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Abstract 

Rainfall Intensity-Duration-Frequency (IDF) curves are commonly used for the design of 

water resources infrastructure. Numerous studies reported non-stationarity in 

meteorological time series. Neglecting to incorporate non-stationarities in hydrological 

models may lead to inaccurate results. The present work focuses on the development of a 

general methodology that copes with non-stationarities that may exist in rainfall, by making 

the parameters of the IDF relationship dependent on the covariates of time and climate 

oscillations. In the recent literature, non-stationary models are generally fit on data series of 

specific durations. In the approach proposed here, a single model with a separate functional 

relation with the return period and the rainfall duration is instead defined. This model has 

the advantage of being simpler and extending the effective sample size. Its parameters are 
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estimated with the maximum composite likelihood method. Two sites in Ontario, Canada 

and one site in California, USA, exhibiting non-stationary behaviors are used as case 

studies to illustrate the proposed method. For these case studies, the time and the climate 

indices Atlantic Multi-decadal Oscillation (AMO) and Western Hemisphere Warm Pool 

(WHWP) for the stations in Canada, and the time and the climate indices Southern 

Oscillation Index (SOI) and Pacific Decadal Oscillation (PDO) for the stations in USA are 

used as covariates. The Gumbel and the Generalized Extreme Value distributions are used 

as the time dependent functions in the numerator of the general IDF relationship. Results 

shows that the non-stationary framework for IDF modeling provides a better fit to the data 

than its stationary counterpart according to the Akaike Information Criterion. Results 

indicate also that the proposed generalized approach is more robust than the the common 

approach especially for stations with short rainfall records (e.g. R
2
 of 0.98 compared to 0.69 

for duration of 30 min and a sample size of 27 years). 

 

Keywords: Non-stationarity; Hydro-meteorological modeling; Rainfall; Intensity-

Duration-Frequency; Climate change; Climate oscillation indices; Composite likelihood. 
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1. Introduction 

Rainfall Intensity-Duration-Frequency (IDF) curves are commonly used for 

planning, designing and operating water resources infrastructure. Their importance in the 

design of sewer systems, for example, can be attributed to their physical link to the time of 

concentration, which is defined as the time required for a rainfall drop to flow from the 

farthest point in the catchment to the point of the sewer system for which the design is 

made. Runoff reaches a peak at the time of concentration when the entire watershed 

contributes to the flow at the outlet (Chow et al., 1988). The design intensity duration is 

then equal to the time of concentration. IDF relationships are generally represented on plots 

of the intensity vs. the duration, using a family of curves representing specific return 

periods. The first uses of IDF relationships date back to the 1930’s (Bernard, 1932), while 

the first construction of geographical maps for IDF relationships in the USA dates back to 

the early 1960’s (Hershfield, 1961). Today, IDF curves have been developed in most 

countries (Koutsoyiannis et al., 1998; Willems, 2000; Madsen et al., 2002; Bougadis and 

Adamowski, 2006; Langousis and Veneziano, 2007; Elsebaie, 2012). 

Classical frequency analysis provides adequate engineering design values when the 

data series from which the probability distribution parameters are to be estimated comes 

from a stationary distribution and the observations are independent or weakly dependent. In 

contrast to its classical stationary alternative, a non-stationary data series is one in which 

the statistics of the sample (mean, variance and covariance) change over time. Non-

stationarity in hydrologic records can be attributed to local anthropogenic impacts, such as 

deforestation and other land use change, or to global climate change and low frequency 
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climate oscillations (Milly et al., 2008). Considering that rainfall characteristics are used for 

the design and management of water resources infrastructures, it is essential to address 

properly the non-stationarity in rainfall extremes. 

The literature indicates that the effects of climate changes on precipitation and 

runoff have not been given appropriate attention (Semadeni-Davies et al., 2008, Chiew et 

al., 2009, Arnbjerg-Nielsen, 2012). The stationarity of rainfall records has been studied 

recently in various parts of the world, with results showing significant trends in the 

statistical parameters of the analyzed records. Mekis and Hogg (1999) concluded in a study 

on the Canadian national rainfall time series that an increase in the mean precipitation has 

occurred over the years 1948–95, with the greatest increase happening in the autumn. 

Trends in extreme rainfall in Southeast Asia and the South Pacific were examined by 

Manton et al. (2001), with the results indicating an increase in the proportion of annual 

rainfall from extreme events, and a decline in the frequency of extreme rainfall events. 

Westra et al. (2013) analyzed trends in annual maximum daily precipitation on a global 

scale and detected an increase in trends for the majority of stations. 

Non-stationarity in hydro-meteorological variables can also be related to climate 

oscillation phenomena. Numerous studies have shown that precipitation anomalies can be 

related to climate indices. Shabbar et al. (1997) provided a detailed analysis of the spatial 

and temporal behavior in precipitation responses over Canada, and found that they relate to 

the two extreme phases of the Southern Oscillation (SO). Thiombiano et al. (2017) 

proposed a non-stationary peaks-over-threshold model to study Southeastern Canada 

extreme daily precipitation amounts. In this model, the scale parameter of the generalized 
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Pareto distribution was allowed to vary as a function of two covariates, the Arctic 

Oscillation and the Pacific North American climate indices, and the variability was 

modeled using a B-spline function. Evans et al. (2009) indicated that the observed decline 

in rainfall over South Australia is linked to increasing Sea Surface Temperatures (SSTs) in 

the eastern Indian Ocean. Willems (2013b) found that rainfall extremes in Europe have 

oscillatory behavior at multidecadal time scales, and that the recent upward trend in these 

extremes for central-western Europe is partly related to a positive phase of this oscillation. 

An examination of rainfall in Brussels, Belgium, showed that rainfall extremes are 

temporarily clustered due to the presence of multi-decadal climate oscillations (Willems, 

2013a). Ouarda et al. (2014), Chandran et al. (2015), Niranjan Kumar and Ouarda (2014) 

and Niranjan Kumar et al. (2016) demonstrated the influence of a number of climate 

oscillation indices on the rainfall regime in parts of the Arabian Peninsula. Ouarda and El-

Adlouni (2011) presented a general Bayesian estimation approach for the parameters of 

hydrological frequency models with covariates. The proposed approach was illustrated in a 

case study for a station in Southern California, and illustrated the effect of the Southern 

Oscillation Index (SOI) on annual maximum precipitations. 

A number of studies have focused on the development of IDF curves with 

consideration of non-stationarity (Nguyen et al., 2008; Mirhosseini et al., 2013; Rodríguez 

et al., 2014; Hassanzadeh et al., 2014; Srivastav et al., 2014; Cheg and AghaKouchak, 

2014; Yilmaz et al., 2014; Yilmaz and Perera, 2014; Yousef and Ouarda, 2015; Chandra et 

al., 2015; Agilan and Umamahesh, 2016; Lima et al., 2016; Ganguli and Coulibaly, 2017; 

Sarhadi and Soulis, 2017; So et al., 2017; Agilan and Umamahesh, 2018; Ragno et al., 
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2018). In several studies, General Circulation Models (GCMs) and Regional Climate 

Models (RCMs) are used for assessment of future rainfall events (Nguyen et al., 2008, 

Mirhosseini et al., 2013, Rodríguez et al., 2014; Hassanzadeh et al., 2014; Srivastav et al., 

2014; Chandra et al., 2015; Lima et al., 2016). Nguyen et al. (2008) proposed a statistical 

downscaling approach, based on the scale invariance concept, to incorporate GCM outputs 

in the derivation of IDF curves and the estimation of urban design storms for current and 

future climate scenarios. A regional analysis was then performed to estimate the scaling 

parameters of extreme rainfall processes for locations with limited or without data. 

Rodríguez et al. (2014) also applied a statistical downscaling approach to outputs of five 

GCMs for the simulation of daily and sub-daily rainfall series for a number of stations in 

Barcelona, Spain, and calculated factors that represent climate change. These climate 

change factors are defined as the ratio between rainfall intensity in a future climatic 

scenario and the intensity in the present climate. 

IDF models produced using GCM outputs, however, are not “real” non-stationary 

models; they are simply stationary models that are generated for specified periods of time 

within a large time frame. A non-stationary model should evolve with the variation of the 

factors causing the time series to exhibit a trend, or an oscillatory pattern. This non-

stationary approach has been applied in several studies for the frequency analysis of 

hydrological variables. Strupczewski et al. (2001) incorporated hydrological non-

stationarity into at-site flood frequency analysis (FFA). A regional non-stationary flood 

frequency model was proposed by Cunderlik and Burn (2003) that assumes non-stationarity 

in the first two moments of the time series. El Adlouni et al. (2007) developed a method for 
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the estimation of probability distribution parameters involving covariates. Nasri et al. 

(2013) proposed a Bayesian B-Spline estimator of the parameters and quantiles of the 

Generalized Extreme Value (GEV) model with covariates. 

The formulation of Flood Duration Frequency (QDF) models was derived from IDF 

models, yet developments in the area of QDF have been happening faster than those in IDF 

modeling (Javelle et al., 2002, Cunderlik and Ouarda, 2007). A key assumption in 

traditional QDF modeling is that the model’s parameters are stationary over time, which 

has proven to be an incorrect assumption in some cases. New QDF models have been 

developed with parameters that incorporate dependence on time. Cunderlik et al. (2007) 

developed a local non-stationary QDF model. Trend analysis was used to identify time-

dependent components of the second-order model and predict how they would change in 

the future. The applied approach assumes non-stationarity in the first two moments of the 

series. The model was applied to a streamflow data series from British Columbia, Canada, 

with the results showing that the quantiles estimated by the local non-stationary QDF 

model were significantly lower than those estimated by the standard QDF technique. 

Cunderlik and Ouarda (2006) introduced the key concepts of a non-stationary approach to 

regional QDF modeling. The model was tested and compared to the traditional stationary 

regional QDF model using a group of homogeneous sites in Quebec, Canada, with the 

results showing that the quantiles estimated by the traditional stationary QDF approach at 

the end of the observation period were significantly overestimated. 

There was recently a growing interest in non-stationary IDF models for which the 

parameters are dependent on covariates (Cheg and AghaKouchak, 2014; Yilmaz et al., 
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2014; Yilmaz and Perera, 2014; Yousef and Ouarda, 2015; Agilan and Umamahesh, 2016; 

Ganguli and Coulibaly, 2017; Sarhadi and Soulis, 2017; So et al., 2017; Agilan and 

Umamahesh, 2018; Ragno et al., 2018). In the recent studies that focused on non-stationary 

IDF curves, a different non-stationary GEV model is generally fit to each data series of a 

specific duration. However, it is often assumed that IDF curves are modeled by a single 

model which is dependent on both the return period and the duration (Chow et al., 1988; 

Koutsoyiannis et al., 1998; Muller et al., 2008; Van de Vyver, 2015). Rossi and Villani 

(1994) and Koutsoyiannis et al. (1998) introduced a general formula for the IDF 

relationship in which the rainfall intensity is the product of a function of T and a function of 

d. The main objective of the present study is to extend the general IDF relationship to the 

non-stationary framework. The main advantages of this approach are that a simpler model 

is obtained which eases interpretation and application of the model, there are fewer 

parameters to estimate and the effective sample size increases because of the pooling of 

data from the different durations (Veneziano et al., 2007). This is an important feature 

especially for the small sample sizes often encountered with hydro-meteorological 

variables. The proposed model introduces climate oscillation indices and time as covariates 

and allows both the position and the scale parameters of the distribution in the IDF 

relationship to vary as function of the covariates. This model is validated using case studies 

from Canada and the USA. A comparison of the general approach proposed in this work 

with the common approach is also presented. This study focuses also on the graphical 

representation of non-stationary IDF relationships. 
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2. Theoretical background 

2.1. Classical IDF relationship formulation 

The IDF relationship is commonly used to relate rainfall intensity with its duration 

and annual frequency. To define the IDF relationship, the series of maximum average 

intensities ( )ji d , 1,...,j n , is obtained for selected durations , 1,...,kd k m , where n is the 

number of years with measurements and m is the number of duration groups. The average 

intensity is defined by the depth during the time interval divided by the duration d. The 

frequency of the maximum intensity i(d) is described in terms of return period T, which is 

the average time interval between rainfall events that exceed the return level ( )Ti d . 

Several IDF relationship formulations have been proposed in the literature. In 

general, for a given return period, they are special cases of the general formula: 

 
( )  i d

d


 





         (1) 

where ω, ν, θ and η are non-negative coefficients. A number of specific formulations can be 

adapted from the general formula of equation 1 and are commonly used in the hydrological 

literature (Chow et al., 1988): the Talbot equation (with 1   and 1  ), the Bernard 

equation (with 1   and 0  ), the Kimijima equation (with 1  ) and the Sherman 

equation (with 1  ). 

2.2. General IDF relationship formulation 
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Rossi and Villani (1994) and Koutsoyiannis et al. (1998) proposed a generalized 

formulation of the IDF relationship, which can be expressed as follows: 

 

 

 
( )  

 
T

a T
i d

b d
 .          (2) 

The advantage of using this formulation is that ( )Ti d  has a separate functional dependence 

on the return period T and the duration d. This approach relies on the assumption of self-

similar scaling of annual maximum intensities with the averaging duration d. While 

separable scaling with d and T was originally derived based on empirical evidence, its 

validity was later substantiated asymptotically in the context of stochastic self-similar (i.e. 

multifractal) processes; see e.g. Veneziano and Langousis (2005), Veneziano et al. (2006, 

2009), Langousis et al. (2009, 2013), and Tyralis and Langousis (2018). The function b(d) 

is derived from the denominator in equation 1 and is expressed as: 

( ) ( )b d d   .         (3) 

Koutsoyiannis et al. (1998) demonstrated that   in equation 1 can be neglected and thus 

1   is assumed. Instead of being estimated empirically, the function a(T) is completely 

determined from the distribution function of the maximum rainfall intensity I(d). If the 

probability distribution of I(d) is 
   ;

I d
F i d , it will also be the distribution of ( ) ( )Y I d b d

, which is the intensity rescaled by ( )b d  (i.e.      
1

; 1Y TI d
F i d F y

T
    ). Consequently, 

the expression for a(T) is given by: 

  1 1
  1Ya T F

T

  
  

 
.         (4) 
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2.3. IDF relationship formulation with the EV probability distribution 

For the formulation of the general IDF relationship, any distribution that provides a 

good fit to the intensities can be introduced. Koutsoyiannis et al. (1998) gave a list of 

candidate distribution functions that can be incorporated with the general IDF relationship: 

the GEV, Gamma, Log Pearson type III, Lognormal, Exponential, Pareto and the Gumbel 

distributions. The Gumbel (EV) distribution function, also termed type I distribution of 

maxima, or Extreme Value type I distribution, is highly suitable for the modeling of 

maxima and is traditionally the most commonly used distribution to model rainfall (Chow 

et al., 1988).  

Let us assume that the rainfall intensity I(d) for any duration follows a EV 

distribution, therefore the distribution of Y will be: 

 
(

EV

)

exp
y

F y e 

  
  

 
        (5) 

where μ and σ are respectively the location and scale parameters. By combining equations 4 

and 5, the following expression of a(T) is obtained: 

 
1

  ln[ ln(1 )]a T
T

     .        (6) 

The general IDF relationship assuming the EV distribution is then presented in the 

following form: 

 

   

1
ln[ ln(1 )]

( )     T

a T Ti d
b d d



 



  

 


.       (7) 
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2.4. IDF relationship formulation with the GEV probability distribution 

The GEV distribution is increasingly adopted for rainfall modeling. For instance, 

Adamowski et al. (1996) recommended the use of the GEV for rainfall modeling in Canada 

and Koutsoyiannis and Baloutsos (2000) found the GEV to be more suitable than the EV to 

model rainfall in Greece. Consequently, in this study, the GEV is also used in the 

formulation of the IDF relationship. Note that the EV is a special case of the GEV 

distribution.  

When the rainfall intensity I(d) for any duration is assumed to follow a GEV 

distribution, the distribution of Y is written as: 

 
1

GEV

/

exp 1F
y

y







  
   

  



 

        (8) 

where μ, σ and κ are respectively the location, scale and shape parameters. By combining 

equations 4 and 8, the following expression of a(T) is obtained: 

 
1

  1 ln 1a T
T







    
       

    

.       (9) 

The general IDF relationship assuming the GEV distribution is then presented in the 

following form: 

 

   

1
1 ln 1

( )     T

Ta T
i d

b d d












    
      

     


.      (10) 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
2.5. Non-stationary general IDF relationship formulation 

For the formulation of the non-stationary general IDF relationship, a number of the 

model parameters are made dependent on covariates. El Adlouni et al. (2007) incorporated 

non-stationarity into the GEV distribution function, where the location and scale parameters 

were made dependent on covariates, either linearly or quadratically. In the context of the 

IDF relationship, a positive trend in the location parameter (and hence in the mean) will 

lead to a translation of the curve upwards. A positive trend in the scale parameter (and 

hence in the variance) will increase the distance between the IDF curves. 

The formulation of the Non-stationary IDF relationship proposed in the present 

study assumes the EV or the GEV distributions. It is assumed also that parameters μ and σ 

are dependent upon the covariates while all shape parameters, θ and η for both 

distributions, and κ for the GEV, are constant. This assumption is frequent in non-stationary 

models where, for instance, the shape parameter of the GEV is often assumed constant and 

the location and scale parameter depend upon a covariate (Katz et al, 2002; El Adlouni and 

Ouarda, 2009). This hypothesis will be verified in the present case study. The EV 

distribution parameters μ and σ in equations 7 and 10 become then the covariate-dependent 

parameters 
t  and t . The IDF formulations in equations 7 and 10 are then modified in the 

non-stationary case to become for the EV and GEV respectively: 

 

1
ln[ ln(1 )]

( )  
t t

T
Ti d

d


 



  




 ,       (11) 
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e  

1
1 ln 1

( )   

t
t

T

T
i d

d












    
      

    


.      (12) 

The dependence of t  and t  on the covariate(s) can take any form that would lead to the 

best goodness of fit of the model to the data. The linear and quadratic dependence forms of 

parameters on covariates are the easiest and the most commonly adopted in the non-

stationary literature. Let us denote tY  and tZ  the first and second time-dependent 

covariates. Distribution parameters t  and t  for non-stationary models with one covariate 

are allowed to take the following forms:  

0

0 1

2

0 1 2

t t

t t

Y

Y Y



  

  




 


 

 ,        (13) 

0

0 1

t

tY




 


 


.         (14) 

The quadratic relation with t  is not considered for the sake of simplicity. Distribution 

parameters t  and t  for non-stationary models with two covariates are allowed to take the 

forms: 

0 1 2

2

0 1 2 3

2

0 1 2 3

2 2

0 1 2 3 4

t t

t t t

t

t t t

t t t t

Y Z

Y Y Z

Y Z Z

Y Y Z Z

  

   


   

    

 


  
 

  
    

 ,      (15) 

0t  .          (16) 
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In the case of non-stationary models with two covariates, distribution parameter t  is made 

constant to obtain simpler models. Indeed, a large number of parameters would need to be 

fitted when two covariates are considered, and the limited size of the record may become a 

limiting factor. 

For the classical general IDF relationship incorporating the EV distribution, a vector 

of 4 distribution parameters ( , , , )      needs to be estimated while a vector of 5 

distribution parameters ( , , , , )       needs to be estimated for the GEV. In the case of 

the non-stationary general IDF relationship, additional parameters, depending on the 

selected model, need to be estimated and the vector of parameters to estimate becomes

0 1 0( , , , ) ( , ,..., ,..., , )t t t            and 
0 1 0( , , , , ) ( , ,..., ,..., , , )t t t              

for the EV and GEV respectively. The number of parameters ranges from 4 to 8 in the case 

of the EV and from 5 to 9 in the case of the GEV. 

2.6. Parameter estimation 

Once the adequate formulation of the IDF relationship has been defined, the 

unknown parameters need to be estimated. The least-squares method presented in 

Koutsoyiannis et al. (1998) is inadequate in a non-stationary framework because of the 

violation of the distributional assumption of homogeneity (Coles, 2001). The maximum 

likelihood and generalized maximum likelihood methods are generally used with non-

stationary models (El Adlouni et al., 2007). The maximum likelihood method has the 

advantage over other methods of adapting to changes in the model structure (Coles, 2001). 
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Let us define ( ; , )f i   , the joint probability density of  1( ),..., ( )mI I d I d  where 

α is a parameter vector that parameterizes the dependence between intensities ( )kI d  and 

( )kI d   while   parameterizes the marginal structure. The full likelihood is then given by: 

1

1

( ; ) ( ,..., ; , )
n

j jm

j

L i f i i  


        (17) 

where 
jki  denotes the jth intensity value for the duration group k. However, the density 

( ; , )f i    is unknown which makes difficult or impractical the estimation of the full 

likelihood. Indeed, in the case of IDF curves the maximum rainfall intensities over the 

different durations are dependent which violates the assumption of independence required 

in the definition of the likelihood. To overcome this difficulty, a simplified likelihood 

function for IDF curves is obtained by assuming the independence among the intensities 

over the different durations. This function is often referred to as the independence 

likelihood (Chandler and Bate, 2007) and is given by: 

1 1

( ; ) ( ; )
n m

ind jk

j k

L i f i 
 

         (18) 

where ( ; )f i   is the density function of ( )I d . In practice, the log likelihood 

( ; ) log ( ; )ind indl i L i   is maximized with an optimization procedure to obtain ̂ , the 

estimator of  . This method was applied to the IDF relationship in Muller et al. (2008) and 

Van de Vyver (2015). If ( )I d  follows a EV or a GEV distribution, the probability function 

of ( )I d  is given respectively by: 
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( ) ~ EV( ( ), ( ))I d d d  ,         (19) 

( ) ~ GEV( ( ), ( ), )I d d d           (20) 

where the parameters of the distribution are expressed as: 

( )
( )

d
d 








,  ( )

( )
d

d 








.       (21) 

In the case of the non-stationary IDF relationship, the distribution parameters are expressed 

as: 

( )
( )

t
t d

d 








, ( )

( )

t
t d

d 








.       (22) 

The independence likelihood can be considered as a special case of the composite 

likelihood. Varin et al. (2011) defined the composite likelihood as an inference function 

derived by multiplying a collection of component likelihoods. They are used in several 

applications as surrogates for the ordinary likelihood when it is too cumbersome or 

impractical to compute the full likelihood (Varin and Vidoni, 2005). 

To compare the goodness-of-fit of different models, information criteria such as the 

Akaike information criterion (AIC) or Bayesian information criterion (BIC) are generally 

used where smaller values of these criteria indicate better models. In the framework of 

composite likelihood, these criteria cannot be used because the second Bartlett identity does 

not hold, i.e. H( ) J( )   where H( ) E { ( ; )}u I     is the sensitivity matrix or 

Hessian, J( ) var { ( ; )}u I   is the variability matrix, and ( ; ) ( , )indu i l i  . 

Analogous criteria are then used having the forms ˆCL-AIC 2 ( ; ) 2dim( )indl i     and 
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ˆCL-BIC 2 ( ; ) dim( )log( )indl i n     where dim( )  is the effective number of parameters 

estimated by 
1tr{J( )H( ) }  

. The sample estimates of the sensitivity matrix H and 

variability matrix J were provided by Varin et al. (2011): 

1

1ˆ ˆH( ) ( ; )
n

j

j

u i
n

 


   ,        (23) 

T

1

1ˆ ˆ ˆJ( ) ( ; ) ( ; )
n

j j

j

u i u i
n

  


  .        (24) 

However, given that the second Bartlett identity is valid for each individual likelihood term, 

computation of the Hessians can be avoided and an alternate sample estimate can be 

obtained for the sensitivity matrix by (Varin et al., 2011): 

T

1 1

1ˆ ˆ ˆH( ) ( ; ) ( ; )
n m

jk jk

j k

u i u i
n

  
 

   .       (25)  

 

3. Study methodology 

The procedure starts by testing whether it is appropriate to build a non-stationary 

IDF model to represent a specific data set. This is achieved by testing historical records of 

intensity data for non-stationary signals. A statistical trend test can be applied to the 

individual series corresponding to different durations. The selected method to perform this 

test is the revised Mann-Kendall test (Yue and Wang, 2004), which is a modified version of 

the traditional Mann-Kendall test taking into consideration the effects of autocorrelation. If 

the intensity record tests positive to the hypothesis of existing trend within the specified 

confidence interval for the majority of durations, a non-stationary IDF model is built. 
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The general IDF model has four parameters on which dependence with covariates 

can be established. It was assumed above that distribution parameters μ and σ depend upon 

the covariates while parameters θ and η are kept constant. The following method is applied 

to test whether this hypothesis holds. Moving windows of the intensity data with sufficient 

sizes are created at the selected station. The stationary IDF model is fitted to each window 

where the parameters are estimated with the maximum composite likelihood method. The 

revised Mann-Kendall test is then applied to the obtained parameter series to detect any 

trends in the parameters. Parameters for which a trend is detected should be made 

dependent on the selected covariate in the non-stationary formulation of the IDF model. 

Once this is done, a number of options to represent the dependence of the model 

parameters on the covariates are tested. The tested models, presented in Subsection 2.5, 

incorporate parameter dependence on covariates in the linear or the quadratic form. The 

number of parameters to be estimated varies with the complexity of the model. The 

parameters of the models are estimated using the maximum composite likelihood method 

presented in Subsection 2.6. The optimization function fmincon in MATLAB (MATLAB 

Optimization Toolbox, 2016) which solves constrained non-linear multivariable functions 

where the upper and lower bounds of the parameters are defined, is used to solve the 

optimization problem of maximizing equation 14. CL-AIC is computed for each tested 

model and the one providing the best CL-AIC statistic is considered as the optimal model. 
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4. Case studies 

Two case studies are used to illustrate the method presented in this study. They 

include two stations from the Province of Ontario, Canada, and one station from the State 

of California, USA. Canadian precipitation data were obtained from the online Engineering 

Climate Datasets (ftp://ftp.tor.ec.gc.ca/Pub/Engineering_Climate_Dataset/IDF/). 

Precipitation data for the USA were obtained from the Precipitation Frequency Data Server 

(PDFS) (ftp://hdsc.nws.noaa.gov/pub/hdsc/data/sa/), which is part of the National Oceanic 

and Atmospheric Administration’s (NOAA) National Weather Service. These databases 

provide annual maximum precipitation time series for various durations. 

Two case studies are used to illustrate the method presented in this study. They 

include two stations from the Province of Ontario, Canada, and one station from the State 

of California, USA. Canadian precipitation data were obtained from the online Engineering 

Climate Datasets (ftp://ftp.tor.ec.gc.ca/Pub/Engineering_Climate_Dataset/IDF/). 

Precipitation data for the USA were obtained from the Hydrometeorological Design Studies 

Center (ftp://hdsc.nws.noaa.gov/pub/hdsc/data/sa/), which is part of the National Oceanic 

and Atmospheric Administration’s (NOAA) National Weather Service. These databases 

provide annual maximum precipitation time series for various durations. 

The Canadian database has 9 duration groups from 5 min to 24 hours and the USA 

database has 6 duration groups from 1 hour to 24 hours. The spatial distribution of the 

selected stations of the two case studies are presented in Figure 1. The rainfall intensities at 

the rainfall stations were tested using the revised Mann-Kendall test. The P-value and Z-

value results of the Mann-Kendall test are presented in Table 1. Information concerning 
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climate indices used in this study is obtained from the NOAA Earth System Research 

Laboratory (http://www.esrl.noaa.gov/psd/data/climateindices/list/). 

The study conducted by Leclerc and Ouarda (2007) for the purpose of regional FFA 

at ungauged sites presents a number of locations in the Province of Ontario, Canada, which 

exhibit non-stationary signals. Ontario's climate varies significantly in the different seasons 

of the year and from one location to another within the Province. The station of Beausoleil 

(44.85 °N, 79.87 °W) has the particularity of having a significant positive trend for each of 

the durations at a significance level of 10%. Given this strong signal, this station is selected 

in the first case study. Beausoleil is located in Lake Huron’s Georgian Bay in southeastern 

Ontario. The 27 years of record cover the time period 1977-2007, with a gap from 1993 to 

1996. 

The maximum annual rainfall depth for the Beausoleil station was tested for 

correlations with climate oscillations that are known to impact the region (Sutton and 

Hudson, 2005; Knight et al., 2006; Thiombiano et al., 2017). In this study, the following 

climate indices were considered: the Atlantic Multi-decadal Oscillation (AMO), the SOI, a 

measure of El Nino/Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), 

the Pacific North America (PNA), the Atlantic Oscillation (NAO), the Arctic Oscillation 

(AO) and the Western Hemisphere Warm Pool (WHWP). Data are available as monthly 

time series from the National Oceanic and Atmospheric Administration (NOAA) and are 

updated regularly. These times series are available from 1856 to present for AMO, 1948 to 

present for PDO and WHWP, 1950 to present for AO, NAO, and PNA, and 1951 to present 

for SOI. High correlations were found between the intensities for most durations and the 
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AMO index as well as the WHWP index. A second station in the Province of Ontario, the 

Kirkland Lake station (48.15 °N, 80.00 °W), is selected for comparison purposes using the 

same climate indices than Beausoleil. This station is located in the eastern part of the 

Province of Ontario, about 425 km to the north from the Beausoleil station. The 26 years of 

record cover the time period 1980-2006. Intensity time series at this station show also 

significant positive trends for most durations at a significance level of 10% and present 

relationships with the same climate indices. 

The second case study deals with a precipitation station from the State of California, 

USA. A strong significant negative relationship between the annual maximum precipitation 

in southwestern California and the SOI climate index was demonstrated in El Adlouni et al. 

(2007).  In Nasri et al. (2013), a positive relation between the annual maximal precipitation 

in southwestern California and the climate index PDO was also identified. El Adlouni et al. 

(2009) also found a strong relation between SOI and annual maximum precipitation at the 

Tehachapi station (35.13 °N, -118.45 °W), located in southwestern California. Annual 

maximum precipitations corresponding to various durations are available for this station in 

the USA database. The station has a long record of 52 years from 1949 to 2000 and is 

analyzed in the present study using SOI and PDO as the covariates representing climate 

oscillations. 

The covariates representing climate indices in this study are climate index averages 

computed for seasons corresponding to 3 consecutive months (JFM, FMA, MAM, AMJ, 

MJJ, JJA, JAS, ASO, SON, OND). Correlations between the seasonal climate indices and 

intensities for different durations are investigated to select the proper season. For prediction 
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purposes, seasons corresponding to the covariates are selected before the beginning of the 

year for which precipitation data are analyzed. Table 2 illustrates the correlations obtained 

from the season of May-June-July (MJJ) to October-November-December (OND) 

preceding the observation year for the 1-hour duration precipitation. It shows higher 

correlations during the season SON for the stations in Canada and during the season OND 

for the Tehachapi station. This is also true for other durations. Thus, the climate index 

covariates are defined by the average AMO and WHWP during the season SON for the two 

Canadian stations, and by the average SOI and PDO during the season OND for the 

Tehachapi station. 

 

5. Results 

Stationary models for EV and GEV were first built considering the models of 

equations 7 and 10. The stationary IDF curves generated for Beausoleil are presented in 

Figure 2 for EV. A fourteen-year length moving window, which is approximately half the 

record length, was then derived and the parameters for the stationary IDF model using EV 

were estimated for each window. The revised Mann-Kendall test was applied on each 

parameter series separately. The results indicate that μ and σ exhibit non-stationarity (p-

values of the Mann-Kendall test are respectively 0.001 and 0.01), while θ and η do not 

show any trends (p-values of the Mann-Kendall test are respectively 0.84 and 0.37). This 

confirms that the correct parameters were selected in Subsection 2.5 to be dependent on the 

covariates. 
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Different non-stationary models are proposed depending on which covariates are 

included. Models with one covariate include only the “Time” or one of the selected climate 

indices separately (AMO, WHWP, SOI and PDO). Models with two covariates include 

both climate indices (AMO-WHWP or SOI-PDO), or the time and one climate index 

(Time-AMO, Time-WHWP, Time-SOI and Time-PDO). The distribution parameters are 

dependent on the covariates according to equations 13-16. Tables 3-8 present the model 

parameters, log likelihoods and CL-AICs for the stationary and non-stationary IDF models 

for the EV and GEV distributions at each station. For each model, the optimal parameter 

relationship with the covariate(s) is determined based on CL-AIC. For all the examples 

presented in this study, for a given IDF model, the optimal parameter configuration is used. 

Performances of different IDF models are compared with respect to the complexity-

penalizing criterion CL-AIC. 

Results show that most non-stationary models lead to improvements, compared to 

the stationary one, in fitting rainfall intensity data. For instance, at Beausoleil and Kirkland 

Lake stations, the non-stationary models lead to better fit except for EV-WHWP. It should 

be noted that using a non-stationary model or the GEV always improves the log likelihood. 

However, the CL-AIC penalizes models with higher complexity. The GEV with an extra 

shape parameter, while it always improves the likelihood, it does not provide systematically 

better goodness-of-fit than the EV with respect to CL-AIC. For instance, in the stationary 

case, EV is better for Beausoleil and Kirklang, while GEV is better for Tehachapi. Overall, 

the best models, according to CL-AIC, are EV-Time-AMO for Beausoleil, GEV-Time-

AMO for Kirkland Lake, and GEV-Time for Tehachapi. With only one covariate, the best 
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models are EV-Time for Beausoleil and Kirkland, and GEV-Time for Tehachapi. With two 

covariates, the best models are EV-Time-AMO for Beausoleil, GEV-Time-AMO for 

Kirkland Lake and EV-SOI-PDO for Tehachapi. These results show that non-stationary 

IDF models, despite their complexity, have a good potential for application in hydrological 

studies, to integrate information concerning variability and change. It should be noted that 

better fitting does not necessarily mean more accurate estimates, as IDF fitting within a 

non-stationary framework allows for an increase in the number of model parameters, with 

subsequent increase in parameter estimation uncertainty. 

Due to the introduction of a fourth variable (the covariate in models with one 

covariate) in the modeling of the relationship intensity-duration-frequency, the 

corresponding IDF curves must be represented graphically in a new manner. One suggested 

representation is to generate a 3D graph where each return period is represented by a 

surface. Examples of 3D graphs are represented in Figure 3 for Beausoleil, Kirkland Lake 

and Tehachapi stations for models EV-Time, EV-Time and GEV-Time, which are the best 

models with 1 covariate. For these graphs, the axes representing the time are extrapolated 

for 20 years after the last year of observed data, to make them useful for design purposes. 

Two other suggested representations are possible in 2D. In the first representation, sets of 

curves are generated, where each set corresponds to a fixed duration. Each curve in a set 

would then represent a return period. The second representation is, in a certain sense, the 

opposite of the first where each set would correspond to a fixed return period, and each 

curve within a set would represent a duration. For illustration purposes, the 2D non-

stationary IDF curves for model EV-Time at Kirkland Lake and GEV-Time at Tehachapi 
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are presented in Figure 4, for the case corresponding to a fixed duration of 5 minutes and 

for the case corresponding to a fixed return period of 100 years respectively. For these 

graphs, the time axis is extrapolated for 20 years after the last year of observed data. 

As in the case of non-stationary IDF models incorporating one covariate, for models 

including 2 covariates, it is necessary to find a new way to represent the IDF relationships. 

In this case, five variables need to be modeled (intensity, duration, frequency and the two 

covariates). In this case, it is impossible to represent one model in one figure as in Figure 3. 

Similar to the non-stationary model with one covariate, there are two methods of 

representation. In the first, the duration is fixed and a set of surfaces are generated for each 

return period, and in the second, the return period is fixed and a set of surfaces are 

generated for each duration. Examples of each representation are shown in Figure 5. In 

Figures 5a-b, the model EV-SOI-PDO at the Tehachapi station is represented, for a fixed 

duration of 1 hour and for a fixed return period of 100 years. In Figures 5c-d, the model 

EV-Time-AMO at the Beausoleil station is represented for a fixed duration of 5 minutes 

and for a fixed return period of 100 years respectively. Again, the axes of time are 

extrapolated for 20 years beyond the observation period. It can be noticed in Figure 4 and 

Figures 5c-d, that the intensity increases after the end of the observed data series in 2007 

(during the period of extrapolation). This is due to the quadratic relation of time with the 

location parameter. Models with time as covariate should be used with extreme care as the 

direct extrapolation of the currently observed trends can be misleading and may in some 

cases lead to erroneous results (Ouarda and El Adlouni, 2011). 
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Non-stationary models are more complex and require extra work. One question of 

interest is how do the results of the non-stationary case differ from the simpler stationary 

case? To answer this question, quantiles are computed for two years representing extreme 

cases and are compared with the stationary case. Examples illustrated here are for the three 

stations using in each case the model giving the overall best fits (EV-Time-AMO for 

Beausoleil, GEV-Time-AMO for Kirkland Lake and GEV-Time for Tehachapi). For the 

models including Time and AMO as covariates, two years with extreme observed values of 

AMO corresponding to opposite phases are selected. The aim is to compare the quantiles 

when the climate index goes from one extreme to another. The selected years are 1983 and 

2004, where the values of -0.34 and 0.40 are observed respectively. For the model GEV-

Time at Tehachapi, the quantiles are computed for the first and last years of the recorded 

series with the aim of illustrating the temporal evolution of the quantiles. Figure 6 

illustrates the obtained quantiles for T=10 and T=100 years, and for both the stationary and 

the non-stationary cases. It can be observed that predicted quantiles vary considerably for 

the two years illustrated with the non-stationary IDF model. For instance, the difference 

between the 10-year quantiles for these two years represent on average 33%, 31% and 41% 

of the stationary 10-year quantile respectively for the Beausoleil, Kirkland Lake and 

Tehachapi stations. 

Parsimony issues are important in hydrological sciences due to the generally short 

length of hydrological records. The case of the stations in Canada, with only 27 and 26 

years of record, illustrates commonly encountered record lengths in hydrological 

applications. It is clear that the use of a model incorporating more than one covariate would 
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not be advisable in practice for the case study discussed in the present work. However, the 

results corresponding to a number of complex models were also presented, with the 

objective of illustrating how non-stationary IDF curves can be used in practice. This 

application was treated more like an academic case study that is used to illustrate a new 

approach. In practice, extreme care needs to be taken when selecting the level of 

complexity of the model when building non-stationary IDF curves. The dynamics of 

precipitation in the region of study (generating phenomena, teleconnections, regional 

signals, etc.) need also to be studied and will be helpful in identifying the appropriate 

model to use and the number of covariates to incorporate in the models. If a long record is 

available (70 years of data, for instance), models incorporating more than one covariate 

may be tested and their results can be used by decision makers to compare a number of 

scenarios. There is a clear trade-off between adopting simple models with a small number 

of parameters, and not ignoring any significant signals of non-stationarity (trends or 

teleconnection induced variability). 

As noted in the introduction, an approach frequently adopted in non-stationary IDF 

modeling is to define separate non-stationary models for the different durations. This 

approach is compared here to the general approach proposed in this study. For that aim, the 

parameters t  and t  of the generalized model are scaled for the different durations using 

equations 22. This way, distribution parameters ( )t d  and ( )t d  are derived for each 

duration while parameter k is constant. Then, separate non-stationary models are fit to the 

maximum intensities of the different durations using the same distribution and same forms 

than the general model. This method is applied to the cases of the GEV model with Time 
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and climate index giving the best fits for each station: GEV-Time-AMO for Beasoleil and 

Kirkland Lake, and GEV-Time-PDO for Tehachapi. The parameters obtained with both 

approaches are presented in Table 9. The coefficient of determination 2

PPR  associated with 

the probability plot and the coefficient of determination 2

QQR  associated with the quantile 

plot are used as goodness-of-fit measures. 

The results in Table 9 show that, for stations Beausoleil and Kirkland Lake, which 

have short records of 27 years and 26 years respectively, the general IDF model is often 

better than the separate IDF models. There are durations for Beausoleil for which the 

individual models provide poor estimates (e.g. for 30 min, 1 hr, 2 hr and 12 hr). In the case 

of Beausoleil, the sample size may be too small to estimate the parameters considering that 

the models used are also fairly complex with 7 parameters. For the Tehachapi station with a 

longer data record of 52 years, the parameters and performances of both approaches are 

similar. It can be concluded that for long data records, there is no significant difference 

between the generalized model and separate models. However, for short data records, the 

generalized approach is more robust.  

 

6. Conclusions and recommendations 

A general methodology for modeling IDF relationships in a non-stationary 

framework is presented and tested using rainfall intensity data from two stations in the 

Province of Ontario in Canada and one station in the southwest part of the State of 

California, USA. The location and scale parameters of the IDF relationship were modeled 
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as dependent on time and climate indices for the tested stations. The approach proposed 

here differs from the recent works published on non-stationary IDF curves in that a single 

nonstationary model is fit on the intensities of all durations instead of fitting non-stationary 

models for each specific duration. The main advantage of the proposed approach is that the 

effective sample size is considerably larger with the use of the aggregated data while the 

number of parameters to estimate is minimal. This feature is especially important for small 

sample sizes often encountered with hydro-meteorological variables. Model parameters 

were estimated by the optimization of the independence likelihood, a special case of 

composite likelihood in which the independence of the maximum intensities for the 

different durations is assumed. Selection of optimal models was made with an information 

criterion analogous to AIC and adapted for the case of composite likelihood. 

Non-stationary modeling with covariates of time and climate oscillations was 

shown in this study to lead to a better fit to the data of the tested station. Neglecting these 

variables would produce IDF models that are less accurate when the rainfall in a particular 

area exhibits a strong dependence on time, climate indices, or both. The findings of this 

study show that it is important to review and update IDF relationships in order to design 

and manage water structures with consideration of climate variability and change. 

Stationary IDF models are still of high value and should not be neglected. It is only through 

a thorough evaluation of the results corresponding to all scenarios that appropriate design 

and management decisions can be taken. 

Future work should focus on testing the developed methodology in other regions 

where a strong non-stationarity is observed in rainfall records, in order to evaluate the true 
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benefits from using non-stationary models.  The procedure developed by El Adlouni and 

Ouarda (2009), which is based on the Birth-Death (BD) Markov Chain Monte Carlo 

(MCMC) algorithm for the joint estimation of the parameters of non-stationary models and 

identification of the most appropriate model, could be adapted to IDF models. This may 

facilitate the adoption of these models in practice. 
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Figure Captions 

 

Figure 1. Geographical location of the selected stations. 

Figure 2. Stationary IDF Curves for Beausoleil using EV. 

Figure 3. Non-Stationary IDF surfaces with Time as covariate for Beausoleil (a), Kirkland Lake 

(b) and Tehachapi (c). 

Figure 4. Non-stationary IDF curves for the model EV-Time at Kirkland Lake, with a fixed 

duration of 5 minutes (a) and with a fixed return period of 100 years (b). Non-stationary IDF 

curves for the model GEV-Time at Tehachapi, with a fixed duration of 1 hour (c) and with a 

fixed return period of 100 years (d). Dots represent observed values in (a) and (c). 

Figure 5. Non-Stationary IDF surfaces for the model GEV-SOI-PDO at Tehachapi, with a fixed 

duration of 1 hour (a) and with a fixed return period of 100 years (b). Non-stationary IDF curves 

for the model EV-Time-AMO at Beausoleil, with a fixed duration of 5 minutes (c) and with a 

fixed return period of 100 years (d). 

Figure 6. Quantiles corresponding to T = 10 and 100 years for the stationary model and for the 

non-stationary model EV-Time-AMO at Beausoleil (a, b), the non-stationary model GEV-Time-

AMO at Kirkland Lake (c, d), and the non-stationary model GEV-Time at Tehachapi (e, f). For 

the models with Time and AMO, quantiles for two years with extreme climate indices are 

illustrated, and for the model with Time, quantiles for the starting year and the ending year of the 

time series are illustrated. 
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Table 1. Z-value and P-value results of the revised Mann-Kendall test for rainfall intensities at 

the Beausoleil, Kirkland Lake and Tehachapi stations. 

 

 

 Beausoleil Kirkland Lake Tehachapi 

Duration Z-value P-value Z-value P-value Z-value P-value 

5 min 2.40 0.016 0.71 0.480 - - 

10 min 3.07 0.002 1.37 0.171 - - 

15 min 2.71 0.007 1.46 0.146 - - 

30 min 2.79 0.005 2.97 0.003 - - 

1 hr 2.19 0.028 2.29 0.022 1.43 0.15 

2 hr 1.78 0.075 2.54 0.011 1.30 0.19 

6 hr 3.36 0.001 1.98 0.047 0.38 0.70 

12 hr 2.94 0.003 2.07 0.038 0.44 0.66 

24 hr 3.65 0.001 1.17 0.243 0.58 0.56 

Significant correlations at a significance level of 10% are in bold characters 
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Table 2. Correlations between the 1-hour intensity and the seasonal climate index series (3-

months moving average). 

 

Station Climate 

index 

MJJ JJA JAS ASO SON OND 

Beausoleil AMO 0.54 0.57 0.60 0.63 0.65 0.64 

 WHWP 0.41 0.48 0.50 0.49 0.46 0.38 

Kirkland AMO 0.10 0.13 0.19 0.27 0.33 0.32 

 WHWP 0.12 0.18 0.20 0.21 0.21 0.18 

Tehachapi SOI -0.20 -0.21 -0.17 -0.12 -0.16 -0.19 

 PDO 0.06 0.14 0.20 0.24 0.25 0.25 

A bold value represents the highest correlation for a given climate index 
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Table 3. Model comparison and model parameters for the stationary and non-stationary IDF models using EV at the Beausoleil 

station. 

 

Model ˆ( ; )
ind

l iψ  CL-AIC 
Model Parameters Number of 

parameters 
t
µ  

t
σ  θ η 

EV-Stationary -755.6 1535.0 662.52 243.91 6.87 0.79 4 

EV-Time -695.5 1432.3 2611.13 15.71 1.07t tY Y− +  111.40 6.14 tY+  8.15 0.81 7 

EV-AMO -705.2 1446.4 2615.00 536.05 2214.83t tY Y+ +  206.55 7.49 0.80 6 

EV-WHWP -743.2 1525.3 637.76 28.21 tY+  220.36 17.03 tY+  6.72 0.80 6 

EV-Time-AMO -690.5 1426.1 
2 2607.64 13.66 0.84 148.87 2020.56t t t tY Y Z Z− + + +  209.62 8.69 0.81 8 

EV-Time-WHWP -704.6 1453.6 2675.10 27.96 1.48 12.64t t tY Y Z− + −  215.53 8.05 0.80 7 

EV-AMO-WHWP -699.4 1441.5 2 2644.74 709.22 1938.30 12.59 3.72t t t tY Y Z Z+ + − −  194.62 7.11 0.80 8 

Best statistics are in bold characters. 
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Table 4. Model comparison and model parameters for the stationary and non-stationary IDF models using GEV at the Beausoleil 

station. 

 

Model ˆ( ; )
ind

l iψ  CL-AIC 
Model Parameters Number of 

parameters 
t
µ  

t
σ  k θ η 

GEV-Stationary -753.4 1537.4 622.48 219.26 0.15 6.10 0.79 5 

GEV-Time -695.4 1437.4 2610.37 15.49 1.06t tY Y− + . 114.35 6.01 tY+  -0.03 7.18 0.81 8 

GEV-AMO -705.2 1449.5 2612.19 532.89 2189.19t tY Y+ +  204.61 0.01 7.41 0.80 7 

GEV-WHWP -743.0 1529.0 624.94 27.63 tY+  212.32 17.03 tY+  0.06 6.63 0.79 7 

GEV-Time-AMO -688.4 1427.8 
2 2573.62 11.69 0.91 20.41 2366.42t t t tY Y Z Z− + − +  226.93 -0.14 9.11 0.81 9 

GEV-Time-WHWP -702.2 1453.6 2702.31 28.79 1.63 19.09t t tY Y Z− + −  239.72 -0.14 9.01 0.81 8 

GEV-AMO-WHWP -698.7 1438.1 2 2617.90 639.51 1794.31 8.41 3.92t t t tY Y Z Z+ + − −  179.22 0.10 6.44 0.80 9 

Best statistics are in bold characters. 
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Table 5. Model comparison and model parameters for the stationary and non-stationary IDF models using EV at the Kirkland Lake 

station. 

 

Model ˆ( ; )
ind

l iψ  CL-AIC 
Model Parameters Number of 

parameters 
t
µ   

t
σ  θ η 

EV-Stationary -750.6 1525.2 578.14 188.60 5.33 0.81 4 

EV-Time -731.5 1500.1 449.24 10.02
t

Y+  126.98 3.52
t

Y+  5.46 0.81 6 

EV-AMO -738.5 1508.6 601.99 315.41
t

Y+  181.89 5.71 0.81 5 

EV-WHWP -746.2 1525.5 569.94 18.36
t

Y+  184.71 5.45 0.81 5 

EV-Time-AMO -723.7 1498.2 
2426.57 30.49 1.03 343.01t t tY Y Z+ − +  163.24 5.57 0.80 7 

EV-Time-WHWP -731.1 1512.9 
2469.43 8.09 6.25 4.62t t tY Z Z+ − +  175.91 5.80 0.81 7 

EV-AMO-WHWP -733.4 1514.4 
2590.68 407.76 17.16 4.72t t tY Z Z+ − +  176.24 5.79 0.81 7 

Best statistics are in bold characters. 
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Table 6. Model comparison and model parameters for the stationary and non-stationary IDF models using GEV at the Kirkland Lake 

station. 

 

Model ˆ( ; )
ind

l iψ  CL-AIC 
Model Parameters Number of 

parameters 
t
µ  

t
σ  k θ η 

GEV-Stationary -750.4 1529.5 572.57 185.62 0.03 5.34 0.81 5 

GEV-Time -731.1 1502.6 446.43 10.03
t

Y+  123.11 3.61
t

Y+  0.05 5.62 0.81 7 

GEV-AMO -737.9 1511.8 595.32 317.44
t

Y+  177.22 0.06 5.84 0.81 6 

GEV-WHWP -739.5 1522.0 
2520.12 9.54 5.56t tY Y+ +  163.83 0.14 5.64 0.80 7 

GEV-Time-AMO -722.0 1494.7 
2421.30 28.44 0.99 359.53t t tY Y Z+ − +  152.44 0.10 5.53 0.80 8 

GEV-Time-WHWP -729.0 1509.9 
2465.52 6.90 4.39 5.28t t tY Z Z+ − +  165.87 0.11 5.95 0.81 8 

GEV-AMO-WHWP -730.7 1510.9 
2569.74 374.77 14.14 5.69t t tY Z Z+ − +  164.87 0.14 6.17 0.81 8 

Best statistics are in bold characters. 
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Table 7. Model comparison and model parameters for the stationary and non-stationary IDF models using EV at the Tehachapi 

station. 

 

Model ˆ( ; )indl iψ  CL-AIC 
Model Parameters Number of 

parameters 
tµ   tσ  θ η 

EV-Stationary -565.8 1151.9 9.99 4.34 0.58 0.65 4 

EV-Time -559.4 1147.1 10.72 2.93 0.07
t

Y+  0.78 0.65 5 

EV-SOI -555.7 1149.8 10.10 0.65
t

Y−  4.30 0.39
t

Y−  0.60 0.65 5 

EV-PDO -558.8 1151.6 10.45 0.84
t

Y+  4.49 0.54
t

Y+  0.65 0.65 5 

EV-Time-SOI -552.7 1154.5 
210.49 0.04 0.99 0.51t t tY Z Z− − +  4.32 0.64 0.65 7 

EV-Time-PDO -558.7 1153.8 11.74 0.05 0.85
t t

Y Z− +  4.28 0.61 0.65 6 

EV-SOI-PDO -549.0 1148.1 
29.48 0.94 0.74 1.04t t tY Y Z− + +  4.40 0.66 0.66 7 

Best statistics are in bold characters. 
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Table 8. Model comparison and model parameters for the stationary and non-stationary IDF models using GEV at the Tehachapi 

station. 

 

Model ˆ( ; )
ind

l iψ  CL-AIC 
Model Parameters Number of 

parameters 
t
µ  

t
σ  k θ η 

GEV-Stationary -561.17 1149.1 10.49 4.48 0.11 0.75 0.68 5 

GEV-Time -551.76 1138.5 11.96 2.84 0.09
t

Y+  0.15 1.17 0.71 6 

GEV-SOI -553.22 1151.0 10.44 0.67
t

Y−  4.39 0.41
t

Y−  0.08 0.73 0.67 7 

GEV-PDO -553.76 1146.3 11.19 0.90
t

Y+  4.76 0.66
t

Y+  0.11 0.86 0.69 7 

GEV-Time-SOI -553.71 1150.3 12.54 0.06 0.51
t t

Y Z− −  4.50 0.14 0.88 0.69 7 

GEV-Time-PDO -552.90 1148.8 12.85 0.07 0.76
t t

Y Z− +  4.45 0.13 0.82 0.69 7 

GEV-SOI-PDO -548.89 1153.8 
29.58 0.93 0.72 1.02t t tY Y Z− + +  4.42 0.02 0.68 0.66 8 

Best statistics are in bold characters. 
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Table 9. Comparison of model based on the general IDF relationship and independent models for each duration. 

 

Duration 
Model based on general IDF relationship Model fit on each duration separately 

tµ  σ  k  2
ppR  2

qqR  tµ  σ  k  2
ppR  2

qqR  

Beausoleil station 

5 min 2 266.54 1.36 0.11 2.37 274.49t t t tY Y Z Z− + − +  26.32 -0.14 0.932 0.693 2 296.59 1.26 0.05 62.40 95.22t t t tY Y Z Z− + + +  23.82 -0.10 0.980 0.910 

10 min 2 251.98 1.06 0.08 1.85 214.45t t t tY Y Z Z− + − +  20.56 -0.14 0.986 0.974 2 266.88 1.28 0.06 44.33 59.44t t t tY Y Z Z− + + +  14.52 0.18 0.958 0.952 

15 min 2 243.02 0.88 0.07 1.53 177.49t t t tY Y Z Z− + − +  17.02 -0.14 0.983 0.981 2 261.89 2.09 0.07 55.33 94.79t t t tY Y Z Z− + + +  11.08 0.36 0.960 0.931 

30 min 2 229.02 0.59 0.05 1.03 119.73t t t tY Y Z Z− + − +  11.48 -0.14 0.983 0.885 2 252.85 4.64 0.14 67.90 68.22t t t tY Y Z Z− + + +  5.91 5.24 0.688 0.418 

1 hr 2 218.26 0.37 0.03 0.65 75.33t t t tY Y Z Z− + − +  7.22 -0.14 0.968 0.919 2 215.39 0.53 0.02 5.39 1.68t t t tY Y Z Z+ − − +  4.30 4.86 0.733 0.425 

2 hr 2 210.98 0.22 0.02 0.39 45.30t t t tY Y Z Z− + − +  4.34 -0.14 0.943 0.958 2 29.01 0.87 0.05 35.07 125.61t t t tY Y Z Z− + − +  6.14 -1.02 0.931 -8.046 

6 hr 2 24.67 0.10 0.01 0.17 19.27t t t tY Y Z Z− + − +  1.85 -0.14 0.988 0.939 2 23.05 0.03 0.01 7.26 19.76t t t tY Y Z Z− + − +  1.66 -0.15 0.970 0.916 

12 hr 2 22.68 0.05 0.00 0.10 11.07t t t tY Y Z Z− + − +  1.06 -0.14 0.978 0.863 2 21.25 0.13 0.00 2.02 31.59t t t tY Y Z Z+ − − +  1.47 -1.01 0.905 -7.408 

24 hr 2 21.53 0.03 0.00 0.05 6.33t t t tY Y Z Z− + − +  0.61 -0.14 0.979 0.978 2 20.87 0.04 0.00 0.91 9.94t t t tY Y Z Z+ + − +  0.56 -0.19 0.987 0.923 

Kirkland Lake station 

5 min 264.65 4.36 0.15 55.17t t tY Y Z+ − +  23.39 0.10 0.910 0.755 249.77 6.02 0.21 59.39t t tY Y Z+ − +  22.04 0.44 0.966 0.965 

10 min 247.44 3.20 0.11 40.49t t tY Y Z+ − +  17.17 0.10 0.956 0.908 233.21 4.65 0.15 33.76t t tY Y Z+ − +  12.36 0.75 0.932 0.900 

15 min 237.99 2.56 0.09 32.42t t tY Y Z+ − +  13.75 0.10 0.909 0.767 234.65 2.81 0.09 28.75t t tY Y Z+ − +  11.42 0.59 0.934 0.926 

30 min 224.55 1.66 0.06 20.95t t tY Y Z+ − +  8.88 0.10 0.976 0.932 224.76 0.84 0.01 5.65t t tY Y Z+ − +  8.06 0.20 0.976 0.966 

1 hr 215.08 1.02 0.04 12.87t t tY Y Z+ − +  5.46 0.10 0.915 0.913 215.63 0.67 0.02 14.93t t tY Y Z+ − +  4.67 0.27 0.982 0.968 

2 hr 28.99 0.61 0.02 7.67t t tY Y Z+ − +  3.25 0.10 0.976 0.903 29.35 0.54 0.02 9.24t t tY Y Z+ − +  3.43 0.09 0.976 0.923 

6 hr 23.84 0.26 0.01 3.27t t tY Y Z+ − +  1.39 0.10 0.973 0.965 23.89 0.42 0.02 7.63t t tY Y Z+ − +  1.15 0.07 0.973 0.948 

12 hr 22.22 0.15 0.01 1.90t t tY Y Z+ − +  0.80 0.10 0.956 0.915 21.92 0.27 0.01 2.80t t tY Y Z+ − +  0.73 -0.29 0.976 0.907 

24 hr 21.28 0.09 0.00 1.10t t tY Y Z+ − +  0.46 0.10 0.955 0.913 21.03 0.18 0.01 1.28t t tY Y Z+ − +  0.45 -0.29 0.948 0.910 
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1 hr 8.50 0.05 0.50t tY Z− +  2.94 0.13 0.983 0.922 7.86 0.02 0.94t tY Z− +  2.67 0.27 0.979 0.974 

2 hr 6.30 0.04 0.37t tY Z− +  2.18 0.13 0.969 0.911 6.12 0.03 0.46t tY Z− +  1.91 0.12 0.977 0.872 

3 hr 5.11 0.03 0.30t tY Z− +  1.77 0.13 0.978 0.910 5.16 0.03 0.38t tY Z− +  1.67 0.09 0.984 0.855 

6 hr 3.43 0.02 0.20t tY Z− +  1.19 0.13 0.982 0.915 3.65 0.03 0.14t tY Z− +  1.19 0.12 0.991 0.918 

12 hr 2.23 0.01 0.13t tY Z− +  0.77 0.13 0.988 0.979 2.22 0.01 0.04t tY Z− +  0.79 0.14 0.988 0.984 

24 hr 1.41 0.01 0.08t tY Z− +  0.49 0.13 0.986 0.908 1.45 0.01 0.04t tY Z− +  0.51 0.20 0.991 0.970 
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