation task offloading by not only transferring the task from an

MU onto the cloud, but also from one cloud server to another one for execution. Note, howev-

er, that task migration incurs an additional migration delay. Hence, for a given task migration

gain and latency overhead, the question of how and where an MU’s task should migrate to is

key. After describing the key features of physical vs. cognitive tasks and collaborative robot

(cobot) vs. stand-alone robot types, this thesis next investigates the problem of whether and,

if so, when and where a HART-centric task should be best migrated to. For resource-efficient

task execution, a context-aware task migration scheme is presented, in which the suitable

task migration decision is made by taking into account given task processing capabilities of

cloud/cloudlet agents and cobots, task execution deadline, user mobility, energy consumption

of involved collaborative robots (cobots) and mobile devices, and task migration latency. Our

obtained results show that for a typical task input data size of 600 MB, the cobot-to-agent

(c2a) task migration (cloudlet near task location) scheme exhibits up to 20% task response

time and 23% energy efficiency improvements over the traditional task execution without mi-

gration scheme. The results also indicate that in the case of an agent node failure, intra-agent

task migration offers a higher task response time gain than inter-agent migration.

Furthermore, to improve QoS for executing multiple HART tasks, the development of

real-time task scheduling mechanisms has emerged as an interesting research issue by taking

different real-time HART task properties, failure avoidance, and task processing capabilities

into account. Thus, to improve the HART task execution process, this thesis next presents a

community- and latency-aware HART task assignment scheme by using real-time information

about arriving task requests for both isolated and clustered robots/agents. More specifically,

a suitable multi-task scheduling scheme is presented for task on- and offloading based HART

task execution with task prefetching and fault tolerance capabilities. To reap the benefits from

task prefetching for executing multiple HART tasks, this thesis develops a novel prefetching-

aware bandwidth allocation scheme that copes with both conventional broadband and task

offloading data traffic at the same time. Next, a comprehensive analytical model is presented

to investigate the performance of our proposed community- and latency-aware task offloading

scheme in terms of mean task service time, delay and power saving ratio, task prefetching

time efficiency, task service time gain to overhead ratio, among others. Our obtained results
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show that for a typical system of 32 integrated optical network unit-mesh portal points (ONU-

MPPs) and a polling cycle time of 100 ms, our proposed task offloading scheme achieves up

to 31.3% and 32.7% task completion time gain over the task onloading scheme for nearby

and remote task execution, respectively. The results demonstrate that for a typical task

offload input data size of 500 MB, our proposed community- and latency-aware task offloading

scheme with task prefetching capability offers a 11% higher task service time gain to overhead

ratio than a conventional fetching based scheme. Our findings also suggest that for failure

avoidance, the proposed fault tolerance mechanism is more effective in the considered task

offloading scheme than the alternative failure recovery mechanism.

Given human users’ different preferences for real-time HART task execution, e.g., lower

delay and monetary cost, suitable HART task coordination has emerged as an important re-

search problem, taking dynamically changing cloud agent/robot resources, network bandwidth

utilization as well as delay-sensitive and delay-tolerant HART task properties into account.

To cope with these challenges, this thesis explores the synergy between caching, computation,

and communications for achieving cost-effective HART task execution. More precisely, to

minimize task execution delay and monetary cost, this thesis presents a user preference-aware

HART task coordination framework that selects the appropriate dedicated or non-dedicated

robot and cloud agent for given caching and computing HART task execution requirements.

To cope with varying bandwidth resources, this thesis proposes a proactive bandwidth allo-

cation policy for the execution of both delay-sensitive and delay-tolerant HART tasks. To

minimize the task execution delay of delay-sensitive users, our proposed delay cost saving

(DCS) based scheme selects suitable actors by using both dedicated and non-dedicated ac-

tors. Conversely, to minimize the monetary cost for delay-tolerant policy users, our proposed

monetary cost saving (MCS) scheme selects appropriate actors only from the set of dedicated

actors. Furthermore, this thesis also presents a proactive bandwidth allocation scheme that

assigns preemptive and non-preemptive bandwidth resources to DCS and MCS policy users,

respectively. Unlike alternative approaches, our findings indicate that the maximum through-

put and minimum delay (MTMD) based resource assignment policy is useful for both DCS and

MCS policy users due to its minimum task execution time and monetary cost. Our obtained

results show that for a typical number of 10 tasks and 8 available dedicated robots, the DCS

(MTMD) policy exhibits a 30.5% higher task execution time saving ratio and a 63.6% lower

monetary cost saving ratio than the MCS (MTMD) policy. Our proposed user preference

aware HART task coordination policy thus represents a promising solution to reduce both

task execution delay and monetary cost for emerging Tactile Internet applications.

Keywords: Caching, Cloud Computing, Computation Offloading, Collaborative Com-

puting, Delay Cost Saving, Dynamic Bandwidth Allocation (DBA), Energy Efficiency, Fail-
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ure Avoidance, Fiber-Wireless (FiWi) Enhanced Networks, Human-Agent-Robot Teamwork

(HART), Human-to-Robot Communication (H2R), Human-Machine Co-activity, Internet-of-

Things (IoT), Mobile-Edge Computing (MEC), Monetary Cost Saving, Tactile Internet, Task

and Resource Scheduling, and Task Migration.
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Résumé

Introduction et motivation

L’avènement de robots/machines télécommandés disponibles sur le marché peut être le précurseur

d’une ère de convergence technologique, où les tâches de notre vie quotidienne (par exemple,

l’assistance cognitive) seront de plus en plus souvent accomplies par des robots/machines

qui nous permettent de voir, d’entendre, de toucher et de manipuler des objets dans des en-

droits où nous ne sommes pas physiquement présents. Dans divers systèmes cyber-physiques

(CPSs, pour ‘cyber-physical systems’) qui exploitent l’interaction homme-machine en temps

réel (par exemple, formation à distance, opérations de sauvetage essentielles à la mission),

une latence aller-retour extrêmement faible est nécessaire pour faire correspondre l’interaction

humaine à l’environnement. Cette vision de l’Internet est maintenant largement connue sous

le nom d’Internet tactile, qui a récemment émergé pour diriger/contrôler les objets virtuels

et physiques de notre entourage et de notre environnement et nous permettre de transmettre

le toucher et l’action en temps réel [1],[2]. En offrant des communications à faible latence,

l’Internet tactile devrait couvrir un large éventail de domaines d’application, y compris les soins

de santé à distance, la conduite autonome ou assistée, le divertissement, et l’automatisation

industrielle [3],[4]. Dans la plupart de ces secteurs verticaux, une latence très faible et une

très grande fiabilité sont essentielles pour la réalisation d’applications immersives telles que la

téléopération robotique [5], [6].

Il existe un chevauchement important entre l’Internet des objets (IoT, pour ‘Internet of

Things’), la 5G et la vision Tactile Internet, bien que chacune d’entre elles présente des car-

actéristiques uniques. Les principales différences peuvent être mieux exprimées en termes

de paradigmes de communication sous-jacents et de dispositifs finaux habilitants. L’IoT re-

pose sur la communication M2M (M2M, pour ‘machine-to-machine’), l’accent étant mis sur

les dispositifs intelligents (capteurs et actionneurs, par exemple). En coexistence avec la

communication de type machine (MTC, pour ‘machine type communication’) émergente, 5G

maintiendra son paradigme traditionnel de communication d’homme à homme (H2H, pour

‘human-to-human’) pour les services triple play conventionnels (voix, vidéo, données) avec un

accent croissant sur l’intégration avec d’autres technologies sans fil (notamment le WiFi) et
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la décentralisation. Inversement, l’Internet tactile sera centré sur les communications homme-

machine/robot (H2M/R) (H2M, pour ‘human-to-machine’) en tirant parti des dispositifs tac-

tiles/haptiques. Malgré leurs différences, l’IoT, le 5G et l’Internet Tactile semblent converger

vers un ensemble commun d’objectifs de conception importants : très faible latence, ultra-

haute fiabilité avec une disponibilité presque garantie de 99,999%, coexistence H2H/M2M,

intégration de technologies centrées sur les données avec un accent particulier sur le WiFi et

la sécurité. Contrairement à l’Internet mobile et à l’IoT, l’Internet tactile facilitera les com-

munications haptiques en fournissant le moyen de transporter les sens haptiques (c’est-à-dire

le toucher et l’actionnement) en temps réel en plus des données non haptiques classiques, de

la vidéo et du trafic audio.

Les applications basées sur la communication H2M/R en temps réel sont sensibles à la

latence de bout en bout vécue pendant le processus de communication entre les opérateurs

humains et les robots/machines télécommandés. Pour réaliser des applications Internet tactile

à faible latence de bout en bout, le cloud computing au bord du réseau d’accès radio mobile

appelé cloudlet représente une solution prometteuse [7]. La recherche sur le cloudlet a eu

tendance à se concentrer sur le WiFi dans le passé, bien qu’il y ait eu récemment un intérêt

croissant parmi les opérateurs de réseaux cellulaires. L’importance des nuages peut être con-

statée dans de nombreuses applications centrées sur l’interaction homme-machine sensibles à

la latence, telles que la réalité augmentée, l’assistance cognitive en temps réel ou la reconnais-

sance des visages sur les appareils mobiles. En septembre 2014, l’initiative de l’industrie de

l’informatique mobile (MEC, pour ‘mobile-edge computing’) a introduit une architecture de

référence afin d’identifier les défis qui doivent être surmontés pour faciliter la mise en œuvre

des serveurs cloudlet [8]. MEC fournit des capacités informatiques et de l’informatique cloud

dans le réseau d’accès radio (RAN, pour ‘radio access network’) à proximité des abonnés mo-

biles. On s’attend à ce que la mise en cache avancée, le déchargement des calculs et la gestion

du trafic axée sur l’utilisateur à la périphérie des réseaux sans fil réduisent non seulement la

charge de trafic de liaison terrestre, mais aussi améliorent la latence des applications Internet

tactiles.

Les applications d’Internet tactile posent des exigences élevées pour les futurs réseaux

d’accès en termes de latence, de fiabilité et de capacité. Pour atteindre les exigences clés du

5G et de l’Internet tactile de très faible latence et d’ultra-haute fiabilité, dans [9], les auteurs

ont proposé le concept de réseaux LTE-A HetNets améliorés de FiWi qui unifie les réseaux

mobiles 4G centrés sur la couverture et les réseaux d’accès à large bande à fibre optique et

sans fil (FiWi, pour ‘fiber-wireless’) centrés sur la capacité, basés sur les technologies de fibre

optique centrées sur les données et d’Ethernet sans fil. Au moyen d’analyses probabilistes et

de simulations de vérification basées sur des traces récentes et complètes de smartphones, les
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auteurs ont montré qu’une latence moyenne de bout en bout de 1 à 10 ms et une disponibilité

presque garantie peuvent être obtenues grâce au partage de la fibre optique et aux capacités de

déchargement WiFi. Notez, cependant, que seules les communications H2H conventionnelles

ont été prises en compte dans [9] sans aucune communication H2R (H2R, pour ‘human-to-

robot’)ou M2M coexistante. Pour réaliser des communications H2R à faible latence dans

l’Internet Tactile, nous avons discuté dans [5] du rôle de plusieurs technologies habilitantes

clés, y compris les réseaux LTE-A HetNets améliorés de FiWi, les cloudlets, la robotique dans

les nuages, le codage de réseau, les réseaux définis par logiciel (SDN, pour ‘software-defined

networking’), et les communications de machine à cloud (M2C, pour ‘machine-to-cloud’), entre

autres. De plus, en tirant parti du haut débit, de la fiabilité, et en particulier, de la perfor-

mance à retardement des réseaux HetNets LTE-A améliorés de FiWi, nous avons signalé que

les infrastructures multirobots intégrées de FiWi basées sur des cloudlets décentralisés seront

essentielles pour la coordination des applications Internet tactiles basées sur les communica-

tions H2R. Pour le déploiement rentable des applications Internet tactile, nous avons également

identifié plusieurs défis de recherche importants tels que la conception de techniques adapta-

tives de gestion des ressources de bande passante pour le support du trafic H2H et H2R sur les

réseaux améliorés FiWi avec une bonne coordination des services, des stratégies d’allocation

des tâches H2R (planification optimale en ligne/hors ligne), le traitement des pannes et la

gestion de la mobilité, entre autres. La figure R.1 résume les caractéristiques, les technologies

habilitantes et les défis pour la réalisation d’applications Internet tactiles en temps réel.

Outre la communication haptique, un autre aspect distinct de l’Internet tactile est le fait

qu’il devrait amplifier les différences entre les machines et les humains et entrâıner la symbiose

entre l’homme et la machine. En s’appuyant sur les zones où les machines sont fortes et les

humains faibles, l’Internet tactile tire parti de leur autonomie “coopérative” et “collaborative”

de telle sorte que les humains et les robots se complètent. À l’avenir, le travail en commun avec

des machines (par exemple, des robots) favorisera les grappes géographiques de production

locale (“inshoring”) et nécessitera une expertise humaine dans la coordination de la symbiose

homme-machine pour inventer de nouveaux emplois que les humains peuvent difficilement

imaginer et ne savaient même pas qu’ils voulaient faire [6]. Contrairement à l’IoT qui s’appuie

sur ses communications M2M sous-jacentes sans aucune implication humaine, l’Internet tactile

implique la nature inhérente de l’interaction haptique HITL (HITL, pour ‘inherent human-

in-the-loop’) et permet ainsi une approche de conception coopérative homme-machine vers la

création et la consommation de nouvelles expériences immersives via l’Internet [10].

Dans “DeepThinking : Where Machine Intelligence Ends and Human Creativity Begins,”

Garry Kasparov explique l’importance d’un processus supérieur dans la collaboration homme-

machine, montrant que la faiblesse humaine + machine + meilleur processus est supérieur
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Figure R.1: L’Internet tactile : applications, défis, et technologies habilitantes.

à la force humaine + machine + processus inférieur. Ainsi, un processus intelligent bat des

connaissances supérieures et une technologie supérieure.

Une approche prometteuse pour atteindre une coordination homme-machine avancée au

moyen d’un processus supérieur pour orchestrer avec fluidité la co-activité homme-machine

peut être trouvée dans le domaine encore jeune de la recherche sur le travail en équipe homme-

agent et robot (HART, pour ‘Human-Agent-Robot Teamwork’), dont l’objectif spécifique est

de garder les humains dans la boucle plutôt qu’en dehors de la boucle [11]. Historiquement,

HART étend l’approche dite humains-are-better-at/machines-are-better-at (HABA/MABA),

qui assigne des tâches soit aux humainsou aux machines, alors que HART se concentre sur

la façon dont les humains et les machines pourraient travailler ensemble. En ce qui concerne

l’interaction homme-machine sous-jacente dans les applications d’Internet tactile HART, le

principal défi est d’orchestrer la meilleure façon d’exécuter les tâches de concert. La col-

laboration et la communication entre les membres de HART sont essentielles pour faire face

aux changements dynamiques dans l’environnement des tâches, améliorant ainsi la latence

d’exécution des tâches. Il est à noter que les activités interdépendantes des membres de HART

peuvent entrâıner une complexité accrue et une consommation accrue de ressources. Pour fa-

ciliter l’exécution efficace des tâches HART, la recherche dans le domaine de la coordination

centralisée/décentralisée des réseaux, la gestion adaptative des ressources en bande passante

pour la coexistence du haut débit traditionnel et du trafic de déchargement, l’attribution des
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Figure R.2: Aperçu des principaux défis de la coordination HART sur l’Internet tactile.

tâches en cas de panne, l’énergie, le temps et les politiques de déchargement des tâches en

fonction des coûts énergétiques, ainsi que la coordination des tâches et des ressources devi-

ennent obligatoires. Les principaux défis de la coordination des tâches HART sur l’Internet

tactile sont décrits à la figure R.2.

Objectifs

Les objectifs de cette thèse sont les suivants :

� L’obstacle crucial au déploiement réussi d’applications Internet tactiles locales et non

locales est l’absence de stratégies appropriées de répartition des tâches entre les robots.

La plupart des études existantes d’attribution de tâches multi-robots se concentrent sur

un seul ou quelques paramètres pour la sélection du robot, par exemple, l’énergie d’un

robot ou la distance jusqu’à l’emplacement de la tâche. Il est clair que les applications

Internet tactiles basées sur les communications H2R en temps réel exigent des schémas

avancés de sélection de robots, dans lesquels des paramètres supplémentaires doivent être

pris en compte tels que les robots hétérogènes et les propriétés des tâches (par exemple,

l’emplacement des robots et des tâches, la consommation d’énergie des robots, la charge
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de travail des tâches, et les délais). De plus, l’absence de stratégies appropriées de

surveillance des défaillances des robots pendant l’exécution des tâches et des stratégies

d’allocation des ressources pourrait entrâıner une augmentation des délais d’exécution

des tâches et de la consommation d’énergie des robots. Un certain nombre de questions

de recherche telles que (i) comment les demandes de tâches humaines sont arrivées au

réseau de robots et (ii) comment les robots sont au courant de toutes les demandes de

tâches ont été largement négligées dans les études précédentes. Ainsi, le premier objectif

de ce travail est de concevoir un mécanisme efficace d’attribution de tâches H2R locales

et non locales qui évitent les défaillances et un schéma unifié de gestion des ressources

qui minimise le temps d’exécution des tâches et la consommation d’énergie des robots

dans les infrastructures Internet tactiles basées sur FiWi.

� Avoir une sélection de robot appropriée pour satisfaire les demandes d’exécution de

tâches des utilisateurs mobiles peut ne pas être suffisant pour éviter les échecs d’exécution

de tâches en raison de contraintes de ressources données (par exemple, capacités de

traitement des tâches, stockage, ou énergie restante) du robot sélectionné. Notez que

les appareils mobiles/robots peuvent surmonter leur problème de pénurie de ressources

en utilisant les ressources des agents cloud collaboratifs. Ce type d’exécution de tâche

est également connu sous le nom de calcul collaboratif, où un robot aux ressources

limitées transfère sa tâche de calcul à un autre agent cloud plus puissant ou à un robot

proche pour exécution. Actuellement, la recherche dans le domaine du cloud computing

d’infrastructure et de l’exécution de tâches collaboratives sans infrastructure HART

centric sur les infrastructures FiWi fait défaut dans la littérature existante. Ainsi, pour

améliorer le temps d’exécution des tâches et l’efficacité de la consommation d’énergie

des robots/appareils mobiles à ressources limitées, le deuxième objectif de cette thèse

est de proposer un schéma de calcul collaboratif qui sélectionne conjointement un nœud

hôte approprié et un nœud d’agent cloud collaboratif pour exécuter différentes tâches

HART. Un autre objectif majeur de cette partie de la thèse est d’étudier un schéma unifié

d’allocation de bande passante pour gérer le trafic de données à large bande conventionnel

et de déchargement des tâches de calcul sur des infrastructures Internet tactiles basées

sur FiWi.

� Les services de cloud computing collaboratif permettent aux appareils mobiles à ressources

limitées de décharger leurs tâches de calcul intensives sur des serveurs/substituts plus

puissants pour le traitement. Par conséquent, l’un des principaux défis du cloud comput-

ing est de minimiser la latence d’exécution des tâches des utilisateurs mobiles. De plus,

en raison des ressources variables dans le temps et des temps d’attente plus longs dans

xiii



un serveur cloud (agent), le serveur cloud initialement sélectionné peut ne pas toujours

satisfaire aux exigences d’exécution des tâches de déchargement (p. ex., date limite).

Ainsi, pour répondre aux exigences d’exécution des tâches de déchargement, la tâche

déchargée d’une MU doit être migrée d’un serveur cloud à un autre pour être exécutée.

Notez qu’en tenant compte de la charge du serveur cloud, des exigences des tâches, des

latences de migration des tâches et de la mobilité des utilisateurs, l’une des questions

de recherche fondamentales pour l’exécution de tâches centrées sur HART consiste à

savoir si une tâche migre ou non avec la MU. Ainsi, en tenant compte de la mobilité des

utilisateurs, des différentes tâches, et des propriétés des nœuds collaboratifs, le troisième

objectif de cette thèse est de proposer une stratégie de migration des tâches en tenant

compte du contexte pour l’exécution collaborative des tâches dans les infrastructures

Internet tactiles basées sur FiWi.

� Les avantages du pré-transfert/pré-migration de tâches et de la connaissance des ressources

des communauté-cluster n’ont pas été explicitement étudiés pour le déchargement de

plusieurs HART tâches sur des infrastructures améliorées FiWi. De plus, l’ordre la

planification optimale des tâches par rapport aux ressources et la sélection du service

d’évitement des pannes pour l’exécution de tâches HART basées sur le chargement et

le déchargement des tâches sont absentes de la littérature existante. Ainsi, en tenant

compte à la fois des capacités de transfert préalable et de tolérance aux pannes ainsi que

de la connaissance des ressources des cluster communautaires, le quatrième objectif de

cette thèse est de concevoir un schéma de planification multi-tâches adapté à la commu-

nauté et à la latence pour l’exécution de tâches HART basées sur le chargement et le

déchargement des tâches.

� Le cinquième objectif de cette thèse est de développer un schéma de coordination des

tâches HART prenant en compte les préférences des utilisateurs. Notez que la recherche

dans le domaine de l’exécution des tâches HART prenant en compte les préférences des

utilisateurs en est encore à ses débuts. À l’heure actuelle, aucune étude existante ne traite

du problème de la mise en cache et informatique sensibles aux délais et tolérants aux

retards des HART tâches l’exécution en tenant compte de la connaissance des ressources

des robots/agents dédié et non dédié et de l’allocation de bande passante basée sur

la priorité préemptif. En tenant compte de différent préférences des MUs tels que le

réduction des coûts monétaires et/ou retard pour l’exécution sensibles aux délais et

tolérants aux retards des HART tâches, l’objectif final de cette thèse est de développer

une stratégie appropriée de coordination des tâches HART et un schéma d’allocation

des ressources proactif.
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Figure R.3: Méthodologie de recherche.

Méthodologie de recherche

La méthodologie de recherche appliquée dans cette thèse comprend la modélisation des réseaux,

la conception des mécanismes de coordination ainsi que la modélisation analytique et l’analyse

des performances (voir Fig. R.3) et est décrite plus en détail ci-dessous:

� Architecture de réseau: Dans cette thèse, de multiples nouvelles architectures de

réseau sont développées pour différents schémas de coordination des tâches centrés sur

HART. Une approche descendante est envisagée, où les différentes exigences de tâches

sont d’abord étudiées, puis l’infrastructure réseau est conçue pour répondre aux exigences

de service. Il est important de noter que les fonctionnalités des réseaux de communi-

cation, les procédures d’attribution des tâches et des ressources, les technologies, et les

protocoles sont étudiés. Les topologies basées sur les arbres et les mailles sont prises en

compte dans la conception d’infrastructures Internet tactiles intégrées FiWi améliorées.

� Conception de mécanismes: Pour obtenir des performances optimales, différents

algorithmes novateurs sont développés pour l’exécution collaborative de tâches HART

dans les infrastructures améliorées FiWi. Plus particulièrement, les mécanismes pro-

posés comprennent une stratégie unifiée d’allocation des ressources, la sélection d’un

robot et d’un agent cloud pour exécuter différentes tâches HART, un ordre de plan-

ification multitâche optimal, un schéma de rapport de pannes ainsi qu’un algorithme

d’allocation dynamique de bande passante (DBA, pour ‘dynamic bandwidth allocation’)

tenant compte du transfert préalable au courant de tâches.
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� Analyse des performances: Dans ce travail, une analyse du rendement est effectuée

basé sur différents modèles de files d’attente (par exemple, M/G/1, M/M/M/1, M/M/1,

M/M/c), d’outils analytiques, de formules mathématiques (par exemple, Erlang-C, dis-

tance euclidienne, temps moyen d’accès à la mémoire ou formule AMAT (AMAT, pour

average memory access time), de distributions de probabilités (par exemple, aléatoires

uniformes, Zipf), et d’hypothèses (par exemple, hypothèses de tests binaires). Pour

évaluer la performance du système selon différents scénarios, la performance de simula-

tion analytique et de vérification est examinée pour un large éventail d’indicateurs de

performance et de paramètres de système variables.

Contributions de la thèse

Cette thèse est basée sur un total de huit publications scientifiques (revues et magazines de

l’IEEE). Les principales contributions de cette thèse sont examinées ci-après.

Allocation de tâches H2R locales et non locales prenant en charge
les évitement d’échec dans les infrastructures Multi-Robot FiWi

Pour le déploiement réussi d’applications H2R, une répartition efficace des tâches entre les

robots est essentielle, ce qui s’est révélé être un sujet de recherche intéressant en tenant

compte d’une grande variété de tâches et de types de robots, de l’emplacement des tâches,

de la disponibilité des robots, de la capacité et de l’échec lors de l’exécution des tâches.

Les solutions actuelles d’attribution des tâches robotiques souffrent généralement de plusieurs

inefficacités au cours de l’exécution des tâches (par exemple, temps d’exécution des tâches

et gaspillage d’énergie des robots) en raison de l’absence de mécanismes de robots sélection

appropriés et de mécanismes de contrôle appropriés. L’hétérogénéité des robots et des types

de tâches rend la répartition des tâches encore plus difficile. Pour accélérer le processus

d’exécution des tâches robotiques en temps réel et réduire la consommation d’énergie des

robots à ressources limitées, l’utilisation des services robotiques pour les tâches humaines doit

se faire d’une manière plus efficace en termes de ressources. La plupart des études antérieures

ne tiennent compte que d’un seul paramètre pour la sélection du robot, par exemple, la

distance et l’énergie résiduelle. Un certain nombre de paramètres supplémentaires, tels que la

compétence du robot, la disponibilité, et le temps d’exécution des tâches, doivent également

être pris en compte. Dans le passé, un certain nombre d’aspects importants de l’allocation des

ressources et de la mise en réseau des tâches robotiques liés à des questions clés de conception,

y compris, mais sans s’y limiter: (i) comment les demandes de tâches humaines arrivent aux

réseaux de robots, (ii) comment récupérer des pannes de robots, et (iii) comment s’assurer
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que les robots sont conscients de toutes les demandes de tâches ont été largement négligés

dans les études précédentes.

Pour surmonter les défis susmentionnés, ce travail développe une architecture réseau multi-

robot basée sur FiWi qui coordonne l’attribution des tâches entre les humains, les robots, et

les agents. Pour attribuer efficacement la tâche locale et non locale d’un utilisateur humain

donné à un robot approprié, ce travail propose un algorithme de sélection du robot basé

sur la distance, l’énergie résiduelle ainsi que sur la capacité, et la disponibilité du robot.

Il introduit un mécanisme de signalement des pannes assisté par robot voisin pour éviter les

échecs d’exécution des tâches. Pour faciliter l’attribution des tâches H2R locales et non locales

en même temps sur notre infrastructure réseau FiWi proposée, ce travail propose un système

unifié d’attribution des ressources basé sur l’accès multiple à répartition dans le temps (TDMA,

pour ‘time-division multiple access’). En utilisant l’hypothèse de test binaire, ce travail étudie

le taux d’erreur de détection du robot de trois règles de fusion différentes (AND, OR, et

Majorité) et examine leur efficacité respective pendant le processus de détection de défaillance

du robot. Ce travail modélise le délai de transmission de trame maximum en amont (US,

pour ‘upstream’) et en aval (DS, pour ‘downstream’) sur la base d’un modèle de file d’attente

M/G/1 avec réservations et vacances. En tenant compte du délai de transmission des trames

(US et DS) et du délai de sélection des robots, ce travail analyse à la fois le délai d’attribution

des tâches locales et non locales de bout en bout. Un modèle analytique complet est présenté

pour évaluer la performance de notre schéma proposé avec deux schémas d’allocation de tâches

généralisées, c’est-à-dire la sélection de robot basée sur la distance minimale (MD) [12]-[13] et

la sélection de robot basée sur la priorité (PS) [14]-[15]) en termes de débit, de délai d’allocation

de tâches, de temps d’exécution, et d’énergie résiduelle. Ce travail étudie le compromis entre

le délai d’attribution des tâches et le débit du système. De plus, la complexité temporelle de

l’algorithme d’allocation des tâches proposé est également analysée. La figure R.4(a) compare

l’efficacité du temps d’exécution des tâches de notre méthode MET proposée avec celle des

approches traditionnelles MD et PS pour des charges de travail variables.

La figure montre que l’efficacité maximale réalisable du temps d’exécution des tâches de

notre schéma de sélection de robot proposé par rapport au schéma de sélection traditionnel

basé sur PS et MD est respectivement de 11% et 18%. Ceci est dû au fait que l’approche

MD sélectionne un robot approprié pour chaque tâche en fonction de la distance la plus faible

par rapport à un emplacement de tâche donné. Inversement, le schéma PS attribue une tâche

donnée au robot ayant l’ID le plus bas ou en utilisant le robot et l’appariement des tâches.

Notre approche proposée d’allocation des tâches MET sélectionne un robot sur la base du

calcul préalable du temps minimum d’exécution des tâches qui inclut le délai d’allocation des

tâches des robots, le temps de traversée de l’emplacement des tâches, le temps d’occupation des
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(c) (d)

Figure R.4: Efficacité du temps d’exécution des tâches, délai d’allocation, et évaluation du
taux d’erreur de détection.

robots, et le temps de traitement de la charge de travail des tâches. La figure R.4(b) illustre la

variation du taux d’erreur de détection de défaillance des robots pour varier le seuil d’énergie

de signal (λ) pour la détection de défaillance du robot sélectionné. Cette figure compare

trois règles de fusion différentes (n sur k rapports de défaillance des voisins coopératifs) afin

d’identifier leur efficacité respective. Nous observons que les règles AND (n = k), Majorité

(n ≥ k
2
), et OR (n = 1) basées sur la détection coopérative des défaillances atteignent un

taux d’erreur minimal pour un seuil d’énergie de signal de détection faible, moyen et grand,

respectivement. Ainsi, les règles AND, Majorité et OR sont optimales pour un seuil d’énergie

de signal de robot faible, moyen et grand, respectivement. Ensuite, les délais d’attribution

des tâches de bout en bout non locales (Dnon−local) et locales (Dlocal) pour différents nombres

d’utilisateurs (M) et charges de trafic (ρh2r) sont évalués dans les Fig. R.4(c) et Fig. R.4(d),

respectivement. Les deux retards (Dlocal and Dnon−local) augmentent avec la charge de trafic

(ρh2r) et le nombre différent d’ONU (N) dans le système que nous proposons. Dnon−local

connâıt un délai d’attribution des tâches plus élevé que Dlocal. Ceci est dû au fait qu’à côté
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du délai de sélection du robot (talloc), Dnon−local dépend à la fois des délais de transmission des

trames US (Du) et DS (Dd), tandis que Dlocal dépend uniquement du délai de transmission

des trames US (Du).

l’informatique collaborative pour les communications Internet tac-
tiles avancées H2R dans les infrastructures intégrées FiWi Multi-
robot

Avec l’émergence de l’Internet tactile et l’avènement des robots télécommandés, la bonne

répartition des tâches entre les robots a attiré une attention significative pour permettre

des applications et des services robotiques basés sur le paradigme de communication H2R.

Cependant, les ressources limitées de calcul, d’énergie et de stockage des robots peuvent

entraver le lancement réussi de telles applications. Pour combler ces lacunes, les appareils

mobiles/robots sollicitent de plus en plus souvent l’aide de nœuds de collaboration (p. ex.,

l’informatique cloud mobile, les communications entre appareils mobiles) pour exécuter leurs

tâches de calcul, une tendance également connue sous le nom de cueillette informatique [16] ou

d’informatique collaborative [17], [18]. Malgré les progrès récents dans l’exécution des tâches

robotiques, l’impact des schémas d’exécution de tâches conjointes qui tiennent compte à la fois

du robot hôte et des nœuds collaboratifs (p. ex., cloud central ou cloudlet) pour le processus

d’exécution des sous-tâches de détection et de calcul indépendant de l’emplacement n’a pas

été examiné suffisamment en détail auparavant. Pour plus de clarté, notez que la communica-

tion homme-robot-agent basée sur l’exécution complète des tâches se compose généralement

de deux sous-parties. La première comprend le traitement initial ou la sous-tâche de surveil-

lance physique dépendant de l’emplacement (par exemple, la capture d’une image), qui ne

peut être exécutée que par le robot hôte sélectionné situé dans la zone de tâche donnée. La

deuxième sous-partie de la tâche implique le calcul/traitement indépendant de l’emplacement

des données capturées (p. ex., détection d’images/de visages), qui peut être effectué par le

robot hôte lui-même ou ou bien être déchargé sur des nœuds cloud collaboratifs (indépendants

de l’emplacement).

La plupart des études antérieures considéraient soit l’attribution d’une tâche complète

(c’est à dire., les sous-parties de détection/surveillance physique et de calcul) à un robot,

soit le déchargement du calcul (c’est à dire., la sous-partie de la tâche complète) sur des

nœuds cloud (cloud central et cloudlet local) pour exécution, et non les deux. Par conséquent,

la question de savoir comment assigner une tâche de détection/surveillance physique et de

calcul locale ou non locale à un robot hôte et à un serveur cloud en tenant compte des

différentes tâches et types de robots avec leur consommation d’énergie, leur disponibilité, la

distance du robot à l’emplacement de la tâche, le traitement, et la vitesse de déplacement, la
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(a) (b)

Figure R.5: (a) Structure temporelle et format de la trame de contrôle et (b) étapes
opérationnelles du processus de déchargement des calculs.

disponibilité des ressources cloud demeure un défi de recherche ouvert. En outre, différentes

situations difficiles doivent être étudiées pour obtenir de meilleures performances, lorsque les

deux nœuds cloud/cloudlets collaboratifs peuvent satisfaire ou ne pas satisfaire aux exigences

de déchargement des calculs.

Pour relever certains des défis susmentionnés, ce travail développe une stratégie efficace

d’attribution des tâches qui inclut la sélection d’un robot hôte et d’un nœud collaboratif appro-

prié dans les réseaux multi-robots intégrés de FiWi. Nous proposons d’utiliser non seulement

le cloud central et les cloudlets locaux comme nœuds de collaboration, mais aussi les robots

voisins disponibles pour le déchargement des sous-tâches de calcul. Pour réaliser des économies

d’énergie maximales des robots et accomplir les tâches dans les délais requis, l’objectif prin-

cipal de ce travail est de sélectionner la politique appropriée pour l’exécution des tâches de-

mandées par les humains en évaluant la performance du schéma d’exécution des tâches non

collaboratives, dans lequel le robot hôte sélectionné exécute la tâche complète (sous-tâche de

détection et de calcul), et le schéma d’exécution collaborative/conjointe, dans lequel le robot

hôte sélectionné exécute seulement la sous-tâche de détection tandis que le nœud collaboratif

sélectionné exécute la sous-tâche de calcul via le déchargement de calcul. En outre, ce travail

propose un schéma unifié de gestion des ressources capable de gérer le trafic à large bande

conventionnel coexistant et le trafic de données déchargé par calcul. Le schéma de gestion des

ressources proposé utilise un système d’accès multiple par répartition dans le temps à deux

couches dans les sous-réseaux optiques et sans fil. La structure générale du chronométrage

est divisée en trois parties: (i) la sélection initiale du robot pour l’attribution des tâches, (ii)
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Figure R.6: Temps de réponse aux tâches et évaluation de la consommation d’énergie des
différents systèmes collaboratifs/conjoints et non collaboratifs.

le créneau horaire assigné pour le trafic à large bande conventionnel des utilisateurs associés,

et (iii) les transmissions de données déchargées. La figure R.5 illustre la structure temporelle

proposée et le processus de déchargement par calcul. Pendant la phase initiale d’attribution

des tâches, l’agent situé à l’ONU-MPP échange trois messages de contrôle (RTS, CTS, and

ACK)avec ses robots associés pour sélectionner un robot approprié pour chaque demande de

tâche complète arrivée. L’agent sélectionne ensuite un robot hôte approprié avec un temps

de réponse minimal pour chaque tâche qui contient à la fois des sous-parties de détection et

de calcul en fonction de leur disponibilité, du seuil d’énergie pour effectuer la tâche et des

critères de délai d’exécution de la tâche. Le robot hôte sélectionné exécute d’abord la partie

détection/surveillance physique de la tâche (dépend de l’emplacement). Si le robot hôte envoie

une demande de déchargement de sous-tâche de calcul à l’agent (emplacement indépendant),

l’agent sélectionne un nœud collaboratif approprié pour l’exécution de la sous-tâche de calcul

(sous-partie restante) sur la base des critères suivants: (i) le temps de réponse de la sous-tâche

de calcul du nœud collaboratif est inférieur ou égal à la date limite de la sous-tâche de calcul,

(ii) la disponibilité de ressources suffisantes, et (iii) la consommation d’énergie minimale.

Les figures R.6(a) et R.6(b) illustrent le temps total de réponse aux tâches (délai prévu de

traitement des tâches après l’assignation des tâches) et la consommation d’énergie du robot

hôte des différents schémas d’exécution des tâches pour le scénario 1. Dans le scénario con-

sidéré, on suppose que le cloud central et le cloudlet ont la même capacité de calcul/puissance

du CPU. Les chiffres montrent que le temps de réponse aux tâches et la consommation d’énergie

du robot hôte augmentent pour augmenter la taille des données d’entrée des tâches dans tous

les schémas d’exécution des tâches proposés. La figure montre que le robot hôte et le robot

voisin basé sur un schéma d’exécution conjointe de tâches montre un temps de réponse de
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tâche plus élevé que le robot hôte et le cloud central basé schéma d’exécution conjointe de

tâches et ne parvient pas à respecter la date limite de la tâche. C’est parce que la puissance

CPU du robot voisin (500MHz) est inférieure à la puissance CPU du cloud central (3200MHz).

Ainsi, le délai de traitement des sous-tâches de calcul est beaucoup plus élevé dans le robot

voisin que celui de l’exécution du cloud central. En outre, les figures R.6(a) et R.6(b) montrent

que le schéma d’exécution conjointe de tâches basé sur le robot hôte et le cloudlet dépasse

le schéma conjoint basé sur le robot hôte et le cloud central en termes de temps de réponse

aux tâches et de consommation d’énergie du robot hôte. Ceci est principalement dû au fait

que le cloudlet implique un délai de déchargement de calcul plus court que le cloud central.

Le schéma d’exécution conjointe de tâches basé sur le robot hôte et le cloudlet montre une

augmentation de 36%, 8%, 2% du temps de réponse des tâches et une efficacité énergétique de

3%, 15%, 2% plus élevée que le robot hôte et le robot voisin schéma d’exécution conjointe, du

robot hôte sans déchargement, et robot hôte et le cloud central schéma d’exécution conjointe,

respectivement. Ainsi, le schéma d’exécution conjointe de tâches basé sur le robot hôte et le

cloudlet est optimal pour le scénario considéré.

Schéma de migration de tâches HART centré sur des infrastructures
Internet tactiles basées sur FiWi

En poussant plus loin l’idée du déchargement des tâches, la migration des tâches est apparue

comme une approche prometteuse pour améliorer la qualité de l’expérience (QoE, pour ‘quality

of experience’) des utilisateurs mobiles (MU, pour ‘mobile users’) en minimisant le temps

d’exécution de leurs tâches [19]. La migration des tâches élargit la portée du déchargement

des tâches de calcul conventionnel en transférant non seulement la tâche d’une MU sur le

cloud, mais aussi d’un serveur cloud à un autre pour exécution. En général, la migration

des tâches entre serveurs cloud n’est considérée comme bénéfique que si le temps d’exécution

des tâches prévu au niveau du serveur cloud secondaire est inférieur à celui du serveur cloud

primaire [20]. Notez cependant que la migration des tâches entrâıne un délai de migration

supplémentaire. Par conséquent, pour un gain de migration de tâche et un temps de latence

donné, la question de savoir comment et où une tâche doit migrer est essentielle. Pour répondre

à cette question, plusieurs critères de décision de migration doivent être pris en compte, tels

que l’état des serveurs de destination actuels et provisoires, les propriétés des tâches et la

latence de migration des tâches, entre autres.

À l’heure actuelle, il n’existe que quelques études sur la migration collaborative des tâches

exploitant les agents basés sur le cloud, par exemple, la sélection des agents cloud pour la

migration des tâches basée sur la prédiction de la charge [21], le délai de service [22], la distance

[23], la disponibilité des ressources (c’est à dire., la vitesse du CPU et la charge de travail)
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Figure R.7: Infrastructure Internet tactile basée sur FiWi, basée sur des cloud-cloudlets in-
tégrés, des cobots, et des MU humaines pour la migration de tâches HART.

[24]-[25], l’emplacement de téléchargement des résultats des tâches des utilisateurs mobiles

[19], et la consommation d’énergie [26]. Notez que ces études existantes sur la migration des

tâches n’ont pris en compte que le problème de la migration des tâches d’une MU vers un

robot approprié ou vers un agent cloud, plutôt que les deux. Aucune des études existantes ne

s’est concentrée sur la participation/coopération active de tous les membres de HART, à savoir

les MU (humains), les agents (cloud central/cloudlet), et les robots collaboratifs (cobots), ce

qui est nécessaire pour l’exécution correcte des tâches HART impliquant à la fois des sous-

tâches physiques et cognitives. Une autre question ouverte est de savoir comment coordonner

la migration des tâches centrée sur HART de MUs vers les nœuds collaboratifs (cobots et

agents) et entre les nœuds collaboratifs (cobot vers agent ainsi que d’agent à agent).

Cette partie de la thèse vise à aborder certains des défis de recherche ouverts susmention-

nés dans le domaine de la migration des tâches. Nous introduisons d’abord une architecture

Internet tactile intégrée à deux niveaux cloud-cloudlet basée sur FiWi pour l’exécution de

tâches HART en tenant compte de la couverture cellulaire et WiFi (voir Fig. R.7). Après

avoir décrit les caractéristiques clés des tâches physiques vs. tâches cognitives et robot col-

laborative (cobot) vs robot autonome, ce travail présente un schéma de migration de tâches

HART approprié, prenant en compte les caractéristiques de différentes tâches (délai, charge de

travail, taille des données) et les caractéristiques de nœud collaboratif (disponibilité, vitesse

de traitement des tâches, énergie restante), et les caractéristiques de mobilité de l’utilisateur.
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Figure R.8: Temps de réponse des tâches, consommation d’énergie, efficacité du temps de
réponse des tâches, et évaluation des retards de bout en bout.

Plus précisément, ce travail analyse la performance de notre projet de migration de tâches

HART, en tenant compte de la migration de tâches inter-agents (cloud à cloudlet et vice

versa) et intra-agents (cloud à cloud et cloudlet à cloudlet) dans les infrastructures Internet

tactiles basées sur FiWi. Pour déterminer le schéma optimal de migration des tâches, nous

étudions les types suivants de schéma de migration des tâches en utilisant un certain nombre

de mesures de performance spécifiques à HART: (i) schéma c2a (cobot à un emplacemen-

t de tâche donné vers un agent cloudlet qui est proche de l’emplacement de la tâche), (ii)

schéma c2a (cobot vers agent cloudlet qui est proche de l’emplacement de téléchargement des

résultats de tâche de l’MU), (iii) schéma c2a (cobot vers cloud distant), (iv) pas de migration,

(v) schéma c2c (cobot vers voisin cobot) migration.

Les figures R.8(a)-(c) évaluent le temps de réponse aux tâches et l’évaluation de la con-

sommation d’énergie des différents schémas de migration des tâches en fonction de la taille

totale des données d’entrée des tâches. La figure montre que le temps de réponse aux tâches

et la consommation d’énergie de tous les schémas comparés augmentent pour augmenter la

taille des données d’entrée des tâches. Notez, cependant, que les schémas c2a (cloudlet près

de l’emplacement de la tâche) et c2a (cloudlet près de l’emplacement de téléchargement des

résultats) atteignent le temps de réponse minimum et la consommation d’énergie minimum de
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la tâche dans les scénarios 1 et 2, respectivement. Ceci est dû au fait que dans le scénario 1, la

taille des données d’entrée des tâches migrées (sci) est plus grande que la taille des données de

sortie des tâches migrées (sco), alors que dans le scénario 2, la relation entre la taille des données

d’entrée des tâches migrées et la taille des données de sortie est inversée. La relation inverse

entre la taille totale des données d’entrée et de sortie des tâches se traduit par une latence

minimale de migration des tâches (à la fois en amont et en aval) pour le schéma c2a (clouldet

près de l’emplacement des tâches) et c2a (cloudlet près de l’emplacement de téléchargement

des résultats) dans les scénarios 1 et 2, respectivement. Pour mettre en évidence l’impact de

la migration des tâches entre deux agents cloud, la figure R.8(d) compare l’efficacité du temp-

s de réponse des tâches des deux schémas différents : la migration inter-agent (du cloudlet

vers le cloud central) et intra-agent (du cloudlet vers un autre cloudlet). La figure montre

que la migration de l’agent intra-cloud offre un meilleur temps de réponse aux tâches que

son homologue de l’agent inter-cloud.Cela s’explique par le fait que la migration intra-agent

souffre d’une surcharge de communication de migration de tâches plus faible (dans le scénario

1). Ainsi, la migration intra-agent est plus préférable lorsqu’un échec se produit pendant

l’exécution de la tâche de l’agent.

La figure R.8(e) montre que le délai d’exécution de bout en bout des différents schémas

de migration des tâches reste faible pour une faible charge de trafic FiWi ρt, mais augmente

rapidement pour une charge de trafic plus élevée ρt. Notez que le délai d’exécution des tâches

de bout en bout est minimal dans le schéma de migration c2a (cloudlet près de l’emplacement

des tâches). Par exemple, pour une taille de données d’entrée de 300 Mo et une charge de

trafic FiWi de 0.8, la migration c2a (cloudlet près de l’emplacement de la tâche) offre un

délai d’exécution des tâches de bout en bout de 15% and 21% inférieur à celui du schéma

de migration de non-migration et c2c, respectivement. La figure R.8(f) illustre le retard

d’exécution de bout en bout des différents schémas de migration des tâches pour différents

temps de cycle d’interrogation Tc. La figure montre que pour les grands Tc, le délai d’exécution

des tâches des différents schémas de migration des tâches reste élevé, mais diminue rapidement

pour les petits Tc. Notamment, le schéma de migration c2a (cloudlet près de l’emplacement

des tâches) surpasse ses homologues en termes de délai d’exécution des tâches de bout en bout

et convient donc mieux à l’exécution de tâches HART sensibles aux retards.

Schéma de planification multitâche prenant en compte la commu-
nauté et la latence et le schéma d’allocation de bande passante basé
pré-transfert dans les réseaux améliorés FiWi

La majorité des politiques de planification des tâches existantes se concentrent sur le déchargement

de tâches numériques à forte intensité de calcul sur des serveurs cloud ou des appareil-
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Figure R.9: Allocation de ressources basée sur le transfert préalable pour le déchargement
multitâche.

s mobiles plutôt que sur les deux, ce qui fait qu’un nombre important de ces politiques

s’appliquent à la planification hors ligne. Pour ce faire, le planificateur de tâches doit dis-

poser d’informations a priori sur les tâches futures (p. ex., heure d’arrivée, date limite). Les

schémas d’ordonnancement hors ligne sont bien adaptés aux tâches périodiques, mais devien-

nent moins adaptés à l’exécution de tâches apériodiques en temps réel [25],[27]. En raison de

leurs besoins incertains en ressources cloud, l’exécution des tâches apériodiques en temps réel

exige un schéma de planification des tâches en ligne (dynamique) approprié pour maintenir les

assurances de qualité de service (QoS, pour ‘quality of service’). Les schémas de planification

des tâches en ligne inadéquats souffrent d’une latence importante de migration des tâches en

raison de l’indisponibilité des ressources des acteurs pour le traitement des tâches déchargées

[28]. De plus, l’absence d’une stratégie appropriée d’attribution de la bande passante peut

entrâıner des temps d’attente plus longs pour la transmission des données et la réception des

résultats pendant le déchargement des tâches. Ainsi, l’un des défis de l’ordonnancement des

tâches en ligne est de minimiser la latence d’exécution des tâches, y compris le traitement des

tâches et le délai de communication de déchargement, en atténuant l’incertitude de la gestion

des ressources en nuage/bande passante et l’évitement des pannes [29].

La plupart des études existantes sur le déchargement des tâches de calcul [17],[30],[25],[29]

appliquent la technique de migration conventionnelle, où la prochaine tâche de calcul d’une MU

donnée ne peut être transférée au serveur cloud qu’une fois la tâche précédemment déchargée.

Par conséquent, le transfert/migration conventionnel souffre d’une latence de déchargement

multitâche accrue. Pour surmonter ces lacunes dans le schéma du transfert/migration conven-

tionnel, nous proposons un schéma de gestion des ressources de bande passante conscient du

pré-transfert/pré-migration de tâches (voir Fig. R.9) pour décharger plusieurs tâches HART,
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où la totalité ou une partie des données d’entrée de la tâche suivante de MU est transférée au

serveur cloud pendant la période de calcul de la tâche précédemment déchargée.

Pour réduire la latence d’exécution des tâches, cette partie de la thèse propose un schéma

d’ordonnancement de tâches multiples à ressources qui prend en compte non seulement la

conscience de ressources l’hôte isolé et des cluster communautaire (robot/agent de cloud), mais

aussi bien le pré-transfert/ pré-migration du déchargement des tâches et le schéma d’évitement

des défaillances approprié pour l’exécution des tâches HART. Pour déterminer l’ordre optimal

de planification des tâches, cette partie de la thèse compare les schémas suivants: Premier

arrivé premier servi (FCFS), premier délai limite de la tâche en premier (EDF), et politique

concurrente (CP). Nous comparons la performance de nos schémas proposés de déchargement

de tâches en fonction des conscience de la communauté et conscience de la latence avec un

schéma de chargement de tâches, un schéma de déchargement de tâche à la aléatoire, et des

schéma de déchargement de tâche sensible à la communication en termes d’une variété de

métriques de performance spécifiques à HART.

Contrairement aux travaux précédents, notre système de planification des tâches proposé

effectue simultanément la sélection du robot/agent et l’assignation de la bande passante,

réduisant ainsi la latence d’exécution des tâches multiples. De plus, dans ce travail, la durée

totale du service des tâches HART est calculée en tenant compte du traitement de la charge

de travail, de la transmission et du délai d’attente. Afin d’éviter des frais supplémentaires

de traitement des tâches en raison d’une défaillance (par exemple, l’inaccessibilité des robot-

s/agents), nous concevons un schéma de sélection optimal pour éviter les défaillances. Plus

spécifiquement, dans notre schéma de chargement de tâches, les échecs d’exécution des tâches

peuvent se produire pendant le traitement complet des tâches d’un robot et le processus

de transfert des résultats. Inversement, dans notre schéma de déchargement des tâches,

les échecs d’exécution des tâches peuvent se produire pendant le traitement physique d’un

robot et le traitement des sous-tâches numériques d’un agent ou pendant le processus de

téléchargement des sous-tâches numériques et de téléchargement des résultats. Pour détecter

les défaillances pendant l’exécution des tâches, le planificateur de tâches de l’ONU-MPP diffuse

périodiquement des messages de pulsation à tous les robots/agents et attend leurs réponses

à des points/moments de prédéfinis. Le planificateur de tâches est capable de détecter les

pannes d’inaccessibilité d’un robot/agent lorsque les réponses sont absentes à plusieurs points

de contrôle ultérieurs. Nous appliquons un schéma d’évitement des défaillances, qui peut être

une récupération après échec ou un système de tolérance aux pannes (sélectionné en fonction

du délai de service minimum prévu).

Ensuite, pour démontrer l’impact de notre schéma d’attribution de bande passante tenant

compte du pré-transfert/pré-migration de tâches, la figure R.10(a) compare l’efficacité du
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(a) (b) (c)

Figure R.10: Temps de service moyen des tâches, temps de réalisation, et évaluation de
l’efficacité du temps de transfert préalable.

temps de pré-transfert de tâches (pg) de notre schéma de déchargement de tâches proposé

(avec le pré-transfert) vers d’autres schémas pour varier la taille des données d’entrée des

tâches de déchargement (div). Ce chiffre indique clairement que pour les valeurs plus élevées

et plus faibles de la taille des données d’entrée des tâches de déchargement, une plus grande

efficacité du temps de pré transfert des tâches est obtenue dans notre schéma de déchargement

des tâches avec pré-migration, qui est supérieur à celui des autres schémas, y compris le schéma

de déchargement de tâches avec transfert/migration conventionnel, schéma de déchargement

de tâches aléatoires, et des schéma de déchargement de tâche sensible à la communication.

Ceci est dû au fait que, contrairement à notre schéma de déchargement proposé (conscient

de la communauté et de la latence), tous les schémas alternatifs reposent sur la transfert con-

ventionnelle pour le déchargement, souffrant ainsi d’une latence de déchargement multitâche

plus élevée. De plus, dans le schéma de déchargement des tâches que nous proposons, chaque

tâche est assignée à un nœud de traitement des tâches approprié (hôte et communautaire

cluster robot/agent) en tenant compte non seulement des temps de traitement des tâches

plus courts, mais aussi des délais de transmission et d’attente. Inversement, dans le schéma

de chargement des tâches, la tâche HART complète n’est traitée que par le robot hôte ini-

tialement sélectionné, souffrant ainsi d’un retard de traitement numérique de sous-tâche plus

élevé que le schéma de déchargement des tâches proposé. Dans le schéma de déchargement de

tâche aléatoire et de communication, les nœuds de traitement de tâches sont sélectionnés sur

la base d’une base aléatoire et d’un délai de communication inférieur. Ainsi, les schémas de

déchargement des tâches aléatoires et de communication traditionnels ne peuvent pas améliorer

le délai de service moyen de notre schéma de déchargement de tâche proposé en raison de leur

surcharge de traitement des tâches déchargées plus élevée.

La figure R.10(b) montre la performance optimale de la sélection du service de défaillance

xxviii



de notre schéma de déchargement des tâches proposé. La figure révèle que le temps moyen

de service de tâche augmente pour augmenter le temps de récupération de la connexion de

service (R) dans tous les schémas considérés. La figure montre également que notre schéma de

déchargement de tâche proposé avec tolérance de panne permet d’obtenir le délai de service

moyen le plus bas. Notez que les schémas de déchargement de tâches et de chargement

de tâches avec reprise après échec présentent une durée de service moyenne des tâches plus

faible que les schémas avec tolérance de panne. Ceci est dû au fait que dans le schéma de

tolérance aux pannes, l’exécution de la tâche reprend à partir du dernier point de contrôle

après récupération à partir de la défaillance de la connexion. Ainsi, nos résultats suggèrent

que, pour éviter une défaillance, notre mécanisme de tolérance de panne proposé est plus

efficace dans le schéma de déchargement de tâche considéré que les autres mécanismes de

récupération d’échec.

La figure R.10(c) illustre le temps global d’achèvement des tâches de notre proposition de

déchargement des tâches et et de chargement de tâches schémas en fonction du temps de cycle

de scrutin (tc). La figure montre que le délai global d’achèvement des tâches est plus élevé

dans tous les schémas comparés pour les gros tc. Il est important de noter que ce chiffre montre

que les temps de réalisation des tâches à distance (t̄ktct,r) et temps de réalisation des tâches à

proximité (t̄ktct,n) sont minimes dans notre proposition de schéma de déchargement des tâches

tenant compte en fonction des conscience de la communauté et conscience de la latence. Par

exemple, pour tc = 400 ms and k = 4, le gain du temps d’achèvement des tâches à proximité et

à distance réalisé dans notre schéma de déchargement des tâches proposé est d’environ 23.7%

and 24.1% plus élevé que dans le schéma de chargement des tâches, respectivement. Ainsi,

notre schéma de déchargement des tâches prenant en charge la latence et la communauté

proposé, qui s’appuie à la fois sur la capacité de tolérance aux pannes et la capacité de

prétransfert des tâches, est une solution prometteuse pour une collaboration HART à faible

latence dans l’Internet tactile émergent.

Coordination des tâches en fonction des préférences de

l’utilisateur et allocation proactif de la bande passante

dans les infrastructures d’un réseau FiWi

La recherche dans le domaine de l’exécution des tâches HART en fonction des préférences

de l’utilisateur en est encore à ses débuts. Au meilleur de notre connaissance, aucune étude

existante ne traite du problème de la mise en cache et du calcul de tâches HART sensibles aux

délais et tolérants aux retards en tenant compte à la fois de la connaissance des ressources du

robot/agent dédié et non dédié et de l’allocation préemptif de la bande passante. À cette fin,
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Figure R.11: Robots et agents dédiés et non dédiés locaux et non locaux.

en plus d’une sélection appropriée de l’agent cloud, les schémas de déchargement de tâches

précédemment proposés [31], [32], [33] visait à résoudre le problème de la sélection de l’interface

sans fil appropriée (4G LTE Advanced ou WiFi) pour le données de tâche de transfert ou le

données de tâche de téléchargement, mais pas les deux en même temps. Pour éviter des

délais et des coûts d’monétaires supplémentaires tout en atténuant les différentes demandes

de tâches d’une utilisateurs mobiles, nous présentons un cadre de coordination des tâches

HART conscient en fonction des préférences de l’utilisateur qui sélectionne le robot/agent

(dédié ou non dédié) appropriés pour la mise en cache et ou calcul des exigences d’exécution

des tâches HART. De plus, pour faire face à la variation des ressources en bande passante, ce

travail décrit une politique proactif d’allocation de bande passante pour l’exécution de tâches

HART sensibles aux délais et tolérants aux retards.

De plus, pour examiner le compromis de performance entre les schémas de réduction des

coûts de retard (DCS) et de réduction des coûts monétaires (MCS) pour l’exécution de d-

ifférentes tâches HART, cette partie de la thèse développe un cadre analytique en prenant

en compte les agents dédié/non dédié avec/sans capacités de cache et en comparant les trois

schémas de déchargement multitâches DCS et MCS suivants: (i) débit maximale et retard

minimale (MTMD), (ii) débit maximale seulement (MT), and (iii) retard minimale seulement

(MD). Contrairement aux études existantes, ce travail prend en compte les acteurs locaux et

non locaux (dédié/non dédié) pour l’exécution des tâches. Contrairement aux acteurs non

locaux du cloud/robot (dédié/non dédié), les acteurs locaux (dédié/non dédié) sont situés
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(a) (b)

Figure R.12: (a) Schéma d’allocation de bande passante proactif et (b) schéma de coordination
des tâches.

dans la zone de couverture de la station de base hôte (ONU1 dans la Fig. R.11), où la tâche

physique doit être exécutée. Alors que les acteurs non locaux sont situés sous n’importe quelle

couverture de station de base (ONU2 dans la Fig. R.11) sauf la station de base hôte.

La figure R.12(a) illustre plus en détail notre système d’allocation de bande passante

proactif à deux couches TDMA pour l’exécution de différentes tâches HART. Dans le schéma

que nous proposons, nous divisons les utilisateurs de déchargement de tâches en deux groupes

(voir Fig. R.12.b), à savoir les utilisateurs sensibles aux retards (appliquant la politique DCS)

et les utilisateurs tolérants aux retards (appliquant la stratégie MCS). Notez que la sous-tâche

physique/numérique des utilisateurs de la politique DCS est assignée à un acteur approprié

qui peut être un robot/agent de cloud dédié ou non dédié, alors que l’assignation de sous-

tâche physique/numérique des utilisateurs de la politique MCS est limitée à un robot/agent

de cloud dédié. De plus, dans le schéma que nous proposons, les utilisateurs de la politique

DCS déchargent leurs sous-tâches numériques sensibles au retard vers des agents dédiés ou

non dédiés appropriés pendant le période de déchargement de l’ONU associé. Inversement, les

utilisateurs de la politique MCS déchargent leurs sous-tâches numériques tolérantes au délai

à des agents dédiés appropriés uniquement pendant la période de temps d’une autre ONU en

utilisant les liaisons par fibre optique d’interconnexion point à point (IF). Ainsi, en effectuant

le déchargement de tâche tolérant les délais pendant la période de temps d’une autre ONU,

notre schéma proposé est capable d’économiser à la fois la bande passante et le coût monétaire

pour les utilisateurs de la politique MCS.

La figure R.13(a) illustre l’impact de la durée du cycle de scrutin (tc) sur le délai moyen

d’exécution des tâches de nos politiques DCS et MCS proposées. La figure montre que le délai
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Figure R.13: Temps moyen d’exécution des tâches, latence d’accès au contenu de la mise en
cache, et évaluation de la performance du ratio d’économie monétaire.

moyen d’exécution des tâches augmente avec l’augmentation de tc. La figure révèle que pour

les petites et grandes valeurs de tc, la politique DCS (MTMD) permet d’obtenir un gain de

temps moyen d’exécution des tâches plus élevé que les politiques alternatives. Ceci est dû au

fait que les utilisateurs de la politique DCS donnent un accès préemptif aux acteurs et aux

ressources en bande passante pour exécuter leurs tâches sensibles au retard. Par exemple,

pour tc = 0.3 s, le gain moyen de temps d’exécution des tâches de la politique DCS (MTMD)

par rapport à la politique MCS (MTMD) est de 15,42%, contre seulement 6,03% pour la

politique DCS (MD). Ce résultat indique que pour l’exécution de tâches sensibles au retard,

la politique DCS (MTMD) est la solution supérieure. La figure R.13(b) illustre le délai moyen

d’accès au contenu cache pour nos politiques DCS et MCS policies. La figure montre que

pour une taille croissante des données de mise en cache (sv), le délai d’accès au contenu de

la mise en cache augmente rapidement dans tous les schémas comparés. De plus, la figure

indique que le délai d’accès au contenu du cache devient le plus bas dans la politique DCS,

si le cloudlet local de l’hôte récupère le contenu mis en cache à partir d’un autre cloudlet

local. La figure montre également que le délai d’accès au contenu du cache devient le plus

élevé dans la politique MCS, si le cloudlet local de l’hôte récupère le contenu mis en cache

sur le serveur cloud distant. Par exemple, pour sv = 80 Mo, m̂ = 1, et nt = 4, le schéma

DCS (cloudlet local vers un autre mise en cache de cloudlet local) permet d’obtenir un gain

de retard d’accès au contenu du cache d’environ 25% et 31% plus élevé que les schémas MCS

(cloudlet local vers un autre mise en cache de cloudlet local) et MCS (cloudlet local vers un

cloud distant), respectivement. La figure R.13(c) montre clairement qu’une pénurie de robots

dédiés (β) a un impact négatif sur la performance en matière d’économie monétaire de nos

politiques proposées en matière de DCS et de MCS. La figure révèle que pour différents β, le

ratio d’économie monétaire est maximum dans la politique de MCS (MTMD). Il est à noter

que l’utilisation d’acteurs dédiés et non dédiés entrâıne des coûts monétaires supplémentaires
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dans la politique DCS, par opposition à la politique MCS (MTMD). Par exemple, lorsque le

nombre de tâches (nt) est de 10 et β = 6, le ratio d’économie monétaire dans la politique MCS

(MTMD) par rapport aux politiques DCS (MTMD) et DCS (MD) est respectivement de 74%

et 80%.

Conclusions

Contrairement à l’IoT sans aucune implication humaine dans ses communications machine-

machine sous-jacentes, l’Internet tactile implique la collaboration centrée sur HART et permet

ainsi une approche de conception centrée sur l’humain pour créer et consommer de nouvelles

expériences immersives via l’Internet. Cette thèse a tenté de faire la lumière sur l’augmentation

(c’est à dire., l’extension des capacités) de l’humain par le biais du cadre d’exécution des

tâches collaboratives centré sur HART. Pour récolter les bénéfices de la convergence homme-

machine, cette thèse a présenté un cadre de coordination des tâches approprié pour orchestrer

efficacement la collaboration en temps réel entre les utilisateurs mobiles humains, les agents

informatiques centralisés et décentralisés (cloud/cloudlets), et les robots collaboratifs (cobots)

à travers les infrastructures réseau convergentes FiWi. A la lumière de l’émergence de l’Internet

tactile qui s’oriente vers une décentralisation basée sur l’informatique de pointe, les stations

de base intelligentes, l’informatique cloud collaboratif (robots et cloudlets), les capacités de

traitement et de stockage distribuées inhérentes aux réseaux améliorés FiWi ont été exploitées

pour l’exécution de tâches locales et non locales centrées sur HART. La thèse de doctorat

portait sur la coordination des tâches HART sur les réseaux améliorés FiWi en se concentrant

sur trois questions majeures, à savoir l’attribution des tâches en fonction de la puissance et

de la latence, l’évitement des pannes et l’attribution des ressources de bande passante en

fonction du pré-transfert. Pour l’exécution rentable des tâches HART, le premier chapitre de

la thèse a examiné les défis de recherche existants, les principales technologies habilitantes et

les différentes techniques de communication et de calcul.

Pour rendre plus efficace le processus d’attribution des tâches de l’homme à robot, nous

avons proposé dans le chapitre 2 un schéma d’attribution des tâches locales et non locales

pour l’exécution des tâches demandées par les utilisateur mobile selon plusieurs paramètres

de conception clés tels que la disponibilité, l’ensemble des compétences, la distance par rap-

port à l’emplacement des tâches, et l’énergie restante des robots. De plus, pour réduire les

défaillances pendant l’exécution des tâches, nous avons présenté un mécanisme de signalement

des défaillances assisté par robot voisin. Nos résultats montrent que le schéma de sélection

du robot basée sur le temps d’exécution minimum estimé surpasse les schémas de sélection

traditionnels basés sur la distance minimale et la priorité en termes de délai de bout en bout
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et d’énergie résiduelle moyenne. De plus, nous avons observé que le délai d’attribution des

tâches non locales est plus élevé que le délai d’attribution des tâches locales.

Au chapitre 3, nous avons présenté une stratégie de calcul collaboratif qui combine la

sélection d’un robot hôte approprié pour l’exécution de sous-tâches de surveillance physique

(détection) et la sélection de nœuds collaboratifs pour le déchargement de sous-tâches de

calcul. Nous avons exploité des serveurs cloud conventionnels, des cloudlets décentralisés

et des robots voisins en tant que nœuds collaboratifs pour le déchargement des calculs en

support de l’exécution des sous-tâches de calcul demandées par un robot hôte. Les résultats

des schémas d’exécution des tâches collaboratives et non collaboratives démontrent que pour

un scénario typique, le schéma d’exécution des tâches collaboratives améliore le temps de

réponse des tâches jusqu’à 8.75% et la consommation d’énergie jusqu’à 14.98% par rapport

au schéma d’exécution des tâches non collaboratives.

Pour une exécution efficace des tâches, le chapitre 4 proposait un schéma de migration

des tâches tenant compte du contexte pour orchestrer efficacement la collaboration en temps

réel entre les utilisateurs mobiles humains, les agents informatiques centraux et décentralisés

(cloud/cloudlets), et les robots collaboratifs (cobots, pour ‘collaborative robots’) à travers

les infrastructures de communication FiWi convergentes. Nous avons examiné la question de

savoir si et, dans l’affirmative, quand et où une tâche centrée sur HART devrait être migrée au

mieux. Pour une exécution efficace des tâches, la décision de migration est prise en fonction

des capacités de traitement des tâches des agents et des cobots, du délai d’exécution des

tâches, de la consommation d’énergie des cobots et des appareils mobiles concernés et de la

latence de migration des tâches. Nos résultats montrent que pour une sous-tâche cognitive

typique de 600 Mo, le schéma de migration des tâches cognitives de cobot à agent (cloudlet

près de l’emplacement des tâches) permet d’améliorer de plus de 20% le temps de réponse des

tâches et d’économiser 23% d’énergie par rapport au schéma traditionnel de non-migration.

Les résultats montrent également que la migration sous-tâches cognitives intra-agent permet

d’obtenir un gain de temps de réponse aux tâches plus élevé que la migration inter-agent.

Dans le chapitre 5, nous avons étudié un schéma de planification de tâches HART multiple

sensible à la latence et à la communauté en utilisant des informations en temps réel sur les

demandes de tâches arrivant pour les robots/agents en cluster isolés et communautaires. Plus

précisément, nous avons étudié l’ordre optimal de planification multitâches et la stratégie

d’affectation des ressources pour l’exécution de tâches HART basées sur le chargement et le

déchargement, avec des capacités de pré-transfert de tâches et de tolérance de pannes. Pour

récolter les bénéfices du pré-transfert de tâches pour l’exécution de plusieurs tâches HART,

nous avons présenté un nouveau schéma d’allocation de bande passante tenant compte du pré-

transfért/pré-migration qui permet de gérer simultanément le trafic de données à large bande
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et de déchargement de tâches. Les résultats que nous avons présentés montrent que pour un

système type de 32 ONU-MPP et un temps de cycle de vote de 100 ms, notre proposition de

schéma de déchargement de tâche pré-transfert permet d’obtenir un gain de temps d’exécution

des tâches allant jusqu’à 31.3% et 32.7% par rapport au schéma de chargement des tâches pour

l’exécution des tâches HART à proximité et à distance, respectivement.

Enfin, au chapitre 6, pour réduire au minimum les délais d’exécution des tâches et les coûts

monétaires, nous avons mis au point un cadre de coordination des tâches HART en fonction

des préférences de l’utilisateur qui sélectionne les dédié/non-dédié robot/cloud appropriés pour

exécuter différentes tâches HART sensibles aux délais et tolérants aux retards (mise en cache et

informatique tâches HART). Pour faire face à des ressources en bande passante limitées, nous

avons proposé une politique proactif d’allocation de bande passante pour l’exécution de tâches

HART sensibles aux délais et tolérants aux retards. Nous avons observé que pour un nombre

de tâches de 10 et 8 robots dédiés disponibles, notre politique DCS (MTMD) proposée présente

un ratio d’économie de temps jusqu’à 30.5% plus élevé et un ratio d’économie d’monétaire de

63.6% plus bas que la politique alternative MCS (MTMD).

La dernière partie de la thèse décrit enfin les orientations futures de la recherche qui

s’appuient sur les projets que nous proposons. Pour libérer le plein potentiel des applications

HART, une orientation de recherche future implique le développement de schémas de coordina-

tion des tâches HART pour l’exécution de tâches physiques et numériques basés sur l’utilisation

partagée de robots/agents appartenant à l’utilisateur et au réseau. Plus précisément, la ques-

tion de savoir quand, comment et dans quelles circonstances la propriété des robots mobiles

et des agents dans le cloud devient bénéfique en termes de dépenses opérationnelles (OPEX,

pour ‘operational expenditures’) par tâche exécutée représente un problème de recherche in-

téressant. De plus, la recherche dans le domaine de la migration des tâches conjointes basées

sur la communication O2O (O2O, pour ‘online to offline or offline to online’) ainsi que des

schémas appropriés de partage de la bande passante, est une autre direction prometteuse. Pour

le déploiement rentable d’applications de réalité mixte, le développement de techniques adap-

tatives de synchronisation en temps réel, de communication et de calcul ouvre une multitude

d’opportunités de recherche futures.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Tactile Internet: Vision and Requirements

In the last decade, rapid technological advancement has changed people’s way of living and

their future expectations. We have witnessed tremendous improvements of mobile Internet

technology to connect people anytime and anywhere [1]. Beside voice and data communica-

tions, the mobile Internet enables real-time access to richer content (e.g., video streaming,

instant messaging, file sharing) [2]. In order to provide ubiquitous connectivity for machines

and devices, the research focus of mobile communications has been shifting towards the e-

merging Internet-of-Things (IoT), which enables applications of machine-to-machine (M2M)

or machine type communication (MTC) with a focus on smart devices such as robots, sensors,

actuators, and wearable devices [3]. Once machines/robots become connected to the Internet,

the next natural leap is to control them remotely for delivering low-latency human-machine

interaction centric services (e.g., 3D gaming, powered exoskeleton). This vision of the In-

ternet is now widely known as the so-called Tactile Internet, which has recently emerged to

steer/control virtual and physical objects of our surroundings and environments and allow one

to transmit touch and actuation in real-time [4].

With the advent of commercially available remote-controlled robots/machines, the Tac-

tile Internet may be the precursor of an age of technological convergence, where tasks of our

everyday life (e.g., cognitive assistance in household activities) will be increasingly done by

robots/machines that allow us to see, hear, touch, and manipulate objects in places where we

are not physically present. In various cyber-physical systems (CPSs) that harness real-time

human-machine interaction (e.g., remote training, mission-critical rescue operations), includ-

ing virtual and augmented reality, an extremely low round-trip latency is required to match

human interaction with the environment [3]. An important CPS example is the smart grid and

its fast response time requirements of 1 ms in the event of (cascading) power network failures.
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Current cellular and WLAN systems miss this target by at least one order of magnitude. A

very low round-trip latency in conjunction with ultra-high reliability and essentially guaranteed

availability for control communications have the potential to move today’s mobile broadband

experience into the new world of the Tactile Internet for a race with machines (rather than

against) [5]. By offering low-latency communications, the Tactile Internet is expected to cover

a wide range of application fields, including remote health-care, autonomous/assisted driv-

ing, entertainment, and industry automation. In most of these industry verticals, very low

latency and ultra-high reliability are key for realizing immersive applications such as robotic

tele-operation [6]. From the business perspective, a recent market study has predicted that

the Tactile Internet could create commercial value of up to US$20 trillion worldwide, which

is around 20% of today’s overall GDP [34].

The evolutionary leap of the Tactile Internet is shown in Fig. 1.1(a). The convention-

al mobile Internet facilitates voice and data communications and provides the medium for

audio/visual transport. Conversely, the Tactile Internet will enable remote real-time human-

to-machine/robot (H2M/R) interaction by delivering tactile/haptic sensations [35]. It holds

promise of an Internet that will enable the delivery of skills in digital form globally and pro-

vide a true paradigm shift from traditional content-delivery networks to labor/skill-set delivery

networks via tactile/haptic devices [36]. The Tactile Internet envisions to enable reliable and

adaptive networked control systems, where master and slave domains are connected and high-

ly dynamic processes are controlled remotely. Unlike the mobile Internet and IoT, the Tactile

Internet will facilitate haptic communications by providing the medium for transporting hap-

tic senses (i.e., touch and actuation) in real-time in addition to conventional non-haptic data,

video, and audio traffic. Unlike auditory and visual senses, the sense of touch occurs bilater-

ally in haptic communications, i.e., it is sensed by imposing a motion on the environment and

feeling the environment by a distortion or reaction force. Haptic information is composed of

two distinct types of feedbacks: kinesthetic (i.e., force, torque, position, velocity) and tactile

feedback (i.e., texture, friction). The key difference between haptic and non-haptic control is

that haptic feedback is exchanged through a global control loop with stringent latency con-

straints, whereas non-haptic feedback is only audio/visual and there is no notion of a closed

control loop [37].

Beside haptic communication, another distinct aspect of the Tactile Internet is the fact

that it should amplify the differences between machines and humans and drive the symbiosis

between man and machine. This design approach is known as Human-Agent-Robot Teamwork

(HART), in which humans, agents (e.g., cloud servers), and robots work collaboratively to

accomplish different types of task (e.g., remote medical assistance, remote sensing, remote

food supply) [11]. HART differs from the traditional approaches (either human-only activity
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(a)

(b)

Figure 1.1: (a) Evolutionary leap of the Tactile Internet; (b) the three lenses of IoT, 5G, and
the Tactile Internet: commonalities and differences.

or machine-only activity), which have been viewing humans and machines as rivals, each side

fighting for the other’s job. In HART, humans work with machines to exploit what each party

does best. On the one hand, humans may train and manage machines to perform challenging

tasks, explain machine outcomes, and sustain machines in a responsible manner. On the other

hand, machines may amplify humans’ insights and their intuition by leveraging data analytics,

interact with humans at scale using novel interfaces, and embody physical attributes that help

extend a person’s capabilities. Details on characteristics and challenges of HART-centric task
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execution will be further discussed in Section 1.1.4.

To facilitate a better understanding of the Tactile Internet, Fig. 1.1(b) depicts the common-

alities and subtle differences between IoT, 5G, and the Tactile Internet. The high availability,

ultra-fast reaction times, and carrier-grade reliability of the Tactile Internet will add a new

dimension to human-machine interaction by enabling tactile and haptic sensations. On the

other hand, future 5G networks will have to be able to cope with the unprecedented growth

of mobile data traffic as well as the huge volumes of data generated by smart devices enabling

the IoT. Towards this end, the 5G technology vision foresees 1000-fold gains in area capacity,

10 Gb/s peak data rates, and connections for at least 100 billion devices. The key challenge

of 5G wireless access and core network architectures is to make it possible to address novel

machine-centric use cases such as mission-critical traffic safety and control of critical infras-

tructures (e.g., smart power grids), which are currently not addressed by cellular networks.

Some of these envisioned 5G use cases require very low latency and ultra-high reliability with

essentially guaranteed availability. Thus, beside very low latency, 5G has to enable connectiv-

ity, whose reliability will have to be orders of magnitude higher than in current radio access

networks. Unlike the previous four generations, 5G will also be highly integrative. The inte-

grative vision of 5G will lead to an increasing integration of cellular and WiFi technologies

and standards. Another important aspect of the 5G vision is decentralization by evolving

the cell-centric architecture into a device-centric one and exploiting edge intelligence in close

proximity to wireless end users (humans or machines).

Clearly, the discussion above shows that there is a significant overlap among IoT, 5G, and

the Tactile Internet, though each one of them exhibits unique characteristics, as shown in Fig.

1.1(b). The major differences may be best expressed in terms of underlying communications

paradigms and enabling end devices. IoT relies on M2M communications with a focus on smart

devices (e.g., sensors and actuators). In co-existence with emerging MTC, 5G will maintain

its traditional human-to-human (H2H) communications paradigm for conventional triple-play

services (voice, video, data) with a growing focus on the integration with other wireless tech-

nologies (most notably WiFi) and decentralization. Conversely, the Tactile Internet will be

centered around H2M communications leveraging tactile/haptic devices. More importantly,

despite their differences, IoT, 5G, and the Tactile Internet seem to converge toward a common

set of important design goals: very low latency on the order of 1 ms, ultra-high reliability

with an almost guaranteed availability of 99.999 percent, H2H/M2M coexistence, integration

of data-centric technologies with a particular focus on WiFi, and security [5].
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1.1.2 Recent Progress

The realization of Tactile Internet applications based on real-time H2R communications will

not be realized without addressing several system design challenges. Real-time H2R based

applications are sensitive to end-to-end latency, which comprises various delay components

(e.g., channel access, queuing, transmission, and propagation delay) experienced during the

communication process between human operators and remotely controlled robots/machines. If

the end-to-end latency exceeds the human reaction time (100 ms for auditory, 10 ms for visual,

1 ms for haptic), the experience becomes less realistic due to the large gap between stimulation

and response [3]. A service can be defined as real-time, when the communication response time

is faster than the time constants of the application. Humans have the ability to react to sudden

environmental changes by using their muscles, e.g., reacting to a sudden unforeseen incident

by hitting the brakes in a car or quickly pulling back a hand after touching a hot platter on

a stove. Note that there are two different time scales of human reaction, depending on being

prepared or unprepared for the situation. If unprepared, the sensing-to-muscular reaction

time is in the range of 500 ms to 1 s. Translating this to comparable situations in technical

applications sets the targets for specifications and design requirements. Clearly, if humans are

prepared for a situation, faster reaction times are needed, such as when driving a formula-1

car in a race [2]. To obtain a low round-trip latency, the authors of [7] emphasized that the

concept of locally available edge-cloud servers/cloudlets will enable us to realize the vision of

the Tactile Internet. Even at the speed of light (e.g., in optical fiber access networks), a round-

trip propagation delay of 1 ms requires a computing/processing server within 150 km distance

from the point of tactile interaction. This computing/processing server (e.g., cloudlet) at the

edge of the mobile radio access network (WiFi/LTE-A base station) is a central part of the

mobile-edge cloud computing concept. Cloudlets may be viewed as decentralized proxy cloud

servers with processing and storage capabilities just one or more wireless hops away from the

mobile user. Cloudlet research has tended to focus on WiFi in the past, though recently there

has been a growing interest among cellular network operators. The importance of cloudlets

can be witnessed in many end-to-end latency-sensitive applications such as augmented reality,

real-time cognitive assistance, or face recognition on mobile devices. Recently, to manage and

offload high volumes of data, Akamai developed the Edge Redirector Cloudlet, which is an early

example of commercial applications of the cloudlet concept. In September 2014, the so-called

mobile-edge computing (MEC) industry initiative introduced a reference architecture in order

to identify challenges that need to be overcome to facilitate the implementation of cloudlet

servers [8]. MEC provides IT and cloud computing capabilities in the radio access network

(RAN) in close proximity to mobile subscribers. Moreover, MEC aims at transforming mobile

base stations into intelligent service hubs by exploiting proximity, context, agility, and speed
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Figure 1.2: The Tactile Internet: applications, challenges, and enabling technologies.

in order to create a new value chain and stimulate revenue generation. It is expected that

advanced caching, computation offloading, and user-oriented traffic management at the edge

of wireless networks will not only reduce backhaul traffic loads but also improve latency of

Tactile Internet applications.

The Tactile Internet application sets demanding requirements for future access networks in

terms of latency, reliability, and capacity. To achieve the 5G and Tactile Internet key require-

ments of very low latency and ultra-high reliability, in [9], the authors proposed the concept of

so-called FiWi enhanced LTE-A HetNets that unifies coverage-centric 4G mobile networks and

capacity-centric fiber-wireless (FiWi) broadband access networks based on data-centric opti-

cal fiber and wireless Ethernet technologies. By means of probabilistic analysis and verifying

simulations based on recent and comprehensive smartphone traces the authors showed that

an average end-to-end latency of 1-10 ms and almost guaranteed availability can be achieved

via fiber backhaul sharing and WiFi offloading capabilities. Note, however, that only con-

ventional H2H communications was considered in [9] without any coexistent H2R or M2M

communications. To realize low-latency H2R communications in the Tactile Internet, in [5]

the authors discussed the role of several key enabling technologies, including FiWi enhanced

LTE-A HetNets, cloudlets, cloud robotics, network coding, and software-defined networking

(SDN), among others, as shown in Fig. 1.2. To extend the capabilities of both tele-operated

and multi-robot based networked robotics for different Tactile Internet applications, this work
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also elaborated on the importance of a cloud robotic system architecture that leverages the

combination of an ad-hoc cloud formed by M2M communications among participating robots

and an infrastructure cloud enabled by machine-to-cloud (M2C) communications between the

robots and the remote cloud. M2M communications was used to enable a team of networked

robots to complete tasks cooperatively in a distributed fashion by sharing computation/storage

resources and exchanging information via a wireless communication network. M2C communi-

cations makes it feasible to learn from the shared history of all cloud-enabled robots. Moreover,

by leveraging on the high throughput, reliability, and in particular delay performance of FiWi

enhanced LTE-A HetNets, the authors reported that integrated FiWi multi-robot infrastruc-

tures based on decentralized cloudlets will be essential for the coordination of Tactile Internet

applications based on H2R communications. For the cost-effective deployment of Tactile In-

ternet applications, the authors also identified several important research challenges such as

the design of adaptive bandwidth resource management techniques for the support of both

H2H and H2R traffic over FiWi enhanced networks with proper service coordination, H2R

task allocation strategies (optimal online/offline scheduling), failure handling, and mobility

management, among others.

To speed up the execution of Tactile Internet applications, in [38], the authors claimed

that the extensive use of a flexible network coding mechanism such as random linear network

coding (RLNC) throughout the network can improve the latency performance and reduce the

frequency of required packet retransmissions. RLNC is the most general form of network cod-

ing, whose main characteristics are recoding and a sliding window based operation. Although

network coding and SDN hold promise to reduce end-to-end latency, further investigations are

needed to explore the use of the sliding window approach in multi-path SDN based networks

to improve their throughput and resilience performance. Additionally, to provide high track-

ing performance between the master (human user) and slave (robot) domains, the authors

of [39] demonstrated that predictive resource allocation is necessary in both upstream and

downstream data transmission. Recently, in [40], the author studied the uplink radio resource

allocation problem for haptic communications, whereby the queueing delay and queueing de-

lay violation probability were taken into account. Recently, the authors of [41] optimized the

number of subchannels, the bandwidth of each subchannel, and threshold for each device to

minimize the total bandwidth required by the system for ensuring the reliability of H2R com-

munications. Further, in [42] and [43], a time division duplex (TDD) based energy-efficient

resource allocation scheme was presented for Tactile Internet users. More recently, in [44] and

[45], the authors investigated the feasibility of IEEE 802.11 hybrid coordination function con-

trolled channel access (HCCA) for delay-sensitive Tactile Internet applications under different

system settings. Note that none of the aforementioned studies considered the co-existence of
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latency-sensitive Tactile Internet (haptic and non-haptic) applications and other bandwidth-

intensive H2H applications nor the impact of user mobility. Furthermore, a comprehensive

end-to-end H2R communication delay analysis including queuing delay, task processing delay,

uplink, and downlink transmission delay analysis is missing in the existing literature.

1.1.3 FiWi Enhanced Network Infrastructures

To enable cost-effective solutions for real-time Tactile Internet applications, network operators

have been looking for reliable, fast, low-cost, and future-proof communication infrastructures.

To tackle this challenge, integrated fiber-wireless (FiWi) access networks that combine the

high capacity and reliability of optical fiber networks with the ubiquity and mobility of wire-

less networks represent a promising communication platform [46], [47]. According to the IEEE

Technical Sub-committee on Fiber-Wireless (Sub-TC FiWi) integration, the role of FiWi in-

tegration is defined as follows: “The Sub-TC on Fiber-Wireless integration addresses architec-

tures, techniques, and interfaces for the integration of fiber and wireless network segments in

a unified wired-wireless infrastructure. It does not address architectures or techniques specific

to individual optical or wireless networks.” Note that in our work FiWi networks are based

on optical fiber (Ethernet passive optical network or EPON) and wireless (wireless local area

network or WLAN) Ethernet technologies [48], which are then integrated with their cellular

counterparts, namely, 4G Long Term Evolution Advanced (LTE-A), to give rise to FiWi en-

hanced LTE-A heterogeneous networks (HetNets) [9]. For illustration, Fig. 1.3(a) depicts the

generic architecture of cloudlet empowered Ethernet-based FiWi enhanced networks, which

are based on the integration of IEEE 802.3ah/av time division multiplexing (TDM)/wave di-

vision multiplexing (WDM) EPON in the optical backhaul and IEEE 802.11ac WLAN and

4G LTE-A technologies in the wireless front-end. The optical fiber backhaul consists of a

passive optical network (PON) with a fiber range of 10-100 km between optical line terminal

(OLT) and optical network units (ONUs). The PON may comprise multiple stages, each stage

separated by a wavelength-broadcasting splitter/combiner (or alternatively a wavelength mul-

tiplexer/demultiplexer). The PON comes in two flavors: (i) TDM PON and (ii) WDM PON.

The OLT is located at the central office to serve three different subsets of ONUs through a

1:N optical splitter/combiner. To provide FTTx services (e.g., fiber-to-the-home/business),

the first subset of ONUs serves a single or multiple attached fixed (non-mobile) wired sub-

scribers, called fixed wired users, that may be located at the premises of residential or business

subscribers. The second subset of ONUs connects to a cellular network base station (BS), i.e.,

LTE macro evolved node B (MeNB), giving rise to a so-called ONU-MeNB. In the third subset,

ONUs have a mesh portal point (MPP) to interface with the WiFi mesh network, whereby
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(a)

(b)

Figure 1.3: (a) Cloudlet Empowered Ethernet based FiWi Enhanced 4G LTE-A HetNets; (b)
Coexistence of Cloudlet (D-RAN) and C-RAN over FiWi Enhanced 4G LTE-A HetNets.

mesh points (MPs) act as intermediate relay nodes and mesh access points (MAPs) serve mo-

bile users (MUs) within their coverage area. The integration of ONU and MPP (referred to

as ONU-MPP) is realized by using so-called radio-and-fiber (R&F) technologies with medium

access control (MAC) protocol translation taking place at the optical-wireless interface, as

explained in more detail shortly. To provide cloud computing services at the network edge,

cloudlet servers are connected to ONU-MPPs/ONU-MeNBs through point-to-point optical
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fiber links.

FiWi networks can be categorized into two different types: (i) traditional radio-over-fiber

networks (RoF) and (ii) radio-and-fiber networks (R&F) [49]. While RoF networks use opti-

cal fiber as an analog transmission medium between a central office and one or more remote

antenna units (RAUs) with the central office being in charge of controlling access to both

optical and wireless media, in decentralized R&F networks access to the optical and wireless

media is controlled separately from each other by using two different MAC protocols in the

optical and wireless media, with protocol translation taking place at their interface. An ex-

ample of traditional RoF based FiWi networks is China Mobile’s cloud RAN (C-RAN), which

relies on a centralized cloud infrastructure and baseband units (BBUs) separated from remote

radio heads (RRHs), rendering the latter ones intentionally as simple as possible without any

processing and storage capabilities [50]. In C-RAN, BBUs that connect a number of macro

BSs or small cells (i.e., femto- and picocells) are centralized via pool baseband processing (i.e.,

BBU pool), while radio frequency (RF) signaling is digitized and transmitted over optical fiber

for fronthauling (i.e., between RRHs and BBUs). Further, the digitized RF signal received by

the RRH is converted into an analog signal before being transmitted to its associated edge

devices in downstream transmissions.

An example of R&F based FiWi networks is the cloudlet enhanced distributed RAN (D-

RAN) [51]. In the cloudlet enhanced D-RAN, the functionalities of RRHs and BBUs are split,

whereby RRHs and BBUs are linked via an Ethernet interface and the baseband processing is

done at a cloudlet server [52]. R&F based FiWi networks may become the choice of emerging

Tactile Internet networks, benefiting from decentralization based on cloudlets and intelligent

base stations. As shown in Figure 1.3(b), note that both the C-RAN and cloudlet enhanced

D-RAN may coexist in FiWi enhanced LTE-A HetNets, whereby the collocated ONU-FeNB

(integration of ONU with femtocell base station) and ONU-PeNB (integration of ONU with

picocell base station) may rely on a WDM-based C-RAN, while an ONU-MeNB (integration

of ONU with macrocell base station) may rely on a cloudlet enhanced D-RAN. Cloudlet

servers are connected to the ONU-MeNB and the scheduling and bandwidth allocation are

typically handled by the ONU-MeNB with the support of cloudlet enhanced D-RAN. In the

coordination of BBUs, the OLT is fully responsible for scheduling transmissions and allocating

bandwidth to each ONU-FeNB and ONU-PeNB in a centralized fashion. To reduce capital

expenditures, C-RAN and cloudlet enhanced D-RAN may use different wavelength channels

for baseband and RF transmissions.
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1.1.4 Human-Agent-Robot Teamwork (HART)

Beside lowering latency and jitter for real-time H2M communications, one of the key aspects

of the Tactile Internet is how we can make sure that its potential be unleashed for a race

with (rather than against) machines. By building on the areas where machines are strong

and humans are weak, Tactile Internet H2M/H2R communication leverages on their “coop-

erative” and “collaborative” autonomy such that humans and robots complement each other

[5]. The goal here is to take advantage of collaborative teams of humans working alongside

machines to create new roles and opportunities for humans. Companies can achieve significant

boosts in performance, when machines and humans work together as allies, not adversaries,

to capitalize on each other’s complementary strengths. For instance, processing and analyzing

copious amounts of data from myriad sources in real time, performing routine tasks, working

in dangerous life-critical conditions, and detecting hidden patterns in an image can be easy

for machines, whereas dealing with unsatisfied customers can be easy for human workers.

In the future, co-working with machines (e.g., robots) will favor geographical clusters of

local production (“inshoring”) and require human expertise in the coordination of the human-

machine symbiosis for the sake of inventing new jobs humans can hardly imagine and did not

even know they wanted done [6]. In fact, Stanford University’s recently launched One Hundred

Year Study on Artificial Intelligence (AI100) released its inaugural report “Intelligence and Life

in 2030,” in which an increasing focus on developing systems that are human-aware is expected

over the next 10-15 years. Unlike the IoT that relies on its underlying M2M communications

without any human involvement, the Tactile Internet involves the inherent human-in-the-loop

(HITL) nature of haptic interaction and thus allows for a human-machine cooperative design

approach towards creating and consuming novel immersive experiences via the Internet [10].

In “Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins,” Garry

Kasparov elaborates on the importance of a superior process in human-machine collaboration,

showing that weak human + machine + better process is superior to strong human + machine

+ inferior process. Thus, a clever process beats superior knowledge and superior technology.

His observation received interest by Google and other Silicon Valley companies and shifted the

research focus from using artificial intelligence (AI) as an automation tool to an augmenta-

tion tool for enhancing human decisions (e.g., IBM’s Watson) instead of replacing them with

autonomous systems. According to Kasparov, this is not just user experience (UX), but en-

tirely new ways of bringing human-machine coordination into diverse fields (e.g., business and

manufacturing processes) and creating the new tools we need in order to do so. Interestingly,

this approach is fully in line with the original vision of early Internet pioneers. Back in 1962,

Douglas C. Engelbart developed a detailed, though rudimentary, conceptual framework with

process hierarchies for augmenting the human intellect by increasing via on-line assistance
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Figure 1.4: Overview of key challenges in HART over the Tactile Internet

the capability of a man to derive solutions to complex problems that before seemed insoluble

[53]. Earlier, in 1960, Joseph C. R. Licklider envisioned man-computer symbiosis, a subclass

of man-machine systems, to enable close interaction between man and computer in mutually

beneficial cooperation [54].

A promising approach toward achieving advanced human-machine coordination by means

of a superior process for fluidly orchestrating human and machine co-activity may be found

in the still young field of HART research, whose specific design goal is to keep humans in

rather than out of the loop [11]. Historically, HART extends the so-called humans-are-better-

at/machines-are-better-at (HABA/MABA) approach, which assigns tasks to either humans

or machines, whereas HART focuses on how humans and machines could work together (see

Fig. 1.4). This collaboration allows weak workers to “punch above their weight” by offloading

tedious tasks to powerful workers for processing. Some of the interesting HART-centric appli-

cations that harness human-machine interactions are autism therapy, elderly people care, op-

eration on the battlefield, where robots can work alongside doctors as surgical teams, complex

search-and-rescue activities in natural disaster/dangerous environments, real-time data-to-

decision problems, remote monitoring, disaster warning, gesture, and face recognition, among

others [55]. Unlike in early-day HART research, which put emphasis only on making machines
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self-sufficient or relying only on autonomous systems, much of the research interest focuses

on the autonomy and interdependence of HART members [56]. Such capabilities could en-

able intelligent systems not merely to do things for humans, but also to work together with

humans and other systems. With regard to underlying human-machine interaction in HART-

centric Tactile Internet applications, the main challenge is to orchestrate how tasks can be

best executed in concert. Collaboration and communication among HART members are es-

sential to cope with dynamic changes in the task environment, thereby improving the task

execution latency. Note that the interdependent activities of HART members may lead to an

increased complexity and resource consumption. To facilitate resource efficient HART task

execution, research in the area of centralized/decentralized network coordination, adaptive

bandwidth resource management for traditional broadband and offloading traffic co-existence,

task requirement and failure-aware task assignment, monetary, time, and energy cost-aware

task offloading design policies, as well as task and resource coordination become mandatory.

1.1.5 Collaborative Computation and Communication Techniques

For the successful deployment of HART-centric Tactile Internet applications (e.g., human

assistive work such as remote monitoring, face detection), efficient task allocation among

robots is essential, which has emerged as an interesting research topic by taking into account

a wide variety of task and robot types, task location, robot availability, capability, and failure

during task execution [6]. Hence, the suitable robot selection may not always be sufficient to

satisfy the real-time requirements (e.g., deadline) of different computation intensive tasks due

to their limited resources (e.g., computation processing speed, storage) [57]. In response to the

aforementioned challenges, mobile devices/robots increasingly seek assistance from powerful

collaborative cloud servers via mobile cloud computing1 and device-to-device communications

technology in order to execute their computation-intensive tasks, a technique also known as

collaborative computing [16].

Importantly, collaborative computing allows resource-constrained mobile devices/robots

to migrate full/part of their computation-intensive tasks to collaborative cloud nodes (remote

cloud or decentralized cloudlet2) for execution by means of computation offloading [59]. By

enabling collaborative computing among mobile devices and cloud servers, the executable task

load on each mobile device/robot is reduced, the overall task processing time is minimized,

and the lifetime of the mobile device/robot is extended. However, the interaction between the

1Mobile cloud computing (MCC) is a technology that integrates both cloud computing and mobile com-
puting, where cloud services (e.g., computing, storage) are utilized by mobile devices/robots to speed up the
running of mobile computation and data-intensive applications.

2Cloudlet is a resource-rich computer or cluster of computers that is connected to the Internet and offers
cloud services (processing and storage) at the network edge in close proximity to mobile users [30], [58].
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cloud server and the mobile device/robot incurs an additional communication latency during

offloading the computation-intensive task to the cloud server [17]. Thus, for the cost-effective

deployment of HART-centric Tactile Internet applications, collaborative computing needs to

tackle several challenges such as minimization of task offloading latency by selecting proper

collaborative cloud nodes, selection of non-disruptive network connections for computation

task and data offloading activities, among others. To overcome the aforementioned challenges,

we discuss the involved collaborative computing and communication techniques in greater

detail in the following.

� Data offloading: To cope with the network congestion due to the extraordinary growth

in data traffic on cellular networks, mobile data offloading represents a potential solu-

tion. Mobile data offloading refers to the use of complementary network technologies

(e.g., IEEE 802.11 WiFi, femtocell) for delivering data originally destined for cellular

networks [60], [61]. Among other alternatives, the most widely used data offloading ap-

proach is WiFi offloading due to several benefits such as lower power consumption and

reduced operational expenditures (OPEX) than macrocell base stations. Depending on

who initiates the offloading process, data offloading can be divided into two groups:

a) user-initiated offloading, where the mobile user is responsible for deciding when and

how to offload the data; b) network-initiated offloading, where mobile operators are

responsible for the data offloading decision [62], [63], [64]. Further, based on whether

WiFi technology is used or not, data offloading can be classified into the following two

categories: on-the-spot offloading, where WiFi technology is used for data offloading

only if WiFi connectivity is available, or delayed WiFi offloading, where data offloading

is delayed for an acceptable time period for future WiFi connections [65]. To ensure

seamless data offloading service during handover in both the horizontal and vertical di-

rection, cooperation between cellular and WiFi network service providers is mandatory.

Towards this end, different communication standards and protocols were developed to

cope with network coordination, frequency management, and traffic rerouting in dif-

ferent data offloading services. For example, the third generation partnership project

(3GPP) developed the access network discovery and selection function (ANDSF) [66],

local IP access (LIPA) [67], selected IP traffic offload (SIPTO), and IP flow mobility (I-

FOM) protocols to offer seamless handovers between different access technologies during

offloading. For a detailed discussion of ANDSF, IFOM, SIPTO, and LIPA, the interest-

ed readers may refer to [68]. Importantly, to enable an efficient mobile data offloading

solution for Tactile Internet applications, suitable data offloading techniques need to be

developed by taking into account different task, network, and network element prop-
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erties such as data offloading deadline, availability of WiFi connectivity, mobile device

energy consumption, and amount of data traffic.

� Task Offloading: In MCC, task offloading is a technique used to alleviate the burden

of resource limited mobile devices by transferring full/part of a task (e.g., computation

workload processing) corresponding to given application requirements to more capable

devices/surrogates for processing. This capability can take the form of computing power,

memory, system load, as well as battery life [69]. Hence, in MCC the decision of whether

or not to offload the task to a cloud server depends on several important factors such as

why offloading is required (e.g., improve task execution time or save energy), who wants

to offload the task (e.g., robot, mobile device, laptop computer), offloading environment

(e.g., static, dynamic), different task properties (e.g., workload), and offloading infras-

tructure (remote/edge cloud computing), among others [70]. For better task execution

performance, the appropriate task offloading decision is made by analyzing different

important parameters such as available bandwidth, cloud server task processing speed,

storage capacity, remaining task processing burden, offload task workload, data size, and

communication latencies, among others. Different from data offloading, the computa-

tion task offloading life cycle involves the following activities: task input data uploading

from mobile device to surrogate/cloud server, offloaded task processing (computation

workload) by surrogate/cloud server, and task result downloaded by the mobile device

from the surrogate. Hence, in a broad sense, the task offloading process contains the

following four parts: application modeling, profiling, optimization, and implementation.

For application modeling, a graph or tree-based method can be used to highlight the

relation between different sets of tasks corresponding to a given application [71], [72].

Profiling denotes the collection of network device and component information. The col-

lected profiling information (e.g., remaining energy, bandwidth, task processing speed)

can be used for making proper task offloading decisions. The optimization part helps

achieve different design goals (e.g., minimize task execution delay, maximize energy con-

sumption) for given application and system settings [73]. Finally, the implementation

part assigns resources for task offloading and monitors the task execution process.

At present, existing task offloading frameworks can be divided into three categories:

(i) system-level, (ii) method-level, and (iii) optimization level offloading. System-level

offloading mainly focuses on the usage of either infrastructure-based cloud resources for

offloading (e.g., remote cloud [74], [75], cloudlet [76], [77]) or infrastructure-less cloud

resources for task offloading (e.g., mobile ad-hoc cloud [78]). Conversely, method-level

offloading emphasizes task/code partitioning, migration techniques, and prediction of
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application behavior for parameter variations. The optimization part focuses on achiev-

ing different objectives such as maximizing throughput, minimizing energy consumption

[71], task execution time [73], or makespan for data streaming applications [79]. How-

ever, note that task offloading to remote cloud servers may not always satisfy given

task execution requirements of many delay-sensitive tasks (e.g., face detection, gesture

recognition, real-time video analytics) due to low bandwidth and high wide-area net-

work (WAN) latencies. To overcome the limitations of distant cloud offloading, there is

a growing interest among industries in setting up cloud services (e.g., cloudlet) at the

edge of mobile networks, e.g., Nokia’s Radio Applications Cloud Server (RACS) that is

connected to a 4G LTE base station (eNB) [80], ETSI’s MEC server [81], and Cisco’s

IOx that combines IoT applications with cloudlet servers [82]. Hence, research in the

area of developing suitable task offloading platforms for real-time HART-centric Tactile

Internet applications is an important open challenge in the existing literature, including

several issues such as user-preference aware offloading (e.g., delay and energy awareness),

reducing task offloading latency, priority based bandwidth assignment policy, mobility

awareness as well as resource and failure awareness, among others.

� Task Migration: Contemporary mobile devices offload large amounts of computation-

ally intensive tasks to resource-rich cloud servers for processing. MCC enables mobile

devices by offloading tedious tasks to powerful cloud servers [28]. Hence, one of the fun-

damental challenges for task offloading is to minimize the task processing and communi-

cation delay of an MU’s offloaded task, whose location changes due to mobility. Further,

ensuring high quality-of-service for an MU’s task execution is particularly challenging

in the dynamic mobile cloud computing environment due to time-varying bandwidth

resource availability, dynamic resource availabilities of cloud servers, and time-varying

task requests at cloud servers, among others [83].

Task migration broadens the scope of conventional computation task offloading by not

only transferring the task from an MU to cloud servers/surrogates but also from one

cloud server/surrogate to another one for execution. In general, task migration between

cloud servers/surrogates is considered beneficial only if the anticipated task execution

time at the secondary cloud server/surrogate is smaller than that at the primary one

[20]. However, task migration incurs an additional migration delay that requires time for:

(i) stopping task execution at the old server (primarily selected), (ii) transferring the

remaining task data to the newly selected server (secondary), and (iii) starting execution

at the newly selected server. Note that task migration provides a more fine-tuned means

of balancing the load throughout the system, since migration may take place at any

time during the lifetime of a task due to cloud server availability or failure. Hence, there
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exists an inherent trade-off in selecting the optimal strategy for task migration. On

the one hand, it has to offer high quality-of-experience (QoE) to its customers, which

for a particular task indicates lower task execution time. However, due to the residual

processing burden of cloud servers and waiting delay for bandwidth availability, task

migration services may not always improve the task execution time of an MU’s requested

task. On the other hand, cloud providers aim to fully exploit task consolidation in order

to reduce their operating costs (e.g., electricity cost by turning-off underutilized servers)

[19]. Thus, based on the above observations, one of the fundamental research questions

that naturally arises is when and where should an MU’s task migrate [21]. To answer

this question, several aspects need to be investigated for the development of a suitable

task migration scheme, e.g., information about the state of the current host and the

tentative destination server, number of tasks running on each server, user mobility, task

properties, cloud server properties, task migration gain, and latency overhead, among

others.

� Task Prefetching: Currently, a vast majority of existing cloud computing studies

apply the conventional fetching technique for task offloading, where a given mobile user’s

next computation task input data can be transferred to the cloud server for processing

only after the completion of the previously offloaded task [84]. As a result, for multi-

task offloading, all other remaining tasks except the first one suffers from higher task

offloading waiting times. Thus, conventional fetching based task offloading may not

always be sufficient to meet the very low-latency requirements of different HART-centric

tasks [85]. To overcome the shortcomings of conventional fetching, the task prefetching

concept has recently been proposed in the context of task offloading, where the full or

a portion of the MU’s next task input data is transferred to the cloud server during the

computation processing period of the previously offloaded task [86]. Note that a suitable

task prefetching technique has the potential to not only reduce the mobile-device energy

consumption by avoiding traditional fetching but also to shorten the program runtime by

employing intelligent prediction techniques for parallel task data transfer and processing

schedule. Hence, due to the lack of proper task prefetching-aware actor (e.g., cloud agent)

selection schemes for task offloading, providing high QoS guarantees is still a major

challenging issue for different HART tasks considering both strict task requirements

(e.g., deadline) and dynamic cloud environments. Moreover, to ensure collision-free and

low-latency HART task execution, research in the area of prefetching-aware dynamic

bandwidth allocation is mandatory by taking different task properties and availabilities

of cloud servers/surrogates resources into account [87].
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1.2 Objectives

The objectives of this thesis are as follows:

� The crucial roadblock toward successful deployment of local and non-local Tactile In-

ternet applications is the lack of proper task allocation strategies among robots. Most

existing multi-robot task allocation studies focus on only one or a few parameters for

robot selection, e.g., a robot’s energy or distance to task location. Clearly, real-time H2R

communications based Tactile Internet applications demand advanced robot selection

schemes, in which additional parameters need to be considered such as heterogeneous

robots and task properties (e.g., robot and task location, robots’ energy consumption,

task workload and deadline). Moreover, the lack of proper robot failure monitoring

strategies during task execution and resource allocation strategies might result in an

increased task execution delay and energy consumption of robots. A number of research

questions such as (i) how human task requests arrive at robot network and (ii) how

robots are aware of all task requests have largely been neglected in previous studies.

Thus, the first objective of this work is to design an efficient failure-aware local and

non-local H2R task allocation mechanism and a unified resource management scheme

that minimizes the task execution time and energy consumption of robots in FiWi based

Tactile Internet infrastructures. To reduce task execution latency overhead, the main

focus of this study is to investigate and compare the performance of different robot

selection strategies.

� Having a suitable robot selection for satisfying mobile users’ task execution requests

may not be sufficient to avoid task execution failures due to given resource constraints

(e.g., task processing capabilities, storage, or remaining energy) of the selected robot.

Note that mobile devices/robots may overcome their resource shortage problem by uti-

lizing the resources of collaborative cloud server (agents). This type of task execution

is also known as collaborative computing, where a resource-constrained robot trans-

fers its computation-intensive task to another more powerful cloud agent or nearby

robot for execution. At present, research in the area of both infrastructure-cloud and

infrastructure-less HART-centric collaborative task execution over FiWi infrastructures

is missing in the existing literature. Thus, to improve the task execution time and energy

consumption efficiency of resource-constrained robots/mobile devices, the second objec-

tive of this thesis is to propose a collaborative computing scheme that jointly selects

a suitable host robot and collaborative cloud agent node for executing different HART

tasks. Another major aim of this part of the thesis is to investigate a unified bandwidth
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allocation scheme to handle coexisting conventional broadband and computation task

offloading data traffic over FiWi based Tactile Internet infrastructures.

� Collaborative cloud computing services allow resource-limited mobile devices to offload

their computation-intensive tasks onto more powerful cloud servers/surrogates for pro-

cessing. Hence, one of the major challenges for cloud computing is to minimize the task

execution latency of mobile users. Further, due to time-varying resources and higher

waiting times in a cloud server (agent), the initially selected cloud server may not al-

ways satisfy given offload task execution requirements (e.g., deadline). Thus, to meet

the offload task execution requirements, an MU’s offloaded task needs to be migrated

from one cloud server to another for execution. Note that by taking into account cloud

server load, task requirements, task migration latencies, and user mobility, one of the

fundamental research questions for HART-centric task execution is whether a task mi-

grates along with the MU or not. Thus, by taking user mobility, different task, and

collaborative node properties into account, the third aim of this thesis is to propose a

context-aware task migration strategy for the collaborative task execution in FiWi based

Tactile Internet infrastructures.

� The benefits of task prefetching and community-cluster resource awareness have not

been explicitly studied for offloading multiple HART tasks over FiWi enhanced infras-

tructures. Moreover, the optimal task-to-resource scheduling order and failure-avoidance

service selection for both task onloading and offloading based HART task execution are

missing in the existing literature. Thus, by taking both task prefetching and fault tol-

erance capabilities along with community-cluster resource awareness into account, the

fourth aim of this thesis is to design a suitable community and latency-aware multi-task

scheduling scheme for task on- and offloading based HART task execution.

� The fifth aim of this thesis is to develop a user preference-aware HART task coordination

scheme. Note that research in the area of user preference-aware HART task execution is

still in its infancy. At present, no existing study deals with the problem of delay-sensitive

and delay-tolerant caching and computing HART task execution considering both ded-

icated and non-dedicated robot/agent resource awareness and preemptive bandwidth

allocation. By taking into account different preferences of MUs such as delay and/or

monetary cost saving for different delay-sensitive and delay-tolerant HART task execu-

tion, the final goal of this thesis is to develop an appropriate HART task coordination

strategy and proactive resource allocation scheme.

19



Figure 1.5: Research methodology

1.3 Research Methodology

The research methodology applied in this thesis includes network modeling, coordination

mechanism design as well as analytical modeling and performance analysis (see Fig. 1.5) and

is described below in greater detail:

� Network Architecture: In this thesis, multiple novel network architectures are de-

veloped for different HART-centric task coordination schemes. A top-down approach is

considered, where different task requirements are investigated first and then the network

infrastructure is designed to support the service requirements. Importantly, the function-

alities of communication networks, task and resource allocation procedures, technologies,

and protocols are investigated. Both tree and mesh based topologies are considered in

the design of integrated FiWi enhanced Tactile Internet infrastructures.

� Mechanism Design: To achieve the optimal performance, different novel algorithms

are developed for collaborative HART task execution in FiWi enhanced infrastructures.

Most notably, the proposed mechanisms include a unified resource allocation strategy,

robot and cloud agent selection for executing different HART tasks, optimal multi-

task scheduling order, failure reporting scheme as well as a prefetching-aware dynamic

bandwidth allocation (DBA) algorithm.

� Performance Analysis: In this work, a performance analysis is conducted based on

different queuing models (e.g., M/G/1, M/M/1, M/M/c), analytical tools, mathemati-

cal formulas (e.g., Erlang-C, Euclidian distance, average memory access time or AMAT
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formula), probability distributions (e.g., uniform random, Zipf), and hypotheses (e.g.,

binary testing hypotheses). To evaluate the system performance under different scenar-

ios, the analytical and verifying simulation performance is examined for a wide range of

performance metrics and varying system settings.

1.4 Contributions of the Thesis

This thesis is compiled based on a total of eight manuscripts ([J1]-[J7] and [B1]), all of them

are listed in Section 1.5. The key contributions of this thesis made in [J2-J6] are discussed in

the following.

1.4.1 Failure-Aware Local and Non-local H2R Task Allocation in
FiWi Multi-Robot Infrastructures

The outcome of this research has been published in the following Journal and the main con-

tributions of this work are summarized below:

[J2] M. Chowdhury and M. Maier, “Local and Nonlocal Human-to-Robot Task Allocation

in Fiber-Wireless Multi-Robot Networks,” IEEE Systems Journal, vol. 12, no. 3, pp. 2250-

2260, Sep. 2018.

� A Novel Local and Non-local H2R Task Allocation Scheme: To minimize the

human users’ requested task execution latency, in this work we develop a suitable robot

selection mechanism for local and non-local H2R task allocation in FiWi based multi-

robot networks. For suitable robot selection, we consider several key performance metrics

such as the availability, skill set, distance to task location, and remaining energy of

robots. We tackle existing research issues for H2R task assignment such as (i) how

humans’ task requests arrive at the robot network, (ii) how to ensure that robots are

aware of all arriving task requests, and (iii) how to assign bandwidth resources to task

requests and result transmission activities.

� Failure Monitoring Scheme: To reduce robotic failures during task execution, we

introduce a neighboring-robot assisted failure reporting mechanism.

� Comprehensive Analysis of System Performance: We develop an analytical model

to evaluate the proposed scheme’s performance in terms of throughput, task allocation

delay, time complexity, sensing error rate, task execution time, and residual energy. In

addition, we analyze the end-to-end delay performance for both local and non-local task

allocation in integrated FiWi multi-robot networks based on M/G/1 queuing analysis.
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1.4.2 Collaborative Computing over FiWi Based Tactile Internet
Infrastructures

The outcome of this research has been published in the following journal and the main con-

tributions of this work are summarized below:

[J3] M. Chowdhury and M. Maier,“Collaborative Computing For Advanced Tactile Internet

Human-to-Robot (H2R) Communications in Integrated FiWi Multi-Robot Infrastructures,”

IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2142-2158, Dec. 2017.

� A Novel Collaborative Computing Based Task Assignment and Offloading

Scheme: To improve the energy efficiency of the selected host robot while satisfying

given task deadlines, we investigate a proper collaborative task assignment strategy that

combines both suitable host robot selection for sensing task execution and collaborative

node selection for computation task offloading. We exploit a conventional cloud, de-

centralized cloudlets, and neighboring robots as collaborative nodes for computation

offloading in support of a host robot’s requested task execution.

� Cloud, Cloudlet, and Collaborative Robot Enhanced Integrated FiWi Net-

work Infrastructure: From an architectural viewpoint, this work introduces an inte-

grated three-level cloud-cloudlet-robot enhanced FiWi network architecture for enabling

the execution of Tactile Internet applications.

� Resource Management Scheme: In order to handle both conventional broadband

traffic and computation offloading traffic at the same time over FiWi network infras-

tructures, we introduce a unified TDMA-based resource management scheme.

� Comprehensive Analytical Framework: We develop an analytical framework to

evaluate the performance of our proposed non-collaborative and collaborative/joint task

execution schemes in terms of task response time efficiency, energy consumption efficien-

cy, task allocation delay, and task offloading delay.

1.4.3 HART-centric Task Migration Scheme over FiWi Based Tac-
tile Internet Infrastructures

The outcome of this research has been published in the following journal and the key contri-

butions of this work are summarized below:

[J4] M. Chowdhury, E. Steinbach, W. Kellerer, and M. Maier, “Context-Aware Task Mi-

gration for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures,”

IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1231-1246, June

2018.
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� Demonstrate Different Task, Agent, and Robot Properties: In this work, before

describing our task migration scheme, we briefly elaborate on main characteristics of

collaborative robots (cobots) in comparison with traditional robots, agents, and shed

some light on the different types of task properties (e.g., cognitive and physical tasks).

Moreover, the mobility models of both cobots and MUs are described in greater detail.

� A Novel Context-Aware Task Migration Scheme: To render HART-centric task

migration beneficial for MUs, this part of the thesis analyzes and compares the perfor-

mance of different task migration schemes: (i) cobot-to-cobot (c2c), (ii) cobot-to-agent

(c2a) migration, (iii) inter-agent (remote cloud to cloudlet and vice versa) and (iv)

intra-agent (remote cloud to remote cloud and cloudlet to cloudlet) task migration. For

optimal task migration policy selection, we take into account different context informa-

tion such as task properties (e.g., task size, deadline), agent (e.g., availability, capability)

properties, user mobility, and migration latency, among others. We also develop an ap-

propriate bandwidth resource management scheme for the coordination of the proposed

task migration scheme over FiWi based Tactile Internet infrastructures.

� Analytical Model and Performance Evaluation: This part of the thesis develops an

analytical framework for quantifying the different task migration schemes’ performance

in terms of a variety of key performance metrics, including task migration gain-overhead

ratio, deadline-miss ratio, end-to-end task execution delay, task blocking probability,

task response time, and energy consumption efficiency.

1.4.4 Community- and Latency-Aware Multi-Task Scheduling in
FiWi Enhanced Networks

The outcome of this work is currently in revision for the following journal and the key contri-

butions of this work are summarized below:

[J5] M. Chowdhury and M. Maier, “Community- and Latency-Aware Multi-Task Schedul-

ing for HART Collaboration in FiWi Enhanced Networks,” IEEE Transactions on Cloud

Computing, November 2018 (submitted).

� Optimal Multi-Task Scheduling Order Selection: In this chapter, we investigate

a community- and latency-aware multiple HART task scheduling scheme by taking real-

time information about arriving task requests, isolated cluster, and community cluster

robot/agent resources into account. To reduce the task migration overhead, we incorpo-

rate batch based task scheduling into our online task scheduling scheme. In addition, we

investigate the performance of both task onloading and task offloading based HART task
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execution by taking task prefetching, fault tolerance, and failure avoidance capabilities

into account.

� A Novel Prefetching-Aware DBA Scheme: In this part of the thesis, we develop a

novel prefetching-aware dynamic bandwidth allocation (DBA) scheme for task on- and

offloading based HART task execution over FiWi enhanced networks.

� Analytical Modeling and Performance Evaluation: The performance of proposed

community- and latency-aware multi-task scheduling scheme is evaluated by means

of numerical simulations, which is compared with alternative baseline schemes (e.g.,

communication-aware and random task offloading scheme) in terms of delay and power

saving ratio, task prefetching time efficiency, processing-to-service time ratio, speed up,

and satisfactory ratio. Moreover, a comprehensive analysis of the mean task service time

is presented based on M/M/c queuing model.

1.4.5 User Preference Aware Task Coordination and Resource Al-
location in a FiWi Network Infrastructures

This work is currently in revision for the following journal and the key contributions of this

work are summarized below:

[J6] M. Chowdhury and M. Maier, “User Preference Aware Task Coordination and Proac-

tive Bandwidth Allocation in a FiWi Based Human-Agent-Robot Teamwork Ecosystem,”

IEEE Transactions on Network and Service Management, Oct. 2018 (in revision).

� FiWi Enhanced Tactile Internet Infrastructure for Preference Aware HART:

In this work, we investigate an adaptive FiWi enhanced Tactile Internet infrastructure

for preference aware HART task coordination by considering the presence of both local

and non-local dedicated and non-dedicated robots and cloud agents along with different

task arrival numbers. To avoid additional delay and monetary costs while mitigating

MUs’ different task requests, we propose a user preference aware actor (cloud agent and

robot) selection scheme.

� Proactive Resource Allocation: A proactive resource allocation model is presented

for both delay-sensitive and delay-tolerant caching and computing HART task execution.

� Analytical Framework and Performance Evaluation: A comprehensive perfor-

mance analysis model is developed to asses the performance trade-off between delay

cost saving (DCS) and monetary cost saving (MCS) based task execution schemes in

terms of average task execution time, monetary and energy cost, time and monetary cost
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saving ratio, communication to computation ratio (CCR), and offloading gain overhead

ratio. To achieve the cost-effective performance, we compare the following three different

DCS and MCS multi-task offloading schemes: (i) maximum throughput and minimum

delay (MTMD), (ii) maximum throughput (MT), and (iii) minimum delay (MD) based

schemes.

1.5 List of Publications

[J1] M. Maier, M. Chowdhury, B. P. Rimal, and D. Pham Van, “The Tactile Internet: Vision,

Recent Progress, and Open Challenges,” IEEE Communications Magazine, vol. 54, no.

5, pp. 138-145, May 2016.

[J2] M. Chowdhury and M. Maier, “Local and Nonlocal Human-to-Robot Task Allocation

in Fiber-Wireless Multi-Robot Networks,” IEEE Systems Journal, vol. 12, no. 3, pp.

2250-2260, Sep. 2018.

[J3] M. Chowdhury and M. Maier, “Collaborative Computing For Advanced Tactile Internet

Human-to-Robot (H2R) Communications in Integrated FiWi Multi-Robot Infrastruc-

tures,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2142-2158, Dec. 2017.

[J4] M. Chowdhury, E. Steinbach, W. Kellerer, and M. Maier, “Context-Aware Task Migra-

tion for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures,”

IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1231-1246,

June 2018.

[J5] M. Chowdhury and M. Maier, “Community- and Latency-Aware Multi-Task Scheduling

for HART Collaboration in FiWi Enhanced Networks,” IEEE Transactions on Cloud

Computing, November 2018 (submitted only).

[J6] M. Chowdhury and M. Maier, “User Preference Aware Task Coordination and Proactive

Bandwidth Allocation in a FiWi Based Human-Agent-Robot Teamwork Ecosystem,”

IEEE Transactions on Network and Service Management, Oct. 2018 (in revision).

[J7] M. Maier, A. Ebrahimzadeh, and M. Chowdhury, “The Tactile Internet: Automation

or Augmentation of the Human?,” IEEE Access, vol. 6, no. 1, pp. 41607-41618, Dec.

2018.

[B1] M. Chowdhury and M. Maier, “Human-Agent-Robot Teamwork (HART) over FiWi

Based Tactile Internet Infrastructures,” Encyclopedia of Organizational Knowledge, Ad-

ministration, and Technologies, Mehdi Khosrow-Pour (Editor), IGI Global (publisher),

USA, Aug. 2018 (submitted).

25



1.6 Thesis Organization

The thesis is organized into seven chapters to provide a consistent overview of the entire

research work conducted during the doctoral studies. The rest of the thesis is organized as

follows:

Chapter 1 contains the background, motivation, objectives, research methodology, and

contributions of the thesis. Moreover, this chapter presents the list of publications and a short

outline of the thesis.

Chapter 2 presents a failure-aware local and non-local human-to-robot (H2R) task allo-

cation mechanism in FiWi based multi-robot networks. This chapter presents an analytical

framework that models throughput, task execution time, failure sensing error rate, the residual

energy of robots, time complexity, and end-to-end delay performance. The obtained results

and findings are discussed in great detail.

Chapter 3 explores suitable collaborative computing techniques for executing task requests

of humans over integrated FiWi network infrastructures. This chapter investigates the perfor-

mance of both host robot-based non-collaborative task execution and host robot-collaborative

node (e.g., cloudlet) based joint task execution schemes. It also presents a novel resource

management scheme for collaborative/joint and non-collaborative task execution over FiWi

based Tactile Internet infrastructures. Afterwards, both analytical framework and evaluation

results of the proposed schemes are presented.

Chapter 4 presents a context-aware task migration scheme for efficiently orchestrating

the real-time collaboration among human users, agents, and collaborative robots (cobots)

across converged FiWi communications infrastructures. After describing the key features of

physical vs. cognitive task, cobot vs. stand-alone robot, this chapter investigates the problem

of whether and, if so, when and where a HART-centric task should be best migrated to.

The chapter then evaluates the performance of different task migration scheme, e.g., cobot-to-

agent, cobot-to-cobot, intra-agent, and inter-agent task migration schemes in terms of deadline

miss ratio, task blocking probability, migration gain-overhead, response time, and energy cost,

among others. Finally, simulation results and findings are presented.

Chapter 5 presents a community- and latency-aware task-to-resource mapping scheme for

HART task onloading and offloading. This chapter explores both optimal multi-task schedul-

ing order and suitable task processing node selection for different HART tasks. Importantly,

this chapter presents a novel prefetching-aware bandwidth allocation scheme and evaluates

the performance trade-off between fault tolerance and failure avoidance based HART task ex-

ecution. It presents an analytical framework to study the performance of our proposed scheme

in terms of mean task service time, task prefetching time efficiency, speed up, processing-to-

service time ratio (PSR), and satisfactory ratio, among others.
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Chapter 6 explores a user preference-aware delay-sensitive and delay-tolerant HART task

coordination scheme over FiWi enhanced infrastructures. Specifically, to cope with an MU’s

delay (DCS) and monetary-cost saving (MCS) preference, this chapter investigates preemptive

and non-preemptive resource allocation for different caching and computing HART tasks. It

reports on our analytical model and obtained results.

Finally, chapter 7 concludes the dissertation with a brief review of the key findings. This

chapter also highlights some future research areas that may build upon our work described in

the dissertation.
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Chapter 2

Failure-Aware Local and Non-local
H2R Task Allocation in FiWi
Multi-Robot Infrastructures

2.1 Preamble

This chapter contains material extracted from the following paper:

[J2] M. Chowdhury and M. Maier, “Local and Nonlocal Human-to-Robot Task Allocation in

Fiber-Wireless Multi-Robot Networks,” IEEE Systems Journal, vol. 12, no. 3, pp. 2250-2260,

Sep. 2018.

2.2 Introduction

With the advent of highly skilled and remotely controlled robots, we are moving towards

a world where human tasks of our everyday life will be increasingly done by robots. To

facilitate real-time task execution via remotely controlled robots, the so-called Tactile Internet

has recently emerged to steer/control elements of our surroundings [4]. The Tactile Internet

represents a paradigm shift from traditional wired and mobile Internet based content-delivery

to labor-delivery networks via service robots, which will add a new dimension to the human-

to-machine interaction by delivering tactile/haptic sensations [35]. To realize the Tactile

Internet, recently in [5], we elaborated on the role of several key enabling technologies (e.g.,

cloudlets, mobile-edge computing, and cloud robotics) and reported on our recent results on

the very low latency and ultra-high reliability performance of integrated fiber-wireless (FiWi)

communication infrastructures based on data-centric Ethernet technologies. Note that, the

ultimate end goal of the Tactile Internet should be the production of new goods and services by

means of empowering rather than automating machines that complement humans rather than

substitute for them. By taking into account different areas in which humans are more weaker
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than machines/robots, one of the major challenge for Tactile Internet is that it should amplify

the differences between machines and humans by capitalizing on each other complementary

strengths. A promising approach toward achieving advanced human-machine coordination by

means of a superior process for fluidly orchestrating human and machine coactivity may be

found in the still young field of human-agent-robot teamwork (HART) research, whose specific

design goal is to keep humans in rather than out of the loop [55].

In recent years, many human-machine togetherness based HART applications have been

deployed in industrial plant, natural disaster rescue, and remote surgery operations. Highly re-

liable and secure communications infrastructures along with intelligent coordination and task

allocation strategies need to be developed to minimize the latency and real-time complexity

of such applications. To this end, due to their superior latency and reliability performance

integrated FiWi networks provide an efficient communication solution to support both human-

robot togetherness and quality of service (QoS) for real-time HART applications. The use of

FiWi communication infrastructures in HART applications has several benefits. First and

foremost, a local loop controller placed at the optical-wireless interface may act as agent,

which assigns a given human task to the suitable robot. Second, given the wired/wireless

network integration and decentralization principles of future 5G networks, FiWi communica-

tion infrastructures provide the necessary support of both local and non-local task allocation

requests. Third, the agent at the optical-wireless interface of FiWi networks can dynamically

allocate resources to team members and perform task reallocation in the event of failures.

To tackle the challenges in multi-robot task allocation (MRTA), e.g., suitable robot selec-

tion, proper coordination among robots, and failure avoidance, various solutions have been

proposed [57]. The authors of [88] introduced a role based task allocation mechanism, in

which the appropriate robot selection depends on the matching of task type and robots skill.

In [14], a decentralized framework was proposed, where tasks of higher priority are allocated

before lower-priority tasks. Most of such priority based assignment schemes mainly allocate a

task to a predefined robot based on either the matching of the task identification number and

robot address or only on the robot’s particular task execution capabilities without waiting

for the best eligible candidate robot [89], [15]. The authors of [90] used both distance and

target qualities for their robot selection. None of these models [88]-[90] considered any task

reallocation mechanism nor any failure avoidance procedure. An inter-robot communication-

aware task allocation mechanism without any centralized controller was presented in [12]. In

[91], a comparative study of market- and distance threshold-based task allocation scheme was

investigated. A dynamic task reallocation process was presented in [13], considering robots’

distance to the actual task location for robot selection. In [92], a distributed market based

algorithm was investigated, whereby all robots are able to announce and bid for a task. Note
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that none of these models [12]-[92] consider other important parameters, such as execution

time and robot skill, for robot selection. We note that the research on task allocation and

coordination in multi-robot networks is still in its infancy. To address the above issues, this

chapter proposes an efficient robotic failure aware local and non-local task allocation strategy

for integrated FiWi multi-robot networks. The presented analytical results show that our pro-

posed mechanism outperforms traditional distance and priority based robot selection schemes

in terms of task execution time and average residual energy.

The remainder of this chapter is structured as follows. In Section 2.3, we first elaborate

on the motivation of our work and highlight our major contributions. Section 2.4 describes

our proposed FiWi network architecture, resource management scheme, and task allocation

mechanism, whose performance is analyzed in Section 2.5. Section 2.6 presents our obtained

results and findings. Finally, Section 2.7 concludes the chapter.

2.3 Motivation and Contributions

From the above discussion it is clear that current MRTA solutions typically suffer from several

inefficiencies during task execution (e.g., high task completion time and energy wastage of

robots) due to their lack of suitable robot selection and control mechanisms. Heterogeneous

robot and task types make the task allocation problem even more challenging. To speed up the

real-time robotic task execution process and reduce the energy consumption of resource limited

robots, the utilization of robotic services for human tasks needs to be done in a more resource-

efficient fashion. Most previous studies consider only one parameter for robot selection, e.g.,

distance and residual energy. There are a number of additional parameters such as robot skill,

availability, and task execution time that should be taken into account as well. In the past,

a number of important resource allocation and networking aspects of MRTA related to key

design questions, including but not limited to (i) how human task requests arrive at robot

networks, (ii) how to recover from robot failures, or (iii) how to ensure that robots are aware

of all task requests, have been largely neglected in previous studies.

In this work, we develop a FiWi empowered human-to-robot (H2R) task allocation mech-

anism and make the following novel contributions. First, to efficiently allocate a given human

task to a suitable robot, we propose a robot selection algorithm based on distance, residual

energy, as well as the robot’s ability and availability. Second, we introduce a neighboring

robot assisted failure reporting mechanism to avoid task execution failures. Further, to fa-

cilitate both local and non-local H2R task allocation at the same time over our proposed

FiWi network infrastructure we propose a unified resource allocation scheme and evaluate its

performance analytically in terms of delay and throughput. Beside robot selection delay, we

analyze the upper end-to-end delay bounds of both local and non-local task allocation. To

30



Figure 2.1: FiWi communication infrastructure for H2R task allocation.

the best of the authors’ knowledge, no existing study deals with both the local and non-local

H2R task allocation in integrated FiWi multi-robots networks.

2.4 FiWi Infrastructure for H2R task allocation

A. Network Architecture: The FiWi based network architecture used for our studied

H2R task allocation among humans, robots, and agents is shown in Fig. 2.1. The optical

fiber backhaul consists of an IEEE 802.3av 10G-EPON or IEEE 802.3ah 1G-EPON with an

optical fiber range of 10-100 km between the central optical line terminal (OLT) and the

remote optical network units (ONUs). The OLT connects to the ONUs through a 1:N optical

splitter/combiner at the remote node (RN). We consider three different subsets of ONUs.

The first subset of ONUs serves a single or multiple fixed (non-mobile) wired subscribers. To

interface with the wireless mesh network (WMN), the second subset of ONUs is equipped

with a mesh portal point (MPP). The WMN consists of relaying mesh points (MPs) and mesh

access points (MAPs). Each MAP serves mobile users (MUs) within its wireless coverage

zone, whereby intermediate MPs are used to relay traffic between MPPs and MAPs. The

integration of ONU and MPP into one unit is done by using so-called radio-and-fiber (R&F)
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Figure 2.2: Resource management scheme for H2R task allocation in FiWi multi-robot net-
works.

technologies with protocol translation at the optical-wireless interface [5]. In the wireless front-

end, different readily available WLAN technologies are used to meet given design requirements.

For instance, IEEE 802.11ac WLAN may be used to achieve physical data rates of up to 6900

Mb/s in conjunction with IEEE 802.11e for QoS support. To provide 4G cellular services

to MUs, the third subset of ONUs hosts an LTE enhanced nodeB (eNB), giving rise to an

integrated ONU-eNB [93]. In this work, we focus on WLAN coverage only and leave cellular

coverage for future work.

B. Resource Management Scheme: Fig. 2.2 depicts the resource management scheme

based on TDMA in both the optical fiber (between OLT and ONUs) and wireless subnetworks

(between ONU-MPPs and robots/MUs), which is described in greater detail in the following:

� Similar to [93],[94], in the optical part, the OLT dynamically allocates an upstream (US)

time slot and sends downstream (DS) frames to each ONU via IEEE 802.3ah multi-point

control protocol (MPCP) messages (REPORT and GATE). The GATE message is used by the

OLT to inform ONUs about their US transmission window after ONUs have sent their

individual bandwidth requests to the OLT via REPORT messages. During its assigned time

slot, an ONU sends its US data frames to the OLT and receives DS data frames from

the OLT, which are subsequently forwarded to its associated users (see also Algorithm

1 below).

� In the wireless part, our resource allocation mechanism differs from [93],[94] in several

ways. First, an ONU-MPP allocates bandwidth in sub-slots and schedules transmission

opportunities only for MUs and robots associated with the task allocation process by

means of Beacon and PS-Poll frames, as specified in IEEE 802.11e. Second, for control
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Algorithm 1 Resource allocation algorithm

Consideration: Total number of ONU-MPP (N) and each ONUs attached STAs (M), polling
cycle time Tc, ONUs requested (T reqsl ) and maximum allocated timeslot (Tmaxsl = Tc

N
),

MPCP message duration (T ponmsg), vacation period V = (Twlmsg + Tg)
1: Process executed at the OLT:
2: if Receive REPORT message from the ONU-MPP then
3: Determine the polling cycle time Tc = N(T onusl + RTT + 2T ponmsg) and each ONU-MPPs

allocated timeslot time T onusl = min(T reqsl , T
max
sl )

4: Transmit a GATE message to all ONU-MPPs indicating their timeslot start time and
duration (T onusl )

5: Send/receive DS/US data to/from the ONU-MPPs
6: end if
7: Process executed at the ONU-MPP:
8: if Receive GATE message from the OLT then
9: Determine associated STAs subslot duration T stasubsl by using T onusl = M(T stasubsl + V )

10: Send a Beacon message to all STAs indicating their timeslot duration (T stasubsl) and the
ONU-MPPs sleep period (T onusleep = Tc − T onusl − 2T ponmsg −RTT )

11: Receive/send US data from/to the STAs/OLT
12: Collect their own DS data frame from the OLT and broadcast them to its associated

STAs
13: if Receive T-REQ message from the OLT (non-local task) or STAs (local task) then
14: Select suitable robot for that task via RTS-CTS-ACK message exchange with robots
15: end if
16: if Receive PS-Poll message from the STAs then
17: The ONU-MPP update their requested timeslot duration (T reqsl = T reqsl + T reqsubsl + V )

and send a REPORT message to the OLT indicating next timeslot request
18: end if
19: end if
20: Process executed at the STA:
21: if Receive a Beacon message from the ONU-MPP then
22: Extract and update their transmission subslot time and the STA sleep duration (T stasleep =

T onusleep)
23: Transmit/receive their US/DS data frames to/from the ONU-MPP
24: if Receive a T-REQ message from the ONU-MPP then
25: Participate suitable robot selection process via RTS-CTS-ACK message exchange with

the ONU-MPP
26: end if
27: Each STA send their US subslot request (T reqsubsl) to the ONU-MPP via PS-Poll message
28: end if

signaling during the task allocation and failure reporting process, we assume that all

robots associated with a given ONU-MPP use a dedicated common control channel (e.g.,

separate frequency channel in the unlicensed ISM band). Each user is equipped with

two transceivers. One of the transceivers operates on a dedicated control channel, while
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the other one works on the data channel. Each user sends her bandwidth request to the

ONU-MPP via a PS-Poll frame. The broadcast Beacon frame is used to inform users

about their respective US subslot duration. Subsequently, MUs send their task allocation

request frames (similar to the cloud offload/H2H data frames in [94]), which contain the

respective task type and task location information, to their associated ONU-MPP during

their assigned subslots. An additional flag is piggybacked in the task request frame by

MUs to indicate to the ONU-MPP whether the task request is local or non-local.

� For non-local task allocation, the MU and robot associated with that task reside under

different ONU-MPPs. After receiving the non-local task request frame from an MU, the

ONU-MPP sends it to the OLT during its transmission period. Once the OLT receives

the frame, it broadcasts it to all ONU-MPPs. After the intended ONU-MPP receives

the frame, it selects a suitable robot for that task by using our proposed task allocation

procedure (to be described shortly in Section 2.4.C). For local task allocation, after re-

ceiving the task request frame from an MU, the ONU-MPP starts the task allocation

procedure immediately without forwarding the frame to the OLT. Network synchroniza-

tion is achieved by using the timestamp mechanism specified in IEEE 802.3ah, whereby

ONUs and their associated users update their local clock to the global clock by receiving

DS control messages.

C. Task Allocation Mechanism: The robot selection for each task is performed by a

coordinating agent located at the ONU-MPP (see Algorithm 2 and Fig. 2.1) according to the

following steps:

� After receiving the task request (T-REQ) message, which includes task location, task

type, remaining energy threshold, and task instruction, the ONU-MPP sends it to all

robots within its coverage. For transmission, the T-REQ message represents a modified

request-to-send (RTS) frame, whose format is shown in Fig. 2.3(b).

� Next, all eligible robots send their task response messages (T-RES) to the ONU-MPP,

which contains information about the remaining energy, robot location, robot type,

availability, moving, and processing speed. The T-RES message is encapsulated in a

modified clear-to-send (CTS) frame, as illustrated in Fig. 2.3(b).

� After receiving the robots’ response, the ONU-MPP selects a suitable robot for each

task by checking robots residual energy, busy time, and predicted minimum execution

time (see Section 2.5.C for cost calculation) and notifies the selected robot by using a

winner notification message (T-WNT), which includes both task instruction and time slot
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Algorithm 2 Task allocation algorithm

Consideration: Number of task arrives (Ntask), number of robots under any ONU-MPP (m),
task type (titype), task load (Li), service type of robot (rjtype), energy threshold for each

task (eth), robots distance to task location (d̄ji ), processing speed (sjp), moving speed (sjm),

robot status before task allocation (sj,busy), initial energy (eji ), and selected robot status
during task execution (sij,busy)

1: for i = 1 to Ntask do
2: for j = 1 to m do
3: The ONU-MPP will check the availability and service type of all participating robots

via exchange of T-REQ and T-RES messages
4: if (sj,busy==false) && (titype==rjtype) then
5: Check residual energy (ejr) of participating robots
6: if (ejr ≥ eth) then
7: Check task execution time tjex,i of (see eq. 9) all robots j

8: Allocate task i to robot j with minimum tjex,i (MET approach)
9: All neighbor robots monitor the selected robot status (sij,busy) by using carrier

sensing process and inform the ONU-MPP about robots status
10: end if
11: end if
12: if (sij,busy==false) during task execution phase then
13: ONU-MPP will re-announce the task i
14: Repeat step 1 to 11 to select robot for task i
15: else
16: No failure occurred during task execution
17: end if
18: Each robot (j) calculates its own ejr by using eq. (8)
19: end for
20: end for

information. The T-WNT message is sent in a modified acknowledgment (ACK) frame, as

shown in Fig. 2.3(b).

� Each robot is able to monitor the status of its neighboring robots via periodic carrier

sensing. In the event that a robot fails, the neighboring robot informs the ONU-MPP

about the failing robot such that the ONU-MPP can select another robot for the task.

The failure reporting process consists of the following three steps:

– Step 1: Each robot performs local carrier sensing using an energy detection process

(see Section 2.5.F) with a 1-bit local decision (Dj) whether the neighboring robot

operates or not.

– Step 2: Each robot sends the 1-bit local decision to its associated ONU-MPP.
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(a) Timing structure model (b) Modified control frame

Figure 2.3: Proposed task allocation mechanism: (a) timing structure and (b) modified control
frames.

– Step 3: After receiving the local decisions from the robots, the ONU-MPP makes

a final decision (Df ) whether the reported robot is fault-free or not.

D. Time Complexity of Task Allocation Algorithm: In this subsection, we analyze the

time complexity of our proposed task allocation algorithm. As shown above in Algorithm 2,

at the beginning of each iteration, the agent node (located at the ONU-MPP) considers the

number of task requests (Ntask or n̂) arrived at any given time. Therefore, the initial for-loop

of our algorithm runs O(n̂) times. Next, for each task, the agent node checks the information

consisting of availability, service type, residual energy, and task execution time of each robot

(m). Thus, the second for-loop of our algorithm requires O(m) time to select a suitable robot

for each given task (n̂). The information checking and robot selection part (steps 3 to 11)

of our algorithm takes constant O(1) time for each given robot. Similarly, the decision on

the working robot status (whether fault-free or not) also requires O(1) time for each selected

robot. Each robot’s residual energy computation is done by the corresponding robot itself

requiring O(1) time. It does not affect the agent node’s own task allocation operation. Hence,

for a total number of tasks (n̂) and participating robots (m), our task allocation algorithm

takes O(n̂m) time. For a given n̂ and m, the minimum distance and priority based robot

selection (step 8) requires O(n̂m) time. As the considered model is distributed, any robot

can announce the task. The task auctioneer robot has the information about n̂ tasks and

requires the information about m robots in that network in order to select a suitable robot,

resulting in an average computation complexity of O(n̂m). Therefore, our proposed task

allocation mechanism has the same time complexity as the minimum distance and priority

based selection.

2.5 Analytical Model

In this section, we develop an analytical model of the MRTA problem for the allocation of

different tasks to suitable robots, whereby each robot is able to execute only one task at any
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given time. We make the following assumptions:

� Task and robot types : We assume that an H2R application is composed of a set of

sensing and computing tasks Ntask, similar to [94],[95]. The task types are independent

(e.g., face detection, environment monitoring) and robot types are heterogeneous due to

their varying task processing skills. The task execution consists of task load processing

and transmission of processed data, whereby task i has its own task location (xi, yi)

and task load (Li) that depends on the number of instructions needed to be executed.

All users under a given ONU-MPP are static in nature, while robots are able to move

and change their position towards the task location with very low mobility, depending

on their respective moving capabilities (e.g., pedestrian speed). Robot j is located at

(xj, yj) in a simple 2D space, whereby its energy (ejt), task processing speed (sjp), and

moving speed (sjm) are assigned a scalar value (default values are listed in Table 2.1

below).

� Robot sensing and coverage: We assume that m robots are randomly distributed in an

area a with radius rmax (a = πr2
max) according to a homogeneous Poisson point process.

Hence, the average number of robots per area unit is given by λm = m
a

and the probability

that a robot has at least k neighbors equals (e−λma)(λma)k

k!
, where k = 1, 2, 3, ..m.

The cost calculation and our proposed task allocation algorithm (see Algorithm 2) are de-

scribed in greater detail next.

A. Distance Calculation Model : The distance between a given pair of task i and

robot j (d̄ji ) is obtained as follows:

d̄ji =
√

(xi − xj)2 + (yi − yj)2, (2.1)

where (xi, yi) and (xj, yj) represent the task and robot location, respectively.

B. Energy Consumption Model : The energy consumption model in multi-robot net-

works consists of three parts. The first part is the energy required to process the task (ep(i, j)),

which is given by [96]:

ep(i, j) = pcavg ·
Li

sjp
= pcavg · tp, (2.2)

where pcavg, Li, s
j
p, and tp denote the average energy consumption during processing (per

second), computation load for task i, processing speed of robot j, and task processing time of

robot, respectively. The second part is the energy required to reach the task location (er(i, j)):

er(i, j) = psavg ·
d̄ji
sjm

= psavg · tr, (2.3)
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where d̄ji , s
j
m, psavg, and tr denote the distance between task i and robot location j, moving

speed of robot j, average energy consumption at moving speed s (per second), and time to

reach the task location, respectively. The third part of energy consumption is associated with

the communication overhead (ec(i, j)). This is the energy consumption related to transmitting

(etx,l(l, d)) and receiving (crx(l)) a packet (l bit) over a distance (d), which are computed as

follows:

etx(l, d) = (εelec + εamp · d2) · l, (2.4)

crx(l) = εelec · l, (2.5)

ec(i, j) = etx(l, d) + crx(l), (2.6)

where εelec and εamp are the energy dissipation of radio electronics and transmit amplifier,

respectively. Thus, the total energy consumption of robot j (ejt) is given by:

ejt =
∑
iεñ

ec(i, j) +
∑
iεñ

ep(i, j) +
∑
iεñ

er(i, j), (2.7)

where ñ denotes the number of tasks processed by robot j. By using ejt and the robot’s initial

energy eji , the residual energy of the robot (ejr) is determined as follows:

ejr = eji − e
j
t . (2.8)

Note that the average residual energy (eja) of robot j is equal to eja =
∑
jεm ejr

m
. If êo and êc are

expressed as the average residual energy (eja) of our proposed method (minimum execution

time based selection) and the other compared approach (minimum distance/priority based

selection), respectively, then the average residual energy efficiency ratio (η̂o) of our proposed

method over other compared method can be expressed as follows: η̂o = êo−êc
êc

, where subscript

c can be either minimum distance or priority based selection, respectively. Details on both

approach are described in performance comparison sub-section (see Section 2.6).

C. Task Execution Time : The task execution time for robot j comprises the time to

reach the task location tr and the task processing time tp. Thus, by using Eqs. (2.2) and

(2.3), the task execution time (tjex,i) is calculated as follows:

tjex,i = tr + tp =
d̄ji
sjm

+
Li

sjp
. (2.9)

For a given number of tasks (Ntask), the total task execution time (tji ) is equal to tji =∑
iεNtask

tjex,i. If t̂o and t̂c are defined as the execution time (tji ) of our proposed method

(minimum execution time based selection) and the other compared approach (minimum dis-

tance/priority based selection), respectively, then the task execution time efficiency ratio (γ̂o)

of our proposed method over other compared method can be expressed as follows: γ̂o = t̂c−t̂o
t̂c

,
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where subscript c indicates either the minimum distance or priority based selection approach,

respectively.

D. Throughput vs. Task Allocation Delay : Saturation throughput is one of the

important performance metrics to evaluate network performance. It can be defined as the

fraction of slot time that is utilized for data transmission by robots for their assigned task.

When the number of suitable robots is sufficiently large, the number of successfully executed

tasks is equal to the number of task arrivals in the system. In our analysis, we assume that the

number of the available channels (slots) is equal to the number of tasks successfully assigned

to suitable robots. Note that the average number of task executions during a certain time

period depends on the number of suitable robots available at that time. Robot j may be

either free (sj,busy = false) due to the lack of task assignments (probability Pj,busy = 0) or

busy (sj,busy = true), if one task is already assigned to that robot (probability Pj,busy = 1).

For proper robot selection, the task type needs to match the corresponding robot’s capability

(Prjtype = 1). Moreover, if any robots have sufficient remaining energy (ejr) greater or equal to

the minimum energy threshold value (eth) then that robot is eligible (Pejr = 1) for selection,

otherwise it’s ineligibile (Pejr = 0). With Pj,busy, Pe
j
r, and Prjtype given, the probability that a

suitable robot is available (P s
j,free) is approximated as follows:

P s
j,free = (1− Pj,busy) · Pejr · Pr

j
type. (2.10)

For comparing throughput vs. task allocation/contention delay for robots, note that the

WLAN beacon interval is divided into two phases: contention and task execution, as shown

in Fig. 2.3(a). The task allocation delay during the contention phase includes task request,

reply from robots, and winning robot notification. Let ta, tr, and tw denote the duration of

the modified request RTS, reply CTS, and winner notification ACK frame, respectively. Thus,

the average required time for robot selection (tsi) is given by:

tsi =
Ntaskta +mtr +Ntasktw

Ntask

, (2.11)

where Ntask and m are the total number of tasks and robots that participate in the contention

phase, respectively. Hence, the duration of the task allocation (talloc) during the contention

phase is computed as follows:

talloc = tsi(Ntask · P s
j,free). (2.12)

Similarly, the total number of successful robot selections (ns) during the contention phase

is obtained as ns = talloc
tsi

. If the total number of tasks to be completed (Ntask) and the

probability of suitable robot availability (psj,free) are known, the average number of successful
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task allocations (Navg) during the contention phase is given by:

Navg =

Ntask∑
i=1

min(i, ns)

(
Ntask

i = 1

)
(P s

j,free)
i(1− P s

j,free)
Ntask−i. (2.13)

The saturation throughput (Savg) for different numbers of allocated tasks (Navg) without

execution time overhead is obtained as follows:

Savg =
Navg(T − talloc)

T
, (2.14)

where T is the WLAN beacon interval. Considering the extra execution time delay overhead

(toverhead), the saturation throughput is measured as follows: Savg = Navg(T−talloc−toverhead)

T
.

Note that for the calculation of Savg we assume that periodic messages are small and therefore

their affect is negligible.

E. FiWi End-to-end Delay Analysis: In this section, we extend the maximum US

(ONU-MPP to OLT) and DS (OLT to ONU-MPP) frame transmission delay model proposed

in [93] in order to calculate both local and non-local H2R task allocation delay. As illustrated

in Fig. 2.2, an ONU-MPP schedules transmission opportunities for its associated users based

on an M/G/1 queuing model with reservations and vacations. We define the aggregated

traffic load as ρh2r=λX, where λ is the traffic arrival rate and the random packet service time

is denoted by its first moment (X). During a cycle time (Tc), the ONU-MPP timeline consists

of data, reservation, and vacation intervals. The H2R traffic time period during transmission

is (1− ρh2r), which equals N(MV +RTT ). Thus, Tc is equal to Tc = N(MV+RTT )
1−ρh2r , where M is

the total number of users (e.g., humans, robots), reservation duration V is equal to Tmsgwl +Tg,

and RTT = 2Tprop is the round-trip time between the OLT and ONU-MPP.

If a task allocation request frame arrives after a PS-Poll message, it has to wait for

a polling cycle time Tc for reporting. If the frame transmitted in the next cycle sub-slot

Tsubsl ≥ Tmsgwl holds, it takes another queuing delay of Tc − Tsubsl. Thus, the total waiting

time of the frame is 2Tc − Tsubsl. Both the propagation time Tprop and US frame transmission

time Xu are accounted for the total waiting time in our US frame delay calculation. By

replacing Tsubsl with Tmsgwl and Xu with Xmax for Xu ≤ Xmax, the maximum US delay of the

task request frame (Du) is given by Du = 2Tc − Tmsgwl + Tprop +Xmax. Similarly, we calculate

the maximum downstream frame delay when an H2R task allocation request frame arrives at

the OLT immediately after its transmission of a GATE message to the ONU-MPP. Thus, the

frame has to wait for Tc − Tsl. By adding the maximum DS frame transmission time Xmax

for Xd ≤ Xmax, Tprop and frame queuing delay Tc− Tsl while considering Tsl ≥ RTT + 2Tmsgpon ,

the maximum DS frame delay (Dd) is approximated by Dd = Tc − 2Tmsgpon − Tprop +Xmax.

For a non-local task allocation request, the H2R task request frame is first transmitted

to the OLT in the US direction. Next, the OLT broadcasts it to all ONU-MPPs. After
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receiving the task request frame, the corresponding ONU-MPP selects a suitable robot for

the task. Hence, three delay components are part of the non-local task allocation end-to-end

delay (Dnon−local) calculation: US frame transmission delay (Du), frame DS transmission delay

(Dd), and robot selection delay (talloc). Thus, Dnon−local is given by:

Dnon−local = Du +Dd + talloc. (2.15)

Conversely, the local task allocation end-to-end delay (Dlocal) consists of only two components:

US frame delay (Du) required to transmit the frame to the ONU-MPP and robot selection

delay (talloc). Thus, Dlocal is computed as follows:

Dlocal = Du + talloc. (2.16)

F. Cooperative Sensing for Robot Failure Detection : To make a decision on the

selected robot status, we use the binary testing hypothesis H0 (absence of robot transmission in

the assigned timeslot) and H1 (presence of robot transmission) [97]. Hypothesis H1 states that

the neighboring robots observed a signal x(n̄) that contains white Gaussian noise v(n̄) and the

corresponding robot’s signal Sr(n̄) when the robot operates properly, whereby n̄ = 1, 2, 3..N̄

and N̄ denotes the maximum number of samples. Conversely, hypothesis H0 states that x(n̄)

contains only white Gaussian noise v(n̄) whenever the robot experiences a failure. The noise

is assumed to be additive white Gaussian with zero mean and variance σ2
v . Hence, the decision

statistic tj for energy detector that is employed by neighboring robot j to detect the working

robot’s periodic signal energy is given by [98]: tj = 1
N̄

∑N̄
n̄=1 |x(n̄)|2, where λ is a predefined

threshold that tests the decision statistic. Subsequently, each neighboring robot makes a local

sensing decision (Dj) on the working robot’s status such that Dj = 1 if tj > λ, or 0 otherwise.

Based on all local decisions sent to the agent node (ONU-MPP), the final decision (Df ) on

robot’s status is determined by applying the n out of k logic rule:

Df =
k∑
j=1

Dj

{
≥ n, H1

< n, H0,
(2.17)

where k is the total number of neighboring robots. Further, the false alarm (P̄F = P (tj > λ |
H0)) and detection probability (P̄D = P (tj > λ | H1)) of neighboring robot j are given by:

P̄F = Q

(
SNR

√
lsfs +Q−1(P̄D)

√
1 + 2SNR

)
(2.18)

P̄D = Q

(
Q−1(P̄F )− SNR

√
lsfs√

1 + 2SNR

)
, (2.19)
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Table 2.1: Parameters and default values for local and non-local H2R task allocation

Parameter Value

Number of robot (m) 1-50

Number of task (Ntask) 1-20

Beacon interval (T ) 1-100 ms

Area (a) 9 km2

Communication radius
(rmax)

56 m

Initial energy of robot (ei) 2 J

Residual energy threshold
(eth)

0.5 J

ta, tr, tw 0.17 µs, 0.12 µs,
0.12 µs

Li, d̄
j
i , s

j
p, s

j
m(weight) 0.1 to 1

pcavg and psavg 4 mJ/sec

εelec 50 nJ/bit

εamp 10 pJ/bit/m2

where fs and ls denote the sampling frequency and sensing time, respectively. Hence, we have

signal-to-noise ratio (SNR) given by Ps
σ2
v

and N̄ = lsfs. Then, by using P̄F and P̄D, the joint

probability of false alarm (QF ) and miss-detection (QMD) can be calculated as follows:

QF =
k∑
n

(
k

n

)
(P̄F )n(1− P̄F )k−n (2.20)

QMD = 1−QD = 1−
k∑
n

(
k

n

)
(P̄D)n(1− P̄D)k−n. (2.21)

2.6 Results

In the following, we present results on the performance of our proposed task allocation mech-

anism. Table 2.1 summarizes the key design parameters and their assigned default values in

compliance with [95].

System settings, requirements, and configurations: In this work, the ONUs are locat-

ed at a distance of 20 Km from the central office (OLT). Further, the MAP radius, ONU-MPP
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Figure 2.4: Throughput, task execution time, and average residual energy variation.
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coverage area, and density of MAPs within each ONU-MPP coverage area is set to 100 m, 9

km2, and 3, respectively. The FiWi traffic load is varied within the range between 0.05 to 0.95.

For evaluation, the task workload (Li), robot processing (sjp), and moving speed (sjm) weight

is assigned randomly from the range between 0.1 to 1. The task request, response, and winner

notification message duration are set to .17µs, .12 µs, and .12µs, respectively. The maximum

frame service time Xmax (at ONUs and OLTs) is assumed to be equal to 12.14 µs. The MPCP

messages (REPORT and GATE) duration is set to 64 bytes (Tmsgpon = .512µs), whereas the

wireless messages (Ps-Poll) duration is assumed to be Tmsgwl = .512 µs. The maximum data

rate at the wired (EPON) and wireless (WLAN) link are set to 10 Gb/s and 6900 Mb/s,

respectively. Note that, the main requirements of the low-latency H2R application execu-

tion (capturing image by using camera at a task location and object detection from captured

image) is availability of robots for task execution and availability of bandwidth resources to

transfer the task request to robot, hardware/software interface to transfer the task request,

connectivity of both mobile users device and robots with networks (WLAN at front-end), and

robots failure avoidance, among others.

A. Throughput Performance Analysis : As shown in Fig. 2.4(a), for a given average

task allocation number (Navg) and probability of robot availability (P s
j,free), the saturation

throughput (Savg) increases as the contention time (talloc) increases until it reaches the peak

value given by Eq. (2.14), whereby the contention time is long enough to allocate all tasks to

suitable robots. Further increasing the contention time reduces the task processing and da-

ta transmission time and thereby negatively affects the throughput performance. Fig. 2.4(b)

shows the throughput variation for different numbers of tasks (Ntask) and robots (m). Provided

that sufficient robots are available (P s
j,free = 1), the network is able to achieve high throughput

only when the number of robots participating in the contention phase is equal to the number

of different tasks. This is because higher robot participation results in a long contention time,

which in turn leads to a reduced data transmission time. For increasing task arrivals, enough

robots are needed to process a large number of task, whereby task load and robot properties

(e.g., distance, processing speed, moving speed) are assumed to be independent. We observe

from Fig. 2.4(c) that initially a larger number of robots result in an increased throughput

for a fixed number of tasks due to the lower probability of robot availability (P s
j,free). For

sufficiently available robots, a small number of robots achieves higher throughput compared

to a large number of robots.

Figs. 2.4(d) and 2.4(e) depict the variation of total task execution time (tji ) for different

task load (Li) and processing speed (sp) values, respectively. From Fig. 2.4(d) we observe

that the total task execution time increases for an increasing task number and task load

value. Fig. 2.4(e) indicates that a robot with high processing speed (sp) results in a lower
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task execution time. Fig. 2.4(f) shows the average residual energy (eja) for different task and

iteration numbers (see Eq. (2.8)). A large number of tasks (per iteration) results in a lower

average residual energy for each robot than for a small number of tasks.

B. Performance Comparison : In this subsection, we compare the performance of our

proposed scheme with two generalized task allocation schemes: (i) minimum distance based

robot selection (MD) [12]-[13] and (ii) priority based robot selection (PS) [14]-[15]. More

specifically, their performance is compared in terms of total task execution time, average

residual energy, and average throughput. The MD approach selects a suitable robot for each

task based on the lowest distance to a given task location. Conversely, the PS scheme allocates

a given task to the robot with the lowest ID or by using robot and task ID matching. Our

proposed MET task allocation approach selects a robot based on the pre-calculation of the

minimum execution time tjex,i (see Eq. (2.9)). For fair comparison, we relate both generalized

PS and MD mechanism to our analytical model and test their performance based on the same

system settings as listed in Table 2.1. Moreover, to evaluate the performance of the MD,

PS, and our proposed MET selection schemes, we randomly assign different robot properties,

including a robot’s moving speed, processing speed, distance associated with each task and

robot, as well as task load. Next, we select an eligible robot for each task using the MD,

PS, and MET robot selection processes. As shown in Fig. 2.5(a), for a small number of

tasks and highly available robots, MET results in a smaller total task execution time than

the MD and PS approaches. This is because both MD and PS approaches neglect additional

selection criteria other than the minimum distance and the robots’ own priority. Note that

the execution time difference between the three methods decreases as the number of tasks

increases. For the same number of tasks and robots, the execution time difference between

the three approaches equals zero. In Fig. 2.5(b), we vary the task load to show its impact

on the task execution time. Clearly, the task execution time increases with the task load for

all three methods. We observe that the PS approach performs better than the MD selection

scheme under high task loads. This is because the robot selected by the MD scheme exhibits

a lower task processing speed and moving speed than that robot selected by the PS scheme.

Fig. 2.5(b) also indicates that our MET approach outperforms both MD and PS approaches.

Fig. 2.5(c) depicts the average residual energy variation of the robots for the three methods

under consideration. The average residual energy of the robots decreases as the number of

iterations increases. Due to its smaller execution time our proposed MET approach is able to

achieve a superior average residual energy performance than the alternative two methods.

Fig. 2.5(d) compares the throughput performance of our proposed MET method with

that of the MD and PS approaches for different robot availability probabilities. Clearly,

the throughput of all three approaches increases with growing robot availability probability.
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Figure 2.5: Performance comparison of our proposed method with MD and PS based approach.
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(a)

Figure 2.6: Total failure sensing error rate evaluation.

However, both MD and PS schemes achieve a smaller throughput than our MET approach

due to their higher task execution time overhead. Fig. 2.5(e) and (f) illustrate the overall task

execution time and average residual energy efficiency of our proposed method in comparison

to that of the MD and PS selection schemes. Fig. 2.5(e) shows that for high task loads

our proposed method achieves a superior execution time efficiency than the PS approach.

For instance, at a task load of 1, the task execution time efficiency of our proposed method

outperforms the PS and MD selection scheme by 11% and 18%, respectively. Similarly, we

observe from Fig. 2.5(f) that the average residual energy efficiency of our proposed method

outperforms both MD and PS approaches for increasing task loads. For smaller task loads, our

proposed method shows a higher residual energy efficiency than both PS and MD approaches.

Note that under a high task load our proposed method achieves a significantly better residual

energy efficiency than the PS and in particular the MD approach.

C. Failure Sensing Error Rate and End-to-End delay Analysis : Fig. 2.6(a)

depicts the variation of the robots’ total failure sensing error rate for different energy thresholds

(λ) (see Eqs. (2.20) and (2.21)). We compare three different fusion rules (n out of k sensing

neighbors) to identify their respective effectiveness. We observe that the AND (n = k),

Majority (n ≥ k
2
), and OR rule (n = 1) achieve minimal error rate for a low, medium, and

large threshold, respectively. Thus, the AND, Majority, and OR rules are optimal for a low,

medium, and large threshold, respectively. Next, the non-local (Dnon−local) and local (Dlocal)

H2R task allocation end-to-end delay for different numbers of users (M) and traffic loads (ρh2r)

are shown in Fig. 2.7(a) and Fig. 2.7(b), respectively. Both delays (Dlocal and Dnon−local)
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Figure 2.7: Local and non-local task allocation end-to-end delay evaluation.

increase with the traffic load (ρh2r) and different number of ONUs (N) in our considered

FiWi multi-robot networks (see Eqs. (2.15) and (2.16)). We observe from these figures that

Dnon−local experiences a higher task allocation delay than Dlocal. This is because that beside

the robot selection delay (talloc), Dnon−local depends on both US (Du) and DS (Dd) frame

transmission delays, while Dlocal depends on the US frame transmission delay (Du) only.

2.7 Conclusions

In this chapter, we proposed a suitable robot selection mechanism for H2R task allocation in

integrated FiWi multi-robot networks. Unlike existing solutions, we investigated both local

and non-local task allocation. To reduce robotic failure during task execution, we introduced

a neighboring robot monitoring based failure sensing scheme, whereby both human users and

robots are synchronized and incorporated into a TDMA-based resource management process.

We developed a comprehensive performance analysis model to evaluate system throughput,

task allocation delay, task execution time, and robots’ average residual energy. Importantly,

we showed that there exists a trade-off between task allocation delay and system throughput.

Our results indicate that the minimum execution time based robot selection achieves a supe-

rior total task execution time and average robot residual energy performance than minimum

distance and priority based selection when the number of tasks is smaller than the total num-

ber of available robots. Further, we investigated the total sensing error rate of three fusion

rules and examined their respective effectiveness during the failure sensing process. By taking

frame transmission delay (US and DS) and robot selection delay into account, we also analyzed

both local and non-local task allocation end-to-end delay. Our obtained results show that the
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proposed H2R task allocation represents an important stepping stone towards ensuring QoS

for future HART-centric Tactile Internet applications [4].
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Chapter 3

Collaborative Computing over FiWi
Based Tactile Internet Infrastructures

3.1 Preamble

This chapter contains material extracted from the following paper:

[J3] M. Chowdhury and M. Maier,“Collaborative Computing For Advanced Tactile Internet

Human-to-Robot (H2R) Communications in Integrated FiWi Multi-Robot Infrastructures,”

IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2142-2158, Dec. 2017.

3.2 Introduction

With the emergence of 5G mobile networks and rapid development of smart devices, it is ex-

pected that a wide variety of real-time machine-centric applications are finding their way into

our life. To unleash their full potential, some of those 5G applications (e.g., cognitive assis-

tance) require low-latency communications with ultra-reliable, ultra-responsive, and intelligent

network connectivity. To meet the aforementioned requirements, we recently evaluated the

performance gains obtained from unifying coverage-centric LTE-Advanced (LTE-A) heteroge-

neous networks (HetNets) with capacity-centric fiber-wireless (FiWi) access networks based

on data-centric Ethernet passive optical network (PON) and Gigabit-class WLAN technolo-

gies [9]. We showed that very low latency on the order of 1 ms and ultra-high reliability with

almost guaranteed network connectivity can be achieved in FiWi enhanced LTE-A HetNet-

s. Note that both very low latency and ultra-high reliability are not only crucial for future

5G networks but are also essential design goals of the emerging Tactile Internet to remotely

steer/control virtual and/or physical objects (e.g., remote-controlled robots) [35].

In order to realize Tactile Internet robotic applications, the feasibility of several key en-

abling technologies such as FiWi enhanced 4G mobile networks, cloudlets, mobile-edge com-

puting (MEC), and cloud robotics were identified in [5]. Moreover, the subtle differences
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between 5G, Internet of Things (IoT), and Tactile Internet were outlined based on their d-

ifferent underlying communications paradigms. IoT and 5G leverage on machine-to-machine

(M2M) and human-to-human (H2H) communications, respectively. Conversely, the Tactile

Internet relies on human-to-robot (H2R) communications to facilitate the interaction between

human operators and tele-operated robots. Note that, in [5], we introduced the concept of

FiWi enabled H2R communications for Tactile Internet applications and identified specific

H2R communications requirements apart from low latency and high reliability, most notably

efficient H2R task allocation. However, we did not elaborate on how H2R communications

may be realized in technically sufficient detail.

Taking the respective areas where robots are strong and humans are weak into account,

FiWi enabled H2R communications aims at leveraging on their “cooperative” and “collab-

orative” autonomy such that humans and robots may complement each other. This design

approach is also known as Human-Agent-Robot Teamwork (HART) [55]. The potential ben-

efits of real-time HART applications are immense, ranging from industrial applications (e.g.,

coal mining) to emergency response operations (e.g., food supply and human rescue). Howev-

er, highly reliable and secure communication platforms along with intelligent task allocation

and service coordination strategies are needed to meet their stringent quality-of-service (QoS)

requirements. To ensure proper coordination in both local and non-local HART task alloca-

tion processes, integrated FiWi multi-robot communication infrastructures play a crucial role,

whereby humans (H), agents (A), and robots (R) perform the following respective functions.

A human user delegates her task request to a robot through a nearby agent. The agent in

turn coordinates the task allocation/robot selection process, while the selected robot executes

the human’s task. Note that typically the agent is placed at the optical-wireless interface of

integrated FiWi multi-robot networks.

For the efficient utilization of robotic resources, proper task allocation among robots is

crucial by taking the different capabilities of robots and the specific task requirements such

as task execution deadline and energy consumption of robots into account [57]. Most existing

multi-robot task allocation (MRTA) studies focus on only one or a few parameters for robot

selection, e.g., the robot’s energy [99], distance to task location [12], or task priority [89].

Clearly, in more advanced robot selection schemes, additional parameters need to be considered

such as the robot’s ability, availability, and task execution time. More importantly, note that

the aforementioned MRTA schemes suffer from several shortcomings, most notably, the lack

of control and coordination as well as task re-allocation mechanisms, thus resulting in an

increased task execution delay and energy consumption of selected robots. Further, some

H2R tasks may involve location dependent sensing sub-tasks (e.g., image capturing) and/or

location independent computation sub-tasks (e.g., processing of sensed data). For these types
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of task, different challenging scenarios may arise, where the available robots may fail to execute

either the sensing or computation sub-tasks or both due to their limited computing and storage

resources.

To address these shortcomings, mobile devices increasingly seek assistance from collabo-

rative nodes (e.g., mobile-cloud computing, mobile device-to-device communications) for ex-

ecuting their computation tasks, a trend also known as cyber-foraging [16] or collaborative

computing [18], [17]. Despite recent progress on MRTA, the impact of collaborative/joint task

execution schemes that consider both the host robot and collaborative nodes (e.g., central

cloud or cloudlet) for the H2R task execution process has not been examined in sufficient

detail previously. For clarification, note that the H2R task execution process typically con-

sists of two sub-parts. The first one comprises the initial processing or sensing sub-task (e.g.,

capturing an image), which can be executed only by the selected host robot located in the

given task area. The second sub-part of the task involves the location independent computa-

tion/processing of the sensed data (e.g., image/face detection), which can be done by the host

robot itself or alternatively be offloaded to collaborative nodes. Computation task offloading

to collaborative nodes comes in three flavors: System-based, method-based, and optimization-

based offloading. System-based offloading is used to decide whether to offload the computation

task to an infrastructure-based cloud (e.g., central cloud [74],[75], cloudlet [76], [77]) or an ad-

hoc virtual cloud [78], [30]. Method-based offloading [71] involves application partitioning and

code migration to an infrastructure-based cloud. Optimization-based task offloading, on the

other hand, aims at achieving objectives related to minimizing energy consumption [75] and

task response time [77] of mobile devices, though computation task offloading might not al-

ways be beneficial for mobile devices. Several studies showed that computation task offloading

can help save energy of mobile devices only if they consume less energy during offloading the

computation task to a central cloud than executing the task by themselves [74],[75].

Most previous studies considered either full task (i.e., both sensing and computation sub-

parts) allocation to a robot or only computation offloading (i.e., sub-part of the full task) onto

cloud nodes (central cloud and local cloudlet) for execution (also see Table 3.1 for details).

Hence, the question of how to assign a local/non-local H2R task to a host robot considering

different tasks and robot types with their respective energy consumption, availability, distance

to task location, processing, and moving speed remains an open research challenge. Moreover,

how to coordinate both task allocation among robots and computation sub-task offloading

onto collaborative nodes represents another unaddressed research challenge. Further, different

challenging situations need to be investigated, where both collaborative cloud/cloudlet nodes

may satisfy or fail to satisfy given computation offloading requirements.
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Table 3.1: Comparison of proposed scheme with existing task allocation schemes

Scheme Main Features Robot Selection
and Computa-
tion Offloading

Resource
Man-
age-
ment

Task Al-
location
and Of-
floading
Coordi-
nation

Other Com-
ments

Minimum
Distance
based
robot s-
election
[12]

Used only robots
distance value for
task allocation,
not considered
task re-allocation

Used only for
robot selection
based task ex-
ecution, not
considered task
offloading

Not ad-
dressed

Not con-
sidered

May suffer
from higher
task execu-
tion latency

Fixed task
assignment
scheme
[89]

Used only robot i-
dentification num-
ber for task alloca-
tion

Not considered
task offloading

Not ad-
dressed

Not con-
sidered

May suffer
from higher
task execu-
tion latency

Remote
cloud
based
system [75]

Used min energy
consumption of
mobile device for
cloud offloading

Used only for lo-
cation independent
offloading task

Not ad-
dressed

Not con-
sidered

Not consid-
ered location
dependent
task

Delay op-
timal com-
puting [77]

Minimized compu-
tation task execu-
tion time, consid-
ered cloudlet for
offloading

Used only for com-
putation offloading
task, did not con-
sider any robot se-
lection scheme

Not ad-
dressed

Not con-
sidered

Not consid-
ered location
dependent
H2R task
execution

Hybrid
cloud
based sys-
tem [76],
[78]

Minimized energy
consumption of
host mobile device,
considered remote
cloud and cloudlet
for offloading

Only offload com-
putation task to
suitable cloud
server, did not
consider any robot
selection scheme

Not ad-
dressed

Not con-
sidered

Not consid-
ered location
dependent
H2R task
execution

Our pro-
posed
scheme

Host robot selec-
tion for sensing
task based on dif-
ferent parameters
(e.g., distance,
energy, skill)

Considered both
suitable host robot
selection and com-
putation sub-task
offloading

Addressed Considered H2R task
includes both
sensing and
computation
task

Considered multi-
ple collaborative n-
odes for computa-
tion offloading

Offload compu-
tation task to
collaborative node
that satisfies re-
source availability,
deadline, and en-
ergy consumption
criteria
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Towards this end, in this chapter we develop an efficient H2R task allocation strategy

that includes both suitable host robot and collaborative node selection in integrated FiWi

multi-robot networks. We propose to use not only the central cloud and local cloudlets as

collaborative nodes but also available neighboring robots for computation sub-task offloading.

To achieve energy savings of the robots and accomplish H2R tasks within their required time,

the main objective of this chapter is to select the proper policy for H2R task execution by

evaluating the performance of a non-collaborative task execution scheme, in which the selected

host robot executes the full H2R task, and the collaborative/joint H2R task execution, in which

the selected host robot performs only the sensing sub-task while the selected collaborative node

executes the computation sub-task via computation offloading.

The main contributions of this chapter are threefold. First, we present a suitable host robot

selection policy for sensing sub-task allocation by taking different parameters such as robot

availability, remaining energy, and task execution time into account. Second, to improve the

task response time and energy consumption of robots, we propose an efficient collaborative

node selection scheme for computation offloading. Third, we investigate a unified resource

management scheme that is able to handle coexisting conventional broadband traffic and

computation offloaded data traffic.

The remainder of this chapter is structured as follows. Section 3.3 describes our proposed

FiWi multi-robot network architecture, unified resource management, and task allocation

scheme in technically greater detail. Section 3.4 presents our developed analytical model.

Section 3.5 reports on our obtained results and findings. Finally, Section 3.6 concludes the

chapter.

3.3 FiWi Multi-Robot Network infrastructure for H2R

Task Allocation

3.3.1 Network Architecture

In this section, we re-design the generic FiWi network architecture introduced in [9] for co-

ordinating the local and non-local allocation of H2R task that consist of both sensing and

computation sub-parts, whereby humans, robots, and agents actively participate in the task

allocation process, as shown in Fig. 3.1. We exploit the central cloud, cloudlets, and neighbor-

ing robots as collaborative nodes for computation sub-task offloading. Note that the generic

FiWi network architecture proposed in [9] was designed only for H2H communications and

did not examine any H2R task allocation and computation offloading capabilities.

In our proposed collaborative computing based FiWi multi-robot network architecture, the

optical fiber backhaul consists of an IEEE 802.3av 10 Gb/s Ethernet Passive Optical Network
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Figure 3.1: Integrated FiWi multi-robot network architecture for coordinating local and non-
local H2R task allocation.

(10G-EPON) with an optical fiber range of 10-100 km between the central optical line terminal

(OLT) and remote optical network units (ONUs). The OLT is located at the central office

and connects to three different subsets of ONUs via a typical tree-and-branch topology. The

first subset of ONUs provides services to a single or multiple attached fixed (i.e., non-mobile)

wired subscribers via FTTx access, e.g., fiber-to-the-home/business (FTTH/B). To provide

an interface with the wireless mesh network (WMN), the second subset of ONUs is attached

to an IEEE 802.11s mesh portal point (MPP), referred to as ONU-MPP. The WMN consists

of wireless mesh points (MPs) and mesh access points (MAPs), whereby intermediate MPs

relay traffic between MPPs and MAPs. Each MAP serves associated mobile users (MUs)

and robots within its wireless coverage area. Note that the integrated ONU-MPP is realized

by using so-called radio-and-fiber (R&F) technologies with medium access control (MAC)

protocol translation taking place at the optical-wireless interface [94]. The third subset of

ONUs, each connecting to an LTE enhanced nodeB (eNB) base station, giving rise to ONU-

eNB, in order to provide 4G cellular services to MUs [93]. The central cloud servers are

connected to the OLT via dedicated fiber links. In addition, to provide mobile-edge computing

(MEC) services to MUs and robots at the edge of our integrated FiWi multi-robot network,

cloudlet servers are placed at the optical-wireless network edge and connected to separate

ONU-MPPs or ONU-eNBs via dedicated fiber links.

In the following, we focus on WLAN coverage only, whereby MUs and robots connect to

the ONU-MPPs via IEEE 802.11ac WLAN, and leave cellular coverage for future work.
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Figure 3.2: Proposed resource management scheme.

3.3.2 Resource Management Scheme

3.3.2.1 A. General Operation

Similar to [94], our proposed resource management scheme uses a two-layer time division mul-

tiple access (TDMA) based operation in both optical and wireless sub-networks, as illustrated

in Fig. 3.2. However, our proposed resource management scheme differs from [94] in several

important ways. First, in the wireless part, we split the overall timing structure into three

parts: (i) initial robot selection for task allocation, (ii) assigned time slot for associated users’

conventional broadband traffic, and (iii) computation offloaded data transmissions. Second,

apart from the central cloud and local cloudlets, we consider available neighboring robots for

computation sub-task offloading. Third, our resource management scheme flexibly accommo-

dates H2R task execution both with and without computation offloading onto a collaborative

node.

To better understand the basic operation during a polling cycle, Fig. 3.3(a) illustrates the

proposed resource allocation and control signal exchange process, which operates as follows:

� During the initial task allocation phase, the agent located at the ONU-MPP exchanges

three control messages (RTS, CTS, and ACK) with its associated robots to select one

suitable robot for each H2R task (to be described in greater detail in Section 3.3.3).

� The resource management operation in the optical fiber backhaul uses IEEE 802.3av

multipoint control protocol (MPCP) messages (REPORT and GATE), whereby the REPORT

message is used by ONU-MPPs to report their upstream (US) transmission demands

to the OLT and the GATE message is used by the OLT to inform ONU-MPPs about

their US transmission windows (i.e., start time and duration) for the next polling cycle.
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(a) (b)

Figure 3.3: (a) Timing structure and control frame format, and (b) operational steps of
computation offloading process.

The REPORT message contains the ONU-MPPs’ US bandwidth requests in terms of buffer

backlogs expressed in time units. In this work, the traditional REPORT message is extend-

ed by using its reserved bits (32 bits) for carrying the computation offloading time slot

request information, which contains the time instant up to which a given ONU-MPP

can schedule its associated wireless users’ computation offloaded data transmissions.

The computation offloading bandwidth request information embedded in the REPORT

message is used by the OLT to assign ONU-MPPs computation offloading transmission

time slots in the next polling cycle.

In the wireless part, the resource management operation is realized via the exchange

of IEEE 802.11ac WLAN frames (i.e., Beacon and PS-Poll), whereby associated users

(MUs/robots) report their bandwidth requests by sending an extended PS-Poll mes-

sage to their corresponding ONU-MPP. The PS-Poll frame is extended by using its

pad/reserved bits to include an offload flag bit. The offload flag bit is embedded in the

PS-Poll frame to inform the ONU-MPP about the MUs/robots’ computation offload-

ing time slot requests. After receiving the GATE message from the OLT, the ONU-MPP

assigns conventional broadband US traffic and computation offloaded data transmission

opportunities to its associated users, resets its clock time, and then sends the broadcast

Beacon frame to inform all associated MUs/robots about their US transmission time

slots (i.e., start time and duration).
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� Subsequently the ONU-MPP receives the US transmissions from its associated users

and forwards them to the OLT. At the same time, the ONU-MPP receives its intended

downstream (DS) frames from the OLT and forwards them to its associated users. Note

that each MU/robot sends/receives its US/DS data traffic to/from the ONU-MPP during

its assigned time slot.

3.3.2.2 B. Computation Offloading Operation

� In this work, the transmission opportunity for computation offloading is kept separate

from conventional broadband transmissions to permit both broadband and computa-

tion offloading operations within a polling cycle. Fig. 3.3(b) depicts the computation

offloading process to a collaborative node, which might be a remote cloud server, decen-

tralized cloudlet, or neighboring robot. Initially, the MU sends her H2R task execution

request to the agent located at the ONU-MPP. The agent then selects a suitable host

robot for the H2R task that contains both sensing and computation sub-parts via our

task allocation algorithm (to be described in greater detail in Section 3.3.3). Next, after

completing the sensing sub-task (e.g., image capturing), provided that the selected host

robot requires assistance from a collaborative node (central cloud, cloudlet, or neigh-

boring robot) to process the remaining computation sub-task (e.g., image detection),

it sends a computation offloading request to the ONU-MPP in an extended PS-Poll

message.

� After receiving the computation offloading request from a given host robot, the ONU-

MPP selects where (i.e., cloud node or neighboring robot) to offload the computation

sub-task onto subject to given computation sub-task offloading requirements (see Section

3.3.3) and sends an extended REPORT message to the OLT, which embeds the computa-

tion offloading request. Once the ONU-MPP receives the GATE message from the OLT

that contains the ONU-MPPs’ conventional broadband and computation offloading time

slot map, it immediately schedules the host robots’ computation offloading opportunities.

The ONU-MPP then notifies all host robots about their computation offloading time s-

lot information via a broadcast Beacon message (i.e., computation offloading time slot

start time and duration). A given host robot then transmits the computation sub-task

data frame (see Section 3.4.1 for details) to the ONU-MPP via its assigned offloading

time slot. After receiving the computation sub-task input data frame from the task

offloading host robot, the ONU-MPP forwards them to the selected collaborative node

(central cloud/cloudlet/neighboring robot) for further processing.
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� In case of cloudlet/neighboring robot offloading, the ONU-MPP sends the computation

sub-task input data frame to a cloudlet/neighboring robot via the fiber/wireless link

for processing. Once the ONU-MPP receives the results of the computation sub-task

from the cloudlet/neighboring robot, it immediately sends them to the task offloading

host robot. For central cloud offloading, the ONU-MPP sends the computation sub-task

input data frame to the OLT. Then, after receiving the computation sub-task input

data, the OLT transfers them to the central cloud. The OLT receives the computation

sub-task results from the central cloud after processing and sends them to the ONU-

MPP. Once the ONU-MPP receives the computation sub-task results from the OLT, it

immediately forwards them to the corresponding host robot.

3.3.3 Proposed Task Allocation Algorithm

We consider the following two different task execution schemes: (i) a non-collaborative scheme,

where the suitable host robot executes the full task, and (ii) a collaborative scheme, where

the suitable host robot and collaborative node (central cloud, cloudlet, or neighboring robot)

conduct the sensing and computation sub-task, respectively. Our proposed task allocation

algorithm, which performs both the suitable host robot and collaborative node selection,

comprises the following four steps:

� Step 1: Initially, an MU sends her H2R task request message (T-REQ) to the agent node

during her assigned US transmission time slot containing the following information: task

location, task type, remaining energy threshold, and task deadline.

� Step 2: When the agent at the ONU-MPP receives the task request (T-REQ) from the

MU, it first checks which robots in its wireless coverage area satisfy the given availability,

energy threshold to conduct the task, and task execution deadline requirements. Towards

this end, the agent first broadcasts a task announcement message (RTS) to all nearby

robots. The RTS frame is extended by using its pad/reserved bits in order to include

additional task request information (T-REQ), similar to [100]. After the reception of a RTS

frame, the available robots in that network send reply messages (T-RES) embedded in CTS

frames to the agent containing the following information: remaining energy, location,

moving and processing speed, and pre-calculation of task execution time of each robot.

After checking each robot’s reply, the agent selects a suitable host robot according to

the following criteria: robot availability, remaining energy, and minimum task execution

time. The selected host robot is notified by the agent via a winner notification (T-WNT)

embedded in the ACK message. The modified RTS, CTS, and ACK frames are depicted in

Fig. 3.3(a).
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Algorithm 3 Task allocation algorithm

Considerations: Number of task arrives (n), number of available robots before task allo-
cation (m), residual energy of robots (ejr), required energy threshold to process the task
(eth), required CPU cycles to process the sensing (scpu) and computation (ccpu) sub-task,
full task execution time of robot (tj), computation sub-task response time of central cloud
(tclc ), cloudlet (tctc ), neighboring robot (toc), and deadline (tdc), energy consumption of host
robot considering own (ejc), cloud (eclc ), cloudlet (ectc ), and neighboring robot computation
sub-task execution (eoc).

1: for i = 1 to n do
2: for j = 1 to m do
3: The agent node at the ONU-MPP will check the residual energy (ejr) and pre-

calculation of task execution time (tj) of participating robots in that network via
exchange of modified RTS and CTS messages

4: if ejr ≥ eth then
5: Allocate task i to host robot j with minimum task execution time tj
6: The selected host robot executes the sensing sub-task (ls) of the full task and sends

a PS-Poll message to agent for computation offloading
7: The agent checks the availability and resource type of central cloud (cl), cloudlet

(ct), and neighboring robot (o) for computation sub-task (scpu) execution
8: if eclc < ectc ≤ ejc & eclc < eoc ≤ ejc & tclc ≤ tdc then
9: Offload the computation sub-task to central cloud

10: else if ectc < eclc ≤ ejc & ectc < eoc ≤ ejc & tctc ≤tdc then
11: Offload the computation sub-task to cloudlet
12: else if toc ≤ tdc then
13: Offload the computation sub-task to a suitable neighboring robot in that network
14: else if tclc ≥ tdc & tctc ≥ tdc & toc ≥ tdc then
15: Execute the computation sub-task (ccpu) locally in the selected host robot (see

step 5)
16: end if
17: else
18: Go to step 1
19: end if
20: end for
21: end for
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� Step 3: The selected host robot first executes the sensing sub-part of the task. If the host

robot sends a computation sub-task offloading request to the agent, the agent selects a

suitable collaborative node for the computation sub-task execution (remaining sub-part).

� Step 4: The agent checks the computation sub-task response time, resource availabili-

ty, and energy consumption of all collaborative nodes (i.e., central cloud, cloudlet, and

neighboring robots with minimum execution time and energy consumption value). The

agent then selects the most suitable collaborative node for computation sub-task exe-

cution based on the following criteria: (i) computation sub-task response time of the

collaborative node is less than or equal to the computation sub-task deadline, (ii) suf-

ficient resource availability, and (iii) minimum energy consumption of task offloading

host robot among all collaborative nodes.

The pseudocode (see Algorithm 3) of our proposed task allocation algorithm executed

by the ONU-MPP (agent node) is described below in a more formal way by defining the

various parameters used in our analytical model. First, the agent node broadcasts the H2R

task request message RTS (total number of arrived tasks is n and available robots is m) to

all available robots under the ONU-MPP and receives the robots’ response CTS messages

from all available robots (lines 1-2). Next, the agent node extracts the robots’ residual energy

information and pre-calculation of task execution time information from each robot’s response

message and allocates the H2R task to the robot that has sufficient residual energy to process

the task (ejr ≥ eth) and satisfies the minimum task execution time requirements (lines 3-5).

Then, if the selected host robot executes the sensing sub-task of the full task and sends a

PS-Poll message to agent node for collaborative node selection to perform the computation

sub-task execution, the agent checks the available resource type of all collaborative nodes (lines

6-7). If only one collaborative node (central cloud, cloudlet, or neighboring robot) satisfies the

given task execution deadline, the agent at the ONU-MPP offloads the computation sub-task

onto that collaborative node. If more than one collaborative node is able to meet the given

computation sub-task execution deadline, the agent offloads the computation sub-task onto

the most suitable collaborative node based on its minimum energy consumption (lines 8-13).

Conversely, if all available collaborative nodes fail to satisfy the given computation sub-task

deadline, the computation sub-task is executed locally at the initially selected host robot (lines

14-15). Further, if the selected host robot fails to execute the computation sub-task, a new

host robot needs to be selected for the computation sub-task execution (lines 16-18) and the

process is repeated starting at step 1.
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3.4 Analytical Model

In this section, we first briefly discuss the assumptions of our analytical model. We then

evaluate the performance of our suitable host robot selection scheme in terms of task allocation

delay and task execution time. Afterwards, we analyze the end-to-end local/non-local task

allocation and computation sub-task offloading delay. Finally, we assess the performance of

our proposed collaborative and non-collaborative task execution schemes in terms of task

response time and energy consumption efficiency.

3.4.1 Assumptions

The H2R application is assumed to consist of one fine-grained task that includes both the

sensing (e.g., image capturing) and computation sub-task (e.g., image/face detection), sim-

ilar to [94] and [95]. Each robot is able to execute a single task at any given time. Unlike

MUs, robots are assumed to be static, though they are able to move and change their position

towards task location at low speed (e.g., pedestrian speed). Furthermore, robots are heteroge-

neous with regard to their remaining energy ejr (given in Joule), moving speed vj (m/s), CPU

clock speed µj (MHz), and position (xj, yj). The request from a given MU for a particular task

i includes the task location (xi, yi), total or full task input size (li = ls+ lu) that contains both

the sensing (ls) and computing (lu) sub-task input data size (kBytes), total CPU clock cycles

(Megacycles) required to process the full task input data size, including both the sensing and

computation sub-task CPU cycles (tcpu = scpu+ccpu), required robot energy threshold for each

task (eth), and deadline (td) to complete the full H2R task. We also assume that the output

of the sensing sub-task is the input of the computation sub-task. The computation sub-task

considered for offloading is defined as follows: ci , (ccpu, t
d
c ,mr, lu, lr), where ccpu, t

d
c , mr,

lu, and lr indicate the number of required CPU cycles to process the computation sub-task,

deadline, required memory, input, and output size of the computation sub-task, respectively.

3.4.2 Task Allocation Delay

The calculation of the average task allocation delay involves the transmission times of several

control messages that are exchanged between the ONU-MPP (agent) and robots, namely,

task announcement via an extended RTS (trts), robot response via an extended CTS (tcts),

and winner notification via an extended ACK (tack) message, similar to the IEEE 802.11 DCF

analysis in [101]. Hence, the probability that a given robot sends a response message in a

random time slot is given by pk = 2
k+1

, where k denotes the constant backoff window size.

For a total number m of robots participating in the task allocation, the probability that at

least one robot transmits a response in a random time slot equals ptr = 1− (1− pk)m. Thus,
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the probability that a single robot transmits a response in a time slot is then obtained as

pcs = mpk(1−pk)m−1

ptr
.

For computing the average robot selection delay per task (tsi), we assume that the agent

sends an RTS message to robots after waiting for DCF interframe space (tDIFS), while robots

send a CTS message after waiting for short interframe space (tSIFS). After tSIFS, the agent

sends an ACK message to the selected robot. By using the values of tDIFS, tSIFS, trts, tcts, and

tack, both successful (tsa = tDIFS + trts +mtSIFS +mtcts + tSIFS + tack) and unsuccessful task

allocation time periods (tua = tDIFS+trts+mtSIFS+mtcts) can be evaluated. Consequently, the

average robot selection delay per task (tsi) is equal to tsi = peσ+pstsa+putua
ps

, where pe = (1−ptr),
ps = ptrpcs, and pu = ptr(1− pcs) denote the empty, successful, and unsuccessful transmission

probabilities in a time slot, respectively, and σ denotes the length of an idle time slot.

Next, we calculate the saturation throughput of our network. Assuming that n is the

total number of task requests arriving at a given agent and m is the number of available

robots in the network with sufficient remaining energy, the robot availability probability per

task pavg can be approximated by pavg = min(1, m
n

). Further, by taking into account tsi

and pavg, the total task allocation delay (talloc) can be calculated as talloc = tsi(n · pavg).
Additionally, if the total task allocation duration (talloc) is known, the total number of suitable

robots (nr) selected during task allocation is given by nr = talloc
tsi

. Similarly, by using n,

pavg, and nr, the total number of allocated tasks (na) during task allocation is given by

na =
∑n

i=1 min(i, nr) ·
(
n
i=1

)
(pavg)

i(1 − pavg)
n−i. Thus, given the total data transmission

duration (ttotal), number of allocated tasks (na), and task allocation duration (talloc), the

saturation throughput (sth) is obtained as follows:

sth =
na(ttotal − talloc)

ttotal
. (3.1)

3.4.3 Task Execution Time Without Offloading

The task execution/response time for different robots (tj) is a crucial performance metric in

the suitable host robot selection process that consists of the following four delay components:

task allocation delay (talloc), time delay to reach the task location (tjr), time delay to process

the sensing sub-task (tjs), and time delay to process the computation sub-task (tjc). Thus, tj

is given by

tj = talloc + tjr + tjs + tjc = talloc +
dij
vj

+
scpu
µj

+
ccpu
µj

, (3.2)

where dij, vj, µj, scpu, and ccpu denote the distance between task i and location of robot j,

moving and processing speed of robot j, required CPU cycles for sensing and computation

sub-task, respectively. The distance between task and robot location (dij) is calculated via
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the Euclidean distance as follows: dij =
√

(xi − xj)2 + (yi − yj)2, where (xi, yi) and (xj, yj)

denote task i’s and robot j’s position in the two dimensional space, respectively. For local

(i.e., MUs and robots are associated with the same ONU-MPP) and non-local task (i.e., MUs

and robots are associated with different ONU-MPPs) allocation, the calculation of the total

task execution time considers the end-to-end local (tlalloc) and non-local task allocation delay

(tnlalloc) instead of talloc. By accounting for both tlalloc and tnlalloc (see Section 3.4.4), the end-

to-end local (tjlocal) and non-local (tjnon−local) task execution time for selected host robots are

given by tjlocal = tlalloc + tjr + tjs + tjc and tjnon−local = tnlalloc + tjr + tjs + tjc, respectively.

3.4.4 FiWi End-to-End Task Allocation and Offloading Delay

In this section, we present the end-to-end delay analysis for both local and non-local task

allocation based on the US (from ONU-MPP to OLT) and DS (from OLT to ONU-MPP)

frame transmission delay model in [93]. Note, however, that we had to modify the analytical

model in [93] in order to accommodate our proposed resource allocation process, as explained

in the following.

As shown in Fig. 3.2, the ONU-MPP time cycle (Tc) consists of the task allocation delay

(talloc), MPCP message duration (tmsgpon ), conventional broadband traffic transmission (tmsl ),

computation offloading data transmission (tαsl), guard band (tg), reservation (V = tmsgwl + tg),

and vacation period. Recall that the considered FiWi network serves N ONUs and M users

(humans and robots) at each ONU-MPP. We assume that H2R packets arrive at the ONU-

MPP with an aggregate arrival rate of λ according to a Poisson process and M/G/1 queue.

The random packet service time is given by the first moment (X). Further, the aggregate

H2R traffic load is equal to ρh2r=λX. During each cycle time Tc, the vacation duration equals

(N −1)tsl and RTT = 2tprop denotes the round-trip time between OLT and ONU-MPPs. The

non-data traffic transmission time during Tc is equal to N(MV + talloc + tmsgpon ). Thus, Tc is

calculated as follows:

Tc =
N(MV +RTT + talloc + tmsgpon )

1− ρh2r
. (3.3)

Recall from above that an MU sends her US bandwidth request via a PS-Poll message.

If the H2R task request is generated at the MU after the current PS-Poll message, it waits

during the first delay component Tc (polling cycle time) for the next PS-Poll message to report

to the ONU-MPP (agent) about her US sub-slot request (see Fig. 3.2). After the MU sends

the task request frame to the ONU-MPP during the next time cycle sub-slot (tmsl ≥ tmsgwl ), the

total queuing delay time is equal to 2Tc − tmsgwl . The other two delay components associated

with the US frame transmission are the US frame service time at the ONU-MPP (Xu ≤ xmax)

and the propagation delay (tprop). Thus, the maximum US frame transmission delay (tu) is

given by tu = 2Tc − tmsgwl + tprop + xmax. Next, we compute the DS frame delay. If the OLT
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receives the MU’s task request frame after the GATE message, the frame has to wait for Tc−tsl.
The other delay components are the DS frame service time delay at the OLT (Xd ≤ xmax)

and the associated propagation delay (tprop). Given that tsl ≥ 2tprop + 2tmsgpon , the DS frame

transmission delay (td) is equal to td = Tc − 2tmsgpon − tprop + xmax.

By using US and DS frame delays, we are able to measure the end-to-end local and non-local

task allocation delay as follows. If the MU requests a non-local task allocation, the associated

ONU-MPP first sends the US task request frame to the OLT. The OLT then broadcasts the

task request frame to all ONU-MPPs, whereby only the intended ONU-MPP processes the

task request frame and initiates the non-local task allocation process. For the calculation of

the non-local task allocation delay (tnlalloc), both US and DS frame transmission delays are

required along with the task allocation delay (talloc). Thus, we have tnlalloc = tu + td + talloc.

Conversely, if the task request is local, the agent at the associated ONU-MPP receives the

task request frame from the MU and starts the task allocation process immediately. Thus, for

the calculation of the local task allocation delay (tlalloc), only the US frame transmission delay

(tu) is required along with the talloc. As a result, tlalloc is obtained as tlalloc = tu + talloc.

Next, we analyze the maximum offload packet delay that incurs during the computation

sub-task offloading process. By assuming that a computation offload sub-slot is assigned to

all devices M during each time cycle Tc and the collaborative nodes’ traffic load is equal to

(ρcl, ρct, ρo), the computation offload sub-slot duration (tαsl) can be expressed as tαsl = ρcn·Tc
M

,

where subscript cn can be either the central cloud (cl), a local cloudlet (ct), or a neighboring

robot (o), respectively. As shown in Fig. 3.2, if the computation offload request (a) is generated

at the host robot after a PS-Poll message, it experiences the maximum computation offload

packet buffering delay. For an upcoming transmission opportunity, the computation sub-task

offload packet needs to wait.

Note that the end-to-end maximum computation sub-task offload packet delay consists of

four delay components, as shown in Fig. 3.2. The first delay component is the time difference

between the computation offload request arrival (a) and the transmission of offload reservation

request (r) via a PS-Poll frame (d1 = (M−1)tαsl+(N−1)tsl+t
m
sl+talloc+t

msg
pon +tmsgwl ). The second

delay component is the time gap between the transmission of offload reservation request (r) and

the reception of offload grant (g) or MPCP frame (d2 = (M−1)tmsl+Mtαsl+(N−1)tsl+talloc+t
msg
pon ).

The third delay component is the time gap between the last grant (g) message and the start

time of the offload (α) slot (d3 = tmsgwl +Mtmsl ). By summing up the first three delay components

(d1, d2, d3), we observe from Fig. 3.2 that the maximum computation offload packet delay for

cloudlet (dct ≤ 2Tc) and neighboring robot offloading (do ≤ 2Tc) is equal to 2Tc. Whereas for

central cloud offloading, the fourth delay component (d4 = 2tprop) along with the first three
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components of the maximum offload packet delay calculation is given by dcl ≤ 2Tc + 2tprop,

whereby (tprop) denotes the one-way propagation delay between OLT and central cloud.

3.4.5 Performance Analysis of Computation Offloading and Collab-
orative Task Execution

In this subsection, we analyze the performance of non-collaborative and collaborative task

execution schemes in terms of task response time and energy consumption efficiency. The first

part of this subsection presents the calculation of computation sub-task response time and

energy consumption of a host robot for different offloading schemes to decide whether or not

computation sub-task offloading to a collaborative node is useful for the task offloading robot.

The computation sub-task response time for central cloud offloading (tclc ) consists of two

parts: offloading delay (tclofl) and computation sub-task processing delay at the central cloud

(tclex = ccpu
µcl

). The central cloud offloading delay considers the uplink communication delay

(tucl = lu
bwl

+ lu
bcl

+ lu
bcl

), downlink communication delay (trcl = lr
bwl

+ lr
bcl

+ lr
bcl

), and total propagation

delay, including both air (wireless part) and fiber (optical part) propagation delays. The uplink

delay (tucl) consists of the time required to transfer computation sub-task offloading packets

from the host robot to the agent across the wireless link and further from the agent (ONU-

MPP) to the OLT and to the central cloud. The downlink delay (trcl) measures the time period

required to transfer the resultant offloading packet from the central cloud to the host robot

via OLT and agent, respectively. Thus, tclc is computed as follows:

tclc = tclofl + tclex =
2(lu + lr)

bcl
+

(lu + lr)

bwl
+ tclprop +

ccpu
µcl

. (3.4)

Similarly, the computation sub-task response time for cloudlet offloading (tctc ) comprises the

offloading delay (tctofl) and computation sub-task processing delay at the cloudlet (tctex = ccpu
µct

).

The cloudlet offloading delay involves the uplink (tuct = lu
bwl

+ lu
bct

) and downlink (trct = lr
bwl

+ lr
bct

)

communication delay along with the total propagation delay (tctprop) that incurs during the

offloading process. The uplink delay (tuct) includes the offload packet transmission time from

the host robot to the agent and from the agent to the cloudlet by using the wireless and fiber

link, respectively. The downlink delay (trct) captures the resultant offload packet transfer time

period from the cloudlet to the host robot via the intermediate agent. Thus, tctc is given by

tctc = tctofl + tctex =
(lu + lr)

bct
+

(lu + lr)

bwl
+ tctprop +

ccpu
µct

. (3.5)

The computation sub-task response time for neighboring robot offloading (toc) also accounts

for both offloading delay (toofl) and computation sub-task processing delay at the neighboring

robot (toex = ccpu
µo

). The neighboring robot offloading delay (toofl) includes the suitable neigh-

boring robot selection delay (talloc), uplink delay (tuo = 2lu
bwl

), downlink delay (tro = 2lr
bwl

), and
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total propagation delay (toprop) that occurs during the offloading process. The uplink delay (tuo)

comprises the offload packet transfer time from the task offloading host robot to the agent

and from the agent to the selected neighboring robot by using the wireless link. The downlink

delay (tro) consists of the resultant packet transfer time from the neighboring robot to the

task-offloading host robot across the agent. Thus, toc is obtained as follows:

toc = toofl + toex = talloc +
2(lu + lr)

bwl
+ toprop +

ccpu
µo

. (3.6)

Next, we analyze the total task response time of the following three collaborative task

execution schemes: (i) host robot-central cloud, (ii) host robot-cloudlet, and (iii) host robot-

neighboring robot. If the sensing sub-task is executed by the selected host robot and the

computation sub-task is offloaded onto the central cloud, by using Eqs. (3.2) and (3.4) the

total task response time (tj,cl) for the host robot-central cloud based joint task execution is

given by

tj,cl = talloc + tjr + tjs + tclc . (3.7)

If the sensing sub-task is executed by the host robot and the computation sub-task is offloaded

onto a nearby cloudlet for execution, by using Eqs. (3.2) and (3.5) the total task response

time for the host robot-cloudlet (tj,ct) based joint execution is obtained as follows:

tj,ct = talloc + tjr + tjs + tctc . (3.8)

Further, if the sensing sub-task is performed by the host robot and the computation sub-task is

offloaded onto a neighboring robot, then by using Eqs. (3.2) and (3.6) the total task response

time (tj,o) for the host robot-neighboring robot based joint execution is equal to

tj,o = 2talloc + tjr + tjs + toc (3.9)

By taking the local and non-local task allocation delays (see Section 3.4.4) into account, the

end-to-end non-local (tj,cnnon−local = tu+ td+ tj,cn) and local task response time (tj,cnlocal = tu+ tj,cn)

for the case of collaborative task execution are obtained, whereby the subscript cn can stand

for either cl, ct, or o, respectively. Using both collaborative total task response time (tj,cn)

and maximum offload packet buffering delay (dcn), we are able to assess the maximum total

task response time for the host robot-central cloud (tj,cl = dcl + tj,cl), host robot-cloudlet

(tj,ct = dct + tj,ct), and host robot-neighboring robot (tj,o = do + tj,o) based joint execution

schemes. Note that in the non-collaborative host robot based task execution the maximum

response time (tj) is equal to tj since there is no offloading delay.

Energy consumption of host robot for computation sub-task offloading onto the collabo-

rative node (central cloud, cloudlet, or neighbor robot) consists both energy consumption for
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offloading communication delay and computation sub-task processing delay. Next, by using

Eqs. (3.4)-(3.6) and Table 3.2, the energy consumption of the host robot for computation

sub-task offloading onto the central cloud (eclc = eclofl + eclex), cloudlet (ectc = ectofl + ectex), and

neighboring robot (eoc = eoofl + eoex) is obtained as follows:

eclc = pu

(
2lu
bcl

+
lu
bwl

)
+ pr

(
2lr
bcl

+
lr
bwl

)
+ pidle

(
ccpu
µcl

+ tclprop

)
(3.10)

ectc = pu

(
lu
bct

+
lu
bwl

)
+ pr

(
lr
bct

+
lr
bwl

)
+ pidle

(
ccpu
µct

+ tctprop

)
(3.11)

eoc = pu

(
2lu
bwl

)
+ pr

(
2lr
bwl

)
+ pidle

(
ccpu
µo

+ toprop

)
+ eja, (3.12)

where eja denotes the energy consumed during the task allocation process. From Eqs. (3.10)-

(3.12), we can calculate energy consumption of host robot for computation sub-task processing

delay at central cloud (eclex = pidle · tclex), cloudlet (ectex = pidle · tctex), and neighbor robot (eoex =

pidle · toex), where pidle is the average idle energy consumption of host robot for computations

sub-task processing at collaborative node. Similarly, from Eqs. (3.10)-(3.12), we can obtain

energy consumption of host robot for central cloud (eclofl = eclc −eclex), cloudlet (ectofl = ectc −ectex),
and neighbor robot (eoofl = eoc − eoex) offloading communication delay.

For the power consumption (pc) and time (tjc) to process the computation sub-task given

by Eq. (3.2) and Table 3.2, the energy consumption of the host robot for executing its own

computation sub-task (ejc) is equal to ejc = pc · tjc = pc · ccpuµj .

In the following, we analyze the total energy consumption of the host robot for both

collaborative and non-collaborative full-task execution schemes, which involves four parts.

The first part of the task allocation process (eja) corresponds to transmitting (etx(l, d) =

(εelec + εamp · d2) · l) and receiving (erx(l) = εelec · l) the robot selection control packet (l

bit) over a distance d, whereby εelec and εamp represent the energy dissipation of the radio

electronics (εelec = 50 nJ/bit) and transmit amplifier (εamp = .0013 pJ/bit), respectively [95].

Hence, eja is given by eja = etx(l, d) + erx(l). The second part is the energy consumption (ejd)

of selected host robot to reach the task location. For the average power consumption (pv)

and time (tjr) to reach the task location given in Eq. (3.2) and Table 3.2, ejd is obtained as

ejd = pv · tjr = pv · dijvj , where dij and vj denote the distance between robot and task location

and the speed of the moving robot, respectively. The third type of energy consumption is

related to the sensing sub-task. For a given average power consumption (ps) and time (tjs)

to process the sensing sub-task, the energy consumption of the host robot for executing the

sensing sub-task (ejs) is given by ejs = ps · tjs = ps · scpuµj . Finally, the fourth type of energy

consumption related to the computation sub-task was computed above in Eqs. (3.10-3.12).
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By summing up the above four energy consumption parts, the total energy consumption

of the robot (ejw) during the full-task execution is obtained as follows:

ejw =
∑
iεn

eja +
∑
iεn

ejs +
∑
iεn

ejd +
∑
iεn

ejc +
∑
iεn

ecnc , (3.13)

where n is the number of processed tasks and the subscript cn stands for cl, ct, and o,

respectively. Taking the host robot’s initial energy (eij) and total consumed energy (ejw) into

account, the residual energy of a robot (ejr) equals ejr = eij − ejw. Note that if the full task

is executed by the host robot itself, the total energy consumption of the host robot for the

resultant non-collaborative task execution is given by ej = eja+e
j
s+e

j
d+e

j
c. Hence, if the sensing

sub-task is performed by host robot itself while the computation sub-task is offloaded onto a

collaborative node, the energy consumption of the host robot for such a collaborative/joint

task execution is equal to ej,cn = eja + ejs + ejd + ecnc .

3.4.6 Task Response Time and Energy Consumption Efficiency

As the total task response time and energy efficiency ratio are key performance metrics, we

analyze both of them in this subsection. In our calculation of the total task response time

efficiency (teff ), we use the total task response time of the collaborative execution (tj,cn) and

non-collaborative host robot execution (tj). The energy efficiency of the full-task execution

(eeff ) is obtained from the energy consumption of the host robot for collaborative (ej,cn) and

non-collaborative task execution (ej). The total task response time (teff ) and energy consump-

tion (eeff ) efficiency ratio taking both collaborative and non-collaborative task execution into

account are given by teff =
tj−tj,cn

tj
and eeff =

ej−ej,cn
ej

, where subscript cn may stand for the

central cloud (cl), cloudlet (ct), or neighboring robot (o), respectively.

Hence, the offload gain-overhead ratio (γcn) for computation sub-task offloading to a collab-

orative node is given by the ratio of computation sub-task offload gain (tjc− tcnc ) and overhead

(dcn + tcnofl):

γcn =
tjc − tcnc
dcn + tcnofl

. (3.14)

3.5 Results

In this section, we investigate the performance of our proposed collaborative and non-collaborative

task execution schemes leveraging on the different capabilities of the central cloud, cloudlets,

and robots. Table 3.2 summarizes the key system parameters and their assigned default values

in compliance with previous studies [17], [30], [94], [95], [101].
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Table 3.2: Notation and default values for evaluation of collaborative computing based task
execution scheme

Symbol Definition Value/Unit
dij, e

i
j, eth Distance (robot to task location), initial energy of

robots, and required energy threshold
1-10 m, 200 KJ, 50
J

pc, pv, ps Robot average power consumption for processing,
moving, and sensing sub-task

.5 W, .5 W, .5 W

li, ls, lu, lr Total task input (full), sensing sub-task input,
computation sub-task input, and output data size

KB (vary)

vj, tcpu, scpu,
ccpu

Robot moving speed, total task, sensing, and com-
putation sub-task CPU cycles (workload)

.1-1 m/s, Mega cy-
cles (vary)

mct,mo,mr Available memory space of cloudlet, neighboring
robot, and required size for offloading

MB (vary)

µj, µcl, µct, µo CPU clock frequency of host robot, central cloud,
cloudlet, and neighboring robot

MHz (vary)

tclprop, t
ct
prop, t

o
prop Total propagation delay for cloud, cloudlet, and

neighboring robot offloading
ms (vary)

pidle, pu, pr Average energy consumed by robot during idle, da-
ta transmission, and reception

.001 W, .1 W, .05
W

bwl, bcl, bct, Transmission capacity of wireless and fiber link for
cloud, cloudlet offloading

6900 Mb/s, 10 G-
b/s, 10 Gb/s

System settings, requirements, and configurations : In this work, we assume

that robot can only perform location dependent sensing sub-task (capturing image at a task

location) due to their movement and workload processing capabilities, whereas both cloud

agent and robot can execute location independent computation sub-task (object detection from

captured image). The output of sensing sub-task (e.g., capturing image) is the input data of

computation sub-task (object detection from captured image). The main requirements of the

low-latency H2R applications (move to task location, capturing image, and face detection from

captured image) is the availability of robot and cloud server resources for the requested task

processing, satisfaction of the task execution deadline and lower energy consumption criteria,

priority based cloud/robot and bandwidth resource assignment to HART applications users

and worker nodes, transmission at the speed of light, placement of edge cloud server within 20

Km distance from the decentralized ONUs to achieve very low round-trip latency (i.e., 1 ms),

connectivity of robot, MUs, and cloudlet server with ONUs, hardware/software interface to

transfer the task request and task result, among others. The decentralized task coordinator

is located at the ONU-MPP to assign the MU’s task to suitable robot or cloud server for

processing. Further, note that the robots are connected with the task coordinator (ONU) by

using WLAN connectivity, whereas the cloudlets are connected to ONUs through dedicated

point-to-point fiber links. In addition, the EPON based fiber backhaul (20 Km) is used for
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ONU to OLT connectivity. Moreover, the remote cloud server is connected with the OLT

through dedicated point-to-point fiber links. Each task request is served based on first-come-

first-served (FCFS) manner. For polling cycle time and queuing delay analysis, the ONU-MPP

incorporates M/G/1 queue with reservations and vacations. The maximum clock speed (CPU

speed) of cloudlet and central cloud server is varied within the range between 1800 MHz to

5000 MHz. The CPU speed of robots is varied within the range between 500 MHz to 1600

MHz. The EPON transmission capacity between the link of ONU-MPP and cloudlet, OLT

and central cloud, ONU to OLT is set to 10 Gb/s, whereas maximum line rate at the wireless

medium is set to 6900 Mb/s. The optical fiber length between the ONU and OLT, the ONU

and cloudlet server, and the OLT and central cloud server is set to 20 Km, 1 Km, and 10 Km,

respectively. The total STA number per ONU-MPP coverage, total ONUs, MAP radius, ONU-

MPP coverage area, and density of MAPs within each ONU-MPP coverage area, maximum

transmission capacity at fiber and wireless link is set to 10, 16, 100 m, 10 km2, 4, 10 Gb/s, and

6900 Mb/s, respectively. The FiWi traffic load is varied within the range between .05 to .95.

The MPCP (REPORT and GATE) and WLAN messages (Ps-Poll) duration is set to 64 bytes

and 20 bytes, respectively. Average energy consumption cost (per second) of robots/MUs

during idle (pidle) state, data transmission (pu), workload processing, and task result reception

(pr) activities are set to .001W, .1W, .5W, and .05W, respectively. Both sensing (scpu) and

offloaded sub-task (ccpu) workload is varied within the range between 40 to 960 Mcycles. The

offloaded sub-task input data size (lu) and output data size (lr) is varied within the range

between 40-800 KB and 16-400 KB, respectively.

3.5.1 Collaborative vs. Non-collaborative Task Execution

In this sub-section, we compare the performance of the non-collaborative (i.e., without offload-

ing) and collaborative/joint task execution schemes, whereby the sensing sub-task is conducted

by the selected host robot and the computation sub-task is offloaded onto a collaborative node.

To examine the impact of our proposed collaborative computing based task execution scheme,

we studied different evaluation scenarios based on different H2R task input and output data

sizes, required workload (in terms of CPU cycles) to process the task, and collaborative nodes’

resource conditions (i.e., processing power, available memory size, availability), similar to [17],

[30], [94]. The parameter settings related to each particular scenario are given in Figs. 3.4-3.7.

Moreover, for a particular H2R task that includes both sensing and computation sub-parts,

four different types of task execution schemes were considered: selected host robot based full-

task execution without offloading, host robot (sensing sub-task) with central cloud execution

(computation sub-task), host robot (sensing sub-task) with cloudlet execution (computation

sub-task), and host robot (sensing sub-task) with neighboring robot execution (computation
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sub-task). The total task response time for the three collaborative and one non-collaborative

schemes are calculated by using Eqs. (3.7)-(3.9) and Eq. (3.2), respectively. The energy con-

sumption of the host robot for the collaborative (ej,cn = eja+ejs+e
j
d+ecnc ) and non-collaborative

(ej = eja + ejs + ejd + ejc) total task execution is calculated by using Eq. (3.13) (see Section

3.4.5).

Figs. 3.4(a) and (b) illustrate the total task response time and host robot energy con-

sumption of the different task execution schemes for scenario 1. In this scenario 1, both the

central cloud and cloudlet are assumed to have the same computation capability/CPU power.

The figures show that the task response time and energy consumption of host robot increase

for increasing task input data size in all proposed task execution schemes. We notice that the

host robot-neighboring robot based joint task execution scheme shows a higher task response

time than the host robot-central cloud scheme and fails to meet the task deadline requirement.

The reason for this observation is the fact that the neighboring robot CPU power (500MHz) is

lower than the central cloud CPU power (3200MHz). Thus, the computation sub-task process-

ing delay is much higher in the neighbor robot than that of the central cloud execution, which

additionally results in a longer total task response time for the host robot-neighbor robot

scheme. For instance, for a typical total task input size of 240KB, the total task response

time in the host robot-neighbor robot and host robot-central cloud scheme equals 4.56 and

2.95 seconds, respectively, whereas the computation sub-task processing delay of the neighbor

robot (toex) and central cloud (tclex) equals 1.92 and 0.3 seconds, respectively. Hence, the compu-

tation sub-task offloading delay of the neighbor robot (toofl) and central cloud (tclofl) are equal

to 0.049 and .056 second, respectively. However, the energy efficiency gain of the host robot-

neighbor robot compared to the host robot-central cloud is negligible, less than 1%. This is

because the difference between the energy consumption of the host robot for the central cloud

(eclex = pidle · tclex) and neighbor robot (eoex = pidle · toex) computation sub-task processing delay

is very small. The average energy consumption of the host robot (per second) is very low

during the neighbor robot (in host robot-neighbor robot scheme) and central cloud (in host

robot-central cloud scheme) computation sub-task processing, e.g., pidle=.001W (see Table

3.2), as the host robot is idle at that time. Therefore, the difference between the host robot

energy consumption for the host robot-neighbor robot and host robot-central cloud total task

execution is also very low. Due to the lower energy consumption of the host robot for central

cloud computation sub-task processing in Fig. 3.4(b), the host robot-central cloud execution

shows 1% higher energy efficiency gain compared to the host robot-neighbor robot scheme.

For instance, for a typical total task input size of 240KB, the host robot energy consumption

in the host robot-neighbor robot and host robot-central cloud scheme equals 1.72J and 1.71J,

respectively, whereby the host robot energy consumption for computation sub-task processing
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Task response time and energy consumption variation of collaborative and non-
collaborative task execution schemes versus total task input data size for three different sce-
narios.
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at the neighbor robot (eoex) and central cloud (eclex) is equal 0.00192J and 0.0003J, respectively.

Note, however, that the host robot energy consumption for neighbor robot (eoofl) and central

cloud (eclofl) offloading equals 0.00418J and 0.0049J, respectively.

Furthermore, we observe from both figure 3.4(a) and (b) that the host robot-cloudlet based

joint task execution scheme outperforms the host robot-central cloud based joint scheme in

terms of task response time and energy consumption of host robot. This is mainly due to the

fact that the cloudlet implies a smaller computation offloading delay than the central cloud.

The host robot-cloudlet based scheme shows a 36%, 8%, 2% increase of task response time

efficiency and a 3%, 15%, 2% higher energy efficiency than the host robot-neighbor robot,

host robot without offloading, and host robot-cloud based scheme, respectively. Thus, the

host robot-cloudlet based joint task execution scheme is optimal for scenario 1.

Interestingly, Figs. 3.4(c) and (d) indicate that the neighboring robot can also be select-

ed as a collaborative node for computation sub-task offloading since the sensing sub-task is

restricted to the initially selected host robot. In scenario 2, the central cloud CPU power

and task workload (required CPU cycles to process the task) are smaller than in scenario

1. Hence, the cloudlet is unsuitable in this task execution scenario due to its insufficient

available memory size. further, from Fig. 3.4(c) we notice that, in comparison with the host

robot without offloading scheme, the host robot-neighbor robot scheme experiences a longer

response time (15% less gain than host robot without offloading scheme for 1600 KB total

task input data size). This is because the host robot CPU power (µj=1600MHz) is high-

er than that of the neighbor robot CPU power (µo=1200MHz), which eventually causes a

longer total task response time in the host robot-neighbor robot scheme compared to the host

robot without offloading scheme. However, the host robot-neighbor robot scheme achieves

a higher energy efficiency gain than host robot without offloading scheme by offloading the

computation sub-task to neighbor robot. Host robot consumes very little average idle energy

consumption (pidle=.001W per second) during neighbor robot computation sub-task execution

in the host robot-neighbor robot scheme, which is smaller than the host robot average energy

consumption (pc=.5W per second) for its own computation sub-task processing in the host

robot without offloading scheme. By contrast, Fig. 3.4(d) shows that the energy savings of

the host robot for the host robot-neighbor robot scheme compared with host robot without

offloading is not that significant for the following two reasons. First, the longer computation

sub-task processing time at the neighbor robot causes an increased idle energy consumption

that reduces the host robot’s energy savings in the host robot-neighbor robot scheme. Second,

due to the smaller computation sub-task response time during the host robot’s own execution,

the energy consumption of the host robot in the host robot without offloading scheme is less.

Thus, in Fig. 3.4(d), the energy efficiency gain achieved by the host robot-neighbor robot
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scheme compared with host robot without offloading is very low. For instance, in Fig. 3.4(d),

for a typical total task input size of 1600KB, the host robot energy consumption for its own

computation sub-task execution in the host robot without offloading scheme equals 0.0625J,

while that of the neighbor robot computation sub-task execution in the host robot-neighbor

robot scheme is equal to 0.0292J. Hence, the host robot energy consumption of the total task

(sensing and computation) execution equals 1.53J in the host robot without offloading and

1.49J in the host robot-neighbor robot scheme, respectively.

Further, from both Figs. 3.4(c) and (d) we observe that the host robot-neighboring robot

based joint task execution scheme exhibits an improved task response time compared to the

host robot-central cloud based joint scheme (1%) due to its lower computation offloading delay.

The host robot-neighboring robot scheme achieves a 1% and 3% higher energy efficiency than

the host robot-cloud and host robot without offloading scheme, respectively. Thus, the host

robot-neighboring robot based joint task execution scheme is the most suitable one for this

scenario by providing the lowest energy consumption while satisfying the task deadline.

Figs. 3.4(e) and (f) depict the task response time and energy consumption of our task

execution schemes for a different scenario 3. In this scenario, the total task workload (CPU

cycles to process the task) is higher than in the previously considered scenario 2. More

specifically, the central cloud is assumed to be more powerful than the collaborative node

(i.e., neighboring robot). We observe that the host robot-neighboring robot based joint task

execution is unable to meet the task deadline requirement. In addition, the cloudlet is unable

to execute the task due to insufficient available memory. By contrast, the host robot-central

cloud based joint task execution scheme is the best choice for this scenario as it offers a

smaller task response time and energy consumption of host robot than its counterparts. The

host robot-cloud based scheme shows a 38% and 11% higher task response time efficiency than

the host robot-neighbor robot and host robot without offloading scheme and a 1% and 15%

higher energy efficiency than the host robot-neighbor robot and host robot without offloading

scheme, respectively.

In Figs. 3.5(a) and (b), we compare the performance of our collaborative and non-

collaborative schemes with previously proposed minimum distance [12] and fixed assignment

[89] based robot task execution schemes in a setting referred to as scenario 4. Note that these

task offloading schemes examined only computation task for execution, while location depen-

dent sensing sub-task was considered out of their scope. In this work, the considered H2R

task consists of both sensing and computation sub-tasks, whereby location-dependent sensing

sub-tasks are restricted to robots and location-independent computation sub-tasks can either

be done by robots or offloaded to a collaborative node (central cloud/cloudlet/neighbor robot)

for execution. For fair comparison, we consider only existing robot based full task (sensing and
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(a) (b)

Figure 3.5: Average task response time and energy consumption comparison of our collab-
orative (host robot-central cloud, host robot-cloudlet, host robot-neighbor robot) and non-
collaborative (host robot without offloading) schemes with existing schemes.

computation sub-task) execution schemes. In scenario 4, both central cloud and cloudlet are

assumed to have the same CPU power. However, the neighbor robot CPU power is assumed

to be smaller than that of the central cloud and cloudlet. Other parameters settings are shown

in Figs. 3.5(a) and (b).

Figs. 3.5(a) and (b) clearly show that for scenario 4 the host robot-cloudlet based joint task

execution achieves a significantly improved average task response time and energy consumption

efficiency than the other schemes. For instance, for a typical task input size of 240KB, the

host robot-cloudlet based joint execution shows a 30%, 12%, 1%, 25%, and 31% improved task

response time with regard to the host robot-neighbor robot, host robot without offloading,

host robot-cloud, minimum distance [12], and fixed assignment [89] based scheme, respectively.

Moreover, for the assumed task input size of 240 KB, the host robot-cloudlet based joint

scheme achieves a 2%, 18%, 1%, 28%, and 33% higher energy efficiency than the host robot-

neighbor robot, host robot without offloading, host robot-cloud, minimum distance [12], and

fixed assignment [89] based scheme, respectively.

Next, we investigate the total task response time and energy efficiency of collaborative

schemes that satisfies the task deadline for scenario 1. The task response time efficiency of

our collaborative full task execution scheme is defined as the ratio of the collaborative task

response time gain (tj − tj,cn) and the task response time of non-collaborative (tj) execution.

The energy consumption efficiency of our collaborative full task execution scheme is defined

as the ratio of the energy consumption gain of the host robot for collaborative execution

(ej − ej,cn) and the energy consumption of the host robot for non-collaborative (ej) scheme.

The host robot-central cloud and host robot-cloudlet based joint task execution gain over

non-collaborative host robot task execution scheme are depicted in Figs. 3.6(a) and (b),
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(a) (b) (c)

Figure 3.6: (a) Task response time efficiency versus total task input data size; (b) energy
consumption efficiency versus total task input data size; (c) offload gain overhead ratio versus
computation sub-task input data size.

respectively. Both figures clearly indicate that for scenario 1, the host robot-cloudlet based

joint task execution achieves a superior task response time and energy efficiency than the host

robot-central cloud based joint scheme. For instance, for a typical total task input size of 240

KB, the host robot-cloudlet based joint task execution shows an 8.75% improvement of task

response time and a 14.98% improvement of energy efficiency than the host robot based non-

collaborative task execution scheme. Hence, the host robot-central cloud based joint execution

achieves a 7.81% decrease of task response time and a 14.72% increase of energy efficiency

in comparison with the non-collaborative scheme. Further, in Fig. 3.6(c), the computation

sub-task offload gain-overhead ratio of both central cloud and cloudlet execution are shown.

The computation sub-task offload gain-overhead is defined as the ratio of the offload gain for

collaborative node based computation sub-task execution (tjc − tcnc ) and the offload overhead

(dcn + tcnofl) incurred by the communication protocols (see Eq. 3.14).

Importantly, we observe from the figure 3.6(c) that under the assumption that both the

central cloud and cloudlet have same computation power, the cloudlet based computation

sub-task execution achieves a higher offload gain than the central cloud. For instance, for a

typical computation sub-task input data size of 120 KB, the offload gain overhead ratio of

central cloud (3200 MHz) and cloudlet (3200 MHz) is 34% and 36%, respectively. However, if

the computation power of the central cloud (5000 MHz) is assumed to be higher than that of

the cloudlet (3000 MHz), the central cloud shows a much better offload gain (48%) than the

cloudlet execution (32%).

Finally, we evaluate the end-to-end local (tlocal) and non-local (tnon−local) task response

time under different FiWi traffic loads, as shown in Figs. 3.7(a) and (b). Local (MU and

robot for task execution are located under the same ONU-MPP) task response calculation
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(a) (b)

Figure 3.7: End-to-end local and non-local task response time variation versus FiWi traffic
load.

accounts for the US frame transmission delay of an MU’s task request transmission (see Section

3.4.4), task allocation delay for robot selection, time to reach the task location, sensing, and

computation sub-task execution. Conversely, non-local (MU and robot for task execution are

located under different ONU-MPPs) task response time calculation takes into account both

US and DS frame transmission delay of an MU’s task request transmission (see Section 3.4.4),

robot selection delay for task allocation, required time for selected robots to reach the task

location, sensing, and computation sub-task execution. Recall from Section 3.4.5 that for

the collaborative task execution scheme, the non-local and local task response time is equal

to tnon−local = tu + td + tj,cn and tlocal = tu + tj,cn, respectively. by contrast, for the non-

collaborative host robot task execution scheme, the non-local and local task response time is

equal to tnon−local = tu + td + tj and tlocal = tu + tj, respectively.

Note that, both local and non-local task response times increase for increasing traffic loads

in our considered FiWi network scenario in Fig. 3.7(a) and (b). Both figures clearly indicate

that the host robot-cloudlet based scheme provides an improved task response time than host

robot-central cloud (2%) and host robot without offloading (10%) schemes. This is because

the host robot-central cloud based scheme incurs a higher computation offloading delay than

the host robot-cloudlet based execution. Moreover, the host robot based non-collaborative

task execution experiences a much higher task response time than the alternate collaborative

schemes. This result is expected given that the host robot is less powerful than the central

cloud and cloudlet. We also note that the end-to-end local task response of all compared

schemes (collaborative and non-collaborative) are lower than their non-local task response

time. The reason behind this is that beside task execution delay, the calculation of tnon−local
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involves both US and DS frame transmission delays for end-to-end task allocation, while tlocal

involves only the one-way US frame transmission delay.

3.6 Conclusions

Efficient task allocation among robots, computation offloading onto collaborative nodes, and

adaptive resource allocation schemes represent key design challenges for reducing the end-to-

end latency in advanced Tactile Internet H2R communications. In this chapter, we presented

a collaborative computing enhanced task allocation mechanism that combines suitable host

robot and collaborative node selection in integrated FiWi multi-robot networks.

To improve the energy efficiency of the selected host robot while satisfying a given task

deadline, we investigated both host robot based non-collaborative and joint task execution

schemes, in which the sensing sub-task is conducted by a suitable host robot and the com-

putation sub-task is offloaded onto one of the collaborative nodes consisting of central cloud,

cloudlets, and neighboring robots. In order to handle both conventional broadband and com-

putation offloading traffic at the same time, we introduced a unified TDMA-based resource

management scheme. Moreover, we developed an analytical framework to evaluate the perfor-

mance of our proposed non-collaborative and collaborative task execution schemes in terms

of task response time efficiency and energy efficiency of host robots. Unlike previous studies,

we also analyzed the end-to-end local/non-local task response time for both collaborative and

non-collaborative task execution schemes.

Our results provide insight into finding the optimal task execution scheme for a variety

of use case scenarios with different task, robot, and collaborative node availability character-

istics. The results of both collaborative/joint and non-collaborative task execution schemes

demonstrate that for a typical task input size of 240 KB, the collaborative task execution

scheme decreases the task response time by up to 8.75% and the energy consumption by up to

14.98% compared to the non-collaborative task execution scheme. The introduced collabora-

tive computing based task allocation and resource management scheme represents a promising

solution for enabling low-latency Tactile Internet applications.
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Chapter 4

HART-centric Task Migration Scheme
over FiWi Based Tactile Internet
Infrastructures

4.1 Preamble

This chapter contains material extracted from the following paper:

[J4] M. Chowdhury, E. Steinbach, W. Kellerer, and M. Maier, “Context-Aware Task Migration

for HART-Centric Collaboration over FiWi Based Tactile Internet Infrastructures,” IEEE

Transactions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1231-1246, June 2018.

4.2 Introduction

Mobile cloud computing (MCC) has emerged as a promising technology that allows mobile

devices to offload part or all of their computation tasks onto resource-rich surrogates through

a process known as computation task offloading [102]. However, computation task offloading

onto remote cloud servers may not always improve the task execution latency and energy

consumption of mobile devices due to the involved communication overhead. Alternatively,

computation-intensive tasks may be offloaded onto so-called cloudlets located at the network

edge in close proximity to mobile users (MUs). Recent studies on task offloading mainly

focused on whether to offload computation-intensive tasks onto an infrastructure-based cloud

(remote cloud [17], [74] or cloudlet [77]) or mobile ad-hoc cloud formed by nearby mobile

devices [30] in order to reduce both task response time and energy consumption of mobile

devices.

Taking the idea of task offloading a step further, task migration has emerged as a promis-

ing approach to improve the quality of experience (QoE) of MUs by minimizing their task

execution time [19]. Task migration broadens the scope of conventional computation task
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offloading by not only transferring the task from an MU onto the cloud, but also from one

cloud server to another one for execution. In general, task migration between cloud servers is

considered beneficial only if the anticipated task execution time at the secondary cloud server

is smaller than that at the primary one [20]. Note, however, that task migration incurs an

additional migration delay. Hence, for a given task migration gain and latency overhead, the

question of how and where a task should migrate to is key. To answer this question, several

migration decision criteria need to be considered such as the state of the current and tentative

destination cloud servers, task properties, and task migration latency, among others.

Task migration has the potential to speed up the execution of tasks running not only

on hand-held devices, e.g., smartphones, but also on commercially available remote-presence

robots, which allow humans to see, hear, touch, and manipulate objects in places where

they are not physically present. These remote-presence robots may be the precursor of an

age of technological convergence, where important human tasks will be increasingly done by

low-latency networked robots. This vision of real-time human-to-robot (H2R) interaction-

centric applications gives rise to the so-called Tactile Internet, which has recently emerged

as a new paradigm to remotely steer/control virtual and/or physical objects such as robots

via the Internet [35]. Recently, we explored the performance gains obtained from unifying

coverage-centric 4G LTE-Advanced (LTE-A) heterogeneous networks (HetNets) and capacity-

centric fiber-wireless (FiWi) access networks based on data-centric Ethernet technologies with

resulting fiber backhaul sharing and WiFi offloading capabilities for enabling the future Tactile

Internet [9]. Importantly, we showed that a very low latency on the order of 1 ms and

ultra-high reliability with an almost guaranteed FiWi network connectivity of MUs can be

obtained in FiWi enhanced LTE-A HetNets. More recently, we advocated that multi-robot

FiWi network infrastructures leveraging central cloud and decentralized cloudlet resources will

be instrumental for ushering in low-latency Tactile Internet applications [5].

In this chapter, we build on our previous studies and extend their scope by investigating

task migration for different types of task and cobot/agent in technically greater detail. Note

that depending on the context-awareness of future Tactile Internet applications, tasks may be

classified into two different categories. Specifically, a task may be either a location-dependent

physical task (e.g., image capturing at a given physical location), a location-independent cog-

nitive task (e.g., face recognition from a captured image, which might be offloaded for com-

putation at a remote cloud or nearby cloudlet), or it may include both types of tasks (e.g.,

face recognition where the image was captured).

Another crucial aspect of the Tactile Internet we pay particular attention to in this chapter

is the overarching goal that cobots should complement humans rather than substitute for them,

giving rise to a cooperative and collaborative design approach known as human-agent-robot
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teamwork (HART) [55]. HART differs from the traditional humans-are-better-at/machines-

are-better-at (HABA/MABA) approach, which only divides up work between humans and

machines without driving any symbiotic human-robot development in search for synergies.

Conversely, with a HART-centric Tactile Internet design approach, humans and cobots with

the support of central cloud and decentralized cloudlet resources together acting as intelligent

multi-agent systems exploit the different characteristics of physical and cognitive tasks and

jointly execute them by means of smart orchestration techniques. To render HART-centric

task migration beneficial to MUs, however, context information about the task (e.g., task size,

deadline, type), collaborative agent/cobot (e.g., availability, capability), user mobility, and

migration latency needs to be taken into account properly.

The contributions of this chapter are as follows. We first introduce an integrated two-

level cloud-cloudlet FiWi based Tactile Internet architecture for HART task execution. After

describing the key features of physical vs. cognitive task and cobot vs. stand-alone robot types,

we present a suitable HART-centric task migration scheme, taking different task (deadline,

workload, data size) and collaborative node (availability, task processing speed, remaining

energy) characteristics into account. Next, we develop a unified FiWi resource management

scheme that is able to handle both traditional broadband and task migration data traffic

at the same time. Finally, we present an analytical model to evaluate the performance of

our proposed scheme in terms of end-to-end task execution delay, migration gain-overhead,

deadline-miss ratio, task response time, and energy consumption efficiency, while paying close

attention to its performance comparison for both with and without task migration. Note

that the focus of this chapter is on the performance evaluation of the different task migration

schemes for the execution of a single full HART task that includes both physical and cognitive

sub-tasks. The problem of optimizing the performance of simultaneously executing multiple

full HART tasks in a resource and time efficient manner is outside the scope of this chapter.

The remainder of the chapter is structured as follows. The state of the art and open

challenges of task migration are discussed in Section 4.3. Section 4.4 describes FiWi based

Tactile Internet infrastructures for HART-centric task migration in greater detail. In Section

4.5, we elaborate on the specific characteristics and key parameters of cobots and tasks.

Section 4.6 describes our proposed context-aware HART-centric task migration scheme, whose

performance is analyzed in Section 4.7. In Section 4.8, we present our obtained numerical

results and findings. Section 4.9 concludes the chapter.
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4.3 Task Migration: State of the Art and Open Chal-

lenges

Research in the area of task migration in the context of HART-centric Tactile Internet ap-

plications is still in its infancy. The authors of [57] showed that suitable cobot selection for

task execution requests by humans is essential in order to achieve good performance by reduc-

ing the various latency components of a given task, e.g., task execution delay. The authors

also emphasized that most of the existing work on suitable cobot selection focused on the

involved cobots’ task processing power or remaining energy for task migration. To render

the HART-centric task migration process more effective, additional task properties (e.g., task

deadline or type) and cobot properties (e.g., availability, skill, distance to task location, mo-

bility, or minimum energy consumption) have to be taken into account for suitable cobot

selection. Importantly, note that suitable cobot selection for task migration may not be suf-

ficient to avoid task execution failures due to the constrained resources (e.g., task processing

capabilities, storage, or remaining energy) of the selected cobot. To do so, however, cobots

may overcome their limited resources by utilizing the ones of other collaborative HART mem-

bers, e.g., cloud based agents. The resultant HART-centric task execution approach is also

known as collaborative computing, where a resource-constrained cobot migrates its assigned

task to another more powerful agent or cobot for execution [17], [59]. At present, only a few

studies exist on collaborative task migration exploiting cloud based agents, e.g., cloud agent

selection for task migration based on load prediction [21], service delay [22], distance [23],

resource availability information (i.e., CPU speed and workload) [24]-[25], mobile user task

result download location [19], and energy consumption [26]. Note that existing studies on

task migration considered only the problem of task migration from an MU either to a suitable

robot or to a cloud agent, rather than both. None of the existing studies has focused on

the active participation/cooperation of all HART members, namely, MUs (humans), agents

(central cloud/cloudlet), and collaborative robots (cobots), which is necessary for the proper

HART task execution involving both physical and cognitive sub-tasks. Hence, existing studies

cannot be directly applied to HART task execution.

Further, note that most of the aforementioned studies considered either infrastructure-

based task migration, e.g., remote cloud and local cloudlet, or infrastructureless task migration

onto local ad-hoc clouds comprising nearby cobots. These previous studies did not include

important decision variables such as different task types (e.g., physical vs. cognitive task),

task properties (e.g., total number of task arrivals, task input and output sizes, or task dead-

lines), collaborative node properties (e.g., availability, distance, or CPU speed), and human

user mobility to reduce HART task execution delay and energy consumption. Another open
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question is how to coordinate the HART-centric task migration from MUs to collaborative

nodes (cobots and agents) and among collaborative nodes (cobot to agent as well as agent to

agent). Similarly, the development of adaptive integrated FiWi resource management schemes

in support of coexistent traditional triple-play traffic and data traffic stemming from HART-

centric task migration remains an open research challenge. Furthermore, there is also a lack

of an analytical framework for evaluating HART task execution performance in terms of task

response time and energy consumption, while providing sufficient fault recovery via cellular

and/or WLAN networks.

In this chapter, we aim at addressing some of the aforementioned open research challenges

in the area of task migration. Specifically, we analyze the performance of our proposed HART-

centric task migration scheme, considering both inter-agent (cloud to cloudlet and vice versa)

and intra-agent (cloud to cloud and cloudlet to cloudlet) task migration in FiWi based Tac-

tile Internet infrastructures. In addition, we compare the performance of the following three

different task migration schemes: (i) no migration, (ii) cobot-to-cobot (c2c) migration, and

(iii) cobot-to-agent (c2a) migration. Note that in the non-migration scheme, only the initially

selected cobot locally executes an MU’s requested task, which in turn may comprise physical

and cognitive sub-tasks. Conversely, in the c2c migration scheme, the initially selected cobot

executes the physical sub-task and migrates the cognitive sub-task to a suitable nearby cobot

for execution. Whereas in the c2a task migration scheme, the initially selected cobot executes

the physical sub-task and migrates the cognitive sub-task to a suitable agent (local cloudlet

or remote cloud) for execution. Furthermore, to determine the optimal task migration scheme

we investigate the following three types of c2a scheme using a number of HART-specific per-

formance metrics: (i) cobot at a given task location to cloudlet that is near the task location,

(ii) cobot to cloudlet that is near the location of the MU downloading the computation result,

and finally (iii) cobot to remote cloud.

4.4 FiWi Based Tactile Internet Infrastructure for HART-

Centric Task Migration

4.4.1 Network Architecture

In this section, we extend the generic FiWi enhanced LTE-A HetNet architecture introduced

in [9] for enabling and coordinating HART-centric task migration, whereby humans, cobot-

s, and agents actively participate in the joint task execution process. For convenience, we

briefly review the salient features of the FiWi enhanced LTE-A HetNets architecture, which

aimed at removing the traditional barriers between coverage-centric 4G mobile networks and

capacity-centric FiWi broadband access networks based on low-cost data-centric optical fiber

84



Figure 4.1: FiWi based Tactile Internet infrastructure based on embedded cloudlets, cobots,
and human MUs for HART-centric task migration.

and wireless Ethernet technologies. It was shown that a very low latency on the order of 1 mil-

lisecond and ultra-high reliability can be achieved in unified FiWi enhanced LTE-A HetNets

with resultant fiber backhaul sharing and WiFi offloading capabilities. By complementing

fast evolving LTE-A HetNets with FiWi access networks, low-cost high-speed mobile data

offloading is achievable in FiWi enhanced LTE-A HetNets using high-capacity fiber backhaul

(e.g., IEEE 802.3av 10G-EPON) and Gigabit-class IEEE 802.11ac WLAN technologies. The

interested reader is referred to [9] for further details on FiWi enhanced LTE-A HetNets.

Next, we describe our proposed network extensions in greater detail. Note that the generic

FiWi enhanced LTE-A HetNets architecture proposed in [9] considered only human MUs.

Unlike in our proposed architecture, important HART-centric architectural components such

as cobots and agents were not studied in [9]. Furthermore, the authors of [9] concentrated on

mobile data offloading rather than task migration, which is the main focus of this work.

As shown in Fig. 4.1, our proposed FiWi based Tactile Internet infrastructure consists

of a time division multiplexing (TDM) or wavelength division multiplexing (WDM) IEEE

802.3av 10 Gb/s Ethernet Passive Optical Network (10G-EPON) with a fiber backhaul range

of 10-100 km between the central optical line terminal (OLT) and remote optical network

units (ONUs). The OLT collocated with the central office serves three different subsets of

ONUs, which are connected through a 1:N optical splitter/combiner at the remote node. The

first subset of ONUs provide FTTx services, e.g., fiber-to-the-home/business (FTTH/B) to a
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single or multiple fixed wired subscribers. To interface with the WiFi mesh network (WMN)

at the wireless front-end, the second subset of ONUs are equipped with a mesh portal point

(MPP) and are henceforth referred to as ONU-MPPs, whereby mesh points (MPs) act as

intermediate relay nodes between MPPs and mesh access points (MAPs). Each MAP serves

both MUs and WiFi enabled cobots within its respective wireless coverage area. Note that

the integrated ONU-MPP is realized by using so-called radio-and-fiber (R&F) technologies

with medium access control (MAC) protocol translation taking place at the optical-wireless

interface. To provide 4G cellular services to MUs, the third subset of ONUs are connected

to an LTE enhanced nodeB (eNB) base station, giving rise to so-called ONU-eNB. All BSs

together are assumed to provide ubiquitous wireless connectivity to MUs. For enabling direct

communication between ONU-MPP and ONU-eNB, we also make use of so-called interconnec-

tion fiber links between a subset of selected pairs of neighboring ONU-MPP and ONU-eNB.

The central cloud servers are connected to the OLT via dedicated fiber links. In addition,

local cloudlets are connected via dedicated fiber links to ONU-MPPs at the edge of our FiWi

based Tactile Internet infrastructure in order to provide cloud services in close proximity to

nearby MUs and/or cobots. In general, we assume that only one cloudlet is attached to an

ONU-MPP. However, multiple cloudlets may be connected to an ONU-MPP depending on

the given number of arriving task requests, cloudlet capacity, and number of ONU-MAPs,

among other network design parameters. For further details on cloudlet network planning and

optimal placement of ONU-MPP/ONU-eNBs in cloudlet enhanced FiWi access networks we

refer the interested reader to [52].

4.4.2 Mobility of Cobots and Human MUs

We assume that the WiFi mesh access points (MAPs) are randomly distributed according

to a Poisson point process with density λMAP throughout the cellular coverage area (Acell).

Similarly, human MUs are assumed to be randomly distributed with density λMU . Further, we

assume that each MAP has a circular coverage area â with radius rMAP (i.e., â = πr2
MAP ), in

which m cobots are randomly distributed according to a homogeneous Poisson point process.

Note that the cobots have limited mobility and can move at pedestrian speed only to a given

physical task location that resides in the same MAP coverage area. In contrast, a human MU

can move from one MAP or BS to another one according to a certain moving pattern based

on her current position, speed, and moving direction. In doing so, a given human MU can

send her task requests and receive the corresponding task results via the cellular and/or WiFi

network along her trajectory, depending on whether she is inside or outside the coverage area

of a traversed MAP. For modeling the WiFi connectivity of MUs, we adopt the mobility model

based on recent smartphone traces in [9], whereby the complementary cumulative distribution
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Figure 4.2: Random waypoint (RWP) model of human MUs for predicting location of task
request transmission and task result reception.

function (CCDF) of both WiFi connection time (time period an MU stays within a given

MAP coverage area) and WiFi interconnection time (time period after an MU leaves an MAP

coverage area until she returns or enters another MAP coverage area) was shown to fit a

truncated Pareto distribution.

For predicting the location of a given MU’s task request transmission and task result

reception, we adopt the widely used random waypoint (RWP) model [102]. As shown in Fig.

4.2, in our considered RWP model a given MU traverses several waypoints at different pre-

defined speeds, whereby the initial position of the MU is chosen randomly. For a given set of

n different speeds vi at time instants ti along the MU’s trajectory, the average speed between

the randomly selected initial point and the final point (i.e., location of task result reception)

equals vu =
∑n
i=1 viti∑n
i=1 ti

. Accordingly, the predicted location of the MU’s task result reception is

given by

pu+∆t = pu + vu ·∆t, (4.1)

where pu+∆t, pu, vu, and ∆t denote the MU’s final position, initial position, average speed,

and required time to travel from the initial to the final position, respectively. Note that the

distance traveled by the MU between her initial and final positions is equal to ∆p = pu+∆t -

pu = vu · ∆t (see also Fig. 4.2). Then, based on MUs task request transmission time delay

(treq), MUs required travel time ∆t, and task result reception delay (trxθ→mu), the requested

task execution deadline (td) can be calculated as follows: td=treq+trxθ→mu+∆t, where subscript

θ stands for k (initially selected cobot), a (agent), and k∗ (nearby cobot), respectively.
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Table 4.1: Cobots vs. robots

Criteria Cobots Robots
Definition Collaborative robots (cobots) can sense the

environment around them and have the abil-
ity to work with other cobots

Traditional stand-alone
robots cannot sense the
environment around
them

Connectivity Connected with other cobots and humans
through infrastructure (e.g., WiFi)

Not connected with other
robots/humans

Context
awareness

Avoid task execution failures through task
migration to other cobot/agent and machine-
learning capability with strict QoS support

Suffer from task execu-
tion failures due to lack of
collaboration

Flexibility Programmable and able to learn indepen-
dently from environment

Traditional robots require
manual support

Task type Accomplish multiple types of task (e.g.,
household work, teaching, healthcare, and
entertainment)

Only execute specific
types of manual task
(e.g., car manufacturing)

Movement Cobots can move anywhere with advanced
navigation, obstacle avoidance, and path
planning capabilities

Restricted to a fixed place
without any movemen-
t capabilities (e.g., in-
dustrial robot enclosed in
safety cage)

Repetitive
task

Execute both mobile and non-mobile repeti-
tive tasks

Execute only non-mobile
repetitive tasks

Task loca-
tion

Cobots can execute both location-
independent cognitive and location-
dependent manual task

Traditional robots can
only execute location-
dependent manual task
in industry

Safety Cobots can be controlled or programmed to
protect humans during possible encounter in
a shared workspace (e.g., YUMI cobots)

Humans can be injured
by traditional robots
due to lack of intelli-
gence/control

Key perfor-
mance indi-
cators

Task migration gain-overhead ratio, energy
efficiency, task response time with failure re-
covery, task processing speed, and mobility

Manual task response
time, average utilization,
and deadline miss ratio

4.5 Cobots and Tasks: Characteristics and Assump-

tions

In this section, we first briefly elaborate on the main characteristics of cobots in comparison

with traditional robots and shed some light on the different types of cognitive and physical

tasks. Subsequently, we introduce several parameters to formally define the various types of

cobot and task, which will then be used to describe our proposed context-aware HART-centric
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task migration scheme in the next section.

4.5.1 Characteristics

Table 4.1 highlights the major differences between cobots and traditional robots. The com-

parison between cobots and robots is best made according to their ability to act and their

ability to learn. In the first category, we look at their ability to perform different types of

task, i.e., physical vs. cognitive tasks. Typically, a physical task is a manual repetitive task

that can be executed at a specific location (e.g., manipulation of a given physical object),

whereas a cognitive task involves location-independent decision making or computation that

might be offloaded onto remote entities such as cloud servers or nearby cloudlets. We observe

from Table 4.1 that traditional industrial robots are typically standalone entities that perform

only a single type of stationary manual (physical) task (e.g., manufacturing). Conversely,

advanced cobots are in general programmable, mobile, and able to execute multiple types

of task, including both physical (e.g., image capturing, delivery service) and cognitive tasks

(e.g., intrusion detection from captured image). In the second category, there exist differences

between cobots and robots based on their ability to learn from their environments, most no-

tably in terms of their repetitive task execution as well as context awareness and learning

capabilities. Unlike advanced cobots, the state of knowledge of traditional standalone robots

cannot grow based on new experiences or changing conditions. Thus, traditional stand-alone

robots typically can only execute repetitive manual tasks and also suffer from possible task

execution failures due to their inability to migrate the interrupted task to other robots. In

contrast, cobots are able to execute both repetitive and context-aware tasks (e.g., mobility,

machine-learning) by monitoring their performance and making adjustments to what they

observe and experimenting with other possibilities that might perform better. This flexibility

enables cobots to avoid task execution failures via task migration to collaborative cobots or

agents.

Table 4.2 compares the aforementioned cognitive and physical tasks in greater detail. One

of the major differences is the fact that location-dependent physical tasks that require move-

ment capability can only be done by cobots, whereas location-independent cognitive tasks

that require only computation and/or storage capability rather than physical presence can

be done by cobots and in particular agents such as central cloud and cloudlet with typically

more powerful computation/storage resources. Another important aspect of cognitive tasks

lies in the fact that most of them are rather non-repetitive and therefore much harder to be

automated. Furthermore, to provide MUs with strict QoS support for non-repetitive cognitive

tasks, collaborative cobots/agents may benefit from advanced artificial intelligence (AI) and

machine learning capabilities for task migration. Note that several of the key performance
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Table 4.2: Cognitive vs. physical tasks

Criteria Cognitive Tasks Physical Tasks
Definition Deal with perception, interaction,

planning, memory, learning, and
reasoning phenomena

Follow specific instructions (man-
ual), do not require sophisticated
judgment

Human vs. ma-
chine

Humans are better at perform-
ing cognitive tasks, e.g., intelli-
gent decision making

Machines are better at executing
repetitive and routine tasks, e.g.,
precise physical movement

General tasks Analyze numbers, digest words
and images, perform digital tasks

Remote operation in specific
places (e.g., manipulation of ob-
jects in hostile environment)

HART-centric
tasks

Both location-dependent and
-independent decision making
(e.g., face detection)

Only location-dependent manual
operation such as heavy machin-
ery transport or image capturing

Cobot vs. agent HART-centric cognitive task can
be done by both cobot and agent
(cloud, cloudlet)

HART-centric physical task is re-
stricted to only cobot located in
given task area

AI/machine
learning capabil-
ity

Require artificial intelligence
(AI)/machine learning capability
for non-repetitive task

Do not require AI/machine learn-
ing capability for repetitive man-
ual task

Predictability
and automation

Non-repetitive cognitive jobs are
non-predictable and harder to au-
tomate (e.g., financial analysis,
intrusion detection)

Physical (manual) repetitive jobs
are predictable and easy to auto-
mate (e.g., assembly line jobs)

Key performance
indicators

Deadline miss ratio, task migra-
tion latency, and communication-
computation ratio (CCR)

Response time for moving and
processing task, task blocking
probability

indicators listed at the bottom of Tables 4.1 and 4.2 will be investigated in our analysis below

in Section 4.7.

4.5.2 Assumptions

Our HART-centric task considered for migration includes both physical (image capturing at

task location) and cognitive sub-tasks (image recognition). More specifically, we describe a

HART-centric task δi by using the following notation: δi = (ui, si, so, td, er, tli, wli,mt), where

ui is the requested task type, si denotes the total task input data size si = spi + sci that

includes both physical (spi ) and cognitive (sci) sub-task input data (given in megabytes), so is

the task output data size (so = spo + sco), er is the required energy to process the requested

task (in Watt), tli represents the two-dimensional location of the task (xi, yi), wli = wlp +wlc

is the task workload or amount of CPU cycles (in million instructions) required to process the
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physical sub-task (wlp) and cognitive sub-task (wlc), td = tpd + tcd is the total task deadline

(in seconds), and mt denotes the MU’s trajectory given by mt = (pu, tu, vu), whereby pu is

the initial position where the MU pauses for tu seconds before moving onwards to the next

waypoint at speed vu. Hence, we assume that the selection of a suitable agent/cobot for each

HART task request arriving at the ONU-MPP (task location) is done in a first-come-first-

served (FCFS) manner. Note that an available cobot/agent is assumed to be able to perform

only one HART task at any given time. Furthermore, we assume that the output of a physical

sub-task (captured image at task location) is the input of the corresponding cognitive sub-task

(image recognition).

Moreover, we assume that a cobot executes both physical and cognitive sub-tasks by taking

its movement and computation capability into account. Accordingly, we assume that cobots

are heterogeneous using the following notation: mk = (αk, vm, vs, ek, plk), where αk, vm, and

vs denote the cobot type (ability to process a specific task), moving speed, and task processing

speed, respectively. Further, ek is the remaining energy and plk is the two-dimensional location

of the cobot (xk, yk).

Finally, we assume that an agent (remote cloud or local cloudlet) can execute only location-

independent cognitive sub-tasks for cobots and human MUs. Let us use the following notation:

cla = (va, σa), where va and σa denote the CPU capacity and availability of the agent, respec-

tively.

4.6 Context-Aware Task Migration Scheme

Before describing our task migration algorithm in more detail, let us first consider a couple of

illustrative examples to demonstrate our proposed method. Consider an MU who would like to

obtain information about a painting currently at display in a museum or temporary exhibition.

To do so, the MU sends a HART task request (capturing image of painting and recognizing

the authenticity of the captured image) to the ONU-MPP at the corresponding task location.

After receiving the HART task request, the ONU-MPP at the task location assigns a suitable

cobot to perform the HART task by conducting the physical sub-task (moving to task loca-

tion and capturing image at task location) and subsequently assigning the cognitive sub-task

(recognition of captured image) to a suitable agent (cloudlet/central cloud). The agent then

performs the cognitive sub-task and sends the cognitive sub-task result (authenticated image

information) back to the MU. Another practical example would be the transport and delivery

of a product such as pizza delivery (physical sub-task) and confirming the authenticity of the

intended recipient by means of speech and face recognition (cognitive sub-task). To perform

the MU requested HART task that includes both physical and cognitive sub-task in an time

efficient manner, our proposed context-aware HART-centric task migration algorithm, which
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performs the selection of both suitable cobot and agent, comprises the following five steps (see

also Algorithm 4):

Step 1: A given MU sends a HART task request message during her assigned upstream

(US) transmission subslot. The MU’s task request message contains the following information:

task location (tli), task type (ui), required energy for task execution (er), task workload (wli),

MUs average speed (vu), initial location (pu), task result download location (pu+∆t) of MU,

and task deadline (td).

The ONU-MPP/ONU-eNB associated with the MU receives the task request frame and

forwards it to the OLT in the upstream direction. Subsequently, the OLT broadcasts the MU’s

task request message to all ONUs. The ONU-MPP serving the corresponding task location

processes the task request message and allocates the task to a suitable cobot for execution.

Step 2: For suitable cobot selection, the ONU-MPP transmits the task request message

to all cobots within its coverage area. Upon reception, each associated cobot sends a task

response message to the ONU-MPP, which includes the following information about the cobot:

availability (αk), location (plk), remaining energy (ek), and precalculated task response time

(tk). Next, the ONU-MPP selects a suitable cobot for each task by taking the following decision

variables into account: task deadline (td ≥ tk), remaining energy threshold (ek ≥ er), and

minimum task response time (tk). Note that each task consists of two sub-tasks: a location-

dependent physical (e.g., image capturing) sub-task and a location-independent cognitive sub-

task (e.g., image recognition from captured image). Clearly, the cognitive sub-task is executed

after the physical sub-task. Hence, the cognitive sub-task may be executed by the selected

cobot itself or may be migrated to a suitable agent (cloud/cloudlet) for execution. Note that

cognitive sub-task migration is done if either the cobot suffers from a failure or the agent is

able to reduce the total task response time.

Step 3: To select a suitable agent for executing the cognitive sub-task, the ONU-MPP

nearest to the corresponding task location checks the availability (σa) and cognitive sub-task

response time (tca) of all agents. If more than one agent satisfies the cognitive sub-task deadline

(tcd) and availability criteria, a suitable agent is selected based on the minimum cognitive

sub-task response time (tca). After selecting a suitable agent, the cobot that performs the

physical sub-task (wlp) migrates the cognitive sub-task input data (sci) to the selected agent

for processing.

Step 4: Note that in the event of an agent failure or unavailability, a cognitive sub-task

migration takes place from the failing/unavailable agent to another intact agent/nearby cobot

in order to improve the overall task response time.
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Algorithm 4 Task migration algorithm

Considerations: Number of arrived task request (δ) and cobots (m), a set of ONU-MPP
(N) and agent (z), cobot type (αk), task type (ui), remaining energy cobot (ek), required
energy for full task (er) and agent cognitive sub-task (eca), full (td) and cognitive sub-task
deadline (tcd), cobot response time for full task (tk) and cognitive sub-task (tck), cognitive
sub-task response time for cloud (tccl), cloudlet near physical sub-task location (tcct,i) and
result download location (tcct,d), and selected agent (tca)

1: for each nj∈N do
2: for each arrived task request i∈δ do
3: for each cobot k∈m do
4: if (αk == ui) & (ek ≥ er) & (tk ≤ td) then
5: Select available cobot (k) with minimum tk
6: if tck < tca & eca ≥ eck & tck ≤ tcd then
7: Selected cobot executes full task (wli)
8: else
9: Execute only physical sub-task (wlp)

10: Go to step 11 for cognitive sub-task migration (wlc) to suitable agent (a∈z)
11: if tcct,i ≥ tcct,d> tccl & tccl ≤ tcd then
12: Select available central cloud server (cl) as agent (a) for cognitive sub-task

migration
13: else if tccl ≥ tcct,d> tcct,i & tcct,i ≤ tcd & act,i 6= act,d then
14: Select available cloudlet near physical sub-task location (ct, i) as suitable

agent (a)
15: else if tccl ≥ tcct,i > tcct,d & tcct,d ≤ tcd & act,i 6= act,d then
16: Select available cloudlet near MUs result download location (act,d) as suitable

agent
17: end if
18: The selected agent receives other agent information during cognitive sub-task

execution
19: if the selected agent finds other suitable agent with lower task response time

tca then
20: Migrates the cognitive sub-task (remaining) to new agent with minimum tca
21: if the selected suitable agent (a) can not execute the assigned cognitive

sub-task then
22: Go to step 10
23: else
24: Go to step 1
25: end if
26: end if
27: end if
28: end if
29: end for
30: end for
31: end for
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Figure 4.3: HART-centric task migration: (a) timing structure and (b) operational steps.

Step 5: Finally, after executing the cognitive sub-task (wlc), the selected agent sends the

processed data (sco) to the MU’s predicted result download location (pu+∆t), as depicted in

Fig. 4.3(b).

Fig. 4.3(a) depicts the signaling and timing structure of our proposed polling-based re-

source management scheme, which operates as follows. In the optical fiber backhaul, the

OLT allocates an US transmission opportunity to each ONU-MPP/ONU-eNB by exchanging

IEEE 802.3ah multipoint control protocol (MPCP) messages (REPORT and GATE) and broad-

casts downstream (DS) frames to all ONU-MPPs/ONU-eNBs. The REPORT message is used

by each ONU-MPP/ONU-eNB to report its current US bandwidth demand to the OLT. Upon

reception, the OLT transmits a GATE message to inform the ONU-MPP/ONU-eNB about its

granted US transmission slot. In the wireless front-end, ONU-MPPs and ONU-eNBs allo-

cate US transmission opportunities to their associated users (MUs/cobots) via IEEE 802.11

WLAN Beacon/PS-Poll messages and LTE-A random access preamble (RAP)/random access

response (RAR) messages, respectively [103].

After receiving the GATE message from the OLT, the corresponding ONU-MPP/ONU-eNB

of a given task location first selects a suitable cobot for each task request, divides its allocat-

ed US bandwidth into subslots among its associated users (MUs/cobots), and broadcasts a

Beacon/RAR frame to them. The task request message arriving at the ONU-MPP/ONU-eNB

is sent by MUs during their previous polling cycle’s broadband time subslots. Moreover, the

broadcast Beacon/RAR frame contains the associated users’ US transmission map, i.e., subslot

start time and duration. Each associated user sends its US transmission subslot request to

the ONU-MPP/ONU-eNB by using an extended PS-Poll/RAP frame, which contains an extra
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migration flag bit (0 or 1) to notify the ONU-MPP/ONU-eNB about its task migration subslot

request.

Prior to starting task migration, the corresponding ONU-MPP/ONU-eNB at a given task

location selects a suitable agent for cognitive sub-task migration via DHCP protocol messages

[104] (Discover-Offer-Request-Ack) between ONU-MPP and agent node (cloud/cloudlet).

The selected cobot that executes the physical sub-task then migrates the cognitive sub-task

input data to the selected agent for execution during its task upload subslot. In the opposite

direction, after receiving the cognitive sub-task result data from the selected agent, the ONU-

MPP/ONU-eNB at the MU’s result download location transfers the cognitive sub-task result

back to the MU during the corresponding result download subslot.

4.7 Analysis

In this section, we investigate the performance of our context-aware HART-centric task mi-

gration scheme in terms of a variety of key performance indicators.

4.7.1 Polling Cycle Time and Task Migration Subslot

We model the polling system of Fig. 4.3 as an M/G/1 queueing system with reservations

and vacations. Let N denote the number of ONUs, whereby each ONU provides service to

M associated users. More specifically, each ONU-MPP/ONU-eNB serves (i.e., broadband

and migration) FiWi traffic of a given user during her assigned timeslot. We assume Poisson

distributed FiWi traffic with mean arrival rate λ. Hence, the aggregate FiWi traffic load equals

ρt=λX, where X denotes the average service time. Furthermore, each ONU-MPP/ONU-eNB

divides its polling cycle into data, reservation (R = tmsgwl + tg), and vacation intervals, i.e.,

V = (N − 1)tsl. Note that the non-data traffic time within Tc is denoted by (1 − ρt) and is

equal to N(MR + tas + tcs + tmsgpon + tmsgwl ). Thus, Tc is obtained as

Tc =
N(MR + tas + tcs + tmsgpon + tmsgwl )

1− ρt
, (4.2)

where tas and tcs represent the agent and cobot selection time, respectively.

For M users with an US transmission opportunity during Tc, each ONU’s timeslot duration

is equal to tsl = Tc/(N ·M · ρt), where ρt denotes the FiWi traffic load (ρt ≤ 1), including

both broadband traffic load (ρm) and task migration traffic load (ρc). Similarly, timeslot tsl

includes both broadband (tm,sl) and task migration (tc,sl) along with the time needed for cobot

(tcs) and agent (tas) selection. Hence, the broadband (tmsl ) and task migration (tcsl = tusl + tdsl)

subslot duration of an associated user equals tmsl =
ρm·tm,sl

M
and tcsl =

ρc·tc,sl
M

, respectively, where

tusl and tdsl denote the task upload and result download duration during a polling cycle.
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Figure 4.4: Task migration packet delay components.

4.7.2 Task Migration Packet Delay

As shown in Fig. 4.4, an US task migration packet experiences four different delay com-

ponents during migration. The first delay component d1 is the time interval between task

migration packet arrival (a) and transmission of the task migration subslot reservation (r)

request (PS-Poll). Thus, we have

d1 = (M − 1)tcsl + (N − 1)tsl + tmsgpon + tcs + tmsgwl + tmsl , (4.3)

where tcsl denotes the task migration subslot duration.

The second delay component (d2) is the time interval between transmission of the re-

source reservation request (r) and reception of a grant (g) message (Beacon/RAR) for the task

migration subslot. Thus, d2 is given by

d2 = (M − 1)tmsl + tas +Mtcsl + (N − 1)tsl + tmsgpon . (4.4)

The third delay component is the time that elapses between the received grant message

(g) and transmission time of the corresponding task migration data packet (m). It is given by

d3 = tcs + tmsgwl +Mtmsl + tas.

Finally, the fourth delay component (d4) is the average waiting time of a migrated packet.

Note that d4 includes both queueing (dqt) and service time (dst = 1
µ
) at the corresponding

collaborative node. Hence, we have

d4 = dst + dqt =
1

µ
+
C(ω, τ)

ωµ− λ
, (4.5)

where ω, µ, and λ represent the number of servers at the collaborative node, its service rate,

and task arrival rate per server, respectively. C(ω, τ) denotes the well-known Erlang-C formula

given by

C(ω, τ) =

(
(ωτ)ω

ω!

)(
1

1−τ

)
∑ω−1

l=0
(ωτ)l

l!
+

(
(ωτ)ω

ω!

)(
1

1−τ

) . (4.6)
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Summing up all four delay components and considering that d1 + d2 + d3 ≤ 2Tc yields the

mean task migration packet delay dm as follows:

dm = 2Tc +
1

µ
+
C(ω, τ)

ωµ− λ
. (4.7)

4.7.3 Task Response Time

Given that in general a task consists of physical and cognitive sub-tasks, we analyze the task

response time for execution with and without task migration.

4.7.3.1 Task Execution Without Migration

In this scenario, the initially selected cobot executes the full task (i.e., both physical and

cognitive sub-tasks) and then transfers the task result to the MU. Thus, the task response

time tk is given by

tk = tfk + trxk = tpk + tck + trxk , (4.8)

where tpk and tck denote the cobot’s physical and cognitive sub-task processing time, respec-

tively, and trxk is the required time to transfer the task result from the cobot to the MU.

Hence, the physical sub-task response time tpk of a cobot, including both the time tpr to reach a

task location and time tpex to process the physical task workload, equals tpk =
dki
vm

+ wlp
vs

, where

wlp, vm, and vs represent the physical sub-task work load, moving and processing speed of the

cobot, respectively; dki denotes the distance between the cobot (xk, yk) and the corresponding

task location (xi, yi), which is equal to the Euclidean distance dki =
√

(xi − xk)2 + (yi − yk)2.

Further, the cognitive sub-task response time of the cobot equals tck = wlc/vs, where wlc is

the cognitive sub-task workload. Thus, the result transfer delay (trxk ) is given by

trxk =
sco
bkwl

+ hrxo→ō ·
sco
bo→ō

+
sco
bmuwl

+ tpropk→mu, (4.9)

where sco is the task output data size, tpropk→mu is the propagation delay of the task result transfer

process, and hrxo→ō is the hop distance between ONU-MPP/ONU-eNB at the task and result

download location. Further, bkwl, bo→ō, and bmuwl denote the transmission capacity of the link

between cobot and ONU-MPP at the task location (bkwl=bwl), ONU-MPP at the task location

to ONU-MPP/ONU-eNB at the result download location (bo→ō=bfl), and ONU-MPP/ONU-

eNB at the result download location to the involved MU (bmuwl = max{bwl, b∗wl}), respectively.
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4.7.3.2 Task Execution With Migration

Next, let us consider task execution with migration for the following two different cases:

• Case 1 – c2a and c2c migration: Recall that with c2a task migration, the selected

cobot executes only the physical sub-task while the cognitive sub-task is migrated to a suitable

agent, i.e., cloud/cloudlet near the task location or result download location. The full task

response time of c2a task migration is equal to tk,a = tpk + tca, where tpk and tca represent the

cobot’s and agent’s physical and cognitive sub-task response time, respectively. Further, note

that tca is given by tca = ttxk→a+texa +trxa→mu, where ttxk→a, t
ex
a , and trxa→mu denote the cognitive sub-

task upload delay (cobot to agent), processing time at agent (texa = wlc
va

), and result reception

delay (agent to MU), respectively. For migration to local cloudlet (a = ct) and remote cloud

(a = cl) migration, ttxk→a is computed as follows:

ttxk→a =

{ sci
bkwl

+ htxo→ō ·
sci
bo→ō

+
sci
bfl

+ tpropk→a if a = ct,
sci
bkwl

+
2sci
bfl

+ tpropk→a if a = cl,
(4.10)

where subscript a = ct stands for ct, i and ct, d for cloudlet near task location and result

download location, respectively, htxo→ō denotes the hop distance between ONU-MPP near the

cobot’s and agent’s locations, and tpropk→a is the propagation delay incurred during the cogni-

tive sub-task upload process. Hence, the cognitive sub-task result download delay trxa→mu for

cloudlet/cloud migration is obtained as

trxa→mu =

{
sco
bfl

+ hrxo→ō ·
sco
bo→ō

+ sco
bmuwl

+ tpropa→mu if a = ct,
2sco
bfl

+ sco
bmuwl

+ tpropa→mu if a = cl,
(4.11)

where tpropa→mu is the propagation delay incurred during the result download process to the

involved MU.

Conversely, with c2c migration, the initially selected cobot and a nearby cobot perform

the physical and cognitive sub-tasks, respectively. Thus, the total task response time tk,k∗ is

given by tk,k∗ = tpk + tck∗ , where tpk and tck∗ denote the primary cobot’s (k) physical and nearby

cobot’s (k∗) cognitive sub-task response time. Note that tck∗ is given by

tck∗ = ttxk→k∗ + texk∗ + trxk∗→mu, (4.12)

where ttxk→k∗ , t
ex
k∗ , t

rx
k∗→mu represent the cognitive sub-task upload delay (primary cobot to near-

by cobot), nearby cobot’s cognitive sub-task processing time (texk∗ = wlc
v∗s

), and result download

delay (secondary cobot to MU), respectively. For c2c migration, ttxk→k∗ and trxk∗→mu are given

by

ttxk→k∗ =
sci
bkwl

+
sci
bk
∗
wl

+ tpropk→k∗ , (4.13)
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trxk∗→mu =
sco
bk
∗
wl

+ hrxo→ō ·
sco
bo→ō

+
sco
bmuwl

+ tpropk∗→mu, (4.14)

where bk
∗

wl, t
prop
k→k∗ , and tpropk∗→mu denote the transmission capacity between the nearby cobot and

its associated ONU-MPP (bk
∗

wl=bwl), uplink and downlink propagation delay, respectively.

• Case 2 – inter-agent and intra-agent migration: Inter-agent migration transfers a

cognitive sub-task from one type of agent to a different one, e.g., cloudlet to cloud or vice versa.

Whereas intra-agent migration transfers an uncompleted cognitive sub-task from one agent to

another agent of the same type, e.g., cloudlet to cloudlet. In either case, the physical sub-task

is done by the cobot. The total task response time for inter-agent (a∗ = a) and intra-agent

(a∗ = ã) migration is equal to tk,a∗ = tk,a + tca∗ − trxa→mu − wlc
va

, where tca∗ denotes the cognitive

sub-task response time of the newly selected agent (a∗) given by tca∗ = ttxa→a∗ + texa∗ + trxa∗→mu

with ttxa→a∗ , t
ex
a∗ , t

rx
a∗→mu being the cognitive sub-task upload, execution time at migrated agent

a∗ (texa∗ = wlc
va∗

), and result download delay (migrated agent to MU), respectively. Hence, we

have

ttxa→a∗ =

{
2sci
bfl

+ htxo→ō ·
sci
bo→ō

+ tpropa→a∗ if a∗=ã,
3sci
bfl

+ tpropa→a∗ if a∗=a,
(4.15)

trxa∗→mu =

{
sco
bfl

+ hrxo→ō ·
sco
bo→ō

+ sco
bmuwl

+ tpropa∗→mu if a∗=ã,
2sco
bfl

+ sco
bmuwl

+ tpropa∗→mu if a∗=a,
(4.16)

whereby tpropa→a∗ and tpropa∗→mu are the propagation delay incurred during task upload and result

download for intra-agent (a∗ = ã)/inter-agent (a∗ = a) migration, respectively.

4.7.4 Energy Consumption

In the following, we analyze the energy consumption of MUs and cobots for task execution

with and without migration. In the latter case, we account for the cobot’s energy consumption

for executing the full task and MU’s energy consumption for receiving the task result. Thus,

their total energy consumption ek without task migration is given by

ek = epk + eck + erxk + erxmu, (4.17)

where epk, e
c
k, and erxk represent the cobot’s energy consumption for executing the physical

sub-task (epk = pm · d
k
i

vm
+ ps · wlpvs ) and cognitive sub-task (eck = pc · wlcvs ), and transferring the

result (erxk = pu·trxk ) to the MU, respectively; erxmu denotes the MU’s energy consumption for

receiving the task result (erxmu= pd·trxk ).

With task migration, the energy consumption of MUs and cobots in the case of agent

migration (c2a) is equal to ek,a = epk + eca, where epk and eca denote the energy consumption

for executing the cobot’s physical and the agent’s cognitive sub-task, respectively. With eca =

pu ·ttxk→a+pidle ·texa +pd ·trxa→mu, the energy consumption of MUs and cobots for the case of nearby
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cobot migration (c2c) equals ek,k∗ = epk+e
c
k∗ , where epk and eck∗ stand for the energy consumption

for executing the physical sub-task of the initially selected cobot and the cognitive sub-task

of the nearby cobot, respectively. Finally, we have eck∗ = pu · ttxk→k∗ + pidle · texk∗ + pd · trxk∗→mu.

4.7.5 Task Response Time and Energy Efficiency

Let us define the task response time efficiency β̄k,θ of the migration based scheme, e.g., agent

(θ = a) and nearby cobot migration (θ = k∗), with regard to the non-migration scheme as the

ratio of response time gain obtained from task migration and the response time tk obtained

without task migration. Hence, β̄k,θ is given by

β̄k,θ =
tk,θ − tk

tk
× 100%, (4.18)

whereby tk,θ is the task response time in the case of task migration. Similarly, the energy

consumption efficiency ε̄k,θ of task migration with regard to non-migration is obtained as

ε̄k,θ =
ek,θ−ek
ek
× 100%, where ek,θ and ek denote the energy consumption of STAs with and

without task migration, respectively.

4.7.6 Migration Gain Overhead Ratio

The task migration gain overhead ratio η of task migration is calculated by taking the ratio of

task response time gain with regard to non-migration (tk,θ − tk) and the communication cost

for task migration, which in turn consists of the mean task migration delay dm, task upload

delay ttxk→θ, and result download delay trxθ→mu. In case of agent (θ = a) or nearby cobot (θ = k∗)

migration, η is computed as follows:

η =
tk,θ − tk

dm + ttxk→θ + trxθ→mu
. (4.19)

4.7.7 Deadline Miss Ratio

Next, we calculate the task deadline miss ratio MR as the ratio of the number of tasks

missing the task deadline according to their corresponding assignment to a cobot/agent and

the number of task requests. Hence, we have

MR =

∑δ
i=1NMi∑δ

i=1NMi +
∑δ

i=1NSi
, (4.20)

where NM and NS denote the number of tasks that are completed with and without missing

the deadline, respectively.
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4.7.8 Task Blocking Probability

For the calculation of the task blocking probability pb, we note that if the number δ of arriving

task requests is smaller than the number of available collaborative nodes, a given task can be

assigned to an available cobot/agent (Nw=Nt · ps) without blocking. However, if δ > Nw, the

first i tasks are assigned to available cobots/agents while the remaining task requests δ− i are

blocked. Thus, pb is computed as follows:

pb =


0 if Nw ≥ δ,

δ∑
i=Nw+1

(
δ
i

)
(ps)

i(1− ps)δ−i otherwise,
(4.21)

where Nt and ps denote the total number of collaborative nodes and the probability that a

suitable cobot/agent is available, respectively. The average utilization rate uw of a collabora-

tive node is obtained as the ratio of number of utilized nodes Nu = δ · ps and total number of

nodes Nt, translating into uw = Nu
Nt
× 100%.

4.7.9 Communication-to-Computation Ratio (CCR)

Another important performance metric is the so-called communication-to-computation ratio

(CCR). CCR is defined as the ratio of communication latency and task processing time of a

selected collaborative node and is given by

CCR =
dm + ttxk→θ + trxθ→mu

tpk + texθ
, (4.22)

where dm, ttxk→θ, t
rx
θ→mu, t

p
k, and texθ denote the mean task migration waiting delay, cognitive

sub-task upload delay, result download delay, physical sub-task execution time, and cognitive

sub-task execution time, respectively.

4.7.10 End-to-End Task Execution Delay

In this subsection, we analyze the end-to-end task execution delay with and without task

migration, taking into account task response time, task migration waiting delay as well as

US and DS frame delay. If a given MU generates a task request message after her current

bandwidth request message, the MU has to wait for polling cycle Tc to report her task request.

After transmitting the task request in the next cycle timeslot tmsl the MU experiences an

additional delay of Tc−tmsgwl since tmsl ≥ tmsgwl . Thus, the total US waiting delay equals 2Tc−tmsgwl .

The corresponding ONU-MPP/ONU-eNB receives and forwards the incoming task request to

the OLT in the US direction, which leads to the maximum US frame transmission delay tu.
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Table 4.3: Parameters and default values for evaluation of context-aware task migration s-
trategies

Notation Description Default val-
ue/unit

Tc, N,M,m Polling cycle time, number of ONUs, STAs, and
cobots

ms, 32, 10, 5

vs/vs∗ , va CPU clock speed (cycles/second) of cobot (k)/nearby
cobot (K∗) and agent (a)

100-500 MHz, 3.2
GHz

vm, d
k
i , e

i
k, er,

λMU

Cobot’s moving speed, distance between cobot and
task location, cobot’s initial energy, and required en-
ergy for full task, density of MU within cellular cov-
erage

1-5 m/s, 1-10 m,
500 KJ, 1-5 Joule,
1-50

pm, ps, pc, vu Cobot’s average power consumption during moving,
physical, and cognitive task processing, MUs average
speed

0.7 W, 0.5 W,
0.5 W, 1-10 mph
(vary)

si, s
p
i /s

c
i , s

p
o/s

c
o Total task input data size, physical/cognitive sub-task

input, and output data size
KB

bwl/b
∗
wl, bfl Transmission capacity of WLAN/cellular link for

cobot (bkwl) and MU (bmuwl ), fiber link
6900/300 Mbps,
10 Gb/s

wli, wlp, wlc, ps Full task, physical, cognitive sub-task workload, work-
er node availability probability

CPU cycles, 0-1

tpropk→mu, t
prop
k∗→mu,

tpropa→a∗

Total propagation delay between cobot and MU, n-
earby cobot (k∗) and MU, primary agent (a) and sec-
ondary agent (a∗)

2.66 µs, 2.66
µs, 50 ms (in-
ter)/0.02 ms
(intra)

tpropk→a, t
prop
k→k∗ ,

tpropa∗→mu

Total propagation delay between cobot (k) and a-
gent (a=cloudlet task location/result download lo-
cation/remote cloud), cobot and nearby cobot, sec-
ondary agent and MU

0.010/0.012/50
ms, 0.6 µs, 50 ms
(inter)/0.02 ms
(intra)

pu, pd, pidle Cobot’s average power consumption in upload, down-
load, idle state (per second)

0.1W, 0.05W,
0.001W

tmsgwl , t
msg
pon , tas,

tcs, tg

WLAN message length (e.g., PS-Poll), MPCP mes-
sage length (GATE,REPORT), cobot, and agent selection
delay, guard time between two slots

0.231µs, 0.512µs,
ms, 46 µs

htxo→ō/h
rx
o→ō Number of hops between initial and final ONU during

data transmission and reception
2

rMAP , Acell,
λMAP

MAP radius, cellular coverage area, density of MAPs
within cellular coverage area

100 m, 3·3 km2, 3

Nw/Nt, treq/
tres/tack

total number of collaborative nodes, task re-
quest/cobot response/ack message duration

1-20,
0.17µs/0.12µs/0.12
µs

dm, ω/µ/λ, δ Mean task migration packet delay, number of server-
s in cloudlet or remote cloud/mean task service
rate/task arrival rate per server, total arrived task
request

ms, 1-10, 1-20
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By taking into account the US waiting delay 2Tc− tmsgwl , service time delay Xmax at the ONU-

MPP/ONU-eNB, and US propagation delay tprop, tu is obtained as tu = 2Tc−tmsgwl +tprop+Xmax.

Next, we calculate the maximum DS frame delay. The DS waiting delay is equal to Tc−tsl.
The maximum DS delay td is calculated by summing up the DS waiting delay, service delay

Xmax, and associated propagation delay tprop, which yields td = Tc − 2tmsgpon − tprop + Xmax

with tsl ≥ 2tprop + 2tmsgpon . After receiving the task request from the OLT, the corresponding

ONU-MPP starts the cobot selection if there is no task migration. Otherwise, the ONU-MPP

selects both a cobot (tcs) and an agent (tas) for c2a migration. Thus, the end-to-end task

execution delay te2ek without task migration equals te2ek = tu + td + tcs + tfk +dm + trxk , where tfk ,

trxk , dm, and tcs denote the cobot’s full task processing time, task result transfer time, mean

task result buffering delay, and cobot selection delay, respectively.

Similarly, the end-to-end task execution delay for c2a migration (te2ek,a) and c2c migration

(te2ek,k∗) is obtained as te2ek,a=tu+ td+ tcs+ tpk +dm+ tas+ tca and te2ek,k∗=tu+ td+2tcs+ tpk +dm+ tck∗ ,

where tas, t
c
a, and tck∗ denote the agent selection delay and the cognitive task response time of

an agent and a nearby cobot, respectively.

4.8 Results

In this section, we investigate the performance of our proposed task migration scheme. For

convenience, Table 4.3 summarizes the key parameters and their assigned default values in

compliance with [17], [30], [9], and [105]. To examine the performance of our proposed task

migration scheme, we consider multiple task execution scenarios with different task workload,

input, and output data size values. More specifically, in scenario 1 we consider a lighter full

task workload with smaller input and output data sizes than in scenario 2. Note that the

specific parameter settings for Scenario 1 is given by: wlp = wlc = 100, 200, 300, 400, 500 M

cycles, spi=s
c
i=100,200,300,400,500 KB, sco=40,80,120,160,200 KB, td=1.5,2,2.5,3,3.5s. Where-

as, Scenario 2 parameter settings is described as follows: wlp=wlc= 160,320,480,640,800 M

cycles, spi=s
c
i=120,240,360,480,600 KB, sco=240,480,720,960,1200 KB, td=1.8,2.6,3.4,4.2,5s.

Simulation Setup: In this section, we present results by means of Matlab based comput-

er simulations. The physical (move to a task location and image capturing) and cognitive

sub-task (face detection form captured image) workload, cognitive sub-task input data size

(output of physical sub-task), cognitive sub-task output data size, and full task deadline

ranges from 100-800 M cycles, 100-600 KB, 40-1200 KB, and 1.5-5s, respectively. Further,

the maximum CPU clock speed of an cloud agent (central cloud/cloudlet server) is set to 3.2

GHz. A cobot’s distance to the task location, CPU clock speed, and moving speed is chosen

randomly from an interval of 1-10 m, 100-500 MHz, and 1-5 m/s, respectively. Note that,

at the wireless front-end both the MU’s device and cobot can be attached to both cellular
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and WLAN interface via connectivity with ONU-MPP and ONU-eNB, respectively. The fiber

backhaul length between ONUs and the central office (OLT) is 20 Km long. Whereas, the

optical fiber length between the ONU and cloudlet server is 2 km long. The transmission

capacity of a fiber link, WLAN, and cellular link is set to 10 Gb/s, 6900 Mbit/s, and 300

Mbit/s respectively. The MPCP (GATE,REPORT) and PS-Poll messages are of size 64 and 20

bytes, respectively, i.e., tmsgpon =0.512 µs and tmsgwl =0.231 µs. The number of ONUs, associated

STAs, and hop distance between ONU for MU’s trajectory (initial and final location of MUs)

is set to 32, 10, and 2, respectively. The FiWi traffic load and polling cycle time is varied

in an interval of 0.05-0.95 and 100-800 ms, respectively. Further, the MAP radius, cellular

coverage area, and density of MAPs within each cellular coverage area is set to 100 m, 3 · 3
km2, and 3, respectively. Note that the total number of task request arrivals and number of

collaborative nodes (agents/cobots) is varied in the range of 1-20 in order to investigate their

impact on the performance. The remaining default values and parameter settings related to

each particular evaluation scenario are provided in Table 4.3 and Figs. 4.5-4.7, respectively.

Importantly, for low-latency HART task execution the main requirements are as follows: the

availability of cobot and cloud server resources for requested task processing, satisfaction of

the task execution deadline criteria, transmission at the speed of light, edge cloud server with-

in 20 Km distance from the decentralized ONUs for processing, connectivity of cobots/MUs

with ONUs via a wireless interface, connectivity of cloudlet server with ONU via a fiber link,

hardware/software interface to transfer the task request to cobot/cloud agent and task result

reception by MUs from cobot/cloud agent, among others. We also note that in the event of

multi-task arrivals, we assume that the task requests are served in a first-come-first-served

(FCFS) fashion. Furthermore, we assume that an available agent/cobot can execute only one

cognitive/physical sub-task at any given time.

We first investigate the task response time and energy consumption, which are the two

key performance metrics that determine whether the initially selected cobot should execute

the full task (without migration) or migrate the cognitive sub-task to a collaborative agent

(cloudlet or cloud in c2a migration) or nearby cobot (c2c migration) for execution. Figs.

4.5(a)-(c) show the task response time and energy consumption evaluation of the different

task migration schemes for varying total task input data size (single full HART task input

data size that includes both physical and cognitive sub-task). We observe that the task

response time and energy consumption of all compared schemes increase for increasing full

task input data size. Note, however, that the c2a (cloudlet near task location) and c2a

(cloudlet near result download location) schemes achieve the minimum task response time

and energy consumption in scenario 1 and 2, respectively. The is due to the fact that in

scenario 1 the migrated task input data size (sci) is larger than the migrated task output
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Task response time, energy consumption, task response time, energy efficiency,
and migration gain-overhead ratio vs. task input data size (si) evaluation of different task
migration schemes under scenario 1 and 2.
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data size (sco), whereas in scenario 2 the relation between migrated task input and output

data size is reversed. The opposite relation between total task input and output data size

results in the minimum task migration latency (both upload and result download delay) for

the c2a scheme (cloudlet near task location) and c2a scheme (cloudlet near result download

location) in scenario 1 and 2, respectively. Moreover, we note that the central cloud based

c2a migration scheme experiences a higher task response time and energy consumption than

in both cloudlet based c2a schemes. This is because the central cloud based task migration

scheme suffers from a higher task migration latency (upload and download delay) than both

cloudlet task migration schemes, whereby the central cloud and cloudlet servers are assumed

to have the same processing capability in terms CPU speed. Further, we observe that the

task response time of all considered schemes except the c2c migration (nearby cobot) satisfy

the task deadline criteria of both scenarios, whereas the c2c migration can only meet the

task deadline criteria of scenario 1. We also note that the task migration to nearby cobot

(c2c) is able to improve the energy consumption of the initially selected cobot (without task

migration). Hence, due to the nearby cobot’s lower task processing speed, the c2c scheme

results in the worst task response time performance among all compared schemes.

To highlight the impact of task migration between two agents, Fig. 4.5(d) compares the

task response time of the two different schemes: inter-agent (cloudlet to central cloud) and

intra-agent (cloudlet to another cloudlet) migration. The figure shows that in scenario 1 the

intra-agent migration provides a shorter task response time than its inter-agent counterpart.

Clearly, this is because intra-agent migration suffers from a lower task migration communi-

cation overhead. Thus, intra-agent migration is more preferable when a failure occurs during

agent task execution.

To demonstrate the suitability of task migration, Figs. 4.5(e) and (f) depict the task

response time and energy consumption efficiency of different task migration schemes in com-

parison with the non-migration scheme. Clearly, for increasing task input data size, the task

response time and energy consumption efficiency rise rapidly for all considered c2a migration

schemes. Both figures indicate that the c2a (cloudlet near task location) scheme is the best

choice in scenario 1 since it offers the maximum task response time and energy consumption

efficiency. For instance, for a typical case of 600 MB in scenario 1, the c2a migration (cloudlet

near task location) yields the highest task response time (20%) and energy efficiency (23%),

whereas the second best c2a (cloudlet result download location) scheme achieves approximate-

ly 17% and 21% improvement of the task response time and energy efficiency compared to

the non-migration scheme. Hence, the task response time and energy efficiency of c2a mi-

gration (central cloud) is equal to 13% and 20%, respectively. In addition, note that the c2c

migration results in a negative task response time and positive energy efficiency gain over the
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non-migration scheme. Fig. 4.5(g) shows that the maximum task response time efficiency is

achieved with intra-agent migration. For instance, for a task input data size of 600 MB in sce-

nario 1, the task response time efficiency gain over the non-migration scheme is approximately

15% with intra-agent migration, as opposed to only 11% with inter-agent migration.

In Fig. 4.5(h), we examine the task migration gain-overhead ratio of the different task

migration schemes for varying task input data size. Note that a higher task migration gain-

overhead ratio indicates the suitability of a particular task migration scheme over other com-

pared schemes. From Fig. 4.5(h) we observe that for an increasing task input data size the task

migration gain-overhead ratio increases in all considered c2a migration schemes and decreases

in the c2c migration scheme. For instance, for a task input data size of 600 MB in scenario

1, c2a migration (cloudlet task location) shows the highest task migration gain-overhead ra-

tio, which is approximately 48%, 5%, 18%, 73% higher than that of the non-migration, c2a

migration (cloudlet result download location), c2a migration (central cloud), and c2c migra-

tion schemes, respectively. Further, Fig. 4.5(i) illustrates that for varying task input data

size the task migration gain-overhead ratio is smaller with inter-agent rather than intra-agent

migration. For instance, for a typical task input data size of 400 MB in scenario 1, intra-agent

migration provides a 12% higher task migration gain than inter-agent migration.

Next, Fig. 4.6(a) investigates the impact of task input data size on CCR for different task

migration schemes. We notice that for increasing task input data size CCR decreases in all

considered schemes. This is because the migrated task execution time is inversely proportional

to CCR (see Eq. (4.22)). Also note that a task migration scheme with a lower CCR involves a

lower communication overhead for a given migrated task execution. In scenario 1, we observe

that the c2a (cloudlet near task location) and intra-agent migration schemes offer a smaller

CCR than their counterparts. Furthermore, note that CCR is the highest with c2a migration

(central cloud) and inter-agent migration.

Fig. 4.6(b) sheds light on the average collaborative node utilization ratio by varying

the total number of collaborative nodes (cobots and agents) for different collaborative node

availability probability ps. The figure clearly shows that for a fixed number δ of arriving

tasks, the average utilization ratio increases with the total number of available collaborative

nodes Nw = Nt · ps until it levels off at δ = Nw. The average utilization ratio then decreases

for Nw > δ. Further, we note that the average utilization ratio is higher for large ps. Fig.

4.6(c) shows how the average task blocking probability pb varies with the total number Nt

of collaborative nodes and collaborative node availability probability ps. Interestingly, note

that pb is higher at smaller numbers of available collaborative nodes, i.e., Nw = Nt · ps.
Furthermore, we observe that for fixed non-zero values of ps and increasing Nt the blocking

probability decreases and reaches zero for Nw = δ. Fig. 4.6(d) depicts the deadline-miss ratio
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Communication-to-computation ratio (CCR), average utilization of collaborative
node, task blocking probability, deadline-miss ratio, and end-to-end task execution delay e-
valuation of different task migration schemes.
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Figure 4.7: Task response time efficiency of proposed task migration scheme over non-
migration scheme for Scenario 3 task workload settings.

with and without task migration for varying total number δ of arriving tasks, with Nw fixed.

Fig. 4.6(d) reveals that for increasing δ, the deadline-miss ratio increases rapidly in both

schemes with and without task migration. Note, however, that the non-migration scheme

results in a higher task deadline-miss ratio than the migration scheme in both scenarios. The

reason behind this is that the non-migration scheme considers only cobots for task execution,

whereas the migration scheme utilizes both cobots and agents as collaborative nodes for task

execution. As a result, more task requests can be served by the migration scheme. Fig. 4.6(e)

shows that the end-to-end task execution delay of the different task migration schemes remains

low at light FiWi traffic load ρt, but rapidly increases for high ρt. Note that the end-to-end

task execution delay is minimum in the c2a migration (cloudlet near task location) scheme.

For instance, for a given task input data size of 300 MB and FiWi traffic load of 0.8, c2a

migration (cloudlet near task location) offers a 15% and 21% lower end-to-end task execution

delay than the non-migration and c2c migration scheme, respectively. Fig. 4.6(f) depicts

the end-to-end task execution delay performance of the different task migration schemes for

varying polling cycle time Tc. We observe that for a large Tc, the task execution delay of the

different task migration schemes remains high, but rapidly decreases for smaller Tc. Notably,

c2a migration (cloudlet near task location) outperforms its counterparts in terms of end-to-end

task execution delay.

Finally, Fig. 4.7 sheds some light on the task response time efficiency evaluation of our

proposed c2a task migration (cloudlet near task location) scheme over non-migration scheme

under different physical and cognitive sub-task workloads for a full HART task. We notice that

the highest task response time efficiency is achieved in our proposed task migration scheme
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for a full HART task with light physical and heavy cognitive sub-task workload in Scenario 3

(wli=200, 400, 600, 800, 1000 M cycles, spi=s
c
i=100,200,300,400,500 KB, sco=40,80,120,160,200

KB, td=1.5,2,2.5,3,3.5s). Thus, a full HART task with light physical sub-task and heavy

cognitive sub-task is most suitable for our proposed scheme. Further note that among all three

different task workload settings the achievable task response time efficiency in our proposed

scheme is significantly lower for a full HART task with heavy physical and light cognitive sub-

task workload. This is because in our proposed c2a migration scheme, the physical sub-task is

performed by a cobot that is computationally less powerful, whereas the cognitive sub-task is

executed by a more powerful agent (cloudlet). By contrast, in the non-migration scheme, the

full task (involving both physical and cognitive sub-tasks) is performed by the cobot. Thus, the

observed task response time difference between our proposed scheme and the non-migration

scheme is lower for a HART task with heavy physical and light cognitive sub-task workload.

Whereas the task response time difference is higher for a HART task with light physical and

heavy cognitive sub-task workload. Furthermore, Fig. 4.7 illustrates that for increasing task

input data size, the task response time efficiency increases in our proposed scheme for a full

HART task under all three different task workloads. For instance, for a typical case of 1000

MB, our proposed scheme achieves up to 18%, 23%, 29% higher task response time efficiency

than the non-migration scheme for a full HART task with heavy physical and light cognitive

sub-task workload, equal physical and cognitive sub-task workload, light physical and heavy

cognitive sub-task workload, respectively.

4.9 Conclusions

In this chapter, we examined the performance of our proposed context-aware task migration

scheme for HART-centric task execution in FiWi based Tactile Internet infrastructures. To

improve the task execution latency, our proposed scheme not only selects a suitable cobot

and collaborative node for HART-centric task execution, but also migrates a task from one

collaborative node to another. Further, we presented an adaptive resource allocation scheme

to handle both traditional broadband and task migration data traffic at the same time. We

developed an analytical model to investigate the performance of our proposed task migration

scheme in terms of task response time, energy efficiency, communication-to-computation ratio,

and task migration gain-overhead ratio, among others. The presented results help determine

the optimal task migration schemes under a variety of use case scenarios with different task,

agent, and cobot characteristics. Our obtained result show that for a typical task input data

size of 600 MB, the c2a task migration (cloudlet near task location) scheme exhibits up to

20% task response time and 23% energy efficiency improvement over task execution without

migration. The results also indicate that in the case of an agent node failure, intra-agent task
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migration offers a higher task response time gain than inter-agent migration. Our proposed

task migration scheme is thus well suited to provide low-latency performance for emerging

Tactile Internet applications.
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Chapter 5

Community- and Latency-Aware
Multi-Task Scheduling and
Prefetching-Aware DBA in FiWi
Enhanced Networks

5.1 Preamble

This chapter contains material extracted from the following paper:

[J5] M. Chowdhury and M. Maier, “Community- and Latency-Aware Multi-Task Scheduling

for HART Collaboration in FiWi Enhanced Networks,” IEEE Transactions on Cloud Com-

puting, November, 2018 (submitted) [106].

5.2 Introduction

With the proliferation of smart mobile devices, a wide variety of emerging mobile applica-

tions such as 3-D interactive games and gesture/object recognition are increasingly turning

into indispensable assets. Despite their ongoing development, many latency-sensitive mobile

applications (e.g., face detection) cannot be efficiently run on mobile devices due to their lim-

ited computing and storage resources. In response to this challenge, mobile cloud computing

(MCC) has been a promising solution, where resource-limited mobile devices transfer their

latency-sensitive and computation-intensive tasks to resource-rich cloud servers for remote

execution through a process known as computation offloading [17].

Most existing MCC based task offloading solutions are based on the following platforms:

centralized cloud [17], decentralized cloudlet [28], or mobile ad-hoc cloud [30]. Remote cloud

based task offloading may not always satisfy the QoS requirements of many real-time mobile

applications due to the higher propagation delay. To lower the latency of centralized cloud
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offloading, cloudlets may placed at the network edge to offer cloud services in close proximity

to mobile subscribers. The importance of decentralized cloudlets can be witnessed in many

real-time human-machine interaction based applications (e.g., remote surgery), where an ex-

tremely low round-trip latency of 1-10 ms is required to match humans’ interaction with their

environment. This vision of very low-latency communications gives rise to the so-called Tactile

Internet, where the remote control of virtual/physical objects via the Internet allows humans

to accomplish their tasks in places in which they don’t have to be physically present [5].

The overarching goal of the Tactile Internet is the production of new goods/services that

complement humans rather than substitute for them. This collaborative human-machine

co-activity approach is part of the still young field of human-agent-robot teamwork (HART)

research, where humans, robots, and intelligent agents play complementary roles in accom-

plishing different latency-sensitive tasks, e.g., crowd sensing [55]. HART tasks may be either

a physical task, a digital task, or may include both. Physical tasks are location dependent

and follow specific manual instructions (e.g., capturing image at a given task location). Con-

versely, digital tasks are location independent and require sophisticated judgement capability

for making intelligent decisions (e.g., intrusion detection from captured image). In general,

the task assignment to unsuitable robots/agents may lead to unnecessarily increased delays

and resource consumption. To avoid these problems, only mobile robots near a given task

location can be selected to execute physical task, whereas digital tasks may be executed by

either the robot or a nearby agent. To the best of authors knowledge, no existing works deals

with the problem of minimizing the real-time execution overhead of multiple HART tasks by

means of multi-task scheduling, community cluster resource awareness, task prefetching, and

failure avoidance.

The majority of existing task scheduling policies focus on offloading computation-intensive

digital tasks either onto cloud servers or mobile devices rather than both, whereby a significant

number of these policies apply offline scheduling. This in turn requires that a-priori informa-

tion about future tasks (e.g., arrival time, deadline) is available to the task scheduler. Offline

scheduling schemes are well suited for periodic tasks, but become less suitable for executing

aperiodic tasks in real-time [25],[27]. Due to their uncertain cloud resource requirements,

the execution real-time aperiodic tasks demands a suitable online (dynamic) task scheduling

scheme to maintain QoS assurances. In contrast, online task scheduling may cause significant

task migration latency [28]. Further, the lack of a proper bandwidth assignment strategy may

cause higher waiting times for data transmission and result reception during the task offload-

ing process. Thus, one of the key challenges for online task scheduling is to minimize the total

task execution latency, including both task processing and offloading communication delay,
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Figure 5.1: Resource block allocation in task offloading: (a) prefetching vs. (b) conventional
fetching.

by mitigating the uncertainty of cloud/bandwidth resource management and failure avoidance

[29].

Importantly, most of the existing computation task offloading studies [17],[30],[25],[29] ap-

ply the conventional fetching technique, where a given mobile user’s (MU) next computation

task can be transferred to the cloud server only upon the completion of the previously offload-

ed task, as shown in Fig. 5.1(b). As a result, conventional fetching suffers from an increased

multi-task offloading latency. To overcome this shortcoming of conventional fetching, task

prefetching has been recently applied in the context of task offloading, as illustrated in Fig.

5.1(a), where the full or a portion of the MU’s next task input data is transferred to the cloud

server already during the computation period of the previously offloaded task [85],[86]. Note,

however, that both studies [85] and [86] considered only remote cloud (agent) based computa-

tion task offloading rather than multi-cloud agent (e.g., cloudlet, robot) based heterogeneous

HART task offloading in an online setting. Furthermore, most existing studies considered on-

ly dedicated remote clouds or isolated host cluster resources (mobile devices/cloudlets within

the coverage zone of a single wireless access point) for the MUs’ task assignment. Clearly,

relying only on isolated cluster resources may not always satisfy different given task execu-

tion requirements when arriving task requests exceed available isolated cluster resources. To

overcome these shortcomings, a promising solution is to utilize available nearby community

cluster resources (mobile devices/cloud servers under multiple nearby wireless access point

coverage areas) for low-latency HART task execution. Notwithstanding, the task assignment
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to available community cluster resources may sometimes experience extra task execution over-

head due to the higher task location traverse time and task offloading communication latency.

Thus, to improve task execution performance by selecting the optimal task processing node,

further investigation of adaptive HART task scheduling schemes with isolated and community

cluster resource awareness is mandatory.

In this chapter, we propose a community- and latency-aware task scheduling scheme that

selects a suitable robot and cloud agent for HART task execution by collecting time-varying

robot/cloud resource information in an online manner. Unlike previous work, our goal is

to minimize both task execution latency and power consumption for multiple HART tasks.

To reduce the task migration overhead, we incorporate batch based HART task scheduling

into our online scheme. In addition, we investigate the performance of both task onloading

and task offloading based HART task execution while benefitting from task prefetching and

failure avoidance. Further, we develop a prefetching-aware dynamic bandwidth allocation

scheme for multiple HART task execution. We present an analytical framework to evaluate

the performance of our proposed schemes in terms of mean task service time, delay and power

saving ratio, task prefetching time efficiency, processing-to-service time ratio, speed up, and

satisfactory ratio.

The remainder of the chapter is structured as follows. Section 5.3 reviews related work

and outlines open challenges. In Section 5.4, we introduce our considered fiber-wireless (FiWi)

enhanced Tactile Internet infrastructure and describe our proposed adaptive task scheduling

scheme in greater detail. Sections 5.5 and 5.6 present our analytical model and obtained

results, respectively. Section 5.7 concludes the chapter.

5.3 Related Work and Open Challenges

In recent years, a significant amount of research efforts on online task scheduling aimed at

scheduling real-time aperiodic tasks of MUs. In [18], the authors outlined a heterogeneity-

aware task scheduling scheme that selects only suitable peer mobile devices for computation

task offloading based on their respective skills and task processing times. In [107], the au-

thors devised a location-aware task scheduling algorithm that leverages on infrastructure-based

cloud resources for computation task offloading, trying to keep a balance between user equip-

ment energy consumption and load balancing. The study in [108] and [109] investigated how

to minimize bandwidth usage and queuing delay of different cloud tasks, respectively. In [110],

the authors proposed an online resource management scheme that jointly optimizes cloud task

offloading profits and user equipment battery lifetime. The authors of [111] presented a real-

time task scheduling mechanism, where a suitable cloud server is selected for offloaded tasks

according to their minimal energy consumption cost while meeting given task deadlines. The
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problem of parallel task scheduling in a remote cloud with the objective to reduce task work-

load processing time was addressed in [112]. In [113], a suitable cloud server selection scheme

for offloaded task assignment was developed to lower transmission delay. Note that [112] and

[113] minimized either task offloading communication delay or task processing delay, but not

both.

All aforementioned studies focused on the decision whether or not to offload a single us-

er’s computation-intensive task to a dedicated/isolated host cluster cloud node (cloudlet/peer

mobile device). Furthermore, they assumed that task offloading can be performed imme-

diately without considering the availability of cloud servers and bandwidth resources. An

important issue little addressed in previous work is how to collect information about different

cloud/robot resources for online task scheduling. More specifically, none of the previous stud-

ies investigated the problem of minimizing task service/execution time and user equipment

energy consumption jointly for real-time HART task scheduling. There is also a lack of task

prefetching-aware bandwidth allocation policies in order to minimize HART task offloading

latency. Moreover, previous work has not explicitly studied failure-avoidance service selection

and optimal resource scheduling order for the execution of different HART tasks. Furthermore,

the question of how to coordinate the execution of multiple HART tasks using infrastructure-

based and infrastructure-less isolated/community cluster resources remains an open research

issue. Clearly, to analyze the task scheduling performance a proper HART task service delay

calculation model needs to be developed by taking the different delay components, including

task workload processing, transmission, and waiting time, into account.

In this chapter, we aim at addressing open research challenges related to the real-time

multi-task scheduling for HART collaboration across FiWi enhanced Tactile Internet infras-

tructures. Our proposed task scheduling scheme considers not only isolated host and commu-

nity cluster resource awareness but also both prefetching-aware task offloading and suitable

failure avoidance for HART task execution. To determine the optimal task scheduling or-

der, we compare the following schemes: First Come First Serves (FCFS), Earliest Deadline

First (EDF), and Concurrent Policy (CP). We compare the performance of our proposed task

offloading schemes with task onloading, random, and communication-aware task offloading

schemes in terms of a variety of HART-specific performance metrics.

5.4 FiWi Enhanced Tactile Internet Infrastructure for

HART Task Scheduling

In this section, we describe the considered FiWi enhanced Tactile Internet infrastructure and

our proposed adaptive HART task scheduling and bandwidth allocation scheme.
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Figure 5.2: FiWi enhanced Tactile Internet infrastructure for adaptive HART task scheduling.

5.4.1 Network Architecture

Fig. 5.2 depicts the FiWi enhanced Tactile Internet architecture, which is based on low-cost,

data-centric Ethernet passive optical network (EPON) and WLAN technologies. Specifically,

the fiber backhaul is based on an IEEE 802.3av 10 Gb/s EPON (10G-EPON), which consists

of the central optical line terminal (OLT) and remote optical network units (ONUs). The

OLT connects to the ONUs at the customer premises via a tree-and-branch topology. The

distance between the central OLT and remote ONUs ranges between 10-100 km. A subset of

ONUs are located at residential or business subscriber premises, offering FTTx services, e.g.,

fiber-to-the-home/business (FTTH/B) to a single or multiple subscribers. To interface with

front-end WiFi mesh network (WMN), another subset of ONUs are equipped with a mesh

portal point (MPP), giving rise to a so-called ONU-MPP. Intermediate mesh points (MPs)

serve as relay nodes between MPPs and mesh access points (MAPs), each being associated

with one or more MUs and robots.

The integration of ONU and MPP is done by using decentralized radio-and-fiber (R&F)

technologies, where medium access control (MAC) protocol translation is performed at the

optical-wireless interface. A subset of selected ONU-MPPs are connected to each other via

inter-connection fiber (IF) links for redundancy. Further, to provide low-latency cloud services

to MUs at the network edge, cloudlets are attached to ONU-MPPs via dedicated fiber links

[94].
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(a) (b)

Figure 5.3: (a) Adaptive batch model for proposed HART task scheduling and (b) community-
cluster architecture.

5.4.2 Adaptive HART Task Scheduling Scheme

5.4.2.1 Community/Latency-Aware Task Assignment

Given that task request and robot/agent availability information isn’t known a priori, we apply

a distributed approach where the task scheduler at the ONU-MPP makes task scheduling

decisions by exchanging control messages with each robot/agent. The process comprises the

following three steps:

1) Task Request Collection: The first step of our proposed scheme collects a given MU’s

task request that arrives during a FiWi polling cycle, as shown in Fig. 5.3. Each MU sends a

full HART task request message to the associated ONU-MPP during the assigned broadband

sub-slot. The task scheduler at the ONU-MPP may receive multiple task requests from MUs

arriving during a FiWi time cycle and stores all task requests in a batch queue. Note that each

HART task request includes information about the full HART task workload (i.e., physical

and digital sub-tasks) in terms of required CPU cycles to process the task, task location, task

input and output data size. Next, the task scheduler selects a suitable robot/agent for each

arriving task request. For enhanced performance, we select suitable task execution scheme

with both community- and latency-aware task offloading and onloading, as explained next.

(i) Community- and Latency-Aware Task Offloading: In this scheme, multiple nearby

ONU-MPPs form a community cluster and utilize their available robot/agent resources for

each HART task execution (see also Fig. 5.3). The physical and digital sub-tasks are assigned

to the most suitable robot and agent, respectively, by evaluating all robots/agents within the

coverage area of the host and community ONU-MPP. For selecting a suitable robot/agent,

our community- and latency-aware offloading scheme distinguishes the following cases. If the

number of arriving task requests is smaller than/equal to the number of available host ONU-

MPP resources (e.g., robots, agents), then a suitable robot/agent can only be selected from
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Algorithm 5 Adaptive multiple HART task scheduling

Notation: Number of full task request (k = np + nδ), physical (np)/ digital sub-task (nδ),
total robots (q = hr + cr)/agents (z = ha + ca), scheduling policy P =EDF, FCFS, and
CP, robot(hr)/agent(ha) under host ONU-MPP, robot(cr)/agent(ca) under community
ONU-MPP

1: while arrived task request k 6= ∅ do
2: if there exist multiple scheduling policy then
3: for each policy pi ∈ P do
4: go to step 10 to 25 for tks,tot calculation
5: end for
6: Compare tks,tot of all policy ∀pi ∈ P
7: select optimal policy with minimum tks,tot
8: Go to step 26
9: end if

10: for each arrived full task ∀γi∈k do
11: if ηi ≤ 0 then
12: select suitable robot r∈hr with min (tir∩pir)
13: tion=tir,
14: else if ηi > 0 then
15: for each physical sub-task li∈np do
16: select suitable robot r∈q with min (tlr∩plr)
17: for each digital sub-task vi∈nδ do
18: select suitable agent a∈z with min (ta∩pa)
19: tioff=t

l
r + ta,

20: end for
21: end for
22: tis=min{tion, tioff}, where i ∈ 1, 2, ...k

23: tks,tot=max{t1s, t2s, ..., tks}
24: end if
25: end for
26: end while

the available host ONU-MPP resources. If the number of arriving task requests is greater

than than the number of available host ONU-MPP resources, then a suitable task processing

node can be selected from both host and nearby ONU-MPP resources.

(ii) Task Onloading: In our task onloading scheme, a suitable host ONU-MPP robot is selected

for full HART task execution without involving any digital sub-task offloading onto the agent

(see Algorithm 5, lines 10-13). Note that in this case task onloading doesn’t save power of the

initially selected robot (ηi ≤ 0).

2) Optimal Multi-Task Scheduling Order Selection: To optimize multi-task scheduling

performance, the task scheduler decides which task is executed first. To determine the optimal

multi-task scheduling order, the task scheduler compares the overall task service time (tks,tot) of
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the task offloading and onloading schemes using the following three scheduling policies (Alg.

5, lines 1-9):

(i) First Come First Served (FCFS): The task scheduler assigns resources to HART tasks

based on their arrival order.

(ii) Earliest Deadline First (EDF): The task with the earliest deadline is scheduled first.

(iii) Concurrent Policy (CP): The task scheduler assigns resources randomly to all arriving

task requests.

3) Task Processing Node Selection: For selecting a task processing node in our

task offloading scheme, the task scheduler at the host ONU-MPP initially sends the full task

request message to all robots. Their response messages to the task scheduler contain each

robot’s respective remaining energy, location, moving and processing speed information. After

collecting all robots’ response messages, the task scheduler first computes the physical sub-

task service time (tlr) and power consumption (plr) for each robot. Subsequently, it selects the

most suitable robot with minimum tlr and plr required for the given physical sub-task execution

(Alg. 5, lines 14-16) in out task offloading scheme (ηi>0). To do so, we extend the DHCP

protocol messages Discover, Offer, and Ack using their pad/reserved bits to include the

aforementioned task request, robot/agent response, and robot/agent selection messages [104].

For assigning the digital sub-task to an agent, the task scheduler broadcasts a task offloading

request message to all agents, which comprises the digital sub-task input and output data

size as well as workload information. After receiving the task offloading request, each agent

sends a response message back to the task scheduler, containing information about the agent’s

availability and task processing speed. The task scheduler calculates each agent’s digital sub-

Figure 5.4: HART task execution model with failure avoidance.
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Figure 5.5: Space-time diagram of prefetching-aware dynamic bandwidth allocation (DBA).

task service time (ta) and power consumption (pa) and then selects the optimal agent with

minimum ta and pa (Alg. 5, lines 17-21).

5.4.2.2 Minimization of Processing Overhead

Unlike previous work, our proposed task scheduling scheme performs robot/agent selection and

bandwidth assignment simultaneously, thus reducing multi-task execution latency. Further,

in this chapter, full HART task service time is calculated taking task workload processing,

transmission, and waiting delay into account. To avoid extra task processing overhead due

to failure, we design an optimal failure avoidance selection scheme, whereby task execution

failures may occur due to unreachability of robots/agents. More specifically, in our task on-

loading scheme, task execution failures may occur during a robot’s full task processing and

result transfer process. Conversely, in our task offloading scheme, task execution failures may

happen during a robot’s physical and an agent’s digital sub-task processing or during the dig-

ital sub-task upload and result download process, as depicted in Fig. 5.4. To detect failures

during task execution, the task scheduler at the ONU-MPP periodically broadcasts heartbeat

messages to all robots/agents and waits for their responses at pre-defined checkpoints. The

task scheduler is able to detect un-reachability failures of a robot/agent when heartbeat re-

sponses are absent at several subsequent checkpoints. For failure recovery, we apply a failure

avoidance scheme that selects the minimum task service time tis, which can be either a failure

recovery or a fault tolerance scheme. In the failure recovery scheme, the faulty task execution

restarts from beginning after recovering from a connection failure. In contrast, in the fault

tolerance scheme, the faulty task execution resumes from the latest checkpoint rather than

beginning (to be explained in further detail below in Sections 5.5.4 and 5.5.5).
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Algorithm 6 Dynamic bandwidth allocation (DBA) at OLT

1: for each ONU-MPP i∈n do
2: if the OLT receives REPORT message then
3: Extract ONU-MPP’s bandwidth demand (treqsl ) from REPORT and assign

tslonu=t
req
sl +2tponmsg +RTT

4: else
5: Assign minimum bandwidth tslonu = 2tponmsg +RTT
6: end if
7: Generate and transmit a GATE message to ONU-MPP including their timeslot s-

tart time/duration (tsonu, t
sl
onu), broadband (tbsonu,t

bl
onu)/offload (tosonu,t

ol
onu) slot start

time/duration, tclkolt , polling cycle start time tscycle
8: if (tbsonu ≤ tclkolt ≤ tbsonu + tblonu) then
9: Receive US broadband frames from ONU-MPP

10: else if (tosonu ≤ tclkolt ≤ tosonu + tolonu) then
11: Receive offload input/output data frames from ONU-MPP/agent, send to

agent/ONU-MPP
12: end if
13: end for

5.4.3 Prefetching-Aware Dynamic Bandwidth Allocation

Fig. 5.5 depicts the space-time diagram of our prefetching-aware dynamic bandwidth allo-

cation (DBA) algorithm. In both optical and wireless domains, bandwidth is allocated in

a TDMA manner. Specifically, in the fiber backhaul, the OLT allocates bandwidth to each

ONU-MPP via exchange of the IEEE 802.3ah MPCP messages REPORT and GATE. In the wire-

less front-end, each ONU-MPP allocates bandwidth to its associated stations (STAs), which

comprise MUs and robots, by exchanging IEEE 802.11 WLAN Beacon and PS-Poll messages.

1. DBA operation at OLT: Initially, the OLT polls all ONU-MPPs and assigns minimal

bandwidth for enabling each ONU-MPP’s REPORT transmission (see Algorithm 6). In every

recurring time cycle, the OLT receives the REPORT message from each ONU-MPP, indicating

its current bandwidth demand (treqsl ). Next, the OLT allocates bandwidth to each ONU-MPP

based on its demand (treqsl ) by sending a GATE to the ONU-MPP. The GATE message contains the

ONU-MPP’s broadband (tbsonu, t
bl
onu) and offload timeslot map (tosonu, t

ol
onu) for the next time cycle.

During the ONU-MPP’s broadband timeslot, the OLT receives/sends upstream/downstream

(US/DS) broadband data frames from/to the ONU-MPP. Conversely, during the ONU-MPP’s

offload timeslot, the OLT receives/sends the offloaded task input/output data frames from and

to the ONU-MPP/agent.

2. DBA operation at ONU-MPP: A given ONU-MPP starts its upstream transmis-

sion after receiving the GATE message from the OLT (see Algorithm 7). More precisely, the

ONU-MPP extracts its broadband/offload transmission window information from thes GATE
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Algorithm 7 DBA operation at ONU-MPP

1: if the ONU-MPP receives GATE message from OLT then
2: Extract ONU-MPP’s timeslot start time/length (tsonu,t

sl
onu), broadband (tbsonu,t

bl
onu) and

offload (tosonu, t
ol
onu) transmission start time/length, and tclkolt , synchronize ONU-MPP clock

time with OLT (tclkonu=t
clk
olt )

3: Determine ONU-MPP’s sleep time (tssonu=t
s
onu+t

sl
onu, t

sd
onu=t

s
cycle-t

sl
onu), wake-up time

(twsonu=t
ss
onu+t

sd
onu), robot/agent selection time/length (tsonu+t

pon
msg, tra), REPORT transmis-

sion time (tsreport=t
s
onu+t

sl
onu-t

pon
msg)

4: Assign broadband and offload sub-slot to STA’s evaluating their last PS-Poll, tslonu, task
scheduling policy, and agents offload task processing start time (tsa), processing duration
(tva), and finish time (tfa)

5: tbssta1
= tbsonu, t

bl
sta1

= tbrsta1
, tussta1

= tosonu, t
ul
sta1

= tursta1

6: tdssta1
= tussta1

+ tulsta1
+ tva1

, tdlsta1
= tdrsta1

7: for i=2 to m do
8: tbsstai = tbsstai−1

+ tblstai−1
, tblstai = tbrstai

9: Go to step 10 for task offload sub-slot assignment
10: if turstai > tvai−1

then

11: Assign both prefetching based task upload sub-slot (tusstai , t
ul
stai

) and fetching based

remaining task data upload sub-slot (tûsstai , t
ûl
stai

) with download sub-slot start
time/duration (tdsstai , t

dl
stai

)

12: tusstai=t
s
ai−1

,tulstai=t
v
ai−1

, tûsstai=t
ds
stai−1

+tdlstai−1
,

13: tûlstai=t
ur
stai
− tulstai ,t

ds
stai

=tfai , t
dl
stai

=tdrstai
14: else if turstai ≤ tvai−1

then

15: Assign prefetching based task upload (tusstai , t
ul
stai

) sub-slot and result download sub-

slot (tdsstai , t
dl
stai

) tusstai=t
s
ai−1

, tulstai=t
ur
stai
, tdsstai=t

f
ai
, tdlstai=t

dr
stai

16: end if
17: end for
18: Generate a Beacon message with STA’s (MUs/robots) broadband sub-slot {(tbssta1

,
tblsta1

)...(tbsstam , t
bl
stam)}, task upload {(tussta1

, tulsta1
)..(tusstam , t

ul
stam)}, and download sub-slot

map {(tdssta1
, tdlsta1

)...(tdsstam , t
dl
stam)}, tûlstai , t

ul
stai
∈ tulstai , t

clk
onu, t

s
onu, t

sl
onu, and send to STA’s

19: else if (tbsonu ≤ tclkonu < tbsonu + tblonu) then
20: Receive US/DS broadband data frames from STAs/OLT and sends them to OLT/STAs
21: Extract STA’s broadband (tbrstai) and task offload bandwidth (turstai , t

dr
stai

) request from
PS-Poll message, update treqsl → treqsl + tbrstai + turstai + tdrstai + tra + tmsgwl

22: else if (tosonu ≤ tclkonu < tosonu + tolonu) then
23: Receive offload task input/output frames from STAs/agents and transfers them to a-

gents/STAs
24: else if (tclkonu == tsreport) then
25: Send a REPORT message to OLT with treqsl
26: end if

message (lines 1-2, Alg. 7). Next, the ONU-MPP determines its next sleep start time/duration

(tssonu, t
sd
onu), wake-up time (twsonu), and REPORT transmission (tsreport) times (line 3). The ONU-
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Figure 5.6: Illustration of prefetching-aware task offload sub-slot assignment.

MPP in turn assigns broadband and offload sub-slots to its associated STAs based on each S-

TA’s bandwidth request (PS-Poll), tslonu, and agent offload task processing schedule (tsa, t
v
a, t

f
a).

Next, STA1’s broadband sub-slot start time (tbssta1
) and duration (tblsta1

) are calculated according

to the ONU-MPP’s broadband slot start time (tbssta1
=tbsonu) and STA1’s requested broadband

sub-slot (tblsta1
=tbrsta1

), respectively (lines 5-6). STA1’s assigned task upload (tussta1
) and result

download sub-slot (tdssta1
) start time, and task upload (tulsta1

) and result download sub-slot

(tdlsta1
) duration correspond to the ONU-MPP’s offload slot start time (tosonu), STA1, offload

task processing completion time at agent (tussta1
+tulsta1

+tva1
), STA1’s requested upload (tursta1

),

and download (tdrsta1
) sub-slot length, respectively. Next, the ONU-MPP assigns a broadband

sub-slot start time to the remaining STAs (i = 2 to m) (tbsstai) and length (tblstai) according to

the previous STA’s broadband sub-slot (tbsstai=t
bs
stai−1

+tblstai−1
) and requested broadband sub-

slot (tblstai=t
br
stai

), respectively (lines 7-8). The ONU-MPP assigns the next STA’s task offload

sub-slot based on the earlier STA’s offload task processing start time (tsai−1
), agent offload

task processing duration (tvai−1
), and STAi required task upload (turstai) duration (lines 9-17).

If the next STA’s required task upload sub-slot duration (turstai) is smaller than or equal to

the previous STA’s offload task processing (at agent) duration (tvai−1
), then the ONU-MPP

assigns a prefetching-based task upload sub-slot to the next STA (lines 14-15). If the next

STA’s required task upload sub-slot duration (turstai) is greater than the previous STA’s offload

task processing duration (tvai−1
), the ONU-MPP assigns both task upload (prefetching) and

task upload (fetching) sub-slots to the next STA (lines 10-13). The next STA’s task upload

(prefetching) sub-slot start time (tusstai) and length (tulstai) are equal to the previous STA’s of-

fload task processing start time (tusstai=t
s
ai−1

) and offload task processing duration (at agent)

(tulstai=t
v
ai−1

), respectively, e.g., STA2’s prefetching subslot duration lasts from T5 to T6, as

illustrated in Fig. 5.6. Note that the next STA’s task upload (fetching) sub-slot start time

(tûsstai) and duration (tûlstai) are equal to the previous STA’s task result download completion

(tûsstai=t
ds
stai−1

+tdlstai−1
) and next STA’s remaining task data upload time (tûlstai=t

ur
stai
− tulstai), re-

spectively, e.g., STA2’s fetching subslot duration lasts from T7 to T8 in Fig. 5.6. The next

STA’s assigned task result download sub-slot start time (tdsstai) and duration correspond to the
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next STA’s offload task processing completion time (at agent) (tfai) and required task result

download time (tdrstai), respectively.

The ONU-MPP sends a Beacon message to the STA in oder to inform it about its broad-

band and offload sub-slot information in the next cycle (line 18). The ONU-MPP receives

US/DS broadband data frames from the STA/OLT and forwards them immediately during

its broadband timeslot (lines 19-21). During its assigned offload timeslot, the ONU-MPP

receives offloaded task input/output data frames from the STAs/agents and transfers them

to the agents/STAs (lines 22-23). Finally, the ONU-MPP transmits a REPORT message to the

OLT at end of its task offload sub-slot (lines 24-26).

5.5 Performance Analysis

In this section, we present our analytical model to evaluate the performance of the task

offloading and task onloading schemes. The performance metrics of interest include mean

task service delay, speed up, task pre-fetching efficiency, power saving, and satisfactory ratio,

among others.

5.5.1 HART Task Service Time Analysis

In this subsection, we compute the multiple full HART task service delay for both proposed

task offloading and task onloading schemes. The task service delay is the total time dura-

tion required for full HART task (physical and digital sub-tasks) workload processing by the

assigned robot/agent and task result reception by the MU. Specifically, the full HART task

service time calculation comprises the following three delay components: (i) physical and

digital sub-task workload processing delay, (ii) transmission delay (Section 5.5.2 below), and

(iii) waiting delay at robot/agent (Section 5.5.3 below). In the task onloading scheme, the

selected host robot executes the full task and transfers the task result to the MU. Thus, the

task service delay in the task onloading scheme (tion=tir) is given by

tion = t̂r + trw + tdon = tlr + tvr + trw + tonb + tonr→mu, (5.1)

where trw, t̂r, and tdon denote the waiting delay at the robot, the robot’s full task workload

processing delay, and the task result transmission delay (from robot to MU), respectively.

Further, we have t̂r=t
l
r+t

v
r , where tlr and tvr represent the robot’s physical sub-task (e.g.,

capturing image at task location) and digital sub-task (e.g., face recognition from captured

image) processing time, respectively. Whereas tlr includes both the robot’s task location

traverse time (tltra) and physical sub-task workload processing time (tlex) and is given by

tlr=t
l
tra+t

l
ex=

dl
srm

+wl
srp
, where wl, s

r
m, and srp are the physical sub-task workload, the robot’s
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moving speed, and its computation processing speed, respectively; dl denotes the Euclidean

distance between the selected robot (xrp, y
r
p) and task location (xlp, y

l
p). The robot’s digital

sub-task processing time is denoted by tvr=
wv
srp

, where wv and srp stand for the digital sub-task

workload and the robot’s computation processing speed, respectively.

In the task offloading scheme, the selected robot executes only the physical sub-task and

offloads the digital sub-task to a suitable agent for processing. Thus, the full HART task

service time (tioff ) in the task offloading scheme is given by

tioff = tr,a + tŵ + tdoff = tlr + tva + tŵ + toffb + toffr→mu, (5.2)

where tr,a, tŵ, and tdoff denote the full HART task processing delay, the robot/agent’s wait-

ing delay (tŵ=trw+taw), and the transmission delay for task offloading. We have tr,a=t
l
r+t

v
a,

where tlr and tva denote the robot’s physical and the agent’s digital sub-task processing time,

respectively; tva is given by tva=
wv
sap
, where wv and sap are the digital sub-task workload and the

agent’s computation processing speed, respectively. Note that the main difference between the

task onloading and task offloading schemes is their digital sub-task execution time. Given the

digital sub-task execution time in task onloading (tr̃=t
i
on-tlr-t

r
w) and task offloading (ta=t

i
off -t

l
r-

trw), the digital sub-task execution time efficiency in the task offloading scheme is computed as

βi=
tr̃−ta
tr̃
× 100%. The optimal task execution policy is determined by using the minimum full

task service time of the task onloading (tion) and offloading (tioff ) schemes: tis=min{tion, tioff}.
The overall task service time for processing task k is then given by tks,tot=max{t1s, t2s.., tks}.
Next, given tion and tioff , the mean task service time for multiple HART task service is cal-

culated for the task onloading (tks,a=t
k
on,a) and task offloading (tks,a=t

k
off,a) schemes as follows:

tks,a =
∑k

i=1 t
i
s · 1

k
. Finally, if both tkon,a and tkoff,a are known, the mean task service time

delay saving ratio (γ̂=
tkon,a−tkoff,a

tkon,a
× 100%) between task offloading and task onloading can be

obtained.

5.5.2 Transmission Time Delay

In addition to the task workload processing delay, the full HART task execution involves

transmission delay. In the task onloading scheme, the transmission delay (tdon=tonb +tonr→mu)

includes the task result buffering delay (tonb ) and task result transfer (tonr→mu) delay (from

robot to MU), whereby tdon is given by tdon = tonb + tonr→mu = tonb + dov
cwr→ō

+ dov
cwō→mu

+ tpr→mu, where

dov, c
w
r→ō, c

w
ō→mu, and tpr→mu denote digital task output data size, transmission capacity at link

between robot and host ONU-MPP, host ONU-MPP and MU, and propagation delay for task

result transfer, respectively. In task offloading scheme, transmission delay (tdoff=t
off
b +toffr→mu)

consists offload packet buffering (toffb ) and communication delay (toffr→mu=t
u
r→a+t

d
a→mu), where
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tur→a and tda→mu denote the digital task upload (from robot to agent) and result download delay

(from agent to MU), respectively; tur→a and tda→mu are computed as follows:

tur→a =



div
cwr→ō

+ div
cfō→a

+ tpr→a if a =hct,
div
cwr→ō

+ hdiv
cfō→o

+ div
cfo→a

+ tpr→a if a =cct,
div
cwr→ō

+ div
cwō→a

+ tpr→a if a =hpr,
div
cwr→ō

+ hdiv
cfō→o

+ div
cwo→a

+ tpr→a if a =cpr,

(5.3)

tda→mu =



dov
cfa→ō

+ dov
cwō→mu

+ tpa→mu if a =hct,
dov
cfa→o

+ hdov
cfo→ō

+ dov
cwō→mu

+ tpa→mu if a =cct,
dov
cwa→ō

+ dov
cwō→mu

+ tpa→mu if a =hpr,
dov
cwa→o

+ hdov
cfo→ō

+ dov
cwō→mu

+ tpa→mu if a =cpr,

(5.4)

where hct, cct, hpr, and cpr stand for cloudlet (host), cloudlet (community), peer robot (host),

and peer robot (community), respectively. Further, div, d
o
v, c

f
ō→a/c

w
ō→a, c

f
ō→o/c

f
o→ō, c

f
a→ō/c

w
a→ō,

h, tpr→a, and tpa→mu denote the digital task input and output data size, transmission capacity of

the link between host ONU-MPP and agent (fiber/wireless link), host and community ONU-

MPP (fiber link), agent and host ONU-MPP (fiber/wireless link), hop distance between host

and community ONU-MPP, and propagation delay during digital task up- and downloading,

respectively.

Next, we analyze the transmission packet buffering delay (tb) that consists of three delay

components in task offloading (toffb ) and onloading (tonb ) schemes. The first delay component

(td1) is the time interval between the arrival (A) of transmission packet and transmission of

bandwidth reservation (R) request (see also Fig. 5.5). If the transmission packet arrives after

STA’s broadband sub-slot, td1 is equal to polling cycle time tc. The second delay component

(td2) is the time interval between the bandwidth request (R) and grant message (G). For

STA1, td2 is equal to tc − tblstai . In the task onloading scheme, the third delay component

(tbd3) is equal to the time interval between the bandwidth grant message (G) and broadband

transmission (task result transfer) start time (T ). Hence, in the task offloading scheme, the

third delay component (tod3) equals the time interval between the bandwidth grant message

(G) and offload start time (U). For STA1, tod3 is equal to
∑m

i=1 t
bl
stai

. Summing up all three

delay components, the packet buffering delay in the task onloading and offloading schemes is

given by toffb =td1+td2+tod3 and tonb =td1+td2+tbd3, respectively.

5.5.3 Waiting Time Delay

Beside task processing and transmission delay, each task execution may experience a certain

waiting time delay before getting access and being served by the selected agent/robot [22]. To
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calculate the average waiting delay, we model the robot/agent is as a M/M/c queue, where

c denotes the number of processors available at each robot/agent for processing the assigned

task request. In our M/M/c queue model, the occupancy rate of a robot/agent server is given

by τ= ω
c·µ , where ω is the task arrival rate and µ is the service rate of the robot/agent. With

c and τ , the waiting probability at a robot/agent (λ) is obtained as follows:

λ =
(c · τ)c

c!
·
(

(1− τ)
c−1∑
i=0

(c · τ)i

i!
+

(c · τ)c

c!

)−1

. (5.5)

By using λ, τ, c, and µ, the average waiting delay (tεw) for task processing at a robot (ε =

r)/agent (ε = a) is then given by tεw = λ · (1− τ)−1 · (c · µ)−1 + 1
µ
.

5.5.4 Task Service Time With Failure Recovery

For failure recovery during the HART task processing procedure, we assume that a connectivity

failure (robot/agent) is detected by the task scheduler as soon as it has occurred and the task

execution process needs to be relaunched [114]. Hence, the full HART task service time

(tis=t̂on) with task onloading is given by

t̂ion =

{
tion, if F ≥ tion,

F + d∗ +R + t̄r + tonb + tonr→mu, otherwise,
(5.6)

where F denotes the failure duration, d∗ is the disconnection duration, t̄r is the HART task

workload processing time with waiting delay (t̄r=t̂r+t
r
w), and R is the failure recovery time

for nested failure Ri=F+Ri−1. If F ≥ tion, the full task is executed without any failure and

the service time equals tion. If F < tion, the robot connection failure occurs before the full task

is executed. In this case, the task needs to be started from beginning at another robot and

the service time equals F+d∗+R+t̄r+t
on
b +tonr→mu. Hence, the task service time (tis=t̂

i
off ) with

failure recovery in the task offloading scheme is given by

t̂ioff =

{
tioff , if F ≥ tioff
F + d∗ +R + tlr∗ + tva∗ + tdoff , otherwise,

(5.7)

where tlr∗ and tva∗ represent the robot’s physical sub-task (tlr+t
r
w) and the agent’s digital sub-

task (tva+t
a
w) processing time. If F ≥ tioff , the full HART task completely executed without

any failure and the task service time equals tioff . Conversely, if F < tioff , the failure occurs

before full task execution is complete. The recovered full task execution again starts from

beginning in the task offloading scheme (t̂ioff = F + d∗ +R + tlr∗ + tva∗ + tdoff ).
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5.5.5 Task Service Time With Fault-Tolerance

With our fault-tolerance policy, after recovering from a connection failure recovered the HART

task execution restarts from the latest checkpoint, rather than from beginning as done in [114].

Thus, the task service time (tis=t̄
i
on) with fault tolerance in the task onloading scheme is given

by

t̄ion =


tion, if F ≥ tion
ωion, if F < t̄r

φion, if t̄r + tonb ≤ F < t̄r + tonb + tonr→ō
ψion, if t̄r + tonb + tonr→ō ≤ F < tion,

(5.8)

where tonr→ō is robot’s task result transfer time to the associated ONU-MPP. If F ≥ tion, full

task execution is completed without failure (t̄ion = tion). If F < t̄r, a connectivity failure

occurs before full task processing is done by the robot. For failure avoidance, the full task is

executed by an initially selected robot after connection has been regained, translating into a

task service time equal to ωion = F +d∗+R+ t̄r− t̄∗r + tonb + tonr→mu, where t̄∗r denotes the portion

of task that has been already processed before the failure occurs. If a robot connection failure

happens during the task result transfer, the full task service time with fault tolerance is given

by φion = t̄r + tonb + d̄ov
cr→ō

+ d∗ +R+ dov−d̄ov
c∗r→ō

+ tonō→mu, where d∗, R, d̄ov, d
o
v, cr→ō, and c∗r→ō denote

the disconnection duration, failure recovery time (process re-start), already transferred task

output before failure, total output data size, and transmission capacity of the link between

robot (r) and ONU-MPP (ō) before and after failure, respectively. If a connection failure

occurs during task result transfer from ONU-MPP (ō) to MU, the task service time with fault

tolerance is given by ψion = t̄r + tonb + tonr→ō + d̄ov
cō→mu

+ d∗ +R+ dov−d̄ov
c∗ō→mu

, where cō→mu and c∗ō→mu

represent the transmission capacity of the link between ONU-MPP and MU before and after

failure, respectively.

The HART task service time (tis=t̄
i
off ) in the task offloading scheme with fault tolerance

is computed as follows:

t̄ioff =



tioff , if F ≥ tioff
ωioff , if F < tlr∗

φioff , if tlr∗ + toffb ≤ F < tlr∗ + toffb + tur→a
χioff , if tlr∗ + toffb + tur→a ≤ F < tioff − tda→mu
ψioff , if tlr∗ + toffb + tur→a + tva∗ ≤ F < tioff .

(5.9)

If F ≥ tioff , the full task is completed without failure (t̄ioff = tioff ). If the selected robot’s

connection fails before the physical sub-task is completed, task execution is restarted by the

initially selected robot after connection recovery. In this case, the task service time equals

ωioff = tlr∗− t̂lr∗ +F +d∗+R+ tur→a+ tva∗ + tda→mu, where t̂lr∗ is the already processed portion of
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the physical sub-task before failure. If the connection failure occurs during the digital sub-task

input data transfer to the agent, the process restarts after re-establishing the connection. Thus,

the task service time (φioff ) is given by φioff = tlr∗ + toffb + d̄iv
cr→a

+ d∗+R+ div−d̄iv
cr→a∗

+ tva∗ + tda→mu,

where d̄iv, d
i
v, cr→a, and c∗r→a denote the already uploaded and full digital sub-task input

data size, transmission capacity of the link between robot and agent before and after failure,

respectively. For recovery from a connection failure occurring during the digital sub-task

execution at an agent, the digital sub-task processing again restarts at the selected agent

after the connection has been re-established (χioff= tlr∗+t
off
b +tur→a+d

∗+R+tva∗+t
d
a→mu). If a

connection failure occurs during digital sub-task output data transfer (agent to MU), the full

task service time is equal to ψioff . ψ
i
off = tlr∗ + toffb + tur→a + tva∗ + d̄ov

ca→mu
+ d∗ + R + dov−d̄ov

c∗a→mu
,

where d̄ov, d
o
v, ca→mu, and c∗a→mu denote the already downloaded and total output data size,

transmission capacity of the link between agent and MU before and after failure, respectively.

5.5.6 Task Completion Time

The task completion delay is the time interval between the generation of a given MU’s task

request to the reception of the task result. Thus, both task request arrival time (from MU

to task scheduler at host ONU-MPP) and task service time in the task onloading/offloading

schemes need to be considered for computing the task completion delay. Depending on the

MU’s requested task location, the full HART task can be remote or nearby. For nearby

tasks, both MU and task location are within same ONU-MPP coverage area. For remote

tasks, both MU and task location are associated with different ONU-MPPs. Thus, the re-

mote task request packet arrival time (tirat=tb+tup+tdn) comprises three delay components: (i)

task request packet buffering delay at MU (tb), (ii) upstream (MU to OLT), and (iii) down-

stream communication delay (OLT to ONU-MPP). The task request packet buffering delay

(tb=td1+td2+tbd3) refers to the time period between generation of the MU task request packet

(A) and its transmission time (T ) (see also Fig. 5.5 and Section 5.5.2 above). Note that the

remote task request packet experiences a US packet delay (tup=t
u
mu→olt+t

p
mu→olt) during task

request transfer from MU to OLT and a DS packet delay (tdn) during task request transfer

from OLT to ONU-MPP (tdn=tdnd +tdolt→ō+t
p
olt→ō), where tumu→olt, t

d
olt→ō, t

p
mu→olt, and tpolt→ō

denote US/DS packet transmission and US/DS propagation delay, respectively, and tdnd is the

waiting delay experienced at the OLT. If the task request packet arrives at OLT immediately

after its GATE transmission, tdnd is given by tdnd =tc-t
sl
onu, where tc is the polling cycle time

and tslonu is the ONU-MPP’s time-slot length. Given a non-data traffic duration of 1 − ud, tc
is given by tc=

n·(tra+tba+tmpcp+m·trd)

1−ud
, where n, m, ud, λ, X, tmpcp, RTT, tra, trd, and tba de-

note the number of ONU-MPPs in our FiWi network, STAs associated with each ONU-MPP,

traffic load (ud=λX), traffic arrival rate and first moment of the packet service time at the
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ONU-MPP, MPCP message exchange time (2tponmsg+RTT ), round-trip time (RTT=2tpolt→ō),

robot/agent selection (tra=trs+tas), STA’s reservation (trd=t
wl
msg+tg), and bandwidth grant

duration (tba=t
wl
msg), respectively. Similarly, we calculate the nearby task request packet ar-

rival time (tinat=t
∗
up+tb), consisting of both transmission packet buffering (tb) delay and US

(MU to ONU-MPP) communication delay (t∗up=t
u
mu→onu+t

p
mu→onu). Using task request ar-

rival and task service time (tis), we are able to compute the remote (titct,r=t
i
rat+t

i
s) and n-

earby (titct,n=tinat+t
i
s) task completion delay. For multiple HART tasks (i = 1, 2, .., k), we

also compute the overall remote (t̄ktct,r=max{t1tct,r, .., tktct,r}) and nearby task completion delay

(t̄ktct,n=max{t1tct,n, .., tktct,n}).

5.5.7 Power Saving Ratio

The power consumption of STAs (i.e., MUs and robots) in the task onloading (pion) and

offloading (pioff ) schemes can be computed as follows:

pis =

{
pltra + plex + pvr + ponod + ponr→mu, if s = on

plr + poffod + pva + poffr→mu, if s = off .
(5.10)

In the task onloading scheme, the selected robot executes the full HART task. Thus, a given

STA’s power consumption (pion=pir) is given by pion=pltra+p
l
ex+p

v
r+p

on
od+ponr→mu, where pltra, p

l
ex,

pvr , p
on
od , and ponr→mu denote the power consumption for a given robot’s task location traversing

(pltra=em·tltra), physical (plex=el·tlex) and digital sub-task processing (pvr=er· tvr), overhead delay

(ponod=eidle·tonb ), and task result reception by the MU (ponr→mu=erx· tonr→mu), respectively. The

STA’s power consumption in the task offloading scheme is given by pioff=p
l
r+p

off
od +pva+p

off
r→mu,

where plr, p
v
a, p

off
od ,poffr→mu denotes the power consumption for a given robot’s physical (plr=p

l
tra+p

l
ex)

and an agent’s digital sub-task processing (pva=eidle· tva), offloading buffering (poffod =eidle·toffb ),

and communication delay (poffr→mu=etx· tur→a+erx·tda→mu), respectively. Further, the power

consumption efficiency (ηi) of digital sub-task offloading over task onloading is equal to

ηi = pr−pa
pr
× 100%, where pr and pa represent the power consumption of the digital sub-

task in task onloading (pr=p
i
on − plr) and offloading (pa=p

i
off -p

l
r) schemes, respectively. The

total power consumption (pks) of task k in the task onloading and offloading schemes equals

pkon=
∑k

i=1 p
i
on and pkoff=

∑k
i=1 p

i
off , respectively. Finally, the power saving ratio (σ) for exe-

cuting task k via task offloading over onloading is given by σ =
pkon−pkoff

pkon
× 100%.

5.5.8 Task Prefetching Time Efficiency and TSO Ratio

Next, let us analyze the task prefetching time efficiency and task service time gain to overhead

ratio (TSO). The task prefetching time efficiency (pg) is defined as the ratio of the digital sub-

task execution time gain obtained from our proposed prefetching-aware offloading scheme
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(tâ =max{t1a, t2a...tka}) and the digital sub-task execution time of the conventional fetching

(ta∗ =
∑k

i=1 t
i
a) based offloading scheme: pg = ta∗−tâ

ta∗
× 100%. Hence, the TSO ratio (δi)

is obtained by comparing the HART task service time gain in our proposed task offloading

scheme (tion− tioff ) to the task onloading scheme and communication overhead cost in the task

offloading scheme (toffb +toffr→mu):

δi =
tion − tioff

toffb + toffr→mu
. (5.11)

5.5.9 Satisfactory Ratio, Speed Up, and PSR

We conclude our analysis by introducing three more important performance metrics: satisfac-

tory ratio, speed up, and processing-to-service time ratio (PSR). The satisfactory ratio sf is

defined as the ratio of number of full HART tasks that meet their task execution deadlines in

the task onloading/offloading scheme and the total number of arriving HART task requests:

sf = (1 − nf
ns+nf

) × 100%, where ns and nf denote the number of tasks that meet and miss

their task deadlines, respectively. The speed up ratio is defined as the ratio of sequential

task service time (t∗s) and parallel (t∗p) task service time and is given by su = t∗s
t∗p

=
∑k
i=1 t

i
s

tks,tot
.

Finally, the PSR is calculated by taking the ratio of HART task workload processing time

and its service time. If the task workload processing (tip) and service time (tion) are known,

the mean PSR for multiple tasks (k) is calculated in the task onloading scheme (µ̂s=µ̂on) as

µ̂on = 1
k
·
∑k

i=1

tip
tion

= 1
k
·
∑k

i=1
tion−trw−tdon
t̂r+trw+tdon

. Similarly, the mean PSR in the task offloading scheme

(µ̂off ) is obtained as µ̂off=
1
k
·
∑k

i=1

ti
p∗

tioff
= 1
k
·
∑k

i=1

tioff−tw̄−t
d
off

tr,a+tw̄+tdoff
.

5.6 Results

In this section we present results of our proposed community- and latency-aware task offload-

ing scheme and compare it with the following three baseline schemes: (i) task onloading, (ii)

random and (iii) communication-aware task offloading [25]. Table 5.1 lists the parameters

and their default values taken from [17], [28], [30], [94].

System settings and configurations : In our work, each full HART task consists of a

physical (location dependent image capturing) and a digital (location independent face de-

tection from captured image) sub-task. For evaluating our proposed scheme, multiple full

HART task workload, the offload (digital) sub-task input/output data size, and full task

deadline values are chosen randomly and can be found in the caption of Fig. 5.7. The CPU

clock speed of robots and cloudlets are set to 500 and 3200 MHz, respectively. The IEEE

802.3av 10Gb/s EPON based optical backhual (20 Km long) connects central office (OLT)

with ONU’s. The optical fiber range (distance) between the ONU-MPP and cloudlet server
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Table 5.1: Parameters and default values for community- and latency-aware multi-task on-
loading and offloading scheme evaluation

Notation Description of Parameters Default val-
ues/units

wl, wv, d
i
v, d

o
v Physical and digital sub-task workload, digital

sub-task input and output data size
M cycles (vary), K-
B (vary)

etx, erx, eidle, em, el, er STA’s (MU/robot) average power consumption
for task upload, result download, idle state, task
location traversing, physical and digital sub-task
workload processing

0.1W, 0.05W,
0.001W, .7W,
.5W, .5W

n,m, k, dl, s
r
m, s

r
p, s

a
p Total ONU number, total STA in each ONU,

total arrived task number, robot’s distance to
task location and moving speed, robot and agent
computation processing speed

1-64, 1-100, 1-12,
1-500m, 1-100m/s,
500/3200 MHz

tc, ca/cr, ha/hr, ud Polling cycle time, number of host and commu-
nity agent/robot, FiWi traffic load

50-800 ms, 1-50, 1-
50, 0-1

cwx→y, c
f
x→y Transmission capacity of WLAN and fiber link

(x,y=agent,robot,mu,OLT,ONU-MPP)
6900 Mbps, 10 G-
b/s

pks , d
∗, R, cx→y, c

∗
x→y Total power consumption (STA’s), disconnec-

tion duration and connection failure recovery
time, transmission capacity link between sender
and receiver before and after failure

J (vary), s (vary),
Mbps (vary)

twlmsg, t
pon
msg, tra, tg, h WLAN (e.g., PS-Poll), and MPCP message

length(GATE,REPORT), robot/agent selection de-
lay, guard time, hop distance (host and commu-
nity ONU-MPP)

0.512µs, 0.231µs,
µs, 46 µs, 1-4
(vary)

tpolt→ō, t
p
ō→o, t

p
mu→onu Propagation delay between OLT and ONU-

MPP, inter ONU-MPP, MU and ONU-MPP
0.02 ms, .001 ms,
.00033 ms

δi, µ̂s, a
h
onu, a

c
onu TSO ratio and PSR ratio, coverage area of host

and community cluster ONU-MPP
% (vary), 100 m,
500 m

ω/µ/c, trq, tres,
tack, t

p
r→a, t

p
a→mu

Task request arrival rate/service rate/number
of processor per agent/robot, task re-
quest/response/ack message duration, Propa-
gation delay (robot→agent, agent→MU)

1-12 (vary),
0.17/0.12/0.12, µs
(vary)

is 1 Km, whereas the fiber range between the remote cloud server and OLT is 10 Km. Note

that, in this work ONU’s are inter-connected by interconnected fiber links. The requirements

of the requested HART task execution is to satisfy the task execution deadline requiremen-

t and improve the end-to-end latency. The total number of ONU-MPPs, STAs under each

ONU-MPP, and generated task request are varied within the range of 1-64, 1-100, and 1-

12, respectively. The length of PS-Poll and MPCP messages (GATE,REPORT) are set to 20

bytes (tponmsg=.23µs) and 64 bytes (twlmsg=.51µs), respectively. FiWi traffic load and polling cy-
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cle time are varied from 0.3-0.8 and 50-800 ms, respectively. The transmission capacity of

WLAN and fiber links are set to 6900 Mbps and 10 Gb/s, respectively. Other parameters

and default values are given in Figs. 5.7 and 5.8. The specific system settings for scenario

1 (hr=20,cr=10,ha=20,ca=10) and scenario 2 (hr=4,cr=8,ha=4,ca=8) with multiple arrived

task properties is given by: wl=50, 25, 100, 75, 150, 125, 175, 200, 250, 225, 300, 275M cycles,

wv=200, 100, 400, 300, 600, 500, 700, 800, 1000, 900, 1200, 1100M cycles, td=4, 3.5, 5, 4.5, 6, 5.5,

6.5, 7, 8, 7.5, 9, 8.5s, div=200, 100, 400, 300, 600, 500, 700, 800, 1000, 900, 1200, 1100KB, dov=80, 40,

160, 120, 240, 200, 280, 320, 400, 360, 480, 440KB.

Performance evaluation : First, let us evaluate the mean task service time and total pow-

er consumption performance for scenario 1 described in Fig. 5.7(a) and (b). Note that in

scenario 1, the number of robots (hr) and agents (ha) available at the host ONU-MPP is

higher than the number of arriving task requests (k). Both figures clearly indicate that both

mean task service time (tks,a) and total power consumption (pks) increase with increasing task

arrival number (k) in all compared schemes. We observe that the minimum mean task service

time and power consumption are achieved in our proposed community- and latency-aware

task offloading scheme, as opposed to the alternative schemes (i.e., traditional random and

communication-aware task offloading schemes). This is due to the fact that in our proposed

task offloading scheme, each physical and digital sub-task of a full task is processed by a suit-

able robot and agent (e.g., cloudlet), respectively. Further, each task is assigned to a suitable

task processing node (host and community cluster robot/agent) by taking into account not

only lower task workload processing time but also both incurred transmission and waiting

delay. Furthermore, from Fig. 5.7(a) we observe that the task onloading scheme shows the

second lowest mean task service time. This is because in the task onloading scheme, the full

HART task is processed only by the selected host robot. Note that the host robot requires

additional digital sub-task processing time due to its lower computation processing speed than

the selected agents in the proposed task offloading scheme. Fig. 5.7(a) also shows that both

traditional random and communication-aware task offloading schemes cannot improve the

mean task service time of our proposed task offloading scheme due to their higher offload task

processing overhead that includes offloading communication delay, digital sub-task processing

time, and waiting delay. In the communication-aware task offloading scheme, the selected host

robot performs the physical sub-task, while the digital sub-task is offloaded onto the nearest

peer robot that resides within the host ONU-MPP coverage area. Conversely, in the random

task offloading scheme, the physical sub-task is assigned to the selected host robot, whereas

the digital sub-task is offloaded onto a randomly selected agent (host cloudlet or peer robot).

Moreover, Fig. 5.7(b) shows that the task onloading scheme suffers from a higher STA power

consumption than its counterparts. This is because in the task onloading scheme, the full
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task is processed by the initially selected robot without any digital sub-task migration to the

agent, which is the case in the alternative schemes.

Fig. 5.7(c) investigates the suitable multi-task scheduling order in our proposed task

offloading scheme by comparing its mean task service time performance using three scheduling

policies, namely, EDF, FCFS, and concurrent policies. Fig. 5.7(c) demonstrates that for

a varying task number k, the deadline delay priority (EDF) based task scheduling policy

outperforms both FCFS and concurrent scheduling policies in terms of mean service time delay

and is thus suitable for our proposed task offloading scheme. Fig. 5.7(d) and (e) compare

the mean task service time delay saving (γ̂) and power saving ratio (σ) of the different task

execution schemes. The figure reveals that for a varying task number k, our proposed task

offloading scheme offers the highest delay and power saving ratio. For instance, for a typical

task number k=12, our proposed task offloading scheme yields approximately a 19%, 59%,

and 45% higher delay saving ratio than the task onloading, communication-aware, and random

task offloading schemes, respectively. Hence, for k=12, the achieved power saving ratio of our

proposed task offloading, communication-aware, random task offloading schemes and task

onloading scheme is approximately 50%, 41%, and 45%, respectively.

Fig. 5.7(f) examines the satisfactory ratio of our proposed task offloading scheme in com-

parison with the alternative task execution schemes. The figure depicts that generally the sat-

isfactory ratio (sf ) is higher for larger values of the task deadline (td). We notice that for both

small and large td, our proposed task offloading scheme exhibits a satisfactory ratio superior

to that of the compared schemes. Next, to demonstrate the impact of our task prefetching-

aware bandwidth assignment scheme, Fig. 5.7(g) and (h) compares the task prefetching time

efficiency (pg) of our proposed task offloading scheme with prefetching with the alternative

schemes for varying task number (k) and offload task input data size (div), respectively. Both

figures clearly indicate that for both higher and lower task number and offload task input

data size values, a task prefetching time efficiency is obtained in our proposed task offload-

ing scheme with prefetching that is superior to that of the other schemes, including our task

offloading scheme with conventional fetching, random, and communication-aware offloading.

For instance, in Fig. 5.7(g) for task number set to k = 10, our proposed task offloading

scheme with prefetching yields an approximately 25%, 65%, and 77% higher task prefetching

time efficiency than the conventional fetching, random, and communication-aware offloading

scheme, respectively. This is because unlike our proposed scheme, all alternative schemes

rely on conventional fetching for offloading, thus suffering from a higher multi-task offloading

latency.

Fig. 5.7(i) shows that more available host ONU-MPP robots can improve the mean task

service time (tks,a) performance of both proposed task offloading and task onloading schemes.
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Figure 5.7: Mean task service time, power consumption, delay and power saving ratio,
prefetching time efficiency, and satisfactory ratio evaluation for scenario 1 and scenario 2.
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The figure indicates that the mean task service time delay difference between the proposed

task offloading and onloading schemes increases rapidly with a decreasing host ONU-MPP

robot number (hr). We note that the proposed task offloading scheme that relies on the

available host and community robots/agents significantly reduces the mean task service time,

as opposed to the task onloading scheme that relies only on host ONU-MPP robots. Next,

Fig. 5.7(j) sheds light on the mean task service time performance of both proposed task

offloading and onloading schemes for scenario 2. In this scenario, the number of available

host ONU-MPP robots (hr) is fixed, being equal to or less than the varying task number (k).

The figure depicts that with increasing task number (k), the task onloading scheme leads to

a higher mean task service time than the proposed task offloading scheme. We observe that

the mean task service time delay gain of task offloading over task onloading becomes lower

when hr is equal to arriving task requests (k). Note that the maximum mean task service

time delay gain in our proposed task offloading scheme is achieved when the number of task

arrivals (k) is much larger than the number of available host and community robots (cr) to

tackle the additional task request (k−hr). Fig. 5.7(k) and (l) quantify the impact of host and

community cloudlet (agent) selection on our proposed task offloading scheme. Both figures

clearly indicate that the mean task service time (tks,a) increases in all schemes for increasing

number of offloaded tasks (k) and offload task input data size (div). We observe that when

both host and community cloudlets are available, our proposed task offloading scheme results

in a lower mean task service time for host cloudlet based digital sub-task execution compared

to community cloudlets. For instance, in Fig. 5.7(l), for div set to 500 MB, task offloading

with host cloudlet achieves a 6.17% and 10.69% higher mean task service delay saving than

task offloading with community cloudlet (hop 2) and community cloudlet (hop 4), respectively.

This is because the community cloudlet causes additional task offloading communication delay.

Fig. 5.8(a) examines the task service time gain to overhead (TSO) ratio (δi) of our proposed

task offloading scheme with prefetching and task onloading scheme. We observe that with an

increasing offload task input data size (div), the TSO ratio grows more rapidly in our proposed

task offloading with prefetching scheme than its counterpart. For instance, for an offload task

input data size of 500 MB, the TSO ratio for task offloading with prefetching and fetching

scheme is approximately 32% and 21%, respectively. In Fig. 5.8(b), we investigate the optimal

failure avoidance service selection for our proposed task offloading scheme. The figure shows

that the mean task service time increases for increasing service connection recovery time (R)

in all considered schemes. We also observe that our proposed task offloading scheme with fault

tolerance achieves the lowest mean task service time delay. Note that both task offloading and

task onloading schemes with failure recovery exhibit an inferior mean task service time than

the schemes with fault tolerance. This is due to the fact that in the fault tolerance scheme,
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Figure 5.8: Task service time gain to overhead ratio (TSO), speed up ratio, mean task service
time with failure avoidance, PSR, and overall task completion time evaluation of our proposed
community and latency-aware task offloading scheme.
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task execution re-starts from the last checkpoint after recovery from the connection failure.

Fig. 5.8(c) reveals that for an increasing offload task input data size (div), the maximum speed

up ratio (su) is obtained with our proposed community and latency-aware task offloading

scheme. For instance, for div set to 100 MB, the speed up ratio of our proposed scheme,

communication-aware, and random task offloading schemes equals 4.7, 3.6, 3.9, respectively.

Fig. 5.8(d) examines the mean task PSR (µ̂s) performance of different HART task exe-

cution schemes. Importantly, note that a small mean PSR value indicates the suitability of

a HART task execution scheme. The figure shows that the mean PSR value increases for an

increasing task number (k) in all considered schemes. We observe that our proposed task of-

floading scheme achieves a lower PSR value (µ̂off ) than its counterparts. This is because both

minimum task workload processing time and task service time result in a smaller mean PSR

value. Next, Fig. 5.8(e) depicts the overall task completion time (t̄ktct,n) variation in our pro-

posed community- and latency-aware task offloading scheme under varying FiWi traffic loads

(ud) and ONU-MPP numbers (n). We observe that small values of n and ud translate into a

shorter task completion delay in our proposed community- and latency-aware task offloading.

Finally, Fig. 5.8(f) highlights the overall task completion time performance of our proposed

task offloading and onloading schemes versus polling cycle time (tc). The figure shows that

the overall task completion time delay is higher in all compared schemes for large tc. Im-

portantly, we observe that both remote (t̄ktct,r) and nearby (t̄ktct,n) task completion times are

minimal in our proposed community- and latency-aware task offloading scheme. For instance,

for tc = 400 ms and k = 4, the gain of the nearby and remote task completion time achieved

in our proposed task offloading scheme is approximately 23.7% and 24.1% higher than in the

task onloading scheme, respectively.

5.7 Conclusions

We proposed a community- and latency-aware multi-task scheduling scheme for collaborative

HART task execution across FiWi enhanced Tactile Internet infrastructures. To accomplish

multiple HART task execution in a resource- and time-efficient manner, our proposed task

scheduling scheme selects both optimal multi-task scheduling order and suitable task process-

ing nodes for different HART tasks. To reap the benefits from task prefetching to execute

multiple HART tasks, we presented a novel prefetching-aware bandwidth allocation scheme

that copes with both conventional broadband and task offloading data traffic at the same

time. We developed a comprehensive analytical model to investigate the performance of our

proposed community- and latency-aware task offloading scheme in terms of mean task service

time, delay and power saving ratio, task prefetching time efficiency, task service time gain to

overhead ratio, among others. Our presented results provide insights into selection of suitable
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robot/agent resources for our proposed community and latency-aware task offloading scheme

by taking different arrived HART task number, task requirements, and host and community

robot/agent resource availabilities, into account. Our obtained results show that for a typical

system of 32 ONU-MPPs and a polling cycle time of 100 ms, our proposed task offloading

scheme achieves up to 31.3% and 32.7% task completion time gain over the task onloading

scheme for nearby and remote task execution, respectively. The results demonstrate that for a

typical task offload input data size of 500 MB, our proposed task offloading scheme with task

prefetching capability offers a 11% higher task service time gain to overhead ratio than a con-

ventional fetching based scheme. Furthermore, our findings suggest that for failure avoidance,

our proposed fault tolerance mechanism is more effective in the considered task offloading

scheme than alternative failure recovery mechanisms. Thus, our proposed community- and

latency-aware task offloading scheme leveraging on both fault tolerance and task prefetching

capability is a promising solution for low-latency HART collaboration in the emerging Tactile

Internet.
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Chapter 6

User Preference Aware Task
Coordination and Proactive
Bandwidth Allocation in a FiWi
Network Infrastructures

6.1 Preamble

This chapter contains material extracted from the following paper:

[J6] M. Chowdhury and M. Maier, “User Preference Aware Task Coordination and Proactive

Bandwidth Allocation in a FiWi Based Human-Agent-Robot Teamwork Ecosystem,” IEEE

Transactions on Network and Service Management, Oct. 2018 (in revision)[115].

6.2 Introduction

With the rise of smart mobile devices, demands for mobile applications in our everyday life

have experienced significant growth during the last decade. Due to their resource limita-

tions, however, many mobile devices may not be able to provide high quality-of-experience

(QoE) to human users for computation-intensive task execution. To alleviate the burden of

resource-constrained mobile devices, the concept of mobile-edge computing (MEC) has recent-

ly emerged, which allows mobile devices to offload computation tasks to nearby edge cloud

servers for processing. MEC offers several cloud services, e.g., caching, computation process-

ing, to mobile devices via decentralized cloudlets at the edge of the network, e.g., base station

[22]. Decentralized cloudlets generally experience a lower task offloading communication la-

tency than traditional remote clouds. Hence, task offloading to edge cloudlets is beneficial

for handling many interactive cyber-physical system (CPS) applications that harness human-

machine interaction, including virtual and augmented reality.
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The importance of decentralized cloudlets is also witnessed in emerging Tactile Internet

applications, where ultra-low latency communication services allow humans to remotely s-

teer/control virtual/physical objects (e.g., robots) in real time in order to perform non-local

tasks [5]. Note that the ultimate long-term goal of the Tactile Internet is to enable new goods

and services that require human expertise in the coordination of human-robot symbiosis for the

sake of complementing humans rather than substituting for them. The resultant collaborative

human-machine activities are the object of human-agent-robot teamwork (HART) research,

where the efficient allocation of task requests of humans to suitable machines (e.g., robots)

and agents (e.g., cloudlets) is essential [55]. In a HART ecosystem, a task can be either (i)

a physical task (e.g., lifting an object), (ii) a digital task (e.g., object detection), or (iii) a

hybrid task that includes both physical and digital subtasks (e.g., sensing object at a given

task location and detecting the sensed object). Note that unlike performing a physical task,

the execution of a digital task does not necessarily require the presence of a robot/agent at the

given task location. Further, note that a digital task may comprise either caching (e.g., au-

dio/video/data content download), computation (e.g., object detection), or both (e.g., object

detection from a captured image and caching content of the detected object).

While collaborative HART holds great promise for mobile users (MUs) requesting task

execution, an unsuitable task assignment to robots/agents may lead to a higher task execution

delay and inefficient resource utilization. To avoid these shortcomings, design of a suitable

robot selection strategy for the allocation of both local and non-local tasks, taking a variety of

different task characteristics (e.g., execution deadline) and robot properties (e.g., computation

speed) into account is mandatory. Nevertheless, limited resources of robots may become a

crucial bottleneck for the proper execution of different computation-intensive HART tasks.

To render the execution of HART tasks more efficient, a collaborative computing strategy,

where both robots and cloud agents jointly process a given MU’s HART task may be suitable.

Note that only robots residing near the given task location are eligible for executing physical

tasks, whereas digital tasks may be offloaded to any suitable agent, either nearby or remote,

for processing. Hence, to the best of authors knowledge, performance evaluation of multiple

HART tasks by taking into account both dedicated and non-dedicated robot/cloud resources

and MUs different preferences (delay vs. monetary cost saving preferences) was missing in the

existing literature.

•Delay Preference: When requesting the execution of a delay-sensitive HART task (e.g.,

face recognition for real-time food/pizza delivery), a given MU may prefer a lower task exe-

cution delay over the incurred monetary cost. Hence, to meet the low-delay requirement, the

utilization of both dedicated and non-dedicated robot/cloud resources as well as the preemp-

tive bandwidth assignment for a given delay tolerance may become mandatory. Note that the
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difference between dedicated and non-dedicated robot/cloud resources is that a robot/cloud

server may be dedicated to a single task, i.e., only a single user can use the robot/cloud server

or shared (i.e., non-dedicated) and thus used by multiple users. However, MUs have to pay

an additional monetary cost for utilizing both dedicated and non-dedicated robots/clouds and

preempting bandwidth resources.

• Monetary Cost Saving Preference: Beside delay-sensitive tasks, HART tasks (e.g.,

participatory sensing, image recognition) may not require time-critical execution. For such

delay-tolerant tasks, monetary cost saving may be the primary concern for MUs. Thus, MUs

may utilize only dedicated robots/clouds and non-preemptive bandwidth resources for the

execution of their delay-tolerant tasks.

At present, no existing study deals with the problem of delay-sensitive and delay-tolerant

caching and computing HART task execution considering preemptive/non-preemptive band-

width allocation. To avoid additional delay and monetary costs while mitigating MUs’ differ-

ent task requests, in this work we propose a user preference aware task coordination strategy.

Our proposed strategy not only enables the proper selection of dedicated/non-dedicated robot-

s/agents for different HART tasks but also allows for efficient task offloading by exploiting a

given MU’s cost saving preferences. Specifically, we develop an analytical framework to ex-

amine the performance trade-off between delay cost saving (DCS) and monetary cost saving

(MCS) schemes for the execution of different HART tasks, taking dedicated/non-dedicated

cloud agents with/without caching capabilities into account and comparing the following three

different DCS and MCS multi-task offloading schemes: (i) maximum throughput and mini-

mum delay (MTMD), (ii) maximum throughput (MT), and (iii) minimum delay (MD).

The remainder of the chapter is structured as follows. In Section 6.3, we review prior art

and outline open research challenges. In Section 6.4, we describe our proposed preference

aware HART task coordination policy along with the considered communications network

infrastructure. Section 6.5 presents the analytical model to evaluate the performance of our

proposed scheme. Section 6.6 presents our obtained results and findings. Finally, Section 6.7

concludes the chapter.

6.3 Prior Art and Open Challenges

A significant body of research studies exist in the literature that focus on the problem of

whether or not to utilize infrastructure-based cloud [29], cloudlet [28], [107] or infrastructure-

less mobile ad-hoc cloud [116] resources for the execution of an MU’s computation task. Some

computation offloading studies investigate the problem of whether to offload the full or only

a part of the MU’s task to a suitable cloud agent for processing [30], [102]. The majority of

these studies aim at selecting a suitable cloud server for task offloading with the objective of
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minimizing either the task response time [28], [30] or the mobile device’s energy consumption

[74], [17]. For instance, in [112] and [113], a suitable cloud server is selected for computation

task execution to minimize the task workload processing delay and offloading communication

delay, respectively.

Investigations of selecting a suitable task offloading node while achieving both lower task

workload processing and communication delays for executing different caching and computing

HART tasks are not available. Furthermore, most existing studies focused on evaluating the

task offloading performance by assuming available bandwidth resources for task offloading

(upload and download) activities. Note, however, that immediate task offloading to cloud

servers may not always be possible due to the lack and uncertainty of available bandwidth

resources and network connectivity. Thus, for designing a proper task offloading node se-

lection scheme, the waiting delay for an upcoming transmission opportunity, task offloading

communication delay, workload processing delay as well as involved monetary cost need to be

taken into account as well. Toward this end, beside proper cloud agent selection, previously

proposed task offloading schemes [31], [32], [33] aimed at resolving the problem of selecting

the suitable wireless interface (4G LTE-Advanced or WiFi) for either task data uploading or

downloading, thought not both at the same time. Further, the authors in [117] proposed an

energy-efficient delayed network selection scheme that optimizes the trade-off between energy

consumption and transmission delay during the task data uploading process. In [118], an on-

line task offloading policy was proposed that maximizes the amount of data offloaded through

the WiFi network interface. The work in [119] aimed at achieving maximum throughput for

caching content download through the suitable wireless network interface. Investigations of

achieving both maximum throughput and minimum task execution delay for multiple HART

tasks over integrated fiber-wireless (FiWi) network infrastructures, which consist of a fiber

backhaul and wireless front-end, is an open research challenge. Moreover, the question of how

to design an adaptive bandwidth allocation policy for the execution of an MU’s delay-sensitive

and delay-tolerant HART tasks without affecting their conventional broadband access services

remains another open research challenge.

6.4 FiWi Enhanced Tactile Internet Infrastructure for

Preference Aware HART Task Coordination

6.4.1 Network Architecture

Fig. 6.1 depicts our considered FiWi enhanced Tactile Internet infrastructure for HART task

coordination leveraging both dedicated and non-dedicated cloud agent/robot resources. The

optical fiber backhaul consists of time and wavelength division multiplexing (T/WDM) IEEE
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Figure 6.1: FiWi enhanced Tactile Internet infrastructure for preference aware HART task
coordination.

802.3av 10 Gb/s Ethernet Passive Optical Network (10G-EPON) with a fiber backhaul range

of 10-100 km between the central optical line terminal (OLT) and remote optical network

units (ONUs). The central OLT connects to three different subsets of ONUs through a 1:N

optical splitter/combiner. The first subset of ONUs serves fixed wired FTTx subscribers, e.g.,

fiber-to-the-home (FTTH). To provide MUs with WLAN and cellular services, the second and

third subsets of ONUs are attached to an IEEE 802.11s mesh portal point (ONU-MPP) and

a cellular base station (ONU-eNB), respectively. At the wireless front-end, the ONU-MPP

connects with the wireless mesh network (WMN) through intermediate mesh points (MPs) and

mesh access points (MAPs). MPs serve as relay nodes, which forward packets between MPPs

and MAPs. MAPs provide wireless access services to associated MUs as well as WiFi enabled

robots. To allow inter-ONU communication with broadband and cloud offloading services,

so-called interconnected fiber (IF) links may be used between pairs of neighboring ONUs. For

remote cloud services, central cloud servers are attached to the OLT via dedicated fiber links.

Further, to provide cloud computing and caching services to MUs/robots at the network edge,

multiple dedicated/non-dedicated cloudlets are connected to the ONU-MPPs/ONU-eNBs via

dedicated fiber links [52].

6.4.2 Preference Aware HART Task Coordination

In this section, we present our proposed user preference aware HART task coordination scheme,

whose pseudo-code is given in Algorithm 8. In our proposed task coordination scheme, initially
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Algorithm 8 Preference-Aware HART Task Coordination

Notation: A set of full task request (nt), physical (ns∈nt)/digital sub-task (nc∈nt) number,
total dedicated robot (β), non-dedicated robot (Θ), dedicated local cloudlet agent (ᾱ),
non-dedicated local and non-local cloudlet agent (σ), dedicated remote cloud (τ) agent,
preference policy P=delay cost saving (DCS)/monetary cost saving (MCS)

1: for each arrived full task request ∀δi∈nt do
2: collect each dedicated and non-dedicated robots (r∈f=β+Θ) and agents (θ∈v̂=ᾱ+σ+τ)

busy time, distance, and CPU cycles information
3: check user preference (P ) for each task request (δi)
4: if user preference P == MCS then
5: for each physical sub-task si∈ns do
6: compute physical sub-task (si) processing delay (trγ,s) for each dedicated robot (r∈β)
7: assign si to dedicated robot (r∈β) with lower trγ,s
8: end for
9: for each digital sub-task ci∈nc do

10: compute digital sub-task (ci) processing delay (tθγ,c) for each dedicated agent
(θ∈z=τ+ᾱ), assign ci to dedicated agent with lower tθγ,c

11: the agent completes the computation sub-part of digital sub-task and checks caching
content availability of digital sub-task

12: if caching content is available then
13: transfer the caching content of ci to MU
14: else
15: collect caching content from other agent with min distance and transfer to MU
16: end if
17: assign delay-tolerant task offload time slot for ci based on proactive bandwidth

assignment policy
18: end for
19: end if
20: if user preference P == DCS then
21: for each physical sub-task si∈ns do
22: compute dedicated and non-dedicated robots (r∈f) physical task processing delay

(trΩ,s), assign si to the robot (r∈f) with lower trΩ,s value
23: end for
24: for each digital sub-task ci∈nc do
25: compute dedicated and non-dedicated agents (θ∈v̂) digital sub-task processing de-

lay (tθΩ,c), assign ci to the agent (θ∈v̂) with lower tθΩ,c value
26: the agent completes the computation sub-part of digital sub-task and checks caching

content availability of digital sub-task
27: if required caching content is available then
28: transfers the caching content of ci to MU
29: else
30: collect caching content from another agent with min distance and transfer to MU
31: end if
32: assign delay-sensitive task offload time slot for ci based on proactive bandwidth

assignment policy
33: end for
34: end if
35: end for
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Figure 6.2: Local and non-local dedicated/non-dedicated robots and agents.

an MU sends a full HART task execution request (physical and digital sub-tasks) to the task

coordinator co-located at each ONU. Next, the task coordinator selects a suitable robot and

cloud agent for the execution of each physical and digital sub-task, respectively. Note that

to satisfy given user preferences our proposed HART task coordination applies the following

two policies: (i) minimizing task execution delay and (ii) maximizing monetary cost saving

for different HART tasks, as explained in greater detail in the following.

A. Delay Cost Saving Policy (DCS): In this policy, after receiving a given MU’s HART

task request message, the task coordinator sends the task request message to all dedicated and

non-dedicated actors (i.e., local and non-local robots/agents). Then, all actors send their task

response message to the task coordinator, which comprises information abouth their busy time,

location, and task processing speed (CPU cycles). After collecting all actors’ response message,

the task coordinator calculates their predicted task processing delay. Subsequently, the task

coordinator selects a suitable robot offering minimum processing time trΩ,s for the physical sub-

task and a suitable agent offering minimum processing time tθΩ,c for executing the digital sub-

task, respectively. Note that unlike non-local actors, local actors are located within the ONU’s

coverage area, where the physical sub-task needs to be performed, as illustrated in Fig. 6.2. For
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the selection of suitable actors, our proposed task coordination scheme considers the following

cases. If local dedicated actors are available, the task coordinator selects suitable actors

only from the set of local dedicated actors. Otherwise, the task coordinator selects suitable

actors from both dedicated and non-dedicated (local and non-local) actors. The selected robot

executes the physical sub-task, generates the physical sub-task output (digital sub-task input),

and offloads the digital sub-task input to the selected agent for further processing. The selected

agent executes the computation sub-part (e.g., face detection) of the digital sub-task and

checks whether caching the content (e.g., information about detected face) of the computation

sub-part result is possible or not. If caching is possible, the selected agent transfers the cached

content back to the MU during the task result download sub-slot. Otherwise, the initially

selected agent first fetches the cached content from another agent (cloudlet or remote cloud)

and then transfers it back to the corresponding MU.

Due to the use of different cloud agents for executing digital sub-tasks, our proposed

DCS policy can be divided into two categories: (i) DCS with local/non-local cloudlet caching

and (ii) DCS with remote cloud caching. In addition, given different priorities for executing

multiple HART tasks, we consider the following three variant schemes of our DCS policy:

(i) maximum throughput and minimum task execution delay (MTMD) based scheme, (ii)

maximum throughput (MT) based scheme, and (iii) minimum task workload processing delay

(MD) based scheme. Note that in the case of a multiple-task request arrival, maximum

throughput can be ensured by using the network interface offering the higher data rate for task

request transmission and task up/downloading, whereas minimum task workload processing

delay can be achieved by selecting the most powerful robot/cloud agent for each task.

B. Monetary Cost Saving Policy (MCS): In this scheme, after receiving a given

MU’s task execution request, the task coordinator sends the task request message only to

dedicated actors. The dedicated actors in turn send their task response message to the task

coordinator, including information about their busy time, location, and task processing speed

(CPU cycles). Next, the task coordinator computes the required physical (trγ,s) and digital sub-

task (tθγ,c) processing time for each dedicated robot and agent, respectively. Subsequently, the

task coordinator selects a suitable dedicated robot that provides a lower trγ,s for the physical

sub-task and a suitable agent that provides a lower tθγ,c for executing the digital sub-task,

respectively. The selected robot then executes the physical sub-task and offloads the digital

sub-task to the selected cloud agent for further processing. Next, the selected agent processes

the computation sub-part of the digital sub-task and checks whether caching the content of the

computation sub-part result can be done or not. If caching the content is possible, the initially

selected agent transfers the cached content to the MU during the task result download sub-slot.

If the caching content isn’t possible, the initially selected agent collects the cached content
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(a) (b)

Figure 6.3: (a) Proactive bandwidth allocation scheme and (b) task coordination scheme.

from another dedicated agent and transfers it to the intended MU. Note that depending on

the selection of different dedicated agents, there exist two variations of our MCS policy: (i)

MCS with cloudlet caching and (ii) MCS with remote cloud caching. Hence, given different

priorities for task execution there exist the following three schemes of our proposed MCS

policy: (i) maximum throughput and minimum delay (MTMD), (ii) maximum throughput

(MT), and (iii) minimum task workload processing delay (MD) based schemes.

6.4.3 Proactive Bandwidth Allocation Scheme

Fig. 6.3(a) depicts our two-layer TDMA based proactive bandwidth allocation scheme in

greater details for execution of different HART tasks. It differs from the traditional TDMA

based model in several ways. First, in our proposed scheme, we divide task offloading users

into two groups (see Fig. 6.3(b)), namely, delay-sensitive users (applying the DCS policy) and

delay-tolerant users (applying the MCS policy). Second, in our proposed scheme, DCS policy

users offload their delay-sensitive digital sub-tasks to suitable dedicated or non-dedicated

agents during the associated ONU’s offload time-slot. Conversely, MCS policy users offload

their delay-tolerant digital sub-tasks to suitable dedicated agents only during another ONU’s

time-slot by using the dedicated point-to-point IF fiber connections. Thus, by performing

delay-tolerant task offloading during another ONU’s time-slot, our proposed scheme is able to

save both bandwidth and monetary cost for MCS policy users.

In our proposed two-layer TDMA scheme, the first TDMA layer is used for the optical fiber

backhaul, whereby the OLT allocates upstream (US) timeslots to all ONUs via IEEE 802.3ah

multipoint control protocol (MPCP) messages (REPORT and GATE). The second TDMA layer
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is used to operate the wireless part, whereby ONUs assign both broadband and task offload

sub-slots to their associated MUs/robots via IEEE 802.11 messages (Beacon and PS-Poll).

Note that each ONU sends a REPORT message to the OLT in order to notify the OLT about its

bandwidth requirement in the next polling cycle, whereas a GATE message is sent downstream

by the OLT to inform all ONUs about their assigned time-slot. After receiving the GATE

message from the OLT, each ONU extracts its broadband and task offload time-slot sched-

ule. Subsequently, each ONU assigns a broadband and task offload sub-slot to its associated

MUs/robots based on their instantaneous traffic demand via a PS-Poll message. Next, the

ONU broadcasts a Beacon message to its associated MUs/robots to inform them about their

broadband and task offload sub-slot schedule.

6.5 Performance Analysis

In this section, we develop an analytical model to evaluate the performance of our proposed

user preference aware task coordination scheme in terms of various key performance metrics.

6.5.1 Delay Analysis

First, we analyze the aggregate task execution delay tδκ,µ for both DCS and MCS policies, which

comprises the following three delay components: (i) task request message dissemination delay

tδrq, (ii) actor selection delay tδκ,ser, and (iii) full HART (physical and digital) task processing

delay tδ̂κ,µ.

(i) Task request dissemination delay: The task request message dissemination delay

tδrq denotes the time interval between task request message generation by the MU and task

request message reception by the task scheduler at the host ONU. Thus, tδrq includes two delay

components, namely, the waiting delay for transmission opportunity (tbw) and communication

delay (txtra) for transferring the task request from the MU to the task scheduler. The calculation

of tbw and txtra will be described in greater detail in Section 6.5.3.

(ii) Actor selection delay: After receiving the task request message from the MU,

the task scheduler at the host ONU selects suitable actors (robot and agent) for each full

task execution. The process of selecting suitable actors involves the exchange of task request

(t̂rq), actors’ response (tar), and task assignment confirmation (tac) messages between the task

scheduler and selected actors. If the total number of active users k̂ (for DCS policy k̂=f+v̂

and for MCS policy k̂=z+β), latency (task processing time) comparison time of two actors

tcp, and total number of selected actors y are known, the actor selection delay in DCS (tδΩ,ser)
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and MCS policy (tδγ,ser) are given by

tδκ,ser =

{
(f + v̂) · (t̂rq + tar + tcp) + y · tac, if κ = Ω

(β + z) · (t̂rq + tar + tcp) + y · tac, if κ = γ.
(6.1)

(iii) Task processing delay: Next, we calculate the full task processing delay (tδ̂κ,µ) that

comprises both the robot’s physical sub-task (trκ,s) and the agent’s digital sub-task processing

delay (tθκ,c), whereby tδ̂κ,µ is given by tδ̂κ,µ=trκ,s+t
θ
κ,c=t

b
r+t

Ψ
r +tφr+tθκ,c. The robot’s physical sub-

task processing time is equal to trκ,s=t
b
r+t

Ψ
r +tφr=tbr+

dΨ

qr
+
wφ
νr

, where tbr, t
Ψ
r , tφr , dΨ, wφ, qr, νr

denote the robot’s busy time, task location traverse time (tΨr =dΨ

qr
), physical sub-task workload

processing time (tφr=
wφ
νr

), Euclidean distance between task and robot locations, physical sub-

task workload, and the robot’s moving and computation processing speed, respectively. For

the DCS policy, a suitable robot is selected by checking all dedicated and non-dedicated

robots’ physical sub-task processing times as follows: trΩ,s=min{t1Ω,s, ..t
f
Ω,s}, r = 1, 2, . . . , f .

Conversely, for the robot selection using the MCS policy, only dedicated robots are examined:

trγ,s=min{t1γ,s, ..tβγ,s}, r = 1, 2, . . . , β.

For the digital sub-task execution using the DCS and MCS policies, the robot that ex-

ecutes the physical sub-task initially uploads the digital sub-task input to the cloud agen-

t. Next, the selected cloud agent processes the computation and caching sub-part of the

digital sub-task. Thus, by taking the task offloading communication, computation pro-

cessing, and caching delays into account, the digital sub-task processing delay is given by

tθκ,c=t
b
θ+t

ψ
θ =tbθ+t

w
κ,θ+t

u
θ+t

π
θ+tφθ+tdθ, where tbθ, t

w
κ,θ, t

u
θ , t

π
θ , tφθ , and tdθ represent the agent’s busy

time, transmission opportunity delay, digital sub-task uploading, digital sub-task computa-

tion processing (tπθ=wπ
νθ

), cache lookup, and task result download delays, respectively. In the

case of our DCS policy, a suitable cloud agent θ is selected by comparing all dedicated and

non-dedicated agents’ digital sub-task processing time as follows: tθΩ,c=min{t1Ω,c, ..tv̂Ω,c}, where

θ = 1, 2, . . . , v̂. Whereas for our MCS policy, a suitable agent is selected only from the ded-

icated agents: tθγ,c=min{t1γ,c, ..tzγ,c}, where θ = 1, 2, . . . , z. Finally, by taking the task request

transmission, actor selection as well as physical and digital sub-task processing delays into

account, the full task execution delay in the case of our DCS (tδΩ,µ) and MCS policies (tδγ,µ) is

obtained as follows:

tδκ,µ =

{
tδrq + tδΩ,ser + trΩ,s + tθΩ,c, if κ = Ω

tδrq + tδγ,ser + trγ,s + tθγ,c, if κ = γ.
(6.2)

6.5.2 Caching Content Access Latency

In this section, we analyze the caching content access latency by using the so-called average

memory access time (AMAT) formula, in which the cache hit ĥ and miss ratio m̂ play a
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significant role. To see this, note that if the caching content is available at the initially

selected agent (m̂=0), the caching content access latency is equal to the agent’s cache look-up

delay tlθ, i.e., the time required to match a request to the related response. Otherwise, if the

caching content is unavailable (m̂=1) at the initially selected agent (θ), an additional time is

required to fetch the caching content from another agent (θ∗). Thus, considering both cases,

the total caching content access latency is equal to tφθ=tlθ+m̂·(twθ→θ∗+td̂θ→θ∗+tlθ∗), where twθ→θ∗

and tlθ/t
l
θ∗ denote the access delay (maximum tc) and cache lookup delay at the initially/newly

selected agent, respectively. For instance, for a face recognition cache, we have tlθ=t
l
θ∗=f(sv),

where f(sv) is a monotonically increasing function of the cache size sv [120]. Further, td̂θ→θ∗

denotes the communication delay for fetching the caching content from another agent, which

is given by

td̂θ→θ∗ =


gw+sv

Φct
+ gw+sv

Φct
+ tp if θ∗ =lct,

hcn ·
gw+sv
φfl

+ 2gw
Φct

+ 2sv
Φct

+ tp̂ if θ∗ =nct,

hcr ·
gw+sv

Ψfl
+ gw+sv

Φct
+ gw+sv

Φcl
+ t∗p if θ∗ =ncl,

(6.3)

where gw, sv, h
c
n/hcr, tp/tp̂/tp∗ , and Φct/φfl/Ψfl/Φcl represent the computation sub-part output

data size, caching content data size, hop distance between host ONU and nearby ONU (non-

local cloudlet location)/host ONU and the OLT (remote cloud location), propagation delay

for local cloudlet lct/non-local cloudlet nct/remote cloud ncl caching, transmission capacity of

the link between the ONU and cloudlet, inter ONU, the ONU and OLT, OLT and remote

cloud, respectively.

To compute the cache miss ratio, we assume that agents’ caching content files (e.g., audio,

text, video of the recognized face) available for download are stored in the form of a library ϑ =

1, 2, . . . , V . More specifically, each file has an average size of sv bits and different popularity.

The probability of cached content v = 1, 2 . . . , V being requested for download follows a Zipf

distribution [121], given by Pϑ(v)= σ̂
vε

, where σ̂=
(∑V

i=1
1
iε

)−1
and ε describes the steepness of

the distribution Pϑ(v). Provided that nf=
cθ
sv

is the total number of caching content files at

the agent, na is the agent’s number, and cθ is the agent’s caching content capacity, the cache

hit ratio equals ĥ = 1− m̂ = 1−
∑V
v=na·nf

1
vε∑V

v=1
1
vε

.

6.5.3 Mean Task Offload Delay

A task offload packet may suffer from offloading delay during its transmission to an agent,

as shown in Figs. 6.4 and 6.5 for the DCS and MCS policies, respectively. The mean task

offload delay generally comprises three delay components. The first delay component (tu1) is

the time interval between the arrival of a task offload packet (A) at an MU and the bandwidth

reservation request (PS-Poll) transmission (R). If the task request packet is generated by the

MU after the current cycle PS-Poll message, the MU waits for the maximum cycle period
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Figure 6.4: Mean offload packet delay components in DCS policy.

(tu1=tc) to transmit a bandwidth reservation (PS-Poll) message. On average, tu1 is equal to
tc
2

. The second delay component refers to the time interval between the bandwidth reservation

(R) and grant (G) messages. In the following, let STA be either an MU or a robot. For STA1,

tu2 is then equal to (tc − tblsta). For the m-th STA, tu2 equals (tc −m · tblsta). Thus, on average

we have tu2 = mtc
m
− (1+2+...+m−1+m)tblsta

m
= tc − (m+1)tblsta

2
. The third delay component differs

in the DCS and MCS policies. In our DCS policy (see Fig. 6.4), the third delay component

(tu4) denotes the time interval between a STA’s grant (G) message and delay-sensitive task

offload sub-slot start time (O). For STA1, tu4 is equal to m · tblsta + tmsgpon . For STA2, tu4

equals m · tblsta + tmsgpon + tolsta. If the total delay-sensitive task offload sub-slot (tolsta) is h, we

obtain on average tu4 = m · tblsta + tmsgpon +
(0+1+2+...+h−1)·tolsta

h
= m · tblsta + tmsgpon +

(h−1)tolsta
2

. By

contrast, in our MCS policy (see Fig. 6.5), the third delay component (tu5) is equal to the

time interval between the grant (G) message and delay-tolerant task offload sub-slot start

time (O). For the first STA, we have tu5 = tslonu − tmsgpon − tmsgwl . If the total delay-tolerant

task offload sub-slot (tolsta) is k and delay-sensitive offload sub-slot is h, we obtain on average

tu5=tslonu − tmsgpon − t
msg
wl +

(0+1+2+...+k−1)·tolsta
k

. By summing up all three delay components, the

mean task offload delay in DCS (twΩ,θ) and MCS (twγ,θ) policies is given by

twκ,θ =

{
tu1 + tu2 + tu4, if κ = Ω

tu1 + tu2 + tu5, if κ = γ.
(6.4)

Next, let us calculate the STA’s task request dissemination delay (tδrq), which includes the

bandwidth opportunity delay (tbw) and upstream (US) task request traverse time (txtra). If the

task request packet is generated by the STA after the current cycle broadband sub-slot, then

tbw=tu1+tu2+tu3 includes three delay components, where tu1 is the time interval between the

task request packet arrival at the STA (A) and bandwidth request transmission (R), tu2 is

the time interval between the bandwidth request transfer (R) and grant (G) message, and

tu3 is the time interval between the grant (G) message and the STA’s broadband (T ) sub-

slot start time. Note that for STA1, tu3 is equal to zero. Whereas for STAm, tu3 equals

(m− 1)tblsta. On average, we have tu3 =
(0+1+2+...+m−1)tblsta

m
=

(m−1)tblsta
2

. By summing up all three
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Figure 6.5: Mean offload packet delay components in MCS policy.

delay components, tbw is obtained as tbw = tu1 + tu2 + tu3. Finally, we calculate txtra, which

denotes the required time to transfer the STA’s task request message from the MU to the

task scheduler at the host ONU. Hence, we have: txtra=t
bl
sta=t

u
mu→ho+t

p
mu→ho , where tumu→ho

and tpmu→ho denote the US transmission and the total propagation delay that incurs during

the task request transfer process, respectively.

6.5.4 Communication Delay

In this subsection, we compute task offloading communication delay toθ = tuθ + tdθ, which

comprises both the digital sub-task upload delay (tuθ ) from robot to cloud agent and the task

result download delay (tdθ) from agent θ to MU. Hence, toθ is obtained as follows:

toθ =


gi+sv
ψw

+ gi+sv
Φct

+ tp1 if θ =lct,
gi+sv
ψw

+ hcn ·
gi+sv
φfl

+ gi+sv
Φct

+ tp2 if θ =nct,
gi+sv
ψw

+ hcr ·
gi+sv
Ψfl

+ gi+sv
Φcl

+ tp3 if θ =ncl,

(6.5)

where gi, sv, h
c
n, hcr, ψw/Φct/φfl/Ψfl/Φcl, tp1 , tp2 , and tp3 denote the digital sub-task input

and output data size, hop distance between host ONU ho (physical task location) and nearby

ONU do (non-local cloudlet location), hop distance between host ONU and OLT (remote cloud

location), transmission capacity of the link between STA and ONU, ONU and cloudlet, inter-

ONU, ONU and OLT, OLT and remote cloud, total propagation delay for task offloading to

local cloudlet lct (tp1=2tpr→ho+2tpho→lct), non-local cloudlet nct (tp2=2tpr→ho+2tpho→do+2tpdo→nct),

and remote cloud ncl (tp3=2tpr→ho+2tpho→olt+2tpolt→rcl), respectively.

6.5.5 Monetary Cost

In this subsection, we analyze the expected monetary cost for both DCS and MCS policy based

HART task execution. Note that the monetary cost calculation the execution of multiple full

HART tasks consists of two parts: (i) monetary cost of using actors (cloud agents and robots)

for physical and digital sub-task processing (pjκ,w) and (ii) monetary cost of using bandwidth

resources for task request transmission and task offloading (pεκ,b). The monetary cost of the
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physical and digital sub-task workload processing using DCS and MCS policies is given by

pjκ,w =


(
n̂s · ω̃1 · ~pd · trΩ,s + n̄s · ω̂2 · ~pn · trΩ,s+
n̂c · υ1 · p̃d · tθΩ,c + n̄c · υ2 · p̃n · tθΩ,c

)
, if κ = Ω(

n̂s · α1 · ~pd · trγ,s + n̂c · υ1 · p̃d · tθγ,c
)
, if κ = γ,

(6.6)

where n̂s/n̄s and n̂c/n̄c denote the number of physical and digital sub-tasks that use dedicated/non-

dedicated robots and agents (n̂s,n̄s∈ns and n̂c,n̄c∈nc), respectively. Further, ω̃1/ω̂2 and υ1/υ2

represent the monetary cost per unit time (second) for using dedicated/non-dedicated robots

and agents, respectively, while trΩ,s/t
r
γ,s and tθΩ,c/t

θ
γ,c denote the selected robot’s physical and

agent’s digital sub-task processing time in our DCS/MCS policy, respectively. Moreover, let

~pd/~pn and p̃d/p̃n be the probability that a dedicated/non-dedicated robot and agent is selected,

respectively. Note that the probability that a dedicated/non-dedicated actor (robot/agent)

selected is equal to 1, if the corresponding robot’s/agent’s physical/digital task processing

time is minimum among all actors.

Similarly, the total monetary cost of using bandwidth resources in our DCS and MCS

policies is obtained as follows:

pεκ,b =


(
∆1 · pw · txtrs · ~nt + ∆2 · pc · txtrs · ñt

+~nc · Λ1 · pw · toθ + ñc · pc · Λ2 · toθ
)
, if κ = Ω(

∆1 · pw · txtra · ~nt + ∆2 · pc · txtra · ñt
+~nc · pw · ~λ1 · toθ + ñc · pc · λ̃2 · toθ

)
, if κ = γ,

(6.7)

where ~nt/ñt and ~nc/ñc denote the number of tasks that use the WiFi/cellular network inter-

face for task request transmission and task offloading, respectively. Furthermore, txtra and toθ
represent the task request transmission and task offloading communication (toθ=t

u
θ+t

d
θ) delay,

respectively. Moreover, ∆1 and ∆2 represent the monetary charge per unit time for task re-

quest transmission using the WiFi and cellular interface, respectively. Let Λ1/Λ2 and ~λ1/λ̃2

be the monetary cost per unit time for delay-sensitive and delay-tolerant task offloading using

the WiFi/cellular interface, respectively. The probability that the WiFi and cellular network

interface is used for task request transmission and task offloading is given by pw and pc, respec-

tively. We note that an MU uses the WiFi network interface (pw = 1) only if its utilization

(twα ≥ ~tδκ,µ > t̃δκ,µ) provides the minimum task execution delay and the MU’s associated MAP

residence time is sufficient (twα = 1
λw

) to perform task execution. Otherwise, the MU uses

the cellular network interface (tδκ,µ = t̃δκ,µ) provided it offers the minimum task execution de-

lay (tcα ≥ t̃δκ,µ > ~tδκ,µ). Note that ~tδκ,µ and t̃δκ,µ denote the task execution delay, if the WiFi

(tδκ,µ = ~tδκ,µ) and cellular interface (tδκ,µ = t̃δκ,µ) is used as a wireless medium for task request

transmission and offloading, respectively.
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6.5.6 Time and Monetary Cost Saving Ratios

In the following, we calculate the time saving ratio (TSR) pΩ
sd and monetary cost saving ratio

(MSR) pγsm for both DCS and MCS policy based HART task execution. We define pγsm as the

ratio of monetary cost gain using our MCS policy for task execution (pjΩ,w− pjγ,w + pεΩ,b− pεγ,b)
and the total monetary cost for the case of DCS policy based execution (pjΩ,w + pεΩ,b). With

nt denoting the total task number, pγsm is given by

pγsm =

∑nt
i=1

(
pjΩ,w − pjγ,w + pεΩ,b − pεγ,b

)∑nt
i=1

(
pjΩ,w + pεΩ,b

) × 100%. (6.8)

Hence, pΩ
sd is defined as the ratio of time cost gain for DCS policy based task execution (tδγ,µ-

tδΩ,µ) and task execution time cost for our MCS policy (tδγ,µ=tδrq+t
δ
γ,ser+t

r
γ,s+t

θ
γ,c). Thus, pΩ

sd is

given by

tΩsd =

∑nt
i=1

(
tδγ,µ − tδΩ,µ

)∑nt
i=1

(
tδrq + tδγ,ser + trγ,s + tθγ,c

) × 100%. (6.9)

6.5.7 Energy Cost

Next, we compute the energy consumption cost of both DCS (eτΩ,µ) and MCS (eτγ,µ) policy

based task execution given by

eτκ,µ =

{∑nt
i=1

(
eδrq + eδΩ,ser + erΩ,s + eθΩ,c

)
, if κ = Ω∑nt

i=1

(
eδrq + eδγ,ser + erγ,s + eθγ,c

)
, if κ = γ,

(6.10)

where eδrq, e
δ
κ,ser, e

r
κ,s, and eθκ,c are the STA’s (i.e., MU or robot) energy consumption during task

request dissemination, actor selection, and physical/digital sub-task execution, respectively.

Further, note that eδrq is given by eδrq = eb + etra = êi · tbw + eψ · txtra, where eb and etra

denote the energy consumption of task request buffering and transmission delay, respectively.

We calculate the STA’s energy consumption during actor selection using our DCS (eδΩ,ser =

erq+ear+eac = f ·eΦ · t̂rq+f ·eψ · tar+eΦ · tac) and MCS policy (eδγ,ser = êrq+ êar+ êac = β ·eΦ ·
t̂rq+β ·eψ ·tar+eΦ ·tac), where erq/êrq, ear/êar, eac/êac, and f/β denote the energy consumption

during task request reception, response transmission, assignment message reception, and total

number of robots, respectively. Hence, the STA’s energy consumption during physical sub-

task execution (erκ,s) is equal to erκ,s=eχ·trκ,s =ebr+e
Ψ
r +eφr=êi·tbr+eϕ· tΨr +eσ·tφr , whereby trκ,s

represents the physical sub-task execution time. For our DCS and MCS policy, trκ,s is equal to

trΩ,s and trγ,s, respectively. Moreover, let eχ, ebr, e
Ψ
r , and eφr be the average energy consumption

(per second) during physical sub-task execution, the robot’s busy state (ebr = êi · tbr), task

location traverse (eΨ
r = eϕ · tΨr ), and physical sub-task workload processing delay (eφr = eσ · tφr ),

respectively. The STA’s energy consumption during digital sub-task execution is obtained as
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eθκ,c in DCS (eθκ,c = eθΩ,c) and MCS policy (eθκ,c = eθγ,c). Further, eθκ,c is given by eθκ,c = êh · tθκ,c =

ebθ + ewθ + eoθ + eπθ + eφθ = êi · (tbθ + twκ,θ) + eψ · tuθ + eΦ · tdθ + êi · (tπθ + tφθ ), where êh and tθκ,c are

the average energy consumption and time required for digital sub-task execution, respectively,

and ebθ, e
w
θ , eoθ, e

π
θ , and eφθ denote the energy consumption in the agent’s busy state (ebθ=êi·tbθ),

offloading waiting (ewθ = êi · twκ,θ), communication delay (eoθ = eψ · tuθ + eΦ · tdθ), computation

processing (eπθ = êi · tπθ ), and cache look-up delay (eφθ = êi · tφθ ), respectively.

6.5.8 Communication to Computation Ratio

In this sub-section, we analyze another important performance metric: the communication to

computation ratio (C2R). C2R is defined as the ratio of task execution communication delay

(tϑκ) and task workload processing time (tεκ) and may be applied in our DCS (κ = Ω) and MCS

(κ = γ) policies, whereby C2Rκ is given by

C2Rκ =
tϑκ
tεκ

=

∑nt
i=1 t

δ
rq + tδκ,ser + twκ,θ + toθ∑nt
i=1 t

φ
r + tπθ + tφθ

. (6.11)

6.5.9 Task Offload Gain to Overhead Ratio

Finally, we introduce another major performance metric, namely, the so-called task offloading

time gain to overhead ratio (TGO). For the computation of TGO, we consider both task

offloading and non-offloading versions of our DCS and MCS policies. More specifically, in

the non-offloading version of our DCS/MCS policy, the selected robot executes the full task.

Conversely, in the task offloading version of our DCS/MCS policy, the selected robot and

agent process the physical and digital sub-task, respectively.

TGO is defined as the ratio of task execution time gain (t̂δκ,n − tδκ,µ) and offloading com-

munication overhead in DCS/MCS task offloading policy. Thus, TGO is obtained as fellows:

TGOκ =
t̂δκ,µ − tδκ,µ
tδκ,od − t̂δκ,od

, (6.12)

where tδκ,µ and tδκ,od represent the full task execution delay and communication overhead (tδκ,od =

tδrq+t
δ
κ,ser+t

w
κ,θ+toθ) in the DCS (κ=Ω) and MCS (κ=γ) task offloading policies. Consequently,

t̂δκ,µ and t̂δκ,od denote the full task execution delay and communication overhead in the non-

offloading version of our DCS and MCS policies. Further, note that t̂δκ,od is given by t̂δκ,od =

tδrq + t̂δκ,ser + twκ,r + tdr , where t̂δκ,ser denotes the suitable robot’s selection time in the non-

offloading version of DCS (t̂δκ,ser = f · t̂rq + f · tar + f · tcp + y · tac) and MCS (t̂δκ,ser =

β · t̂rq+β · tar+β · tcp+y · tac). Let tdr denote the task result transfer delay in the non-offloading

version of our DCS and MCS policies, which is given by tdr = sv
ψw

+ sv
ψw

+ tp4. Moreover, t̂δκ,µ is
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Table 6.1: Parameters and default values for evaluation of user preference-aware task and
resource assignment scheme

Notation Definition Default val-
ues/units

nt, wπ, wφ, sv Task number, digital and physical sub-task work-
load, digital sub-task output data size

1-20, M cycles, KB
(vary)

eψ, eΦ, êi, eϕ, eσ STA’s average energy consumption (per second)
for digital task upload, task result download, wait-
ing delay, physical task location traversing, task
workload processing

0.1W, 0.05W,
0.001W, .7W, .5W

m, qr, dΨ, ε,
νr/νθ, cθ

STAs under each ONU, robot moving speed and
distance from task location, steepness of Zipf dis-
tribution, robot/agent task processing speed, a-
gent storage capacity

1-20, 1-10m/s,
1-100m, .5-1,
500/3200MHz,
3-10GB

β/Θ, z/v̂ Number of dedicated/non-dedicated robot, dedi-
cated/total cloud agent

1-20, 1-6 (vary)

xw, yf , ᾱ/σ/τ Transmission capacity of Wireless and fiber link
(xw = ψw, yf = Φct/φfl/Ψfl/Φcl), dedicated local
cloudlet/non-dedicated cloudlet/dedicated remote
cloud server number

6900(WLAN)/
300(cellular) Mbps,
10 Gb/s(fiber),1-3

tc, t
c
α/t

w
α Polling cycle time, STA’s cellular/WiFi residence

time
100-800 ms, 0-15s
(random)

tmsgwl , t
msg
pon , t

δ
κ,ser

gi, sw, td

Wireless (e.g., PS-Poll), MPCP message length
(GATE,REPORT), actors selection delay, digital sub-
task input, and computation sub-part output data
size, task deadline

0.512µs, 0.231µs,
µs, 50-1000 KB,
5-100 KB, 5-15s

hcn/h
c
r, V/na,

tp1/tp2/tp3

Hop distance between host ONU and nearby
ONU/OLT, number of caching content/cloudlet,
propagation delay for local cloudlet/non-local
cloudlet/cloud offloading

2/4, 1000/4, ms
(vary)

ω̃1/ω̂2, υ1/υ2,
∆1/∆2,Λ1/Λ2,
~λ1/λ̃2

Monetary cost (per second) for dedicated/non-
dedicated robot and agent, task request transfer,
delay-sensitive, delay-tolerant task offloading us-
ing WiFi/cellular interface

.002/.008 $ and

.002/.008 $, .01$,

.01$, .001$

t̂rq/tar/tcp/tac
tp/tp̂/t

∗
p,

Task request/response/comparison/ack message
duration, propagation delay caching (local →local
cloudlet/local→non-local cloudlet/local cloudlet
→ remote cloud),

0.17/0.12/.20/0.12
µs, ms (vary)
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given by t̂δκ,µ = tδrq + t̂δκ,ser + trκ,s + trκ,c, whereby trκ,s and trκ,c represent the execution time of the

physical sub-task (trκ,s = tbr + tΨr + tφr ) and digital sub-task (trκ,c = tπr + tφr + twκ,r + tdr) in the non-

offloading version of our DCS and MCS policies, respectively, whereas tbr, t
Ψ
r , tφr , tπr , tφr , twκ,r,

and tdr denote the robot’s busy time, task location traverse time, physical sub-task workload

processing, and digital sub-task workload processing (tπr = wπ
νr

), cache look-up (tφr = tlθ), task

result buffering (twκ,r = twκ,θ), and task result transfer delay, respectively.

6.6 Results

In this section, we present numerical results to investigate the performance of our proposed

DCS and MCS based task execution schemes. Table 6.1 summarizes the parameters and their

default values in accordance with [30], [17], [119], [120], and [121].

Assumptions and simulation setup: We assume that each full HART task request con-

sists both physical (capturing an image at a location) and digital (detection of object from

captured image and caching content access of the detected object) sub-task. Due to movement

facilities physical sub-task can be executed only by robots, whereas location independent dig-

ital sub-task can be executed by robots/cloud agents based on their computing and caching

abilities. Note that, output of the physical sub-task (captured image) is the input data size

of digital sub-task that can be offloaded to cloud agent/nearby robots for processing. For

delay-sensitive DCS policy users, the main requirements of the HART task execution are the

selection of suitable actors from both dedicated and non-dedicated actors and preemptive

bandwidth resource assignment. Whereas, for the delay-tolerant MCS policy users, the main

requirements of the HART task execution are the utilization of only dedicated actors for suit-

able actors selection and non-preemptive bandwidth resource assignment. Note that, in this

work ONU’s are inter-connected by interconnected fiber links. Robots and MU’s device is

connected with the ONU-MPP/ONU-eNB’s through the wireless link. Whereas, ONU’s use

dedicated point-to-point fiber links to transfer/receive their offloaded task input/output data

to/from cloudlet server. The computation processing speed of the CPU of each robot and

cloud agent server is set to 500 and 3200 MHz, respectively. The fiber backhaul transmission

capacity is set to 10 Gb/s in both uplink and downlink, whereas the fiber backhaul length

between the OLT and ONUs is 20 Km. At the wireless front-end, maximum data rates of

300 Mb/s (cellular link) and 6900 Mb/s (WLAN physical line rate) is considered. The fiber

backhaul range between the ONU to cloudlet server and OLT to remote cloud server is 1

Km and 10 Km, respectively. Hence, the MAP radius, ONU-MPP/ONU-eNB coverage area,

and density of MAPs within each ONU-MPP coverage area is set to 100 m, 9 km2, and 3,

respectively. The full HART task arrival number, physical and digital sub-task workload,

offloaded (digital) task input and output data size values are chosen randomly in the range of
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1-20, 50-1000 M cycles, 50-1000 KB, 10-200 KB, respectively. A STA’s average energy con-

sumption (per second) for digital sub-task upload, result download, waiting (idle) time, task

workload processing is set to 0.1W, 0.05W, 0.001W, and 0.5W, respectively, similar to [17].

The polling cycle time and task deadline values are varied within the range of 100-800 ms and

5-30s, respectively. Moreover, we assume that the monetary cost of using non-dedicated actors

(owned by network operators) is higher than that of dedicated actors (owned by MUs). We

also assume that the usage of a delay-sensitive offload time sub-slot implies higher monetary

costs than the usage of a delay-tolerant offload time subslot. Thus, to highlight the impact

of the examined cloud/robot selection and usage of bandwidth resources on the performance,

the average monetary cost value (per second) for dedicated/non-dedicated actor usage as well

as delay-sensitive and delay-tolerant task offloading via the WiFi/cellular interface are set

to 0.002$/0.008$, 0.01$/0.001$, respectively. To visualize the effect of the actors’ impact on

the performance, the number of dedicated/non-dedicated robots and cloud agents is varied

within the range of 1-20 and 1-6, respectively. The duration of the MPCP (tponmsg) and WLAN

messages (twlmsg) is set to 0.512µs and 0.231µs, respectively, similar to [105]. The remaining

parameters and their default values are described below in Figs. 6.6 and 6.7. The system

settings used in the evaluation (Scenario 1) is given by: β = 20, Θ = 12, z = 2, v̂ = 6,

wπ = wφ = 100, 50, 200, 150, 400, 300, 250, 350, 450, 500, 600, 550, 650, 800, 750, 700, 950, 1000,

850, 900 Mcycles, sv = 20, 10, 40, 30, 80, 60, 50, 70, 90, 100, 120, 110, 130, 160, 150, 140, 190, 200,

170, 180KB.

Performance analysis: Figs. 6.6(a) and 6.6(b) depict the average aggregate task ex-

ecution time performance for our proposed DCS and MCS based task execution policies,

respectively. Both figures indicate that for an increasing task arrival number, the average task

execution delay increases in all compared versions of DCS and MCS policies, i.e., MTMD,

MT, and MD. Specifically, we observe that for both DCS and MCS based task execution, the

MTMD based scheme achieves a significantly lower time delay than its counterparts. Fur-

ther, we observe that for both DCS and MCS based task execution, the MD based scheme

results in the second lowest average task execution time. By contrast, the MT based scheme

shows an inferior average task execution time performance. This is due to the fact that in

the MTMD based scheme both robot and cloud agent are selected by taking not only their

task workload processing delay but also the incurred waiting and communication delay into

account. Furthermore, the network interface (wired/wireless) providing the highest data rate

is selected for multiple-task offloading activities. In the MTMD based scheme, robot/cloud

agent and bandwidth resources are assigned to multiple tasks based on their lower task ex-

ecution deadline requirement. Hence, in the MT based scheme, the selection of the highest

available data rate is ensured for each task offloading activity. Note that the MT based scheme
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Figure 6.6: Average task execution time, monetary cost, task execution time cost saving ratio,
monetary cost saving ratio, and total energy consumption cost performance for scenario 1
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assigns suitable actors (robot/cloud agent) for each task based in random order. Hence, in

the MD based scheme, the task scheduler selects suitable actors with a higher task processing

speed for each arriving task. As a result, the MD based scheme minimizes the task workload

processing delay rather than the full task execution time, which consists of both the task

workload processing and offloading communication delays. From Figs. 6.6(a) and 6.6(b) we

also observe that for varying task numbers, the DCS task execution policies outperform their

MCS based counterparts in terms of task execution time. This is because DCS policy users

give preemptive access to actors and bandwidth resources for executing their delay-sensitive

tasks.

Fig. 6.6(c) examines the suitability of different cloud agent selections for the execution

of digital tasks using our proposed DCS and MCS policies. The figure shows that for an

increasing caching content data size (sv), the average task execution time increases rapidly for

all compared DCS and MCS policies. The figure also indicates that if the priority is achieving

a lower task execution delay, the DCS (local cloudlet caching) scheme is more suitable than

all its counterparts. We notice that the MCS (remote cloud caching) scheme experiences the

maximum task execution delay due to its higher task offloading communication overhead.

For instance, for nt = 6 and sv = 60 KB, the DCS (local cloudlet caching) scheme yields

approximately a 3.46%, 8.45%, 23.67%, and 32.52% higher task execution delay gain than the

DCS (non-local cloudlet caching), DCS (remote cloud caching), MCS (local cloudlet caching),

and MCS (remote cloud caching) schemes, respectively. Fig. 6.6(d) depicts the monetary

cost versus total task number (nt) performance for both DCS (MTMD) and MCS (MTMD)

policies. The figure reveals that for both DCS (MTMD) and MCS (MTMD) policies, the

monetary cost remains low for low values of nt, but rapidly increases for larger nt. Moreover,

for varying task numbers, the MCS (MTMD) policy outperforms the DCS (MTMD) policy in

terms of minimum monetary cost. This is because unlike the DCS (MTMD) policy, the MCS

(MTMD) policy relies on dedicated robots/agents and non-preemptive bandwidth resources for

their requested task execution. Fig. 6.6(e) shows the monetary cost versus caching content

data size (sv) performance for different DCS and MCS policies. We observe that for both

higher and lower sv, the MCS (cloudlet caching) and DCS (remote cloud caching) schemes

offer the lowest and highest monetary cost, respectively.

Figs. 6.6(f) and 6.6(g) clearly show that a shortage of dedicated robots (β) has a detrimen-

tal impact on the task execution time and monetary cost saving performance of our proposed

DCS and MCS policies. Both figures show that for different β, the time and monetary cost

saving ratio is maximum in the DCS (MTMD) and MCS (MTMD) policies, respectively. Note

that a lower dedicated robots availability results in a higher task execution delay in the MCS

(MTMD) than DCS (MTMD) policy. Hence, the use of both dedicated and non-dedicated
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actors cause additional monetary cost in the DCS policy, as opposed to the MCS (MTMD)

policy. For instance, nt = 10 and β = 6, the time cost saving ratio in the DCS (MTMD)

policy compared with the MCS (MTMD) and MCS (MD) policies is approximately 34% and

45%, respectively. Hence, for nt = 10 and β = 6, the monetary cost saving ratio in the MCS

(MTMD) policy compared with the DCS (MTMD) and DCS (MD) policies is 74% and 80%,

respectively.

Fig. 6.6(h) examines the impact of varying caching content data sizes (sv) on the energy

consumption cost for different DCS and MCS policies. We observe that the energy consump-

tion cost is lower for small sv and higher for large sv in the considered DCS and MCS policies.

We also note that the DCS (cloudlet caching) scheme achieves the minimum energy consump-

tion cost of all compared approaches. Fig. 6.6(i) depicts the energy consumption cost versus

task number (nt) for both DCS and MCS based policies. The figure shows that the energy

consumption cost rises rapidly for an increasing nt in all compared policies. Note that for

different nt, the DCS (MTMD) policy offers a lower energy consumption cost than the alter-

native policies. Also note that due to the higher task execution delay, the MCS based policies

suffer from a higher energy consumption cost than the alternative policies. For instance, with

nt = 12, the energy consumption gain of the DCS (MTMD) policy over the MCS (MTMD),

DCS (MD), and MCS (MD) policy equals 6.71%, 3.4%, and 9.42%, respectively.

Next, in Fig. 6.7(a), we investigate the mean task offload delay performance of our proposed

DCS and MCS policies. The figure shows that for varying task numbers, the mean task offload

delay is the lowest in our DCS (MTMD) and highest in our MCS (MTMD) policies. This is

because MCS policy users can offload their tasks to a dedicated cloud agent only after the

completion of DCS policy users’ task offloading. Fig. 6.7(b) quantifies the impact of a varying

task number (nt) on the TGO performance of both DCS (MTMD) and MCS (MTMD) based

task offloading policies and compares it with their non-offloading (only robot based execution)

counterparts. We notice that for an increasing task number, the TGO ratio increases rapidly

in all compared schemes. We observe that for small and large values of nt, the maximum

TGO ratio is obtained in the DCS (MTMD) policy due to its lower digital task processing

overhead. For instance, for nt = 4, the TGO ratio in the DCS (MTMD) and MCS (MTMD)

policies is approximately 62% and 46%, respectively. Fig. 6.7(c) depicts the average caching

content access delay for our DCS and MCS policies. We observe from the figure that for an

increasing caching content data size (sv), the caching content access delay grows rapidly in all

compared schemes. In addition, we note that the caching content access delay becomes the

lowest in the DCS policy, if the host local cloudlet fetches cached content from another local

cloudlet. The figure also shows that the caching content access delay becomes the highest in

the MCS policy, if the host local cloudlet fetches cached content from the remote cloud server.
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Figure 6.7: Mean Task offload delay, TGO ratio, C2R ratio, caching content access latency,
and average task execution time performance.
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For instance, for sv = 80 MB, m̂ = 1, and nt = 4, the DCS (local cloudlet to local cloudlet)

scheme achieves an approximately 25% and 31% higher caching content access delay gain than

the MCS (local cloudlet to local cloudlet) and MCS (local cloudlet to remote cloud) schemes,

respectively.

Fig. 6.7(d) depicts the impact of varying task numbers on the mean C2R ratio for DCS

and MCS based policies. Note that a task execution scheme with a lower C2R ratio incurs a

lower communication overhead, which is more beneficial for executing delay-sensitive HART

tasks. The figure shows that the mean C2R ratio decreases for an increasing task number.

This is is due to the fact that the task workload processing time is inversely proportional to

the C2R ratio in all compared policies. Note that the DCS (MTMD) policy offers a smaller

mean C2R ratio than the other alternative policies. Fig. 6.7(e) examines the mean C2R ratio

versus task offload input data size (gi) performance for different DCS and MCS policies. The

figure shows that for varying gi, the mean C2R ratio becomes minimum in the DCS (cloudlet

caching) policy, as opposed to both DCS (remote cloud caching) and MCS (cloudlet caching)

policies. This is because the DCS (cloudlet caching) policy experiences a smaller digital task

offloading delay than both DCS (remote cloud caching) and MCS (cloudlet caching) policies.

For instand, for gi = 400 KB and nt = 2, the DCS (cloudlet caching) scheme achieves a 7% and

12% lower mean C2R ratio than the DCS (remote cloud caching) and MCS (cloudlet caching)

schemes, respectively. Finally, Fig. 6.7(f) illustrates the impact of the polling cycle time

(tc) on the average task execution delay of our proposed DCS and MCS policies. We notice

that the average task execution delay increases for increasing tc. Furthermore, we observe

that for small and large values of tc, the DCS (MTMD) policy achieves a higher average task

execution time gain than the alternative policies. For instance, for tc = 0.3 s, the average

task execution time gain of the DCS (MTMD) policy over the MCS (MTMD) policy equals

15.42%, as opposed to only 6.03% over the DCS (MD) policy. This result indicates that for

the execution of delay-sensitive tasks, the DCS (MTMD) policy is the superior solution.

6.7 Conclusions

In this chapter, we investigated the performance of user preference aware HART task execution

over FiWi enhanced network infrastructures for the emerging Tactile Internet. To minimize

the task execution delay of DCS policy users, our proposed task coordination scheme selects

suitable actors by using both dedicated and non-dedicated actors. Conversely, to maximize

the monetary cost saving of MCS policy users, our proposed scheme selects appropriate actors

only from the set of dedicated actors. Furthermore, we presented a proactive bandwidth

allocation scheme that assigns preemptive and non-preemptive bandwidth resources to DCS

and MCS policy users, respectively. We also developed an analytical framework to evaluate
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the performance of our DCS and MCS policy based task execution in terms of monetary cost

and task execution time saving ratio, energy consumption, mean task offload delay, TGO and

C2R ratios, and caching content access delay. Our obtained results show that for a typical

number of 10 tasks and 8 available dedicated robots, the DCS (MTMD) policy exhibits a

higher task execution time saving ratio of 30.5% and a lower monetary cost saving ratio of

63.6% than the MCS (MTMD) policy. Unlike alternative approaches, our findings indicate

that the MTMD policy is useful for both DCS and MCS policy users due to its minimum task

execution time and monetary cost. Our proposed user preference aware task coordination

policy thus represents a promising solution to reduce both task execution delay and monetary

cost for emerging Tactile Internet applications.
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Chapter 7

Conclusions and Future Research

This chapter summarizes the contributions of this thesis and outlines some future research

directions in the field of HART-centric task coordination over FiWi enhanced network infras-

tructures.

7.1 Conclusions

Unlike the IoT without any human involvement in its underlying machine-to-machine commu-

nications, the Tactile Internet involves the HART-centric collaboration and thus allows for a

human-centric design approach towards creating and consuming novel immersive experiences

via the Internet. This thesis tried to shed some light on the augmentation (i.e., extension of

capabilities) of the human through the HART-centric collaborative task execution framework.

To reap the benefits from human-machine convergence, this thesis presented a suitable task

coordination framework for efficiently orchestrating the real-time collaboration among human

mobile users, centralized and decentralized computational agents (cloud/cloudlets), and col-

laborative robots (cobots) across converged FiWi enhanced network infrastructures. In light

of the emerging Tactile Internet moving towards decentralization based on edge computing,

intelligent base stations, collaborative cloud computing (robots and cloudlets), the inheren-

t distributed processing and storage capabilities of FiWi enhanced networks were exploited

for the execution of local and non-local HART-centric tasks. The doctoral thesis focused on

HART task coordination over FiWi enhanced networks focusing on three major issues, namely,

power and latency-aware task assignment, failure avoidance, and prefetching-aware bandwidth

resource assignment.

For the cost-effective HART task execution over FiWi enhanced networks, delay and power

saving issues must be handled in a comprehensive fashion by taking into account task proper-

ties, dynamically changing bandwidth availabilities, and collaborative node resources (robot

and cloud agents). To do so, this thesis proposed a novel HART task coordination scheme
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for FiWi enhanced networks that assigns not only tasks to suitable actors but also bandwidth

resources for task offloading/result transfer activities. The proposed HART task coordination

scheme achieves more than 53% delay cost saving while saving monetary costs of more than

48% (in typical scenarios).

Different problems were explored and suitable schemes were proposed for the latency-aware

HART task execution over FiWi enhanced networks. More specifically, to render the human-

to-robot task allocation process more efficient, in Chapter 2 we proposed a local and non-local

task allocation scheme for MUs’ requested task execution according to several key design

parameters such as the availability, skill set, distance to task location, and remaining energy

of robots. Furthermore, to reduce failures during task execution, we presented a neighboring

robot assisted failure reporting mechanism. Our results show that the estimated minimum

execution time-based robot selection outperforms traditional minimum distance and priority

based selection schemes in terms of end-to-end delay and average residual energy. Moreover,

we observed that the non-local task allocation delay is higher than the local task allocation

delay.

In Chapter 3, we presented a collaborative computing strategy that combines suitable host

robot selection for sensing sub-task execution and collaborative node selection for computation

sub-task offloading. We exploited conventional cloud servers, decentralized cloudlets, and

neighboring robots as collaborative nodes for computation offloading in support of a host

robot’s requested computation sub-task execution. The results of both collaborative and non-

collaborative task execution schemes demonstrate that for a typical scenario the collaborative

task execution scheme improves the task response time delay by up to 8.75% and the energy

consumption by up to 14.98% compared to the non-collaborative task execution scheme.

For resource-efficient task execution, Chapter 4 proposed a context-aware task migration

scheme for efficiently orchestrating the real-time collaboration among human mobile users,

central and decentralized computational agents (cloud/cloudlets), and collaborative robots

(cobots) across converged FiWi communications infrastructures. We investigated the problem

of whether and, if so, when and where a HART-centric task should be best migrated to.

For resource-efficient task execution, the migration decision is made according to given task

processing capabilities of cloud/cloudlet agents and cobots, task execution deadline, energy

consumption of involved cobots and mobile devices, and task migration latency. Our results

show that for a typical cognitive sub-task input data size of 600 MB, the cobot-to-agent

(cloudlet near task location) cognitive task migration scheme achieves more than 20% task

response time improvement and 23% energy savings over the traditional non-migration scheme.

The results also show that intra-agent cognitive sub-task migration achieves a higher task

response time gain than inter-agent migration.
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In Chapter 5, we investigated a community- and latency-aware multiple HART task

scheduling scheme by using real-time information about arriving task requests for both iso-

lated and clustered robots/agents. More specifically, we investigated the optimal multi-task

scheduling order and resource assignment strategy for task on- and offloading based HART task

execution with task prefetching and fault tolerance capabilities. To reap the benefits from task

prefetching for the execution of multiple HART tasks, we presented a novel prefetching-aware

bandwidth allocation scheme that copes with conventional broadband and task offloading data

traffic at the same time. Our presented results show that for a typical system of 32 ONU-

MPPs and a polling cycle time of 100 ms, our proposed prefetching-aware task offloading

scheme achieves up to 31.3% and 32.7% task completion time gain over the task onloading

scheme for nearby and remote HART task execution, respectively.

Lastly, in Chapter 6, to achieve minimum task execution delay and monetary cost, we

developed a user preference-aware HART task coordination framework that selects appropriate

dedicated/non-dedicated robot/cloud agents for executing different caching and computing

delay-sensitive and delay-tolerant HART tasks. Further, to cope with limited bandwidth

resources, we proposed a proactive bandwidth allocation policy for both delay-sensitive and

delay-tolerant HART task execution. We observed that for a task number of 10 and 8 available

dedicated robots, our proposed DCS (MTMD) policy exhibits an up to 30.5% higher time

saving ratio and a 63.6% lower monetary cost saving ratio over the alternative MCS (MTMD)

policy.

7.2 Future Research

Due to their coverage and capacity advantages, FiWi enhanced networks have great potential

to ensure QoS for several emerging local and non-local HART-centric applications, thus creat-

ing new opportunities for several industries including manufacturing, industrial automation,

education, transport, entertainment, and health-care. Importantly, the integration of human

users, robots, remote cloud and decentralized cloudlet resources over FiWi enhanced networks

creates a powerful paradigm for not only the emerging Tactile Internet but also for future

network and communications research. Consequently, the contributions made in this thesis

can be extended for additional improvements. Some interesting future research directions that

may build on our proposed schemes are described below in greater detail.

(i) Self-aware HART task coordination: With the advent of safe collaborative robots

and agents, their seamless integration into human teams as teammates starts to gain steam as

part of the vision of the emerging Tactile Internet, which lies at the nexus of computerization,

automation, and robotization. While necessary, low task execution time and ultra-reliable

human-robot-agent connectivity are not sufficient to unleash the full potential of the resultant
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human-agent-robot teamwork (HART) applications. The automation of various physical and

digital HART tasks with self-aware requirements is doable by state-of-the-art agents and

robots. Regardless of whether a technological advance is labor-saving or capital-saving, skill-

biased or not, and regardless of the speed with which robots or other machines approach or

exceed human skill sets, the key to the effect of the new technologies on human wellbeing

is who owns the technologies [122]. If other persons owned our replacement technologies,

we would become jobless. Instead, if users owned them, humans would have their current

earnings and their time freed from labor to seek other productive activity. To unleash the

full potential of HART applications, one future research direction involves the development

of self-aware HART task coordination schemes for physical and digital task execution based

on the shared use of user- and network-owned robots/agents. HART members are assumed

to be self-aware about their respective goals, application needs, capabilities, and constraints.

Further, through communication, they can establish a collective context-awareness with the

objective of minimizing the completion time of tasks by robots and agents, which may be

either user-owned or network-owned. Beside the minimization of the task completion time,

another major objective of this work may be the minimization of energy consumption and

operational expenditures (OPEX) of physical/digital task execution by mobile robots and

agents. Specifically, the question of when, how, and under which circumstances user-ownership

of mobile robots and cloud agents becomes beneficial in terms of OPEX per executed task

represents an interesting research problem.

(ii) Online-to-Offline/Offline-to-Online (O2O) communication: The increasing de-

mands for online resources (e.g., cloud, cloudlet resources) create a huge challenge for MUs’

task execution due to their preferred energy consumption and data usage cost plan. As a

solution, online-to-offline/offline-to-online (O2O) communication allows HART members to

utilize both online (e.g., cloud resources) and offline resources (e.g., own or nearby mobile

devices) for task execution. O2O communications aims to maximize the use of offline and

online resources by allowing collaboration and communication among each HART member in

order to achieve win-win situations [123]. By leveraging O2O service migration with resource

awareness, HART members may share their bandwidth, computation, and storage resources

to stimulate beneficial cooperation, which can cut down users energy consumption and da-

ta usage cost. Hence, to cope with an insufficient energy and data usage budget of MUs,

research in the area of O2O based joint task migration along with appropriate bandwidth

sharing schemes is another promising direction.

(iii) Human-machine interaction based on mixed reality applications: Virtual re-

ality (VR) creates a computer generated 3D environment, which can be experienced by human

users. VR enables users to observe not only the defined objects but also the real environments
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and its objects based on their choices. Remote robotic surgery simulation, flight simulation,

and science fiction movies are some application areas of VR [124]. In augmented reality (AR),

the real environment is augmented by computer-generated virtual data (e.g., visual, auditory,

haptic). AR represents the immersive aspects of the real environment [125], [126]. AR changes

people’s perception about the real-world environment. Conversely, VR technology changes the

real environment with a 3D simulated environment. Mixed reality (MR) integrates the im-

mersive capabilities of VR with AR so that data can be transferred back into the physical

world. More specifically, MR allows not only the combination of real and virtual worlds but

also allows the coexistence of real and virtual objects and their real-time interaction. Thus,

by allowing for the collaboration and interaction of humans with real and virtual worlds (e.g.,

machines), MR creates a new medium for both consumer and enterprise domains [127]. For

the cost-effective deployment of mixed reality applications, the development of adaptive real-

time synchronization, communication, and computation techniques opens up a multitude of

future research opportunities.

(iv) Optimization techniques for human-machine coactivity: Another future scope of

our work is to develop and implement suitable optimization techniques (e.g., particle swarm

optimization) to minimize both network and cloud resource usage cost for human-machine

coactivity based task execution, while satisfying the task execution requirements, i.e., the

deadline.

(v) Realization of very low-latency and high reliability requirements for haptic

communications based applications: To achieve very low end-to-end latency of 1 ms for

real-time haptic communications based applications (e.g., remote robot steering and control,

transfer of touch senses), different challenges and requirements need to be addressed properly.

For example, at the physical layer one way packet transmission needs to satisfy the trans-

mission duration of 100 µs (packet lengths). To meet this requirement, each packet duration

should not over 33-µs packet duration. This is because for one-way packet transmission laten-

cy calculation some additional latencies need to be included: protocol processing, encoding

at the transmitter, and decoding at the receiver. Note that, in current LTE cellular system-

s, the duration of one orthogonal frequency division multiplexing (OFDM) symbol alone is

close to 70-µs long. Thus, research in the area of cellular physical layer for very low-latency

haptic communications needs to be revisited. To achieve 1 ms round-trip latency, another

major requirement is that the control server needs to be placed within 150 Km distance from

the tactile point of interaction. Further, the satisfaction of carrier grade reliability (failure

rate of 10−7) for haptic/tactile senses transmission/reception over cellular networks is another

key challenge. To achieve optimal results for real-time haptic communication research in the

area of development of advanced tactile/haptic devices, perception-based encoder/decoder,
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advanced visual-haptic multiplexing scheme, collaborative multi-user haptic operation man-

agement, and priority based radio resource management scheme is mandatory.

(vi) Advanced artificial-intelligence (AI) based prediction techniques for hap-

tic applications: Development of advanced caching, computing, and user-oriented traffic

management system at the network edge (cellular/WiFi base station) would improve the

de-congestion problem of the core network [35]. Most importantly, development and imple-

mentation of artificial-intelligent engines at the network edge can lower the end-to-end latency

by predicting the haptic/tactile experience, i.e. acceleration of movement on one end and the

force feedback on the other. Note that, currently simple linear regression algorithms are used

to predict the movement and reaction for fairly repetitive skill set driven actions between

tactile/haptic devices that requires 10-100 milliseconds. Hence, more advanced artificial In-

telligence based prediction technique needs to be developed to reduce the end-to-end latency

in different real-time scenarios where the predicted action/reaction values are deviating from

the real-time values, so that some coefficients of the predicting models are need to be updated

and transmitted to the other end for corrections and damage recovery.
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[38] D. Szabó, A. Gulyás, F. Fitzek, and D. Lucani, “Towards the Tactile Internet: Decreas-

ing Communication Latency with Network Coding and Software Defined Networking,”

in Proc., IEEE European Wireless Conference, pp. 428–433, Budapest, Hungary, May

2015.

[39] E. Wong, M. Dias, and L. Ruan, “Predictive Resource Allocation for Tactile Internet

Capable Passive Optical LANs,” IEEE/OSA Journal of Lightwave Technology, vol. 35,

no. 13, pp. 1–13, July 2017.

[40] A. Aijaz, “Towards 5G-enabled Tactile Internet: Radio Resource Allocation for Haptic

Communications,” in Proc., IEEE Wireless Communications and Networking Confer-

ence, pp. 1–6, Doha, Qatar, Apr. 2016.

[41] C. She, C. Yang, and T. Quek, “Uplink Transmission Design With Massive Machine

Type Devices in Tactile Internet,” in Proc., IEEE Global Communications Conference

(GLOBECOM) Workshops, pp. 1–6, Washington, USA, Dec. 2016.

176



[42] C. She and C. Yang, “Energy Efficient Design for Tactile Internet,” in Proc., IEEE/CIC

International Conference on Communications in China (ICCC), pp. 1–6, Chengdu, Chi-

na, Jul. 2016.

[43] C. She, C. Yang, and T. Quek, “Cross-Layer Transmission Design for Tactile Internet,”

in Proc., IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Washing-

ton, USA, Dec. 2016.

[44] Y. Feng, C. Jayasundara, A. Nirmalathas, and E. Wong, “Hybrid Coordination Func-

tion Controlled Channel Access for Latency-Sensitive Tactile Applications,” in Proc.,

IEEE Global Communications Conference (GLOBECOM), pp. 1–6, Marina Bay Sands,

Singapore, Dec. 2017.

[45] Y. Feng, C. Jayasundara, A. Nirmalathas, and E. Wong, “IEEE 802.11 HCCA for Tactile

Applications,” in Proc., IEEE International Telecommunication Networks and Applica-

tions Conference (ITNAC), pp. 1–3, Melbourne, Australia, Nov. 2017.

[46] M. Maier, “FiWi Access Networks: Future Research Challenges and Moonshot Perspec-

tives (Invited Paper),” in Proc., IEEE International Conference on Communications

(ICC), Workshop on Fiber-Wireless Integrated Technologies, Systems and Networks, p-

p. 371–375, Sydney, Australia, June 2014.

[47] A. Ebrahimzadeh, M. Chowdhury, and M. Maier, “The Tactile Internet over 5G FiWi

Architectures,” Optical and Wireless Convergence for 5G Networks and Beyond, Wiley-

IEEE Press, pp. 1–31, Abdelgader M Abdalla (Editor), Jun. 2018, in print.
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