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Abstract. A reliable knowledge and assessment of the sea
ice conditions and their evolution in time is a priority for
numerous decision makers in the domains of coastal and
offshore management and engineering as well as in com-
mercial navigation. As of today, countless research projects
aimed at both modelling and mapping past, actual and future
sea ice conditions were completed using sea ice numerical
models, statistical models, educated guesses or remote sens-
ing imagery. From this research, reliable information help-
ing to understand sea ice evolution in space and in time is
available to stakeholders. However, no research has, until
present, assessed the evolution of sea ice cover with a fre-
quency modelling approach, by identifying the underlying
theoretical distribution describing the sea ice behaviour at
a given point in space and time. This project suggests the
development of a probabilistic tool, named IcePAC, based
on frequency modelling of historical 1978–2015 passive mi-
crowave sea ice concentrations maps from the EUMETSAT
OSI-409 product, to study the sea ice spatio-temporal be-
haviour in the waters of the Hudson Bay system in north-
east Canada. Grid-cell-scale models are based on the gener-
alized beta distribution and generated at a weekly temporal
resolution. Results showed coherence with the Canadian Ice
Service 1981–2010 Sea Ice Climatic Atlas average freeze-
up and melt-out dates for numerous coastal communities in
the study area and showed that it is possible to evaluate a
range of plausible events, such as the shortest and longest
probable ice-free season duration, for any given location in
the simulation domain. Results obtained in this project pave
the way towards various analyses on sea ice concentration
spatio-temporal distribution patterns that would gain in terms
of information content and value by relying on the kind of

probabilistic information and simulation data available from
the IcePAC tool.

1 Introduction

Numerous scientific projects have recognized the link be-
tween climate change and changes in the spatio-temporal sea
ice distribution (Andrews et al., 2017; Cavalieri and Parkin-
son, 2012; Comiso, 2011, 2002; Comiso et al., 2008; Glo-
ersen et al., 1999; Johannessen et al., 2004; Rothrock et
al., 1999; Stocker, 2014; Stroeve et al., 2007; Stroeve et al.,
2014; Stroeve et al., 2012; Wang and Overland, 2009). The
climate change in the Arctic (60–90◦ N) is expected to be,
on average, 1.9 times greater than the global mean warming
(Winton, 2006), and this “Arctic amplification” is expected
to strengthen in coming decades (Serreze and Barry, 2011).

In this changing environment, an adequate and efficient
monitoring of sea ice is of key importance in better under-
standing the climate and its impacts on marine and coastal ar-
eas (Barnhart et al., 2014; Bintanja and Selten, 2014; Davies
et al., 2014; Holland et al., 2006; Kowal et al., 2017; Man-
abe and Stouffer, 1995; Overeem et al., 2011; Peterson et al.,
2002; Rahmstorf, 1995; Rahmstorf and Ganopolski, 1999;
Vermaire et al., 2013), on the security of economical and lo-
gistical activities in northern communities (Aksenov et al.,
2017; Andrews et al., 2017; Ho, 2010; Lasserre and Pelletier,
2011; Liu and Kronbak, 2010), on arctic marine fauna pro-
tection (Bhatt et al., 2010; Castro de la Guardia et al., 2013;
Darnis et al., 2012; Laidre et al., 2015; Post et al., 2013;
Wassmann et al., 2011), and on the traditional way of life
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of Inuit communities (Durkalec et al., 2015; Laidler et al.,
2010).

To understand and appreciate the role of sea ice cover re-
garding climate, marine and coastal environment manage-
ment, fauna protection, and the cultural traditions of north-
ern communities, access to informative and reliable sea ice
spatio-temporal distribution information is fundamental. En-
gineers, stakeholders, Inuit and northern populations, naviga-
tors, and scientists must be able to quantify hazards related
to the sea ice cover in order to efficiently evaluate, anticipate,
and minimize the risks of usage, building, and exploitation in
marine and coastal areas. Given the increase in activity like
tourist cruises, shipping, and mining observed in the Arctic
and the north (Dawson et al., 2018; Lasserre and Pelletier,
2011; Pizzolato et al., 2016), one can expect the demand in
information to also increase. For example, engineers could
make use of probabilistic data to assess the potential duration
of sea ice presence for an infrastructure they are planning to
build; mariners could use the data to estimate the best depar-
ture date from their home port to reach their final destina-
tion according to a certain sea ice concentration probability
threshold; fauna specialists could use the data to estimate the
risk encountered by species dependent on sea ice cover for
their fitness, such as polar bears and seals; and finally, Inuit
communities could use the tool to evaluate if their planned
travel routes are risky for a given period of the year given the
known history of the sea ice spatio-temporal behaviour.

Despite a large number of Earth observation datasets on
sea ice cover, only a few provide both high temporal and
spatial resolution. National ice services, such as the Cana-
dian Ice Service (CIS), provide users with sea ice conditions’
climatology that is a reliable source of descriptive statistics
on the sea ice spatio-temporal behaviour, such as the average
freeze-up or maximum extent date. The CIS also provides
daily and weekly regional ice condition maps that inform
users of the observed concentrations and the ice development
stage reached by sea ice, as well as detailed sea ice condi-
tion reports, for all regions of the Canadian Arctic. These
maps and reports are created by experienced and skilled pro-
fessional sea ice analysts who make use of diverse sources
of sea ice information such as radar, optical microwave im-
agery, and passive microwave imagery in combination with
in situ observations to prepare their analyses (Iacozza, 2000).
However, even if the CIS data and other national ice service
products do provide probabilistic information, these datasets
do not carry information on the nature of the underlying sta-
tistical distributions of sea ice parameters, such as sea ice
concentration (SIC %), at any given point.

To build a probabilistic model of sea ice concentrations,
historical information is needed and must meet specific needs
such as long-term availability, reliability, large spatial cov-
erage and high temporal frequency. As visible imagery is
largely affected by cloud coverage, especially prominent in
the Arctic, it is not a reliable source of information with
which we can build our model. In spite of its independence of

atmospheric conditions, synthetic aperture radar (SAR) im-
agery does not provide sufficient spatial coverage for our pur-
pose. Therefore, passive microwave observation turned out
to be a compromise as this dataset, even if its resolution is
coarse, provides daily data for the entire Arctic and histori-
cal data are available for it from 1978 onwards.

By exploring an innovative probabilistic sea ice concen-
tration modelling avenue, this study proposes a tool, named
IcePAC, to characterize the underlying statistical distribu-
tions of the SIC % at any point in the Hudson Bay system
(Saucier et al., 2004) based on historical passive microwave
remote sensing data from 1978 to 2015. These data are than
used to analyze the spatio-temporal behaviour of SIC % in
the Hudson Bay area, with a probabilistic perspective and
compared to the CIS climatology.

2 The Hudson Bay system

The study area is the Hudson Bay system (HBS), consist-
ing of the Hudson Bay, Hudson Strait, James Bay, and Foxe
Basin (Fig. 1). The HBS is surrounded by the three Canadian
provinces of Quebec, Ontario, and Manitoba and the territory
of Nunavut. It is the largest inland sea on Earth, with a to-
tal area of 1 300 000 km2 (Etkin, 1991; Gagnon and Gough,
2005a; Martini, 1986), and is located in both subarctic and
Arctic regions. An estimated 20 % of the flux of freshwaters
to the Arctic Ocean are thought to come from rivers flow-
ing into the HBS, which represents 900 km3 yr−1 (Déry and
Wood, 2005, 2004). It is connected to the Labrador Sea via
the Hudson Strait while waters from the Arctic Ocean flow
through the Fury and Hecla Strait to the Foxe Basin (Prinsen-
berg, 1986), and it is characterized by shallow depths of less
than 100 m in the Foxe Basin, of a maximum of 125 m in the
Hudson Bay, and of more than 200 m in the Hudson Strait
(Jones and Anderson, 1994). It has cyclonic currents gener-
ated mostly by winds, with a maximum intensity in Novem-
ber (Saucier et al., 2004).

A large amount of research has been done to document the
average sea ice behaviour in the HBS (CIS, 2013; Gagnon
and Gough, 2005a, b; Hochheim and Barber, 2010, 2014;
Kowal et al., 2017; Maxwell, 1986), which goes through a
complete freeze–thaw cycle every year. The sea ice cover
in the HBS is primarily constituted of first-year ice, with
the exception of traces of multi-year ice drifting in the Foxe
Basin (CIS, 2013; Etkin and Ramseier, 1993). The sea ice
cover initially forms in the northwestern part of the HBS
near Southampton Island in late November and progresses
towards the southeastern part of the HBS (Hochheim and
Barber, 2014; Maxwell, 1986) to finally cover most of the
HBS in late December. Sea ice maximum extent in the HBS
is usually achieved in April (Gagnon and Gough, 2005b),
after which the melt begins in May along the northwestern
shoreline of the HBS. The melt progresses from the shores
toward the centre of the Hudson Bay, which usually results
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Figure 1. The Hudson Bay system with communities, model validation points and polynyas.

in an agglomerate of sea ice in the south central part of the
Hudson Bay in late July (CIS, 2013). In summary, the HBS
is, on average, frozen in late December and free of ice in
mid-August (Mysak et al., 1996; Wang et al., 1994).

Many authors have studied the trends in sea ice cover ex-
tent for the Hudson Bay area (Galbraith and Larouche, 2011;
Hochheim and Barber, 2014; Tivy et al., 2011). Among them,
Tivy et al. (2011) arrived at the conclusion that the Hudson
Bay area was affected by some of the strongest downward
trends regarding the ice season duration in the entire circum-
polar Arctic. Confirming the results of Tivy et al. (2011),
Hochheim and Barber (2014) measured trends of the open
water season duration comparing a 1996–2010 climatology
with a 1980–1995 climatology based on a modified Comiso
SIC % dataset. Their results showed lengthening of ice-free
seasons in Foxe Basin, Hudson Strait, and Hudson Bay, of
3.5, 4.9, and 3.1 weeks respectively. It is worth noting that,
since the HBS is mostly covered by first-year ice, the natural
variability of the sea ice conditions is considerable since it is

mostly driven by warming temperatures, but also by changes
in atmospheric circulation (Mudryk et al., 2018).

Ice thickness during winter in the HBS ranges from 1 to
> 2.5 m according to numerical modelling studies, though,
as reported by Landy et al. (2017), these studies do not agree
on the spatial distribution of sea ice. Gough et al. (2004)
identified an east–west asymmetry in long-term trends of
sea ice thicknesses in the HBS using drill-hole measure-
ments acquired between 1960 and 2000. These trends show
a tendency of thickening on the western side (+0.1 to
1.5 cm yr−1) of the Hudson Bay, while the eastern side
shows, conversely, a trend towards a thinning ice pack (−0.5
to 0.8 cm yr−1).

Polynyas are also present in the HBS, such as the north-
western Hudson Bay polynya between the western coast of
the Hudson Bay and Southampton Island that forms occa-
sionally throughout the winter and spring (Gough et al.,
2004), the Fury and Hecla Strait and Hall Beach polynyas
(Barber and Massom, 2007), located in northwestern parts
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of the Foxe Basin, and the Cape Dorset polynya, which is a
shore lead polynya (Stirling, 1980).

3 Data and methods

Sea ice extent has displayed an important decline in the last
decades (Cavalieri and Parkinson, 2012), as it can be ob-
served with remote sensing data, such as passive microwave
data, which have been acquired since 1978. Another impor-
tant source of information on sea ice cover is model predic-
tions which come from deterministic models (Hunke et al.,
2017; Rousset et al., 2015; Weaver et al., 2001), based on
dynamical and thermodynamic equations evolving in syn-
ergy inside a modelling framework, or from statistical mod-
els, based on statistical tools such as simple and multiple re-
gression analysis (Ahn et al., 2014; Drobot, 2007; Pavlova
et al., 2014) to explain an expected sea ice parameter value
(e.g. sea ice extent, sea ice area, sea ice concentration, sea ice
thickness).

Another statistical approach, focusing on the estimation
of the probabilities of occurrence of specific sea-ice-related
events, has been used in recent research (Dirkson, 2017;
Rajak et al., 2015). It is achieved either by using the sim-
ple count method (e.g. an event occurred four times in the
last 10 years, which corresponds to a 40 % probability of
occurrence) or by using the frequency modelling method,
which consists of adjusting a theoretical distribution to a se-
ries of observations, consequently defining the plausible sea
ice events for the entire range of probabilities (i.e. p = 0 to
100 %). In this research, the frequency modelling method is
used for a series of passive microwave historical SIC % re-
mote sensing data to adjust distributions to a total of 20 738
grid cells or sites within the HBS (i.e. the spatial dimension)
for each of the 52 weeks of the year (i.e. the temporal dimen-
sion), resulting in a total of 1 078 376 distribution fits.

The datasets used and protocols followed in the IcePAC
tool to model SIC % distributions at every grid cell in the
HBS are described in the following sections.

3.1 Sea ice concentration dataset

Sea ice concentration is defined as the proportion of sea ice
covering a predefined area, expressed as a percentage. In re-
mote sensing, this predefined area is represented by a grid
cell. The choice of a SIC dataset for frequency modelling
in our study is highly influenced by the extent of the HBS
(1 300 000 km2) and has been made to ensure uniformity and
continuity of the series used for analysis.

Multiple SIC datasets are generated using either visible,
thermal, SAR, or passive microwave remote sensing. As the
objective of the IcePAC tool is to provide the capacity to eval-
uate the spatio-temporal evolution of the SIC, the source of
data needed to ensure a complete coverage of the HBS (i.e.
the spatial dimension) and to ensure continuity in the series

(i.e. the temporal dimension). A passive microwave dataset
was chosen as it meets these two needs.

The global reprocessed sea ice concentration dataset, OSI-
409 (Eastwood et al., 2015; Tonboe et al., 2016), was se-
lected as it enables the reconstitution of SIC series for more
than 30 years with a 12.5 km grid size and is processed with
a unique hybrid SIC algorithm. The hybrid algorithm only
uses the information taken from the “Bootstrap” algorithm
(Comiso, 1995) when SIC < 70 %, linearly weights the SIC
estimated by the Bootstrap and Bristol (Smith, 1996) algo-
rithms when 70 %<SIC> 90 %, and only uses the infor-
mation from the Bristol algorithm when SIC> 90 %. An-
other passive-microwave-based SIC % dataset is used in this
study as a comparison dataset, the OSI-430, and its only dif-
ference from OSI-409 is that it uses SSM/I data obtained
from NOAA instead of recalibrated SSM/I data from RSS
(Remote Sensing Systems). The difference in the resulting
SIC % product is, according to Eastwood et al. (2015), ex-
pected to be minimal.

In OSI-409, the passive microwave channels used for ice
concentration mapping have footprint sizes ranging from
56 km for the 19 GHz channels to 33 km for the 37 GHz chan-
nels. As SIC % values are represented on 12.5 km grid cells
in the OSI-409 and 430 products, inputs of different resolu-
tions are combined using a gridding procedure that loads all
passive microwave observations within the period of a day
for a 12.5 km grid cell (centred on 12:00 UTC) and averages
them using a weighting value (dependent on the distance be-
tween the observation and the centre of the grid cell) and an
influence radius (dependent on the passive microwave chan-
nel resolution). A detailed explanation of the method is pro-
vided in Eastwood et al. (2015).

It is important to note that passive microwave SIC %
datasets are known to be affected by diverse error factors
such as a land spill-over effect along coasts that triggers false
higher SIC % estimation if not taken into account. To mit-
igate the errors caused by this phenomenon, a coastal cor-
rection is applied to the data with a method inspired from
Cavalieri et al. (1999). This method first calculates monthly
average SIC % for all months and finds the minimum ice con-
centration from these averages. This minimum is then used
to correct the ice concentration values in the coastal zone if
adjacent non-coastal grid points are ice-free. Also, climato-
logical maximum extent masking is done to mask out erro-
neous ice outside areas where sea ice is ever likely to occur
using a sea ice extent monthly climatology from the NSIDC
(National Snow and Ice Data Center) (NSIDC, 2013).

Another error factor with passive microwave data is data
gaps which can occur either in the form of missing scan lines,
missing orbits, or polar observation holes. As reported by
Eastwood et al. (2015), these gaps, when small, can be cor-
rected through simple interpolation. However, when facing
large gaps, a blurring effect appears in the interpolated area.
To correct this effect, an interpolation approach using the in-
formation from the past and following days is used in the OSI
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Figure 2. The process of frequency modelling from series building to model fit. (a) The SIC % data stacking and series building for every
pixel in the simulation domain. (b) An example of a unique site complete series plotted. (c) An example of model fit (beta) to the density
distribution of the SIC % values in the series with the α and β model parameters.

products. And last but not least, the effect of ponds appearing
during the melt is that the resulting maps tend to underesti-
mate SIC % during summer since there is confusion between
open water areas and melt ponds on top of sea ice. Finally,
another underestimation of the SIC % results from thinner ice
types which do not act as a radiometric insulator for the pas-
sive microwave frequencies around 19 and 37 GHz that are
the base of the OSI-409 and OSI-430 datasets (Eastwood et
al., 2015).

These different error sources in the process of estimating
SIC % using passive microwave imagery are known to have
an impact on the reliability of the data, especially during the
freeze-up and the melt periods, as brought forward by Agnew
and Howell (2003), who noticed that the underestimation of
ice extent in the Hudson Bay during summer, when compared
to CIS maps, could go up to 43.5± 27.9 % (while consider-
ing the CIS data as ground truth). Since the HBS is an area
where new ice forms every year, this systematic underesti-
mation when using passive microwave data must be kept in
mind.

The data have been clipped to the HBS extent using the
Natural Earth (NaturalEarth, 2014) vector dataset with an
estimated spatial resolution of 500 m (Wessel and Smith,
1996), well beyond the resolution of the OSI-409 and OSI-
430 datasets. As the coasts of the HBS are highly dynamic,
other datasets could have been used such as the CanVec prod-
uct from Natural Resources Canada, which is updated regu-
larly. However, considering the 12.5 km grid size, the Natural
Earth product was chosen.

3.2 Frequency modelling

The IcePAC tool uses frequency modelling to describe the
underlying SIC % probability distribution at a given site with
a simplified model fitted on historical SIC data. The first step

in this approach is to build the time series of historical data,
then to ensure their quality using preliminary tests, and fi-
nally to identify and fit the model on the data (Fig. 2).

3.2.1 Building the sea ice concentration (SIC) series

The SIC series are built to represent the SIC state for a
specific week, for all years between 1978 and 2015. It is
for these series that we adjust a theoretical distribution to
estimate the probabilities of SIC-related events. First, the
daily OSI-409 data have to be averaged every 7 days to
create weekly datasets. This operation is made following a
365-day “no-leap” calendar convention (i.e. every year has
365 days), separated in 52 weeks (31 December is included
in week 52). Second, the data for each week number are
stacked in chronological order, from 1978 to 2015.

3.2.2 Preliminary tests

Series have to go through a set of preliminary tests to assess
their stationarity, homogeneity, and independence, assuring
they are suitable for frequency modelling. The tests used in
IcePAC are the Mann–Kendall test for stationarity (Mann,
1945), the Wald–Wolfowitz test for independence (Wald and
Wolfowitz, 1940), and the Wilcoxon test for homogeneity
(Wilcoxon, 1945).

Series are considered independent if the subsequent
unique SIC observations have no dependence on one another,
they are considered homogeneous if they are reputed to be
from the same distribution, and they are stationary if they
are not affected by a trend. In the case of a detected non-
stationarity, the trend is modelled and subtracted from the
series (Cave and Pearson, 1914).

All the time series, either original or detrended in regard
to the Mann–Kendall test, satisfied the preliminary tests for
a significance level of α = 0.05.
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Figure 3. The trend removal process applied to a SIC % time series for a coastal grid cell extracted from OSI-409 data for week 50.

3.2.3 Trend estimation and removal

The estimation of a trend on a percentage data series has the
particularity that the trend must, in order to be coherent with
the physics of the studied phenomenon, be bounded in a [0,1]
domain (Baum, 2008). In other words, we must ensure we
do not measure a trend that generates SIC values larger than
100 % or smaller than 0 %. To guarantee the respect of this
criterion, a generalized linear model with a logit link func-
tion has been used to estimate the trend. The logit link func-
tion linearizes the SIC values using the logit transformation
(Eq. 1) and it is with these transformed values that a linear
regression of the form αx+β + ε is measured.

logit(SIC)= ln(SIC/1−SIC), (1)

where SIC is defined ]0,1[.
For the trend to be removed from the series, an inverse

transformation (Eq. 2) must be applied to the estimated trend
to turn its logit values into SIC values.

SIC= exp
(

exp(logit(SIC))
(1+ exp(logit(SIC)))

)
(2)

The removal of the trend in the time series ensures that
we model the natural variability of the sea ice concentration

phenomenon, without any influence from the trend (Fig. 3).
In IcePAC, the trend is modelled using the aforementioned
method (GLM with logit link), then it is removed from the
original SIC % data, and finally the residuals are used to ad-
just the distribution model.

Once adjusted, the distribution models are used for
queries, in conjunction with the trend that is taken into ac-
count to generate the final result. For example, one could ask
for the probability of a specific SIC %. In such a case, the
trend for the prediction year is first removed from the SIC %,
and the probability of the residual is then estimated from the
distribution model. Inversely, one could ask for the SIC %
for a given probability. In such a case, the probability is first
used to get the corresponding residual value (representing the
natural variability of sea ice) and the trend is reinjected after-
ward to obtain a realistic SIC % value. In both cases, the trend
is taken into account when generating the final results.

It is important to note that frequency analysis is not a pro-
jective approach but a predictive approach. In other words,
IcePAC is not to be used to get an outlook of long-range
future SIC % conditions (projection) but to assess what is
expected for the short-term conditions (prediction). As the
trend will change in time with the addition of new SIC %
data, the further we try to temporally expand our prediction,
the more erroneous our probability estimates may be.
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3.2.4 Distribution selection and fit

The selection of adequate candidate distributions to fit on
the series is largely limited by the bounded nature of the
data. The selected distribution has to be bounded to [0,1]
and be available in a generalized form in order to adapt to
detrended series which are bounded to [−1,1]. Their gener-
alized forms are to be used with the position parameter a
fixed at −1 and the scale parameter b fixed at 2, in coher-
ence with the phenomenon. It must also present enough flex-
ibility in shape to adapt to the different type of SIC series
in the HBS domain. Two different distributions, the gener-
alized beta distribution and Johnson’s SB (system-bounded)
distribution (Johnson, 1949), both bounded and displaying
flexibility in shape, have been fitted on the series using the
maximum likelihood estimator (MLE; NIST, 2013) and com-
pared by measuring the root mean square error (RMSE) be-
tween observations and adjusted curves as well as the Akaike
information criterion (Akaike, 1998) and the Bayesian infor-
mation criterion (Schwarz, 1978).

The generalized beta distribution (Eq. 3) has four param-
eters which are the p (p > 0) and q (q > 0) shape parame-
ters, the position parameter a =−1, and the scale parameter
b = 2. In Eq. (3), B is the beta function. This distribution has
been used before in climatology (Dirkson, 2017; Falls, 1974;
Henderson-Sellers, 1978; Sulaiman et al., 1999), in seismol-
ogy (Lallemant and Kiremidjian, 2015), to study air pollution
(Nadarajah, 2008) and in hydrology (Chen and Singh, 2017;
Yao, 1974).

f (x)=
(x− a)p−1(b− x)q−1

B(p,q)(b− a)p+q−1 , (3)

where a ≤ x ≤ b; p,q > 0.
Johnson’s SB (Eq. 4) is, under its generalized form, a four-

parameter distribution, for which the γ and δ (δ > 0) are the
shape parameters, the parameter a =−1 is the position, and
the parameter b = 2 is the scale. This distribution has been
used before in meteorology (Cugerone and Michele, 2015;
Wakazuki, 2013), in forestry (Rennolls and Wang, 2005), and
in hydrology (D’Adderio et al., 2016).

f (x)=
δ
√

2π

(b− a)

(x− a)(b− x)

[
−

1
2

{
γ+δ ln

(
x−a
b−x

)}2
]
, (4)

where b,δ > 0.
Two approaches were tested for distribution selection. The

first approach considered fitting the distributions to the series
according to their Mann–Kendall test results (i.e. managing
detected trends only). The second approach considered fit-
ting the distributions to systematically detrended series (i.e.
removing the trend from every time series in the simulation
domain) in order to ensure spatial coherency in the IcePAC
outputs.

The use of a systematic trend removal approach is justi-
fiable by the fact that natural phenomena are considered by
nature non-stationary (Lins, 2012; Rao et al., 2012) and by
the relative shortness of the series which can have an effect
on the conclusions of the Mann–Kendall test (Hirsch et al.,
1982). Also, it is important to state that the frequency anal-
ysis approach is rarely used to generate spatialized results
like it is in the IcePAC approach in which every time series
(linked to a specific location or grid cell) is processed as an
individual station.

The two trend removal approaches, tested on 958 ran-
domly chosen series, yielded similar conclusions. In 71.4 %
of cases, the beta distribution outperformed Johnson’s SB
distribution. For the remaining 28.6 % adjustments for which
Johnson’s SB distribution did perform better, both the infor-
mation criterion and the RMSE showed a non-significant dif-
ference with the beta distribution. In light of these results
and to preserve parsimony in IcePAC, it was decided to use
only the beta distribution for all series, for which a systematic
trend removal was applied.

As expected, using an approach which systematically cor-
rects for trends in time series before the distribution fit im-
proved the spatial coherency of the resulting probability
maps generated by IcePAC (Fig. 4).

3.2.5 Model queries

Queries with the IcePAC tool are possible via three important
functions resulting from the distribution fit, the probability
density function (PDF), the cumulative distribution function
(CDF), and the percent point function (PPF). These functions
are obtained using the fitted parameters from the beta distri-
bution independently for each of the 20 738 grid cells in the
IcePAC simulation domain.

The PDF is obtained by fitting a theoretical distribution
on the frequency histogram of the SIC % observations. The
selected distribution in IcePAC is the beta distribution for
which the parameters of Eq. (3) were estimated using the
MLE. The PDF shows how probability is distributed between
SIC % values and how it evolves.

Derived from the PDF, the CDF (Eq. 5) gives the proba-
bility for a given range of SIC % values. It corresponds to the
area under the PDF curve for a specific range of SIC values,
usually from 0 % to SIC %max. As an example of the CDF,
one could query the probability of non-exceedance (p) for a
sea ice concentration of 25 % (SICmax) for week number 1
for the year to come.

Fx(SIC%)=

SIC %max∫
0

fx(SIC%)dt (5)

The inverse function of the CDF, the PPF (Eq. 6), estimates
the SIC % value for a given probability of non-exceedance.
As an example of PPF, one could query the SIC %max for
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Figure 4. Comparison of IcePAC results for non-systematic (i.e. based on Mann–Kendall test result) trend removal (a) and systematic trend
removal (b), on the resulting map for the probability of observing a SIC< 50 % on week 1.

a probability of non-exceedance of 55 % for week 1 for the
year to come.

Q= F−1(p) (6)

Since the IcePAC fits are made on detrended series (e.g.
residuals), the trend has to be taken into account when pro-
cessing queries, meaning that it has to be either removed
from the SIC %max value if the CDF is used or added to the
result of the PPF query in order to render a physically valid
result. The query flow chart is presented in Fig. (5).

3.2.6 IcePAC versus observations in 2016

The assessment of the validity of IcePAC predictions was
done by comparing IcePAC weekly output time series for
the entire year with the OSI-430 product, a data source not
used in IcePAC development but based on the same SIC % re-
trieval algorithm (Tonboe et al., 2016). The comparison was
made between the 2015–2016 sea ice season SIC % values
(not included in the input data for IcePAC) and the IcePAC
SIC % for a non-exceedance probability of 90 % (P = 0.9)

Eight different comparison sites were selected to repre-
sent different sea ice spatio-temporal behaviours (see Fig. 1).
Four coastal sites, Akismi Island (CAI), Cape Dorset (CCD),
Belcher Islands (CBI), and Hall Beach (CHB), were sam-
pled to assess the behaviour of IcePAC predictions along the
coastline at different latitudes. Also, four offshore sites, Fro-
bisher Bay (OFB), Central Hudson Bay (OCHB), Churchill

(OC), and Northern Ungava Bay (ONUB) were sampled to
assess the behaviour of IcePAC predictions offshore at dif-
ferent latitudes and at critical navigation passage points.

Figure 6 displays SIC % prediction outputs from IcePAC,
for a probability of non-exceedance of 90%. Each compari-
son site shows a modelled dynamic which is coherent with
reality and with the OSI-430 2015–2016 observation data.
As it could be expected, for all sites, it is during the freeze-
up and melt periods that we can observe the largest differ-
ences between the 2015–2016 OSI-430 SIC % observations
and the model outputs, compared to stable cover periods dur-
ing which the range of probable SIC % values is narrowed
down (i.e. the mean and the P = 90 % lines are almost over-
laid), and therefore the observations tend to rejoin with the
model output. Some anomalies of various intensities can be
detected in the series such as early 2015 melt-out events at
Hall Beach and Churchill (M in Fig. 6), late 2016 freeze-up
events at points Akismi Island and Churchill (◦ in Fig. 6),
and early 2016 melt-out event at Hall Beach (♦ in Fig. 6),
which all are in agreement with the anomaly maps (Fetterer
et al., 2017) of the NSIDC’s Arctic Sea Ice News and Anal-
ysis (https://nsidc.org/arcticseaicenews/, last access: 18 May
2018). The fact that the Cape Dorset site displays a SIC %
for a probability of non-exceedance of 90 % of about 80 % at
most is coherent with its shore lead polynya status. Similar
conclusions can be made for the Hall Beach point for which
the polynya tends to appear by late May, which in our case
was earlier in 2015 and 2016, as confirmed by NSIDC. In
Fig. 6, daily model outputs (green lines) are presented as a
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Figure 5. IcePAC query flow chart.

comparison with the weekly outputs (black dots) in order to
justify why the IcePAC model outputs were generated at a
weekly interval, to filter the effects of the daily variability of
SIC % estimations in OSI-409, especially visible at coastal
sites.

The OFB site, near Iqaluit, has a behaviour that indicates
an underlying error. In fact, neither the predictions nor the
observations reach a SIC % value of 0 %, which is improba-
ble in our study area. The reason behind these discrepancies
with the validation data is that the OSI-409 product does not
adequately estimate the SIC in this area, as can be seen in
Fig. (7). The Frobisher Bay is usually ice-free around mid-
July, which is never the case in the OSI-409 dataset. The
source of this error is the land spill-over effect (i.e. land con-
tamination) on estimated SIC combined with an inadequate
sea ice presence estimation in the NSIDC sea ice monthly
maximum extent climatology used as a mask for restricting
areas where sea ice is likely to occur. Given the fact that the
climatology mask states that there is possibly ice in the Fro-
bisher Bay on that date, the algorithm attempts to measure it,
with erroneous results. It has been found that this condition
does occur in the Frobisher Bay and also west of Southamp-
ton Island, in Roes Welcome Sound.

Such errors make it important to emphasize that the results
obtained from the model are to be used with care and ideally
in combination with other sources of information such as lo-
cal knowledge, other remote sensing imagery, and historical
sea ice maps from national sea ice services.

4 Analysis of Hudson Bay sea ice spatio-temporal
dynamics

The major asset of the IcePAC tool is that its output data give
a probabilistic perspective on relevant sea ice event in com-
parison to the usual static descriptive statistics. Therefore,
IcePAC gives not only the capacity to determine the mean
event, but also to estimate the range of plausible events for a
given site and date.

Here, the IcePAC outputs are used to assess the sea ice
spatio-temporal dynamics, given different probability sce-
narios and in terms of three cover indicators, which are the
length of the ice-free season (or its corollary, the ice-covered
season), the probable complete melt-out week, and the prob-
able complete freeze-up week.

4.1 Analysis with the IcePAC tool

Before presenting any results, the ice indicators analyzed in
the next paragraphs must be clearly defined. First, the prob-
able complete melt week corresponds to, for varying proba-
bility scenarios, the first week for which the SIC % is below
15 % in a given grid cell (starting its research from week 36
– 1 September – onwards). Second, the probable complete
freeze-up week corresponds to, for varying probability sce-
narios, the first week for which the SIC % is above 15 % in a
given grid cell (starting its research from week 14 – 1 April –
onwards). To be considered valid, these events must be sus-
tained for at least 3 consecutive weeks. Finally, the proba-
ble duration of the ice-free season corresponds to the gap, in
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Figure 6. IcePAC weekly and daily P = 90 % outputs (i.e. it represents a value of SIC % for which there is a 90 % probability that it is equal
to or lower than the given SIC % level) versus OSI-430 SIC % observations for the 2015–2016 sea ice season. Some anomalies of various
intensities can be detected in the series such as early 2015 melt-out events at Hall Beach and Churchill (M), late 2016 freeze-up events at
Akismi Island and Churchill (◦), and an early 2016 melt-out event at Hall Beach (♦).

weeks, between the different probable melt-out and freeze-up
weeks.

The use of the 15 % limit to define the presence or absence
of sea ice is a convention used by many authors (Andersen
et al., 2006; Cavalieri et al., 1997, 1999; Divine and Dick,
2006; Gloersen et al., 1993; Pang et al., 2018) for SIC derived
with passive microwave data and was therefore used in this
analysis.

To estimate the aforementioned ice indicators, the proba-
ble SIC value for a given non-exceedance probability (p) was
extracted from IcePAC for every location and week. For this
analysis, a range of non-exceedance probabilities going from
5 % to 95 % was evaluated, with a step of 5 % between each
analysis. Time series of the results were compiled and it is for
these series that the complete freeze-up and melt-out events
were identified. Figure 8 shows the estimated freeze-up and
melt-out event weeks for p = 50 %.

This detection process was repeated for each of the 20 738
grid cells of the simulation domain and for each probability

step. It is worth noting that while the melt is described as a
non-exceedance event (SIC< 15 %), directly deduced from
p, the freeze-up is actually defined as an exceedance event
(SIC> 15 %), deduced from 1−p.

Figure 9a presents the probable freeze-up and melt-out
events for the coastal community of Puvirnituq, located in
the northeastern part of the Hudson Bay. In this figure we
notice that melt has a 25 % probability to be completed by
week 25 (18–24 June), only has a 10 % probability of be-
ing completed for week 24 (11–17 June), and is certain to be
completed by week 31 (30 July–5 August). According to the
two curves plotted in Fig. 9a, we can state that a complete
freeze-up and complete melt at Puvirnituq can be expected,
with a very high probability of occurrence (p > 95 %) on
weeks 50 (10–16 December) and 31 (30 July–5 August). Fig-
ure 9b shows an assessment of the range of probable ice-free
season duration made for the same coastal community. Here,
the freeze-up curve is inversed (1−P ) as the shortest possible
ice-free season duration is a combination of the latest possi-
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.

Figure 7. Frobisher Bay OSI-409 error and time concordant MODIS True Color composite (Vermote, 2017)

Figure 8. Estimated freeze-up (a) and melt-out (b) weeks for p = 50 % in the HBS.

ble melt (high exceedance probability) and the earliest pos-
sible freeze-up (high non-exceedance probability). By com-
paring the space between the two curves for the 5 % to 95 %
probability range, we observe that the shortest possible ice-
free season at Puvirnituq is 14 weeks and that the longest is
26 weeks. Figure 9c shows the ice-free season duration esti-

mated for numerous coastal communities located in the study
area using the method described for Fig. 9b. Particularly re-
markable cases can be noticed, such as Cape Dorset, which
displays a large variability in possible ice-free season dura-
tion given the shore lead polynya located in front of the com-
munity, Hall Beach in Foxe Basin with generally shorter ice-
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Figure 9. Probable freeze-up and melt-out events for the coastal community of Puvirnituq (a), the range of probable ice-free season duration
for the same community (b), and probable ice-free season lengths for all coastal communities of the HBS (c).

free seasons, with outliers corresponding to the occasional
enlargement of the Hall Beach polynya, and finally Winisk,
located in the south central part of the Hudson Bay, where ice
tends to form early and melt late, which explains the shorter
ice-free seasons when compared to other communities.

4.2 Comparison with the Canadian Ice Service atlas

The HBS has been analyzed since 1972 (i.e. first regional
Hudson Bay map) by the Canadian Ice Service (CIS) and
they have gathered numerous sea ice condition maps in the
area from which they built a 30-year sea ice climatological
atlas (CIS, 2013), portraying the average sea ice conditions
and freeze-up and melt-out dates. As the information pro-
vided by the CIS atlas is given based on median SIC % val-
ues, a comparison with the p = 50 % IcePAC output gives an
outlook on the coherency of the model when compared with
another source of data, built around a different methodology.

The “Dates of freeze-up and break-up” charts of the CIS
1981–2010 atlas depict the extent of ice on a biweekly ba-
sis during the freeze-up and break-up periods (CIS, 2013).
They provide a pictorial representation of the evolution of
the ice extent during those two periods. The freeze-up and

break-up dates are estimated using median values for 1981–
2010 computed from CIS regional ice charts, a collection of
over 40 years of data which were digitized in the late 1990s
as a raster with a 1 km grid size. These charts were pre-
pared by trained sea ice analysts who used high-resolution
RADARSAT images as inputs to their analyses, since its
acquisitions started in 1996, in combination with AVHRR,
NOAA, SSM/I, and ERS-1 data. However, all maps produced
prior to 1996 were made without RADARSAT and there-
fore could be apprehended as less accurate than maps pro-
duced post-1996. The CIS also started using RADARSAT-
2 in 2008. Another important information is that SIC % is
estimated in tenths in CIS datasets in respect to the formal-
ism of the egg code, meaning that SIC % marked as 1/10
in an egg code could be in reality any value between 10 %
and 19.99 %. Considering this, ice presence is defined as
SIC=> 1/10 for CIS data (CIS, 2013), while we stated that
it was an SIC %=> 15 % for OSI-409.

Compared to the CIS data, IcePAC is based on algo-
rithmically generated weekly averaged ice maps and calcu-
lated from adjusted frequency models. Also, there is a dif-
ference in spatial resolution between the two products; CIS
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Table 1. Comparison between the CIS atlas and IcePAC p = 50 % modelled occurrence weeks for the freeze-up and melt-out events at
selected sites in the HBS. (“F” denotes freeze-up, “M” denotes melt-out and “NA” means not available.)

Community CIS (F) CIS (M) P = 50 % (F) P = 50 % (M) Diff. (F) Diff. (M)

Arviat 47 25 47 24 0 1
Aupaluk 48 28 48 27 0 1
Cape Dorset 49 24 49 24 0 0
Chesterfield Inlet 47 25 46 25 1 0
Chisasibi NA 27 49 26 NA 1
Churchill 47 27 47 27 0 0
Coral Harbour 45 26 46 27 −1 −1
Hall Beach 43 23 44 32 −1 −9
Ivujivik 48 25 48 27 0 2
Puvirnituq 48 25 48 26 0 −1
Quaqtaq 48 25 49 25 −1 0
Salluit 49 24 48 26 −1 −2
Sanikiluaq 48 25 50 25 −2 0
Umiujaq 49 25 50 25 −1 0
Winisk 46 30 47 31 −1 −1

uses 1 km digitized historical ice charts, while IcePAC uses
passive-microwave-estimated SIC % resampled at a 12.5 km
grid size. Finally, there is a time frame difference as the CIS
atlas is built with data from 1981 to 2010 (30 years), while
IcePAC is built with data from 1978 to 2015 (37 years).

The comparison, as displayed in Table 1, confirms that the
freeze-up and melting dates identified by IcePAC are realistic
when compared to the CIS historical data. Small differences
in weeks are present and may be linked to a multitude of
factors, the most important being the different methodologies
used to generate the data.

The melt of the Hall Beach point does however come out
as a relevant difference between the CIS and IcePAC melt
week estimate. Since we find the freeze-up week adequately
at the Hall Beach point and we use the same model distri-
bution to derive both the freeze-up and melt information, it
would be incorrect to simply flag this point as erroneous.

The overestimation of the ice-free season at Hall Beach by
a 9-week gap compared to CIS could be explained by con-
sidering

– the land spill-over effect that would make the OSI-409
overestimate SIC %;

– the fact that the selected point (Hall Beach) is located
on the edge of the polynya area;

– that the melt week statistics are not measured exactly for
the same time period (1981–2010 versus 1978–2015);

– that we compare median values taken from CIS maps
(values given in tenths of SIC %) with IcePAC outputs
based on OSI-409 SIC % averages and that the defini-
tion of melt is not the same for both products (CIS is
<= 1/10, while IcePAC is < 15 %).

By comparing the IcePAC P = 50 % and P = 15 % melt
week output (Fig. 10) with the CIS melt dates, we can easily
note that the CIS melt dates are quite variable in the polynya
area and that by selecting a point a little further offshore,
the results would have been comparable, towards advoca-
tion of the land spill-over effect as a coherent explanation.
However, as we also compared the CIS melt weeks with a
lower probability scenario (P = 15 %), it turns out that the
Hall Beach polynya does appear close to the community, as
expected. This specific situation is certainly linked to the fact
that IcePAC uses average SIC % values compared to the CIS
median values. As the SIC % in this specific area tends to
be either very low (open polynya) or very high (consolidated
sea ice cover), it is credible to think that the average and me-
dian values do differ considerably. In a case of frequent low
concentration like the Hall Beach polynya, the median tends
toward a low SIC %, while the few higher SIC % events do
bring the average SIC % up, increasing the gap between the
median and the average values, enough so that with an aver-
age value we cannot detect the melt-out, therefore giving a
plausible explanation for the 9-week difference noticed here.

4.3 Applicability of the IcePAC approach to other
locations and data sources

The IcePAC modelling approach is replicable to any site for
which SIC % data are available. Evidently, to ensure rele-
vance for the resulting probability maps, the length of the
time series used as inputs to adjust the beta models must
be sufficient (∼ 30 years). Logically, the simulation domain
grid cells will fall into one of the three following categories:
(1) ice-covered grid cells with constant high SIC %, during
the stable cover period; (2) marginal zone grid cells, in which
SIC % will oscillate from high to low for the different years,
during the freeze-up and melt periods; and (3) open water
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Figure 10. Comparison of probable melt weeks for the coastal com-
munity of Hall Beach in Foxe Basin with the CIS melt weeks (a) and
two IcePAC melt week scenarios for 50 % (b) and 15 % (c) probabil-
ities. No data appear north of the IcePAC outputs since Hall Beach
is located at the upper limit of the IcePAC model test domain.

grid cells with constant low SIC %, during the ice-free sea-
son. As these are the ice regimes one could expect anywhere
in the Arctic, including the HBS, there are no limitations on
this side for using the IcePAC approach in other locations.

Other data sources could also be used with the IcePAC
approach such as climate model outputs or different sea ice
concentration maps. As climate model outputs provide future
projections of SIC %, an evaluation of the range of probable
SIC % patterns for a future year could be achieved (i.e. 2050
or 2080). However, one downside of these datasets is their
coarse spatial resolutions.

5 Conclusion

The IcePAC tool permits an assessment of plausible sea-ice-
related events for the entire range of probabilities for 20 738
sites (grid cells) in the Hudson Bay system, for all 52 weeks
of the year. It is based on local (grid-cell) models that use
the generalized beta distribution to describe the sea ice be-
haviour with four parameters at each site (with position and
scale being fixed), based on historical 1978–2015 informa-
tion from passive microwave imagery (OSI-409). From these
parameters, IcePAC generates spatialized sea ice probabilis-
tic information that can be used in any geographic informa-

tion system or a web-based map interface for further analy-
ses.

An analysis has been made to define, for each grid cell
in the simulation domain, the plausible scenarios for each
probability. A subsequent comparison with the 1981–2010
Canadian Ice Service sea ice climatology atlas (CIS, 2013)
showed that the information generated with the IcePAC tool,
for the p = 50 % case, renders coherent probabilities for
freeze-up and melt events over the HBS. A noticeable dif-
ference in the melt weeks was detected for the community of
Hall Beach, suggesting that using median values instead of
average SIC % could be of interest in order to be able to ad-
equately detect specific events like polynyas. Another anal-
ysis, focused on the community of Puvirnituq, showed that
it is possible to evaluate the range of plausible scenarios in
terms of ice-free season length locally.

The model outputs generated with the IcePAC tool pro-
vide a novel probabilistic perspective regarding important
events related to sea ice dynamics that was not available be-
fore. With its capacity to be utilized in other areas (with re-
spect to the grid size of the passive microwave product), and
the fact that it could easily be updated using new data, the
IcePAC tool has the potential to provide valuable informa-
tion on probable freeze-up and melt weeks as well as on ice
presence and ice-free season lengths.

This relevant information will help decision makers such
as engineers wanting to build a new marine coastal or off-
shore infrastructure to estimate ice hazards, fauna specialists
trying to understand the vulnerability of a given species liv-
ing dependent on the ice cover, or mariners wanting to es-
timate the feasibility of navigating a certain route. Turning
the raw probabilistic information gathered from IcePAC into
valuable thematic information will give stakeholders a capi-
tal gain in apprehending the possible spatio-temporal sea ice
concentration patterns and in preparing for an effective miti-
gation of climate change impacts in coastal and offshore en-
vironments.

Data availability. IcePAC data are available on a web interface
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