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Abstract 

A circumpolar increase in shrub growth and cover has been underway in Arctic and subarctic 

ecosystems for the last few decades, but there is considerable spatial heterogeneity in this 

shrubification process. Although topography, hydrology and edaphic factors are known to influence 

shrubification patterns, a better understanding of the landscape-scale factors driving this phenomenon 

is needed to accurately predict its impacts on ecosystem function. In this study, we generated land 

cover change models in order to identify variables driving shrub cover increase near Umiujaq 

(Québec, Canada). Using land cover maps from 1990/1994 and 2010, we modelled observed changes 

using two contrasting conceptual approaches: binomial modelling of transitions to shrub dominance 

and multinomial modelling of all land cover transitions. Models were used to generate spatially 

explicit predictions of transition to shrub dominance in the near future as well as long-term 

predictions of the abundance of different land cover types. Model predictions were validated using 

both field data and current Landsat-derived trends of NDVI increase in the region in order to assess 

their consistency with observed patterns of change. We found that both variables related to 

topography and to vegetation were useful in modelling land cover changes occurring near Umiujaq. 

Shrubs tended to preferentially colonize low-elevation areas and moderate slopes, while their cover 

was more likely to increase in the vicinity of existing shrub patches. Deterministic realizations of the 

spatially explicit models of land cover change had a good predictive capability, although they 

performed better at predicting the proportion of different cover types than at predicting the precise 

location of the changes. Binomial models performed as well as multinomial models, indicating that 

neglecting land cover changes other than shrubification does not result in decreased prediction 

accuracy. The predicted probabilities of shrub increase in the region were consistent with patterns of 

change inferred from field data, but only partly supported by recent local increases in NDVI. Our 

findings increase the current understanding of the factors driving shrubification, while warranting 

further research on its impacts on ecosystem function and on the link between land cover changes and 

shifts in remotely sensed vegetation indices. 
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Introduction 

Arctic and subarctic ecosystems are deeply altered by climate change and will likely be more 

impacted by temperature increases than will be temperate ecosystems due to Arctic amplification 

(Serreze and Barry 2011, IPCC 2013). In recent decades, obvious changes observed in high-latitude 

environments include an increase in temperatures, a decrease in summer sea ice cover, and permafrost 

thaw (Hinzman et al. 2013). One of the most important changes in terrestrial ecosystems is a greening 

of the tundra, inferred from an increase in normalized difference vegetation index (NDVI) since the 

1980s (Bhatt et al. 2013, Ju and Masek 2016). This greening trend has been repeatedly documented 

using remote sensing data spanning resolutions from 8 km AVHRR data (e.g. Goetz et al. 2005, Jia et 

al. 2009) to 30 m Landsat data (e.g. Fraser et al. 2011, McManus et al. 2012, Fraser et al. 2014), and 

although browning (i.e. a decrease in NDVI) has been observed in some areas, greening remains the 

dominant trend in subarctic regions (Ju and Masek 2016).  

 

Although only successfully calibrated in a few locations, several studies have attributed increases in 

tundra ecosystem NDVI to an increase in shrub cover and size in response to climate change, a 

phenomenon termed shrubification (Forbes et al. 2010, Myers-Smith et al. 2011a, McManus et al. 

2012). Repeat aerial photography yields evidence for a sharp increase in shrub cover in Alaska (Sturm 

et al. 2001, Tape et al. 2006), Northwestern Canada (Lantz et al. 2013, Fraser et al. 2014), Subarctic 

Québec (Ropars and Boudreau 2012, Tremblay et al. 2012, Provencher-Nolet et al. 2014) and Siberia 

(Frost and Epstein 2014), indicating that this phenomenon might be circumpolar in scale. The link 

between warmer temperatures and shrub cover is supported by experimental warming studies that 

found higher shrub cover and/or height in response to increased temperature (Chapin et al. 1995, 

Walker et al. 2006, Elmendorf et al. 2012a). Dendroclimatic analyses also support a positive effect of 

warmer temperatures on shrub growth, reinforcing the idea that the increase in global temperatures 
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might favour this plant functional group (Forbes et al. 2010, Hallinger et al. 2010, Blok et al. 2011a, 

Ropars et al. 2015a, Ropars et al. 2017). Moreover, the growth structure of some shrub species is 

thought to allow them to benefit more from increasing temperatures than other plants (e.g. Betula 

nana L.; Bret-Harte et al. 2001). 

 

A significant increase in shrub cover and height could deeply alter the structure and function of tundra 

ecosystems. Shrubification might lead to a reduced overall albedo in terrestrial Arctic regions because 

of the low albedo of shrubs, effectively resulting in a positive feedback to climate change (Chapin et 

al. 2005, Sturm et al. 2005a, Bonfils et al. 2012). Shrubs also affect patterns of snow deposition and 

accumulation as well as snowmelt by respectively trapping snow (Sturm et al. 2005b) and accelerating 

thaw in spring because of the low albedo of protruding branches (Marsh et al. 2010). By maintaining a 

thicker insulating snow cover, shrubs also lead to warmer winter soil temperature under erect shrub 

cover and may thus contribute to an increase in active layer depth and permafrost degradation (Sturm 

et al. 2005b, Lantz et al. 2013, Myers-Smith and Hik 2013, Paradis et al. 2016). This should 

effectively lead to another positive feedback loop by which this deeper active layer favours nutrient 

mineralisation, thus increasing their availability for shrub growth (Sturm et al. 2005b, DeMarco et al. 

2011; but see Myers-Smith and Hik 2013). An increase in shrub cover could also have seasonal 

impacts on the diet of large herbivores such as caribou, which rely heavily on lichens during winter to 

meet their energy requirements (Sturm et al. 2005b, Joly et al. 2007). 

 

Although observed throughout most of the circumpolar region, the rate and extent of shrubification 

are highly heterogeneous in space. At larger scales, shrub cover increase has been found to occur 

preferably in the warmer and wetter Low Arctic as compared to the cold and dry High Arctic 

(Elmendorf et al. 2012b, Myers-Smith et al. 2015). The rate of shrub cover increase is also known to 

vary at a regional scale, depending on edaphic, topographic or historical conditions (Tape et al. 2012, 

Tremblay et al. 2012, Fraser et al. 2014, Ropars et al. 2015b). For example, Ropars and Boudreau 

(2012) found that shrub cover increase occurred preferably on sandy terraces as opposed to hilltops, 

while Tape et al. (2006) observed that hill slopes and valley bottoms favoured a greater increase in 
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shrub cover. Recent research showed that sites offering greater nutrient and water availability favour 

shrub growth (Naito and Cairns 2011, Tape et al. 2012, Cameron and Lantz 2016, Curasi et al. 2016) 

and that shrub growth sensitivity to climate is higher in wetter regions (Myers-Smith et al. 2015). 

 

A better understanding of the landscape-scale factors driving shrub growth and recruitment is required 

in order to predict shrubification patterns and impacts on the dynamics of high-latitude ecosystems in 

the near future. This phenomenon currently occurring in high-latitude regions could be appropriately 

modeled using a land cover change modelling approach. Several studies made use of such models in 

order to gain insight into the factors underlying land cover changes and generate predictions to inform 

land management. For example, land cover change models were used to predict directional changes 

due to either land abandonment (e.g. Rutherford et al. 2007, Gellrich et al. 2007, Prishchepov et al. 

2013) or urbanisation (e.g. Araya and Cabral 2010). Spatially explicit models of land cover change 

often model the outcome of change as a function of landscape characteristics using binomial (e.g. 

Pueyo and Beguería 2007), ordinal (e.g. Rutherford et al. 2007) or multinomial (e.g. Augustin et al. 

2001) logistic regression. 

In the region of Umiujaq, in Nunavik (Subarctic Québec), directional changes to shrub dominance 

have already been documented in the Tasiapik valley using aerial photography (Provencher-Nolet et 

al. 2014) and satellite data (Beck et al. 2015). In the present study, we implement a modelling 

approach meant to identify landscape-scale factors promoting shrubification in subarctic 

environments using data from Umiujaq. Unlike most land cover change studies, which rely entirely on 

satellite data or aerial photography, we have carried observations in the field in order to assess how 

our model predictions were supported. We also validated our models with independent Landsat-

derived NDVI data in order to assess whether current trends in NDVI change are consistent with 

model predictions. Our aim was to answer the following four questions: 1) What are the landscape-

scale variables driving shrubification near Umiujaq? 2) How is vegetation expected to change in the 

area in the future, based on how it changed in the past? 3) How are the results of the predictions 

supported by observations in the field? 4) How are the results of the predictions supported by current 

trends in Landsat-derived NDVI data? 
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Methods 

Study area 

Our study area is located near the community of Umiujaq, Nunavik (Subarctic Québec, Canada), 

south of the latitudinal treeline (Fig. 1). Mean annual temperatures of -3.0°C have been recorded in 

Umiujaq between 2002 and 2013 (CEN 2014). In Whapmagoostui-Kuujjuarapik, located 

approximately 160 km to the south-west, data spanning a longer interval show a mean yearly 

temperature of -4.2°C between 1958 and 1989 and -3.0°C between 1990 and 2015 (Environment 

Canada 2016). The yearly data for both locations over the period 2002-2013 are highly correlated (r = 

0.998), mean temperatures being on average 0.5°C lower in Umiujaq (Appendix S1: Fig. S1). 

 

Previous studies have documented an increase in shrub cover near Umiujaq over the last 20 years 

(Provencher-Nolet et al. 2014, Beck et al. 2015). The most common erect shrub species in the area are 

Betula glandulosa Michx. (dwarf birch), Alnus viridis (Chaix) D.C. ssp. crispa (Aiton) Turrill 

(mountain alder) as well as several Salix (willow) species (most commonly S. planifolia Pursh and S. 

glauca L.). Betula glandulosa is commonly recognized as the main species contributing to shrub 

expansion in Nunavik (Ropars and Boudreau 2012, Tremblay et al. 2012, Ropars et al. 2015a), 

although other erect shrub species may be involved as well. Picea mariana (Mill.) B.S.P. (black 

spruce) is the only tree species commonly found in the region. 

 

Two different areas were considered for the purpose of our study: the Tasiapik valley (~5.33 km2), 

hereafter referred to as "the valley", and the coastal area south of the village (~1.98 km2; Fig. 1), 

hereafter referred to as "the coast". These areas were chosen because they represent two contrasting 

landscapes (coastal and inland) for which a long tradition of research has resulted in abundant data 

and a good understanding of their ecological dynamics. Elevation in the valley study area ranges from 

0 on the shore of the Tasiujaq Lake (formerly known as the Richmond Gulf or Lac Guillaume-

Delisle) to about 200 m, although most of the area of interest lies below 150 m a.s.l. Shrubs dominate 

the vegetation of the valley (59.9% of the area as of 2010), while lichens and herbaceous vegetation 

are dominant on scattered permafrost mounds. Small, relatively uncommon herbaceous patches are 
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also distributed over the area, mainly around the numerous water ponds found in the valley. The 

center of the valley, largely sheltered from the wind, is dominated by black spruce. The height of erect 

shrubs in the valley ranges from ca. 10 cm on the lichen-dominated plateau overlooking the valley to 

> 2 m (mostly Alnus and Salix stands) closer to the Tasiujaq Lake. 

 

The coast study area spans about 2 km along the shore of the Hudson Bay and 1 km inland. Shrubs are 

also the main land cover type on the coast (35.9% of dominance as of 2010), whereas large patches of 

herbaceous (more common than in the valley) and lichen vegetation are scattered in the landscape. In 

the southern part of the coast, land cover is characterized by sparsely vegetated rock outcrops. Almost 

no trees are found on the coast, as conditions are colder and windier than in the valley. Erect shrub 

height ranges from ca. 30 cm to > 2 m (mostly Alnus and Salix stands), but is on average lower than in 

the valley. Both the valley and the coast are disturbed to some extent by human activities (e.g. by road 

construction or ATV trails), but human disturbance is more important on the coast as this area is 

located closer to the community. 

 

Land cover classification 

Land cover classification of the valley has been carried out and described by Provencher-Nolet et al. 

(2014), who classified 30-cm resolution 1994 and 2010 aerial photographs into six different land 

cover classes (Table 1; Appendix S1: Fig. S2a) using an object-based supervised classification 

method with the eCognition software (Definiens AG, Germany). For the purpose of our study, the 

coast vegetation was similarly classified using aerial photography from 1990 and 2010 (Appendix S1: 

Fig. S2b). We used aerial photos from 1990 instead of 1994 for the coast because the quality of the 

existing 1994 aerial photography of the coast did not lend itself for land cover classification. 

Compared to the Tasiapik valley, a “sand” cover class was added to the coast classification whereas 

the “spruce” cover class was removed as almost no trees are found on the coastline (Table 1). Sand 

cover on the coast comprises both the beach running along the shore and the sand dunes protruding 

farther from the Hudson Bay. Details regarding the validation of the land cover maps can be found in 

supplementary material. 
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Topographic variables 

A 1 m-resolution digital elevation model (DEM) was derived from a 2010 airborne LiDAR survey 

using the blast2dem function of LAStools (rapidlasso GmbH, Germany). This DEM was resampled to 

a 5 m-resolution raster from which we derived four different topographic variables to be used in land 

cover change modelling. Elevation was obtained directly from the DEM. We chose to include 

elevation in our models because of its important effects on factors such as temperature and wind 

exposure. Slope and aspect were computed using the algorithm of Zevenbergen and Thorne (1987), as 

implemented in QGIS 2.8.1 (QGIS Development Team 2015). Aspect was not used as a predictive 

variable in itself but rather transformed using the method described by Beers et al. (1966), which 

allows it to be represented on a continuous scale (here, SW = 0 and NE = 2). Slope should influence 

soil moisture and mineral content, while both slope and aspect have an influence on 

photosynthetically active radiation exposure. The topographic wetness index (TWI), a measure of the 

potential moisture of the soil based on terrain characteristics, was computed using SAGA algorithms 

(Conrad et al. 2015) in QGIS. We included this variable in our analysis because shrubification is 

known to be favoured by higher soil moisture content. In fact, shrubification was found to be related 

to TWI in a previous study (Naito and Cairns 2011). 

 

Vegetation-related spatial variables 

A series of six vegetation-related spatial variables was derived from the land cover maps. All 

variables were obtained for a 5 m-resolution raster (grid) after rasterizing the polygon-based land 

cover maps. Rasterization was carried out using the 5 m-resolution DEM to ensure that all variables 

were aligned. A small part (~ 5%) of the land cover map of the valley was not covered by the DEM 

and was thus not retained for land cover change analysis. Roads and other disturbed areas were 

similarly masked and excluded from further analysis. Resampling to a resolution of 5 m resulted in 

similar proportions of the different land cover types and land cover changes as the original 

classification. We decided to carry the modelling on 5 m pixels, as this was the highest resolution at 

which we deemed changes to be reliably observed over a timespan of approximately 20 years, given 

the quality and resolution of our data. We have also carried out a sensitivity analysis by conducting 
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analyses at lower resolutions of 15 and 30 m and found results to be largely similar to those obtained 

from 5-m resolution data (see Supplementary material for details). 

 

Vegetation, a six-class categorical variable identifying the dominant land cover type in a given cell, 

was itself used as a predictor variable. We expected this variable to be the main predictor of land 

cover changes, as all land cover types are not equally likely to be colonized by shrubs. Edge is a 

binary variable indicating whether a cell is located at the edge of the land cover patch it is part of (i.e. 

whether it "touches" other land cover types). Cells located at edges should be more likely to switch 

land cover types because of vegetative propagation and/or because their environmental conditions 

might suit other vegetation types. Shrub edge, similarly, is a binary variable indicating whether there 

is at least one shrub-dominated cell in the immediate (8-cell) neighborhood of a cell; such cells should 

have a higher likelihood to become shrub-dominated in the future. Neighborhood was defined as the 

number of cells of the same vegetation type as the focal cell in a 24-cell Moore neighborhood (5x5 

pixel square). This was treated as a numeric variable with integer values ranging from 0 to 24 (see 

also Augustin et al. 2001). We expected cells with lower neighborhood values to be more likely to 

change as these are more exposed to other land cover types. Considering the 24 neighboring cells 

instead of the 8 immediately surrounding cells took into account the broader context in which cells 

were located and thus provided a more detailed description of the configuration of vegetation than 

edge, while also ensuring more inter-cell variability. Edge ratio is a continuous numeric variable 

computed by dividing the number of border cells in a patch by the total number of cells in that 

vegetation patch; edge ratio values are therefore identical for all cells in a given patch (see also 

Augustin et al. 2001). Higher edge ratio values represent thin and/or irregularly shaped patches, 

whereas lower edge ratio values are representative of large, more or less circular patches that should 

be less likely to change since they are less exposed to other land cover types. Surrounding is a 

variable identifying the dominant cover type in a 24-cell Moore neighborhood surrounding the focal 

cell. Were there ties between different cover types in the 24-cell neighborhood, larger square 

neighborhoods were used around the focal cell until ties could be broken. We expected cells to be 

more likely to change to or stay in the land cover type that is the most common one in their 
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neighborhood. Values for variables that depended on surrounding cells (edge, shrub edge, 

neighborhood, surrounding) were set to missing if any of the cells implied in the computation had 

missing values in order to account for edge effects. 

 

Statistical modelling of vegetation change for the 1990/1994 to 2010 period 

In order to compare different conceptual representations of the land cover changes occurring in our 

study area, we tested two contrasting statistical modelling approaches: multinomial and binomial logit 

modelling (Fig. 2). 

 

We used multinomial logit models to represent a process of vegetation change in which transitions 

from and to any land cover type occur (see also Augustin et al. 2001, Rutherford et al. 2007). In order 

to represent all vegetation changes between any of the six land cover types (36 transitions in total, 

including same-state transitions), we fit multinomial logit models using the dominant vegetation in 

2010 as a response variable and the 1990/1994 values of explanatory variables. A multinomial logit 

model allows calculating the transition probabilities to every vegetation type given the values of 

different predictor variables. 

 

We used binomial models to represent the conceptual assumption that the only transitions occurring 

are those that lead to shrub dominance (see Pueyo and Beguería 2007 for a similar approach). To fit 

these models, the 2010 vegetation variable was converted to a binary variable (shrub-dominated or 

not). This assumption neglects other vegetation changes that do happen in the ecosystem (including 

transitions from shrubs to other land cover types), but might be a better representation of reality given 

the important shift to shrub-dominated vegetation currently observed. We could make this assumption 

because transitions from shrub cover to other cover types were relatively rare compared to other 

transitions, with only ~14% of shrub pixels transitioning to other land cover types (8 of these 14% 

being transitions to spruce cover that are likely due to misclassification; see Supplementary material). 

Binomial models are also simpler to parameterize and interpret. The model prediction output 

generated from such binomial models is a single probability that a given cell will become shrub-



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

dominated at a later time. Since this conceptual model did not consider transitions from shrub 

dominance to any other cover type, we only considered cells that were not shrub-dominated at time 1 

in the analysis. Cells that were already shrub-dominated were thus assigned a de facto probability of 

transition to shrub cover of 1. 

 

Analyzing such rasterized spatial data as if pixels were independent from one another would result in 

a substantial over-estimation of the actual sample size available for analysis, as neighboring pixels are 

spatially autocorrelated. In order to avoid this artificial inflation of sample size and avoid detecting 

spurious effects, we opted for an approach similar to that of Rutherford et al. (2007) and Müller and 

Zeller (2002) and took a regular sample of pixels 35 m apart (about 2% of the total number of pixels 

in the dataset) in both the x and y directions from the top left pixel of each raster. Regular sampling 

(as opposed to random sampling) ensures both repeatability of the analysis and uniform sampling of 

the whole dataset. Our sampling resulted in a total of 3,671 pixels retained for the valley and 1,461 

pixels retained for the coast in multinomial modelling. As shrub-dominated pixels were not 

considered in binomial modelling, only 1,946 of these pixels were kept for the valley and 1,174 pixels 

for the coast. 

 

We adopted a multimodel inference framework (Anderson 2008) in order to identify the most likely 

statistical model or set of statistical models for each of the four modelling situations (multinomial and 

binomial logit modelling for both the coast and the valley). As testing all possible model 

combinations of the 10 explanatory variables would have resulted in 1024 models (ignoring 

interaction and polynomial terms), we had to narrow the set of models. Notable a priori model design 

decisions that we made in that sense were: (1) vegetation was included in all models, as current 

vegetation plays an obvious role in determining vegetation at a later time; (2) shrub edge and 

neighborhood were used only in binomial models, whereas edge and surrounding were used only in 

multinomial models, as these variables were deemed more relevant to the conceptual processes 

represented by these modelling approaches (because binomial models focus on transition to shrub 

dominance whereas multinomial models consider all transitions); (3) shrub edge and neighborhood 
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were never included in the same (binomial) model as they both imply some representation of the 

surrounding cells, as were edge and surrounding for multinomial models; (4) whenever (transformed) 

aspect was included in a model, slope as well as the interaction between slope and aspect were also 

included as the effect of aspect is expected to be stronger on steeper slopes; (5) whenever slope was 

included in a model, we also added a quadratic term for slope since we expected shrubification 

probabilities to increase on intermediate slopes and decline on very steep slopes based on the current 

understanding of the phenomenon (Tape et al. 2006, Tremblay et al. 2012). The sets thus differed 

whether they were used in multinomial or binomial modelling, but they were identical for the valley 

and the coast. These considerations resulted in 29 binomial and 29 multinomial models representing a 

set of different conceptual hypotheses about the vegetation change process occurring near Umiujaq 

(Table 2). Models were parameterized by using the state of vegetation in 2010 as a dependent variable 

and vegetation characteristics in 1990/1994 in the computation of vegetation-related explanatory 

variables. Topography in 1990/1994 was assumed not to be significantly different from that of 2010, 

so we used the 2010 LiDAR-derived terrain data to parameterize the models. Although periglacial 

processes are known to influence topography in the study areas (Beck et al. 2015), these changes in 

topography are unlikely to be important enough to drive land cover changes over the temporal and 

spatial scales considered. Moreover, large-scale topographic changes such as thaw slumps or frost 

boils have not been observed in the study area. Models in each set were ranked according to their 

AICc values, and model AICc weights were computed to compare the models to each other. We 

computed 95% confidence intervals with model-averaged mean values and unconditional variances to 

assess the importance and effect sizes of model terms included in the 95% confidence model set. 

Throughout the study, model averaging was used if the best model in the set had an AICc weight < 

0.90; otherwise, the single best model was used for statistical inference and predictions. 

 

Spatially explicit modelling and prediction of vegetation change over the next decades 

Model predictions were generated for the whole dataset (173,764 pixels for the valley and 69,044 

pixels for the coast) using model averaging (when applicable), i.e. model predictions were computed 

using all models by weighting according to model probabilities (i.e. AICc weights; Anderson 2008). 
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The actual predictions generated from either the binomial or multinomial models can be visualized as 

probability maps of transition to shrub dominance (for binomial models) or to any land cover type (for 

multinomial models), but they do not generate a predicted vegetation map directly. Following Carmel 

et al. (2001), we tested both a deterministic and a stochastic way of translating the statistical model 

predictions into spatially explicit predictions of vegetation at a later time. For binomial logit models, 

stochastic modelling was implemented by setting the vegetation class of a cell at a later time to shrub 

dominance with a probability equal to the value predicted for that cell, whereas deterministic 

modelling was implemented by setting all cells with a probability > 0.5 to shrub dominance. For 

multinomial models, stochastic modelling was implemented by setting the land cover of each cell to 

any of the six cover types depending on the multinomial distribution calculated for that cell based on 

the model (as in a Markov chain), whereas deterministic modelling was implemented by setting the 

land cover at a later time to the vegetation type for which the transition probability was highest. 

 

Our analysis yielded eight different predicted map types (all combinations of coast or valley, 

multinomial or binomial, and stochastic or deterministic). The performance of these predictions was 

assessed by testing how well the 2010 land cover could be predicted from the 1990/1994 data. We 

computed the quantity and allocation disagreement and the standard kappa coefficient for every 

spatially explicit prediction, as described in Pontius and Millones (2011). Quantity and allocation 

disagreement values split total disagreement (1 - overall accuracy) into two components, respectively 

the disagreement due to errors in the number of pixels in different classes, and the disagreement due 

to errors in location of the pixels. Mean and standard deviation of disagreement metrics and kappa 

values for stochastic realizations of the model predictions were obtained from 100 independent runs. 

For binomial deterministic models, we also calculated the area under the curve (AUC) of the receiver 

operating characteristic (ROC) plots of shrub cover prediction by varying the threshold value 

necessary for a cell to undergo transition to shrub dominance from 0 to 1. 

Spatially explicit predictions of future land cover were generated using the 2010 data for both the 

valley and the coast. These predictions are valid for 2026 for the valley and 2030 for the coast because 

our models describe vegetation changes occurring over time steps of 16 and 20 years, respectively, for 
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the valley and the coast. We generated shrubification probability maps for 2026 and 2030 as well as 

long-term (~100 years) predictions of the proportions of land in each cover class. We do not expect 

our models to be accurate up to that time, but we were interested in the long-term behaviour of each 

of the models and how they might be impacted by model design decisions. Vegetation-related 

variables were dynamically updated at each time step to account for the new configuration of the 

vegetation that resulted from the changes, although we ignored neighboring missing values (contrary 

to what was done for model parameterization) as this would have resulted in a substantial loss of data 

at every time step due to the propagation of missing data at the edges. 

 

Field-based model corroboration 

We carried observations in the field in order to validate the 2010 land cover maps and to assess how 

our model predictions were supported. Field observations were aimed at identifying which sites had 

the potential to transition to shrub dominance in the near future according to their present shrub cover 

and location at the margin of an erect shrub stand. In August 2015, we surveyed 150 points in the 

valley and on the coast, for a total of 300 sampling points. Points were randomly selected using a 

stratified sampling protocol so as to survey points from the whole range of land cover types, elevation 

and slope conditions found in the area. No point was surveyed in spruce-dominated stands in 2015 

because we deemed unlikely, based both on previous analysis by Provencher-Nolet et al. (2014) and 

the life-history traits of the various species, that spruce stands would be replaced by shrubs in the 

absence of disturbance. Some points (n = 19) in the valley had to be randomly relocated during 

fieldwork because access to these sites proved to be difficult. Field surveys consisted of a series of 

measurements and observations taken on both a 3 x 3 m and a 9 x 9 m quadrat centered on the survey 

point, which was positioned using a Garmin etrex30 GPS device. For each quadrat, we assessed the 

percentage cover of each of the 6 land cover classes found in the zone according to an eight-class 

system (0%, 1-10%, 11-25%, 26-50%, 51-75%, 76-90%, 91-99%, 100%). We also noted whether the 

quadrat was located at the margin of an erect shrub stand (yes/no). The 3 x 3 m quadrats were used to 

validate the land cover maps, whereas 9 x 9 m quadrats were used to assess the support for spatially 

explicit model predictions. 
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At the end of July 2016, we conducted additional field surveys in order to refine the validation of the 

coast and valley vegetation maps. Thirty-six (36) surveys as described above were conducted on the 

Umiujaq coast in order to increase the sample size for vegetation types that were underrepresented in 

2015; these surveys were also included in the assessment of the accuracy of spatial predictions 

(described below). In the valley, 20 spruce-dominated stands were surveyed in 2016 since this 

vegetation class had not been surveyed in 2015; the objective of these spruce stand surveys was 

merely to validate the 2010 vegetation map of the valley (see Supplementary material), so we went to 

those locations and simply noted the dominant vegetation in a 3 x 3 m quadrat. GPS points for these 

surveys were not completely randomly generated but were rather chosen prior to fieldwork so as to be 

close (~ 30 to 50 m) to the margin of a spruce stand, since reaching points that were several hundreds 

of meters deep into the spruce forest would have been time-consuming. If anything, this could result 

in underestimation of the accuracy with which spruce stands were recognized from aerial photography 

analysis, since classification accuracy of spruce stands was lower near margins, where they could be 

confused with shrubs (Provencher-Nolet et al. 2014). 

 

In order to assess how spatially explicit model predictions were supported by field observations, we 

extracted the predicted probability of transition to shrub dominance (for 2026 in the valley and 2030 

on the coast) using the GPS points of the ground-truthing surveys and generated linear models of 

these probabilities for each of the 4 modelling situations (coast/valley and multinomial/binomial 

models). We used the shrub cover in the 9 x 9 m quadrat (ordered categorical variable converted to 3 

classes, 0-25%, 25-50%, 50-100%) and the presence of an erect shrub stand margin in the 9 x 9 m 

quadrat (binary variable) as explanatory variables in these linear models. We transformed the shrub 

cover classes in this way because all cover values above 50% represent shrub dominance and because 

splitting the values into four even classes would have resulted in only a few values in each of the 

upper 50-75% and 75-100% classes. Points for which shrubs were already the dominant vegetation 

type in 2015 or 2016 were not included in the analysis as we were interested in modelling transition 

probabilities to shrub dominance from other land cover types. A multimodel inference approach was 

used to identify which of the variables observed in the field (if any) were related to the percent 
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probability of transition to shrub dominance as determined by our land cover modelling exercise. For 

each of the four transition probability models, we modeled the prediction probabilities using four 

combinations: cover, margin, cover + margin, and a null model. We ranked these by AICc scores to 

identify the best model or set of models. Normality and heteroskedasticity assumptions of the global 

models (i.e. models including all variables) were met in all cases. 

 

GPS points were taken in the field at the central plot locations. However, it sometimes happened that 

vegetation recorded in the field did not match the 2010 vegetation maps. When this could reasonably 

be attributed to the precision of the GPS device (between 3 and 5 m), the point was manually moved 

to a neighboring cell (< 5 m away) so as to be consistent with observations in the field. Comparison of 

the land cover modelling results to the field observations required that field observations were locally 

consistent with the variables upon which the model was based for predictions. When such manual 

edition of GPS point coordinates could not be properly done, the survey point was excluded from the 

analysis. Overall, data cleaning retained 82 valley survey points and 121 coastal points, of which 14 

and 21 points, respectively, had their coordinates manually edited (Appendix S1: Fig. S3). 

 

Satellite-based model corroboration 

While field observations enabled validating model predictions at a small scale, we were also 

interested in testing our predictions against vegetation changes observable at a larger scale. We 

accessed 30 m-resolution Landsat scenes and assessed how our predictions were consistent with 

changes in Normalized Difference Vegetation Index (NDVI) over the study area under the assumption 

that increasing shrub cover is the main driver of NDVI increase. This assumption was based upon 

patterns observed in other studies (Fraser et al. 2014, McManus et al. 2012) and in this study (see 

below). 

 

We accessed scenes from WGS frames 19-21 and 20-20 (path-row) using the United States 

Geological Survey (USGS) GloVis interface. Landsat scenes came from Landsat 5, 7 and 8 and 

spanned years 1989 to 2016. We chose not to use SLC-off Landsat 7 scenes (scenes collected after 
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May 31, 2003) since they had too much missing data in our study area. Since our study area was 

relatively small compared to the size of a whole scene, we could filter scenes visually based on 

whether the study area was covered by clouds or not. We adopted a conservative approach by 

removing scenes as soon as there were traces of clouds or cloud shadows covering the study area, 

even when only one of the two zones under study was affected. Scenes that were taken before Julian 

day 195 or after Julian day 250 (July 14 and September 7 respectively on non-leap years) were 

removed from the analysis, as they were likely outside the peak phenology window. Visual analysis of 

the NDVI data confirmed that there was no relationship between NDVI and the day of the year over 

the period from Julian day 195 to Julian day 250. Filtering on the basis of cloud cover and day of the 

year resulted in a set of 27 scenes retained for further analysis (Appendix S1: Table S1).  

 

We converted the red and near-infrared bands to top-of-atmosphere (ToA) reflectance using 

coefficients and formulae described in Chander et al. (2009) for TM (Landsat 5) and ETM+ (Landsat 

7) data and in the Landsat 8 Data Users Handbook (U.S. Geological Survey 2016) for OLI (Landsat 8) 

data. NDVI was computed for every 30-m cell according to the standard formula: 

NDVI = (NIR - Red) / (NIR + Red) 

where NIR stands for the ToA reflectance of the near-infrared band and Red stands for the ToA 

reflectance of the red band. 

 

To determine whether Landsat data could be used to identify areas where shrubification occurred, we 

conducted a series of analyses whose aim was to characterize (1) the link between land cover and 

NDVI as well as (2) the link between land cover transitions and variations in NDVI. We generated 

mean NDVI rasters for ~1990 by averaging NDVI values of 6 scenes taken in 1989, 1990 and 1992, 

as well as mean NDVI rasters for ~2010 by averaging NDVI values of 3 scenes taken in 2008, 2010 

and 2011. These ~1990 and ~2010 NDVI rasters were used to generate distributions of NDVI values 

per cover type by superimposing land cover maps from these periods. To avoid land cover 

heterogeneity from adding noise to the distribution of NDVI values per land cover type, distributions 

were generated from sets of relatively homogeneous pixels (30-m Landsat cells comprising at least 
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75% of 5-m pixels of a given land cover type). Since only a few "pure" 30-m water pixels remained, 

we were not able to generate a distribution of NDVI values for this land cover class. 

 

We also computed NDVI trends by fitting pixel-wise Theil-Sen robust regressions (following Fraser 

et al. 2014) and considering the regression coefficient for each pixel as a measure of the NDVI trend 

of that pixel. Theil-Sen regressions for the period 1990-2010 were based on 20 scenes from 13 

different years; NDVI values for years for which more than one scene was available were averaged 

and considered as a single data point. Cells with negative NDVI trends (2.5 % of the 5920 pixels of 

the valley and 2.3% of the 2180 pixels of the coast) were removed from the dataset as they 

corresponded largely to areas where human disturbance (mainly new roads and buildings) was known 

to have occurred. NDVI trends over the period 2010-2016 were similarly generated using 6 scenes 

from 5 different years. We first used the NDVI trend data to carry linear regressions modelling the 

1990-2010 NDVI trends in a Landsat pixel as a function of the shrub cover increase in that pixel over 

the same period. For every Landsat pixel, we obtained the percentage of land cover that had 

undergone shrubification between 1990/1994 (coast/valley) and 2010. This percentage was obtained 

by splitting every Landsat pixel into thirty-six (36) 5-m subpixels and determining the proportion of 

each pixel that had undergone a transition to shrub dominance over the time period considered. We 

regressed NDVI trend against percentage of shrubification on a regular sample of about 5% of the 

Landsat pixels (260 pixels in the valley and 103 pixels on the coast). We also assessed where the most 

substantial increases in NDVI occurred by generating distributions of NDVI trends per initial land 

cover type (i.e. we generated distributions of 1990-2010 NDVI trends according to the land cover type 

in 1990/1994 and 2010-2016 NDVI trends according to the land cover type in 2010). 

 

Since the results of the aforementioned analyses (see the Results section) indicated greater NDVI 

increases in areas undergoing shrubification, we could assess whether our model predictions were 

consistent with recent NDVI trends by identifying areas that were likely undergoing shrubification 

according to their 2010-2016 NDVI trends. Generating a dataset to compare these NDVI trends to the 

spatially explicit model predictions was challenging as both rasters had different projections and 
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extents. To circumvent this, we averaged the 2026/2030 shrubification probability values of the 5 m-

resolution raster using a 15 m (3 x 3 pixels) moving window in order to obtain predicted values that 

were more representative of the general context. We then constructed a dataset associating every 5 m 

x 5 m pixel to a NDVI trend value by extracting the corresponding value from the 30 m resolution 

Landsat raster. Cells that were already shrub-dominated in 2010 were excluded from the analysis, as 

we were interested in transitions to shrub dominance from other land cover types. We fit four different 

linear models (binomial and multinomial predictions for both the valley and the coast) of NDVI trends 

as a function of the predicted probabilities of transition to shrub dominance on random samples of 

about 5% of the number of Landsat cells in the dataset (292 cells in the valley and 104 pixels on the 

coast). Normality and heteroskedasticity assumptions were met for all linear models involving NDVI 

data. 

 

Software used 

Unless otherwise stated, all analyses and data manipulation were done in R version 3.3.1 (R Core 

Team 2016). Multinomial logit modelling used the multinom function in package nnet (Venables and 

Ripley 2002). Binomial modelling used the base glm function with binomial family logit link. 

Manipulation of spatial data was used packages sp (Pebesma and Bivand 2005), raster (Hijmans 

2015) and rgdal (Bivand et al. 2015). Model selection and multi-model averaging used package 

AICcmodavg (Mazerolle 2016). Theil-Sen robust regressions were fit using package mblm (Komsta 

2013). Computation of the 95% confidence intervals used for the visualization of multinomial model 

predictions used package effects (Fox 2003, Fox and Hong 2009). AUC values for the binomial 

models were calculated with package AUC (Ballings and Van den Poel 2013). 

 

Results 

Statistical modelling of land cover change 

Binomial modelling of land cover change in the valley resulted in two models accounting together for 

virtually 100% of model weights (Table 3). Confidence intervals (95%) generated using model 

averaging for parameters included in these two models suggest that vegetation, elevation, shrub edge, 
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edge ratio and neighborhood were important factors associated with shrubification in the valley 

(Table 4). Model-averaged values for slope and aspect could not be computed since these were 

involved in interactions, but confidence intervals computed individually from the best models did not 

support a role of these variables in shrubification (Appendix S1: Table S2). Transition to shrub 

dominance was more likely on areas dominated by lichens, herbs and rock outcrops (Table 4). 

Shrubification probabilities decreased with elevation (Fig. 3a), and increased with increasing edge 

ratio (Fig. 3b) and with the presence of a shrub edge (Fig. 3c). Visualization of model predictions did 

not support an effect of neighborhood on transition probabilities (Appendix S1: Fig. S4), which is 

consistent with this variable being found only in the second best model, which was markedly less well 

supported than the top model.  

 

Multinomial modelling of land cover change in the valley identified model 3 as being vastly better 

supported than any of the 28 alternatives considered (Table 5), so we used it alone for all model 

inferences and predictions. Interpreting multinomial models is more challenging than binomial 

models because parameters are estimated for every possible outcome relative to the reference 

outcome, shrub dominance in this instance. Confidence intervals (95%) generated for the 90 model 

parameters included in the best multinomial model for the valley suggest an effect of the variables 

vegetation, surrounding, elevation, slope, TWI as well as the interaction between slope and aspect on 

land cover transitions (Appendix S2: Table S1). As would be expected, the parameters for vegetation 

indicated that cells tended to remain in their initial land cover class, while the effect of surrounding 

was to favour transitions to the dominant surrounding cover type. The effect of elevation was 

consistent with that of the binomial models, with decreasing probabilities of transition to shrub 

dominance from lichen, spruce and herbaceous cover as elevation increased (Fig. 4a, Appendix S1: 

Fig. S5. Probabilities of transition to shrub dominance increased on intermediate slopes (10-30°) 

covered by herbs, whereas steeper slopes were associated to rock outcrops where almost no vegetation 

can grow (Fig. 4b, Appendix S1: Fig. S6). Transition to shrub dominance was more likely to occur 

with increasing TWI on lichen-dominated and, to a lower extent, spruce-dominated cover (Fig. 4c, 

Appendix S1: Fig. S7). The parameter values for the interaction between slope and aspect suggested 
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that transition to shrub dominance on steeper slopes was more likely to occur when these were facing 

northeast for herb- and rock-dominated areas (Appendix S2: Table S1). The multinomial model also 

supported evidence for an effect of edge ratio consistent with that observed for the binomial model, 

specifically that the probability of transition to shrub dominance increased with edge ratio, although it 

was only significant for lichen and rock patches (Appendix S2: Table S1). 

 

On the coast, binomial modelling of land cover change resulted in a 95% confidence model set 

comprising four models (Table 6). Confidence intervals (95%) generated using model averaging for 

parameters included in these models suggest that vegetation, shrub edge, edge ratio and the quadratic 

term for slope were important parameters in shrubification binomial modelling on the coast (Table 7). 

As for the valley, model-averaged values for slope and aspect could not be computed since these were 

involved in interactions, but confidence intervals computed individually from the best models did not 

exclude 0, so there was no evidence for a role of these parameters (Appendix S1: Table S2). 

Transitions to shrub dominance were more likely to occur on herbaceous and lichen cover than on 

other land cover types (Table 7). The effect of shrub edge was similar on the coast as in the valley, 

but the effect of edge ratio on predicted probabilities showed only a weak effect of this variable as 

compared to the valley (data not shown). The effect of the quadratic term for slope was a result of 

higher probabilities of transition to shrub dominance on slopes steeper than 10° (Fig. 3d), although 

these represent only 4.8% of the coast area. 

 

Multinomial modelling of land cover change on the coast also resulted in a single model with virtually 

100% of the AICc weight (Table 8), which we used alone for all model inferences and predictions. 

Confidence intervals (95%) generated for the 80 model parameters included in the best multinomial 

model for the coast highlight the important effect of vegetation relative to other variables (Appendix 

S3: Table S1). Compared to the valley, where surrounding was important in modelling transitions to 

all cover types, the effect on the coast was only significant for rock and herbaceous cover (Appendix 

S3: Table S1). Apart from a higher probability of transition from herbaceous and sand cover to shrub 

dominance with increasing elevation (Fig. 4d, Appendix S1: Fig. S8) and a higher probability of 
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transition to shrub dominance for lichen-dominated patches facing northeast (Appendix S3: Table S1), 

there was no conspicuous effect of topographic variables on multinomial transition probabilities on 

the coast. 

 

Spatially explicit modelling of land cover change 

Spatially explicit shrubification probabilities for 1990/1994 - 2010 were estimated from binomial and 

multinomial models for both the valley and the coast (Fig. 5) and were used to generate spatially 

explicit predictions. AUC values for the binomial models of the valley and the coast were 0.77 and 

0.74, respectively, which indicates a fair predictive capability for these models (Swets 1988). The 

overall accuracies of our spatially explicit predictions (corresponding to 1 minus the total 

disagreement presented in Fig. 6) ranged from 58.7% to 76.9%. Quantity and allocation disagreement 

values for all eight types of spatially explicit predictions indicate that most of the inaccuracy of our 

predictions stems from allocating pixels to the wrong class rather than allocating the wrong number of 

pixels in each class (Fig. 6). Spatially explicit maps generated from deterministic realizations of the 

statistical model predictions were consistently better (in terms of total disagreement) than those 

generated from stochastic realizations, although stochastic realizations tended to perform better than 

their deterministic counterparts in terms of quantity disagreement (Fig. 6). Interestingly, multinomial 

stochastic models resulted in almost perfect quantity agreement while resulting in the worst allocation 

disagreement (Fig. 6). Moreover, stochastic realizations resulted in highly pixelized maps that we 

deemed rather unrealistic representations of the vegetation change processes underway in the region 

(results not shown). Deterministic multinomial models generated slightly better spatially explicit 

predictions than binomial models (Fig. 6), but given the much higher number of parameters that have 

to be estimated, the significance of the minor improvements is questionable. Predictions were 

consistently more accurate for the valley than for the coast according to total disagreement, but these 

differences were less pronounced when looking at kappa coefficients (Fig. 6). This is likely a 

consequence of the higher proportion of shrub dominance in the valley, which makes it more likely to 

accurately predict a cell as being shrub-dominated. 
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Based on the preceding results, long-term predictions of the proportion of land dominated by different 

cover classes over time were generated from the deterministic models. Predictions for both the valley 

(Fig. 7a) and the coast (Fig. 7b) were marked by an increase of shrub cover, mainly at the expense of 

lichen and herb cover. Predictions generated from binomial and multinomial models were roughly 

similar, except for the proportions of rock and herbaceous cover on the coast, which differed 

markedly between the two models (Fig. 7b). The models tended towards equilibrium of the 

proportions of land in different land cover classes, presumably as the most probable vegetation 

conversions had all occurred by the end of the simulation period. 

 

Field-based model corroboration 

Comparison of the model predictions for 2026 in the valley with the data collected in the field ranked 

the model with only margin as the best model both for the binomial and multinomial predictions 

(Table 9). Based on AICc weights, there was no support for an association between shrub cover and 

model predictions. Quadrats on the margin of a shrub patch in the field had higher predicted 

probabilities of shrubification than others, even though there was considerable overlap between the 

probability values (Fig. 8a). On the coast, binomial model predictions were best modelled by the 

global model which included both margin and shrub cover, as evidenced by the ranking of the global 

model as the best model (Table 9). Multinomial model predictions for the coast were best modelled by 

the global model as well. Among the univariate models, there was better support for an effect of shrub 

cover in the field than for margin (Table 9). Predicted shrubification probabilities, both from binomial 

and multinomial models, were higher on the coast when shrub cover was also higher in the field (Fig. 

8b). 

 

Satellite-based model corroboration 

Different land cover types clearly differed in the distribution of their NDVI values, with NDVI values 

decreasing roughly as expected in the following order: shrubs > spruce > herbs > lichen > rock > sand 

(Appendix S1: Fig. S9). Although increasing trends were observed for all land cover types, higher 

NDVI increases over the period 1990-2010 were observed in areas where the vegetation was initially 
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herb- or lichen-dominated, both in the valley and on the coast (Appendix S1: Fig. S10); these cover 

types also correspond to the ones that underwent the most important transition to shrub dominance 

over the same period. Similar tendencies were not observed for the 2010-2016 NDVI trends 

(Appendix S1: Fig. S10), which proved to be markedly higher than 1990-2010 trends (see also the 

maps of Appendix S1: Fig. S11). We found significant positive linear relationships between NDVI 

trends and percentage shrubification for both the valley (β = 0.004, P < 0.001; Appendix S1: Fig. 

S12) and the coast (β = 0.005, P < 0.001; Appendix S1: Fig. S12), although the proportional 

explained variance was low (R2 of 0.11 and 0.20, respectively). Among the four linear models 

constructed in order to assess the link between model-predicted probabilities and 2010-2016 NDVI 

trends, only the models of the coast showed a significant relationship between NDVI trends and 

predictions (Binomial predictions: β = 0.01, P < 0.01, R2 = 0.07; Multinomial predictions: β = 0.01, 

P < 0.01, R2 = 0.06; Fig. 9), although the explained variance was very low. The two models of the 

valley did not yield evidence for a relationship between binomial nor multinomial predicted values 

and 2010-2016 NDVI trends. 

 

Discussion 

Topographic drivers of shrubification 

Recent research on the spatial patterns of shrubification underlines the importance of topography, 

hydrology and disturbance as drivers of this phenomenon at the landscape scale. A unifying paradigm 

from much of this research is that shrub growth and recruitment are enhanced where both nutrients 

and water are not limiting (Tape et al. 2012) and where climate conditions are milder (Swanson 

2015). Shrub stands usually grow higher and expand more rapidly along drainage features (Naito and 

Cairns 2011, Tape et al. 2012, Curasi et al. 2016) and dendrochronological data (Myers-Smith et al. 

2015) show that the climate sensitivity of shrub growth is higher in wetter areas. Tape et al. (2006) 

observed that the rate of shrub cover increase differed from one valley system to another and among 

different topographical units, hill slopes and valley bottoms being more liable to shrubification than 

interfluves. Ropars and Boudreau (2012) similarly found that shrub cover increased more rapidly on 
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river terraces than on hilltops. Aerial photography analyses by Tremblay et al. (2012) and Cameron 

and Lantz (2016) also yield evidence for a higher shrubification rate at lower elevation sites, although 

increases in shrub cover tend to also occur at higher elevations. Increasing disturbance from human 

activity (Fraser et al. 2014, Cameron and Lantz 2016), fire (Lantz et al. 2013), or geomorphological 

processes (Lantz and Kokelj 2008, Lantz et al. 2009) also enhance shrub growth and recruitment by 

increasing nutrient availability and exposing favourable seedbeds. 

 

Our results are in accordance with previous research in emphasising the importance of topographical 

variables in the control of shrub expansion in subarctic ecosystems. In the valley, we found that shrub 

cover is more likely to increase at lower altitudes, as was observed in previous studies (Tremblay et 

al. 2012, Cameron and Lantz 2016). Lower elevation sites in the valley are largely sheltered from the 

wind and are characterized by numerous drainage features and wetter areas where shrubs can thrive. 

On the contrary, the lichen-dominated plateau overlooking the valley is characterized by shallow soils 

and high wind exposure unfavourable to the development of erect shrub stands. Field observations of 

our research group on this plateau suggest, however, that shrub cover and size have increased recently 

and that B. glandulosa is ubiquitous even though aerial photography has not detected a switch to 

shrub dominance in this area between 1994 and 2010. These observations in the field are supported by 

our analysis of 2010-2016 NDVI trends, which show that large increases in NDVI have occurred on 

the plateau over this period (Appendix S1: Fig. S11). It is likely that shrub dominance will also 

increase on the plateau, although the timespan of our study did not allow our modelling exercise to 

detect significant changes in this area. Whether shrubs will remain low or will develop into high shrub 

stands in this area is of interest, since the ecological impacts of shrubification occur mainly in high 

shrub stands (Myers-Smith and Hik 2013, Paradis et al. 2016). 

 

The influence of elevation on land cover changes was not as obvious on the coast as in the valley. 

This was expected, as the elevation range on the coast (0-45 m a.s.l.) is narrower than in the valley (0-

180 m a.s.l.). Multinomial modelling of land cover change for the coast found an effect opposite to the 

one observed in the valley, with increasing probability of transition to shrub dominance with elevation 
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on herbaceous and sand cover. This effect is likely due to increasing distance from the sea with 

increasing elevation on the coast; areas farther from the coast are more sheltered from the wind and 

therefore more likely to favour shrub recruitment and growth. The higher probability of shrub 

colonization on northeast-facing lichen patches also supports the interpretation that the influence of 

the sea plays an important role in land cover transitions on the coast, since patches facing northeast 

are sheltered from the wind coming from the sea. Erosion by ice and water also prevent shrub 

colonization of the sandy beach running along the coast, which explains this effect of elevation on 

transition to shrub dominance on sand cover.  

 

 

We expected to find a conspicuous positive effect of topographic wetness index (TWI) on 

probabilities of transition to shrub dominance for both study areas, since this variable has been linked 

to shrubification in a previous study (Naito and Cairns 2011) and shrub performance is related to 

water availability (Tape et al. 2012, Cameron and Lantz 2016, Curasi et al. 2016), but a significant 

effect of TWI was only observed on lichen and spruce cover in the valley. However, a weak effect of 

TWI does not mean that shrub growth and recruitment does not depend on moisture conditions in our 

study system. TWI is a measure of soil moisture potential based entirely on topography, but soil 

moisture content depends on other factors such as soil physicochemical conditions and vegetation 

structure and community (Ben Wu and Archer 2005). The effects of slope and aspect found by our 

models, on the other hand, do support a role of water availability in shrub cover increase. An 

interesting pattern revealed by the valley multinomial model was an increase in the probability of 

transition to shrub dominance on moderate slopes (10-30°) dominated by herbs. Binomial models for 

the coast also found a higher probability of shrub dominance on slopes steeper than 10°. Both in the 

valley and on the coast, such conditions are mostly found in the vicinity of drainage features 

characterized by high water and nutrient availability while being well drained. Moreover, these 

depressions probably accumulate more snow in the winter, enabling deeper permafrost thaw and 

moisture availability from snowmelt in the spring and summer while also protecting shrubs from 

winter frost damage (Ropars et al. 2015a). In the valley, the higher probability of shrub dominance on 
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herbaceous and rock slopes exposed to the northeast is also likely due to higher moisture and snow 

accumulation on these slopes because of lower exposure to sunlight.  

 

Spatial arrangement of land cover as a driver of shrubification 

Previous research has documented that the rates of shrub cover and growth increase depended on the 

type of environment or vegetation in which they grow. Patterns emerging from aerial photography 

analysis commonly show an increase in shrub cover at the expense of lichen-dominated areas (Ropars 

and Boudreau 2012, Fraser et al. 2014), an observation consistent with the decreases in lichen cover 

expected with climate change (Cornelissen et al. 2001, Elmendorf et al. 2012a). On the other hand, 

shrubs usually perform poorly in tussock tundra, where inadequate drainage, acidity and a shallow 

active layer inhibit the development of a vertical structure (Tape et al. 2012, Swanson 2015). 

 

We found strong support for effects related to land cover type and the spatial arrangement of 

vegetation. Land cover type at a given time was an important predictor of the land cover type at a later 

time in both study areas. Land cover type identifies which state a given cell is most likely to remain in 

as well as how likely different transitions are. In the valley, most of the low-elevation (as opposed to 

those found on the plateau) lichen expanses occur on permafrost mounds that, upon thawing, create 

moisture and microtopographic conditions favourable to shrub growth (Schuur et al. 2007, 

Provencher-Nolet et al. 2014) whereas on the coast, shrub encroachment on lichen-dominated areas 

appeared to result mainly from clonal propagation of shrubs on well-drained sites. Model results also 

supported some degree of shrub encroachment on herbaceous vegetation, although identifying the 

reasons for these shifts is more complex as there is considerable heterogeneity in this land cover class. 

It seems likely that herbs in well-drained sites will progressively yield to shrub dominance, but the 

fate of poorly drained areas is less clear. Observations of large numbers of shrub seedlings in the field 

indicate high recruitment in moist areas dominated by grasses and sedges (pers. obs.), although their 

low height raises questions as to whether shrubs will reach dominance in these sites. 
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The proximity of shrub-dominated cells was closely associated with transition to shrub dominance in 

binomial models, while the major surrounding land cover type was a relatively important predictor of 

land cover transitions in the multinomial model of the valley. The link between these variables and 

transition probabilities underline the importance of neighborhood effects in the prediction of 

vegetation change. Repeat photography studies consistently show shrub cover increases in the vicinity 

of existing patches (Sturm et al. 2001, Myers-Smith et al. 2011b, Lantz et al. 2013) and Tape et al. 

(2012) observed that expanding shrub patches tend to adopt a clumped configuration. These 

neighborhood effects could result from the clonal propagation of shrub patches or preferential 

recruitment near mature patches, such that sites are more easily colonized by shrubs when expanding 

patches are found in their surroundings. Another explanation (which does not exclude the former) is 

that environmental conditions (soil properties, wind exposure, exposure to sunlight, topography, etc.) 

are more likely to be similar in neighboring cells, so that areas adjacent to shrub patches may be more 

suitable for shrub growth than would be randomly picked sites elsewhere in the landscape. The effect 

of edge ratio, which was an important predictor of binomial models of the valley, is similarly related 

to land cover change, as it is a measure of the exposure of a vegetation patch to other land cover 

types. Smaller and more irregularly shaped patches (i.e. patches with a higher edge ratio) will likely 

be more liable to colonization by shrubs since they are more exposed to shrub edges, although it 

might also be that they were irregular because they were more liable to shrubification in the first 

place. 

 

Overall performance of the models 

The models generated in our study were satisfactory in their explanatory power. AUC values over 0.7, 

such as those computed for our binomial deterministic models, indicate that models can prove useful 

for “some purposes” (Swets 1988; we can take this to include highly complex ecological systems) and 

although such values could not be computed for multinomial models, these showed similar 

performance to binomial models based on kappa coefficients and disagreement values. Predicted 

binomial and multinomial probabilities also showed good visual agreement with their respective 

shrubification maps over the same time periods (Fig. 5). Our results indicate that our models 
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performed much better at predicting the fraction of land cover dominated by different classes than at 

predicting the class that will dominate a given pixel later in time. This is likely to be the case for 

models like ours since allocation disagreement can result both from predicting change in pixels that 

did not change between 1990/1994 and 2010, and from predicting stability for pixels that did change. 

These results suggest that our deterministic models are likely to be an accurate representation of 

changes that are likely to happen in the future, although they are limited in their fine-scale predictive 

capacity. 

 

Comparing results of predictions among studies is difficult because they are interested in different 

phenomena, spatial scales, time intervals, and change rates. Moreover, models used in land cover 

change prediction vary largely from one study to another, and different authors usually report 

different statistics to assess the performance of their models. Nonetheless, the performance of our 

models can be considered in the range of that obtained in other studies interested in similar processes. 

Pueyo and Bueguería (2007), in a study modelling secondary succession following farm abandonment 

in Spain, generated binomial models with AUC values ranging from 0.76 to 0.83 and an overall 

prediction accuracy of 67.8%. Rutherford et al. (2007), in a study modelling similar transitions in 

Switzerland, obtained AUC values ranging from 0.5 to 0.78. Upshall (2011), who reported results 

from a Markov-cellular automaton model also interested in shrubification, reported an overall 

prediction accuracy of 70.8% and a kappa coefficient of 0.66. We suggest that future studies of land 

cover change modelling should report at least AUC values since these are independent of outcome 

frequencies (Swets 1988) and are thus more easily compared among studies. As discussed in 

Rutherford et al. (2007), prediction accuracies and kappa coefficients remain useful for model 

performance interpretation, and we suggest authors to also report these statistics along with quantity 

and allocation disagreement when describing the results of land cover change models. 

Stochastic versus deterministic modelling 

Deterministic models performed better than stochastic models when translating statistical model 

predictions into actual predictive maps, based on both overall accuracy values and kappa coefficients. 

Stochastic predictions also resulted in unrealistically pixelized maps, a well-known problem in spatial 
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modelling (Weaver and Perera 2004) that could not be corrected in our modelling exercise by 

variables taking the spatial context into account (e.g. shrub edge and surrounding). Deterministic 

model realizations were similarly found by Carmel et al. (2001) to generate predictive maps that 

match observed maps better, although stochastic realizations might outperform deterministic ones 

when predicting proportions of different cover classes, as was the case here for maps arising from 

stochastic multinomial models. 

 

Binomial versus multinomial modelling 

We tested both binomial and multinomial models of vegetation change in the Umiujaq region in order 

to assess whether land cover transitions could be represented merely as a shrubification process 

(conceptualized as a binomial model) rather than the whole spectrum of land cover transitions 

(conceptualized as a multinomial model). It appears from our results that the small increase in 

performance obtained from modelling a multinomial process instead of a binomial one does not 

justify the ~ 5-fold higher number of parameters used in multinomial models. Moreover, long-term 

predictions generated from binomial and multinomial models were largely similar to one another. Our 

results thus indicate that neglecting changes other than transition to shrub dominance does not result 

in a reduction of prediction accuracy, which lends strong support for the significance of the 

shrubification process currently observed at the circumpolar scale. This reaffirms shrubification as the 

major component of land cover change in subarctic regions and reinforces the importance of 

understanding the impacts of this phenomenon on feedbacks to climate due to changes in energy 

fluxes between the ground and atmosphere, permafrost degradation and reduction of lichen and moss 

cover, among others. Multinomial models generated in our study still enabled us to reveal 

ecologically meaningful patterns related to the effects of slope and aspect in the valley and elevation 

on the coast that would have remained concealed had we only generated binomial models. Thus, 

although multinomial models were not essential to generating accurate predictions of land cover 

changes, they were still useful in order to gain understanding about the shrubification process. 
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Consistency of model predictions with observed patterns of change 

Model consistency with actual land cover change would best be assessed by comparing predictions to 

aerial photographs revealing which changes are really happening in the area. This is obviously not 

possible until some time has elapsed. Indeed, few (if any) studies return to their model predictions in 

order to compare them with real data collected later. In this study, we strived to assess how model 

predictions were consistent with current trajectories of change, an undertaking that seems to be new 

for the field of land cover change modelling and is thus necessarily imperfect. We evaluated current 

trajectories of change at two different scales, first by identifying which sites were most likely to 

undergo transition to shrub dominance from field observations, and second by analyzing recent (2010-

2016) NDVI trends derived from 30 m resolution Landsat data. 

Field-based model corroboration 

Overall, model predictions both from binomial and multinomial models were consistent with 

observations in the field. In the valley, sites with a greater probability of transition to shrub 

dominance were associated with the presence of shrub stands at the margin of the quadrats in the 

field, but not with shrub cover. Assuming that colonization by shrubs from clonal propagation is more 

likely when large shrub stands are found in the vicinity of the plots, this lends support to our model 

predictions. However, as shrubs are ubiquitous in the valley, several sites where transition to shrub 

dominance is possible probably will not be identified as such by our models, as evidenced by the lack 

of a relationship between shrub cover in the field and our model-derived predictions. On the coast, 

contrarily, quadrats with higher shrub cover, and to a lesser extent with the presence of shrub stands at 

the margin, were associated with higher probabilities of transition to shrub dominance. Whereas 

shrubs seem to be able to grow almost everywhere in the valley, some areas on the coast (e.g. the 

herbaceous areas along the beach representing the first steps of a primary succession and the large 

unvegetated rock outcrops) do seem totally unsuitable for shrubs, thus distinguishing these sites using 

models may be easier. Overall, our models are consistent with patterns observed in the field, although 

we simply expect our models to broadly represent the shrubification process rather than accurately 

model vegetation changes at finer scales or specific cells (as implied by high allocation disagreement 

values). 
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Satellite-based model corroboration 

Recent (2010-2016) trends in NDVI derived from Landsat data only partly supported our model 

predictions. NDVI trends derived for the coast supported (although weakly) both binomial and 

multinomial shrubification probabilities, whereas areas that showed the largest increases in NDVI in 

the valley were not associated with increased probabilities of shrubification according to our models. 

Although this does raise questions about the consistency of the predictions with ongoing changes, we 

do not think that our model predictions should be dismissed based on these grounds. One of the 

reasons for this is that recent NDVI trends have been derived from only 5 years of data, which makes 

it difficult to know whether these trends will persist or are only temporary.  

 

Another reason for the poor agreement between predictions and recent NDVI trends is that the 

analysis of past NDVI trends (1990-2010) showed a weak relationship with shrubification, with R2 

values of 0.11 for the valley and 0.20 for the coast. Despite this low explained variance, it appears 

unlikely that the observed patterns (Appendix S1: Fig. S12) represent random variation, and increase 

in shrub cover likely remains the main driver of the observed NDVI increases. This interpretation is 

supported by NDVI trends derived for the period 1990-2010, that clearly showed higher increases in 

initially herb- and lichen-dominated areas (Appendix S1: Fig. S10), which we attribute to an increase 

in shrub cover in these areas that have undergone massive shrubification during this interval. The low 

explained variance could also be due to the fact that increases in shrub cover can occur and contribute 

to an increase in NDVI without a concurrent transition to shrub dominance.  

 

Functional types other than shrubs could nonetheless have contributed to increases in greenness. 

Recent (2010-2016) trends indicated large NDVI increases irrespective of the initial land cover type, 

which may either indicate an increase in shrub cover in many different land cover types, or an 

increase in greenness of other functional groups. Beck and Goetz (2011) found that significant 

increases in NDVI occurred in areas of lower shrub cover, suggesting that other plant functional types 

also contribute to the greening trend. McManus et al. (2012) similarly observed significant greening 

trends in areas dominated by graminoid tundra, and Fraser et al. (2011) linked some of the observed 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

increases in NDVI to an increase in herbaceous cover. In our study area, observations in the field 

suggest a transient increase in the abundance of Equisetum species and other herbs on thawing 

permafrost mounds, perhaps as a consequence of increased water availability caused by permafrost 

thaw. From that point of view, it may be that the higher homogeneity of land cover patches on the 

coast make it easier to identify areas undergoing shrubification from NDVI trends, whereas in the 

valley, both field observations and recent NDVI trends support an ubiquitous large increase in 

greenness which may or may not be linked to an increase in shrub cover. 

 

It may also be the case, however, that our models are not able to identify areas where shrubification is 

occurring and that the lack of agreement between NDVI trends and model predictions is a result of 

this. Visual comparison of the 1990-2010 and 2010-2016 NDVI trends for both the valley and the 

coast suggests a shift in the areas undergoing the most intense greening (Appendix S1: Fig. S11). This 

could be due either to saturation in NDVI in areas that have already undergone considerable greening 

(Blok et al. 2011b) or to a real shift in the greening trends. Changing dynamics would be a real 

concern for our modelling approach, as our predictions rely on the assumption that land cover change 

will continue on the trajectory followed between 1990/1994 and 2010. Although a thorough analysis 

of the link between NDVI trends and changes in land cover was outside the scope of this study, 

linking changes in NDVI and other indices derived from remote sensing data to processes visible on 

the ground clearly merits more attention in future studies if one is to use remote sensing data for 

validation purposes. 

 

Range of applications of the models 

Land cover or land use change models can have applications other than the increased understanding of 

the phenomena they are used to represent. In this study, we applied these models to generate 

predictions of the proportion of land dominated by different cover classes over time. Although the 

extent to which models calibrated over 20 years of data can be used to generate predictions almost 

100 years from now is certainly a matter of debate, such predictions still represent our best guess as to 

the way vegetation may change over the next decades. Whether the stabilizing pattern observed in our 
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predictions is merely a consequence of our modelling approach or is a real ecological possibility is an 

open question; are some sites completely unsuitable for shrubs, or should we expect them to 

eventually take over the whole tundra? Or might some sites have much lower colonization rates, such 

that shrub occupancy would take place at the scale of centuries rather than years or decades? Other 

modelling approaches using lower-resolution data (Pearson et al. 2013, Swanson 2015) suggest that 

some areas will resist shrub encroachment in the short term, in accordance with our predictions. From 

our experience in the field, it is likely that shrubs will not colonize sites such as the large rock 

outcrops on the coast in the near future, whereas we deem most areas in the valley except from spruce 

stands to be liable to colonization by erect shrubs. Another question of interest relates to the increase 

of tree cover in tundra areas. The timespan of our study was not long enough to observe changes in 

the spruce-dominated area, but one could expect tree cover to increase as climate gets milder in the 

area (Harsch et al. 2009). 

Conclusion 

Our modelling of the land cover change near Umiujaq over the last decades supports evidence that the 

expansion of shrub species at the landscape scale is influenced by variables related to both topography 

and the spatial arrangement of vegetation. The results of this study are in agreement with observations 

made at other subarctic locations, while providing a finer understanding of the factors and processes 

influencing transition to shrub dominance in these regions. A similar approach could be used in other 

arctic and subarctic areas in order to gain knowledge about the land cover changes underway. More 

generally, our opinion is that land cover change models have been largely underused in ecology given 

the increased understanding that they can bring, especially in this era of important human-driven 

ecological changes. Spatially explicit predictions generated from land cover change models can also 

be used to inform land management in the Arctic or other regions. For example, the information 

gained from land cover change models could be used to set the boundaries of ecological preserves or 

identify areas that should be more closely monitored. Moreover, the possibility of coupling land cover 

change models with models representing other processes interacting with vegetation, for example 

models of permafrost thaw or snow cover, represents a step forward in the understanding of the 

complex interactions of arctic environments. 
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The validation of the modelling results from both field data and remote sensing data is a novel aspect 

of our study. Indeed, land cover change studies very rarely (if at all) put as much effort into the 

validation of their models. The validation results and methods presented here were our best attempt at 

rooting our models in the ecological reality, but we are aware that significant improvements could be 

made to these methods. We ask for future research on the topic to build upon the validation methods 

proposed here and for gold standards to be set for the validation of land cover change modelling 

results over the next years. Future research should pay particular attention to how satellite data can be 

used to complement information obtained from aerial photography or other sources of higher-

resolution data, such as that obtained from drones. Since such data will only become more and more 

common over the next decades, it is important to set solid bases for the use of these data in ecology. 
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Tables 

 

Table 1: Description and classification criteria of the seven land cover types used in 

the classification of the valley and coast aerial photos near Umiujaq, Québec, 

Canada. Land cover classes are described as in Provencher-Nolet et al. (2014). 

Class Description 

Shrub Areas dominated by erect shrubs such as B. glandulosa, Alnus viridis 

ssp. crispa and Salix spp. 

Lichen Areas dominated by lichens (mostly Cladonia spp.), with or without 

intermingled herbs and shrubs. 

Spruce Areas with at least 30% spruce cover, usually with mosses, lichens or 

shrubs on the forest floor. 

Herbs 
Heterogeneous class comprising grasses or Cyperaceae species in wet 

areas, or low vegetation and mosses sometimes intermingled with 

prostrate shrub species. 

Rock Talus of fallen rocks or barren to sparsely vegetated rock outcrops. 

Water 
Open water cover, comprising ponds and rivers. The broader part of the 

main river in the valley was excluded from the analysis as it is not 

expected to change. 

Sand Sand-dominated areas found along the shore and as scattered dunes 

farther from the Hudson Bay. 

Notes: The spruce and sand classes are used only for the valley and for the coast, 

respectively. 
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Table 2: Variables included in the binomial and multinomial sets of models for land cover change modelling 

both for the valley and the coast near Umiujaq, Québec, Canada. 

Model vegetation elevation slope aspect TWI 
(shrub) 

edge 

neighb / 

surround 
edge ratio 

mod1                

mod2         

mod3         

mod4             

mod5             

mod6              

mod7               

mod8 

    



  mod9            

mod10  

      mod11               

mod12 



 

    mod13               

mod14    

    mod15             

mod16 



  

   mod17              

mod18    





  mod19            

mod20 



   

  mod21             

mod22    

  



mod23            

mod24 



  









A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

mod25             

mod26    

   



mod27           

mod28 



  

  



mod29            

Notes:  The variables shrub edge and neighborhood were used in binomial models whereas edge and 

surrounding were used in multinomial models. A quadratic term for slope was added whenever slope was 

included, and the interaction between slope and aspect was also added whenever aspect was included in a 

model. The variable aspect is a transformation of aspect following Beers et al. (1966). neighb is shorthand 

for neighborhood and surround is shorthand for surrounding. 
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Table 3: AICc model selection table of binomial models of land cover change in the 

Tasiapik valley near Umiujaq, Québec, Canada. The variables included in each model 

are listed in table 2. 

Model K AICc ∆AICc wAICc LL 

mod2 13 2105.0 0.0 0.862 -1039.4 

mod3 13 2108.6 3.7 0.138 -1041.2 

mod22 11 2134.1 29.2 0.000 -1056.0 

mod4 7 2138.9 33.9 0.000 -1062.4 

mod23 10 2147.0 42.1 0.000 -1063.5 

mod5 7 2147.8 42.8 0.000 -1066.9 

mod25 8 2149.5 44.5 0.000 -1066.7 

mod26 11 2153.0 48.0 0.000 -1065.4 

mod27 10 2169.2 64.2 0.000 -1074.5 

mod29 8 2178.4 73.4 0.000 -1081.1 

mod18 11 2180.6 75.6 0.000 -1079.2 

mod28 11 2182.0 77.0 0.000 -1079.9 

mod19 10 2192.1 87.2 0.000 -1086.0 

mod24 11 2194.3 89.3 0.000 -1086.1 

mod21 8 2199.4 94.5 0.000 -1091.7 

mod6 6 2200.7 95.7 0.000 -1094.3 

mod7 6 2202.2 97.3 0.000 -1095.1 

mod20 11 2264.6 159.6 0.000 -1121.2 

mod9 11 2276.4 171.4 0.000 -1127.1 

mod8 6 2276.9 171.9 0.000 -1132.4 

mod14 10 2278.9 173.9 0.000 -1129.4 

mod15 9 2292.2 187.2 0.000 -1137.0 

mod17 7 2315.3 210.3 0.000 -1150.6 

mod10 6 2317.2 212.2 0.000 -1152.6 
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mod12 9 2418.6 313.6 0.000 -1200.2 

mod16 10 2418.9 313.9 0.000 -1199.4 

mod11 7 2423.4 318.4 0.000 -1204.6 

mod1 5 2455.9 350.9 0.000 -1222.9 

mod13 6 2456.1 351.2 0.000 -1222.0 

Notes: K, number of parameters in the model; AICc, Akaike's information criterion 

corrected for small sample size; ∆AICc, difference in AICc from the best model; 

wAICc, weight (model probability) associated with the model; LL, log-likelihood of 

the model. 
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Table 4: Model-averaged parameter values for the binomial modelling of land cover 

change in the Tasiapik valley near Umiujaq, Québec, Canada. 

Parameter   β SE Lower CL Upper CL 

Intercept * -1.97 0.82 -3.59 -0.36 

veg: spruce * -0.58 0.13 -0.84 -0.32 

veg: herbs 

 

0.21 0.21 -0.20 0.62 

veg: water * -2.20 0.37 -2.93 -1.46 

veg: rock 

 

-0.23 0.24 -0.69 0.24 

elevation * -0.0068 0.0014 -0.0094 -0.0041 

TWI 

 

0.020 0.013 -0.006 0.046 

shrub edge * 0.81 0.11 0.59 1.04 

edge ratio * 2.45 0.41 1.66 3.25 

slope^2 

 

-0.0014 0.0009 -0.0031 0.0003 

slope x aspect 

 

0.013 0.011 -0.008 0.035 

neighborhood * -0.077 0.011 -0.100 -0.055 

Notes: Estimates and confidence intervals were computed using model averaging and 

unconditional standard errors from the whole model set. Values are presented only for 

those parameters included in at least one of the models in the 95% confidence model set. 

Parameters whose confidence interval excludes 0 are marked with an asterisk. Estimates 

for the vegetation land cover classes are relative to the lichen class. veg, vegetation; β, 

model-averaged coefficient estimate; SE, model-averaged unconditional standard error; 

Lower CL, lower confidence limit (95%) associated with the parameter estimate; Upper 

CL, upper confidence limit (95%) associated with the parameter estimate. 
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Table 5: AICc model selection table of multinomial models of land cover change in 

the Tasiapik valley near Umiujaq, Québec, Canada. The variables included in each 

model are listed in table 2. 

Model K AICc ∆AICc wAICc LL 

mod3 90 4883.93 0.00 1.00 -2349.68 

mod22 80 4921.52 37.59 0.00 -2378.96 

mod23 75 4953.49 69.56 0.00 -2400.16 

mod25 65 5043.31 159.38 0.00 -2455.47 

mod24 80 5097.98 214.05 0.00 -2467.18 

mod5 60 5107.65 223.72 0.00 -2492.81 

mod7 55 5219.34 335.41 0.00 -2553.82 

mod2 70 5256.14 372.21 0.00 -2556.69 

mod26 60 5266.92 382.99 0.00 -2572.44 

mod18 60 5285.13 401.20 0.00 -2581.55 

mod9 60 5307.41 423.48 0.00 -2592.69 

mod14 55 5313.98 430.05 0.00 -2601.14 

mod27 55 5333.64 449.71 0.00 -2610.97 

mod19 55 5354.53 470.60 0.00 -2621.41 

mod28 60 5374.90 490.97 0.00 -2626.44 

mod15 50 5380.53 496.60 0.00 -2639.56 

mod29 45 5453.18 569.25 0.00 -2681.02 

mod21 45 5468.44 584.51 0.00 -2688.65 

mod20 60 5484.37 600.44 0.00 -2681.17 

mod17 40 5491.78 607.85 0.00 -2705.44 

mod10 35 5496.78 612.85 0.00 -2713.04 

mod4 40 5557.05 673.12 0.00 -2738.07 

mod6 35 5561.03 677.10 0.00 -2745.17 

mod12 50 5562.21 678.28 0.00 -2730.40 
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mod16 55 5563.30 679.37 0.00 -2725.80 

mod11 40 5635.65 751.72 0.00 -2777.38 

mod8 35 5668.85 784.92 0.00 -2799.08 

mod1 30 5747.01 863.08 0.00 -2843.25 

mod13 35 5748.48 864.56 0.00 -2838.90 

Notes: K, number of parameters in the model; AICc, Akaike's information criterion 

corrected for small sample size; ∆AICc, difference in AICc from the best model; 

wAICc, weight (model probability) associated with the model; LL, log-likelihood of 

the model. 
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Table 6: AICc model selection table of binomial models of land cover change on the 

coast near Umiujaq, Québec, Canada. The variables included in each model are listed in 

table 2. 

Model K AICc ∆AICc wAICc LL 

mod2 13 1103.03 0.00 0.39 -538.36 

mod18 11 1103.19 0.15 0.36 -540.48 

mod20 11 1104.92 1.89 0.15 -541.35 

mod19 10 1106.96 3.93 0.05 -543.39 

mod4 7 1108.85 5.82 0.02 -547.38 

mod22 11 1109.97 6.93 0.01 -543.87 

mod24 11 1112.72 9.68 0.00 -545.25 

mod23 10 1112.98 9.94 0.00 -546.39 

mod8 6 1113.12 10.09 0.00 -550.53 

mod3 13 1113.84 10.81 0.00 -543.76 

mod21 8 1114.46 11.43 0.00 -549.17 

mod25 8 1122.47 19.44 0.00 -553.17 

mod7 6 1122.84 19.81 0.00 -555.38 

mod5 7 1124.42 21.38 0.00 -555.16 

mod26 11 1124.59 21.56 0.00 -551.18 

mod28 11 1127.88 24.85 0.00 -552.83 

mod27 10 1128.41 25.37 0.00 -554.11 

mod14 10 1131.11 28.07 0.00 -555.46 

mod9 11 1133.11 30.08 0.00 -555.44 

mod12 9 1134.30 31.26 0.00 -558.07 

mod15 9 1135.01 31.97 0.00 -558.43 

mod16 10 1136.21 33.17 0.00 -558.01 

mod11 7 1138.10 35.07 0.00 -562.00 

mod29 8 1140.73 37.70 0.00 -562.31 
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mod6 6 1141.73 38.69 0.00 -564.83 

mod10 6 1148.54 45.51 0.00 -568.23 

mod17 7 1150.29 47.26 0.00 -568.10 

mod1 5 1153.65 50.62 0.00 -571.80 

mod13 6 1155.17 52.13 0.00 -571.55 

Notes: K, number of parameters in the model; AICc, Akaike's information criterion 

corrected for small sample size; ∆AICc, difference in AICc from the best model; 

wAICc, weight (model probability) associated with the model; LL, log-likelihood of the 

model. 
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Table 7: Model-averaged parameter values for the binomial modelling of land 

cover change on the coast near Umiujaq, Québec, Canada. 

Parameter   β SE Lower CL Upper CL 

Intercept * -1.73 0.57 -2.86 -0.61 

veg: herbs * 0.53 0.18 0.18 0.88 

veg: sand * -2.43 0.65 -3.71 -1.15 

veg: rock * -1.20 0.27 -1.72 -0.67 

veg: water * -2.35 1.16 -4.62 -0.09 

elevation 

 

0.010 0.008 -0.006 0.025 

TWI 

 

-0.001 0.018 -0.036 0.034 

shrub edge * 0.90 0.17 0.56 1.23 

edge ratio * 1.02 0.49 0.06 1.99 

slope^2 * 0.015 0.007 0.002 0.029 

slope x aspect 

 

0.001 0.050 -0.097 0.100 

Notes: Estimates and confidence intervals were computed using model averaging 

and unconditional standard errors from the whole model set. Values are presented 

only for those parameters included in at least one of the models in the 95% 

confidence model set. Parameters whose confidence interval excludes 0 are 

marked with an asterisk. Estimates for the vegetation land cover classes are 

relative to the lichen class. veg, vegetation; β, model-averaged coefficient 

estimate; SE, model-averaged unconditional standard error; Lower CL, lower 

confidence limit (95%) associated with the parameter estimate; Upper CL, upper 

confidence limit (95%) associated with the parameter estimate. 
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Table 8: AICc model selection table of multinomial models of land cover change on 

the coast near Umiujaq, Québec, Canada. The variables included in each model are 

listed in table 2. 

Model K AICc ∆AICc wAICc LL 

mod22 80 2351.07 0.00 1.00 -1090.84 

mod23 75 2365.19 14.12 0.00 -1103.48 

mod3 90 2365.29 14.22 0.00 -1086.66 

mod24 80 2387.92 36.85 0.00 -1109.27 

mod25 65 2389.96 38.89 0.00 -1126.90 

mod18 60 2397.21 46.14 0.00 -1135.99 

mod2 70 2405.85 54.78 0.00 -1129.35 

mod7 55 2409.25 58.18 0.00 -1147.43 

mod19 55 2409.98 58.91 0.00 -1147.80 

mod5 60 2416.88 65.81 0.00 -1145.82 

mod14 55 2430.79 79.72 0.00 -1158.20 

mod9 60 2437.80 86.73 0.00 -1156.29 

mod26 60 2439.76 88.69 0.00 -1157.27 

mod15 50 2446.05 94.98 0.00 -1171.22 

mod21 45 2447.29 96.22 0.00 -1177.18 

mod27 55 2454.46 103.39 0.00 -1170.04 

mod20 60 2458.15 107.08 0.00 -1166.46 

mod10 35 2477.48 126.41 0.00 -1202.86 

mod17 40 2483.60 132.53 0.00 -1200.65 

mod29 45 2490.22 139.16 0.00 -1198.65 

mod8 35 2492.11 141.04 0.00 -1210.17 

mod4 40 2495.14 144.07 0.00 -1206.41 

mod12 50 2499.91 148.84 0.00 -1198.15 

mod28 60 2500.86 149.80 0.00 -1187.82 
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mod16 55 2506.73 155.66 0.00 -1196.17 

mod11 40 2512.80 161.73 0.00 -1215.24 

mod6 35 2532.27 181.20 0.00 -1230.25 

mod1 30 2542.70 191.63 0.00 -1240.70 

mod13 35 2548.21 197.14 0.00 -1238.22 

Notes: K, number of parameters in the model; AICc, Akaike's information criterion 

corrected for small sample size; ∆AICc, difference in AICc from the best model; 

wAICc, weight (model probability) associated with the model; LL, log-likelihood of 

the model. 
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Table 9: AICc table of the models relating spatially explicit predictions to field observations in the 

valley and coast near Umiujaq, Québec, Canada. 

Modelled data Model K AICc ∆AICc wAICc LL 

Valley, binomial predictions 

margin 3 -9.5 0.0 0.90 7.93 

global 5 -5.1 4.5 0.10 7.93 

null 2 5.0 14.6 0.00 -0.43 

cover 4 8.7 18.3 0.00 -0.10 

Valley, multinomial predictions 

margin 3 15.3 0.0 0.89 -4.49 

global 5 19.7 4.5 0.10 -4.47 

null 2 24.6 9.3 0.01 -10.20 

cover 4 28.6 13.3 0.00 -10.02 

Coast, binomial predictions 

global 5 -69.1 0.0 0.94 39.82 

margin 3 -62.8 6.4 0.04 34.48 

cover 4 -61.2 7.9 0.02 34.76 

null 2 -42.0 27.2 0.00 23.03 

Coast, multinomial predictions 

global 5 -92.9 0.0 0.75 51.72 

cover 4 -90.6 2.3 0.24 49.50 

margin 3 -83.5 9.4 0.01 44.87 

null 2 -70.6 22.4 0.00 37.33 

Notes: Predictions for the valley were generated for 2026 whereas predictions for the coast were 

generated for 2030. The global models are models including both margin and cover, whereas null 

models included the intercept only. K, number of parameters in the model; AICc, Akaike's 

information criterion corrected for small sample size; ∆AICc, difference in AICc from the best 

model; wAICc, weight (model probability) associated with the model; LL, log-likelihood of the 

model. 
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Figure legends 

Figure 1: Location of the study area near Umiujaq, Québec, Canada, with the valley and coast study 

areas outlined. 

 

Figure 2: Conceptual representations of the (a) binomial and (b) multinomial models of land cover 

change in the Tasiapik valley near Umiujaq, Québec, Canada. Binomial models represent a process 

where only transitions to shrub dominance occur, whereas multinomial models represent a process 

where all possible transitions between land cover classes occur. For simplicity, only same-state 

transitions and transitions from lichen and shrub dominance are shown in (b), but 36 possible 

transitions are actually considered in multinomial models. 

 

Figure 3: Predicted probabilities of transition to shrub dominance from different land cover types as 

estimated from binomial models of land cover change. (a) Effect of elevation on shrubification 

probabilities in the valley. (b) Effect of edge ratio on shrubification probabilities in the valley. (c) 

Effect of shrub edge on predicted shrubification probabilities in the valley. (d) Effect of slope on 

shrubification probabilities on the coast. Predicted values and 95% confidence intervals (dashed lines) 

were computed using model averaging from the whole set of models (Table 3, Table 6). Variables 

other than those of interest were set to the mean (continuous variables) or most common (categorical 

variables) value in the dataset. 

 

Figure 4: Predicted probabilities of transition to shrub dominance from different land cover types as 

estimated from multinomial models of land cover change. (a) Effect of elevation on predicted 

shrubification probabilities in the valley. (b) Effect of slope on predicted shrubification probabilities 

in the valley. (c) Effect of TWI on predicted shrubification probabilities in the valley. (d) Effect of 

elevation on predicted shrubification probabilities on the coast. Predicted values and 95% confidence 

intervals (dashed lines) were computed from the single best model of each study area (Table 5, Table 
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8) using the effects package in R. Variables other than those of interest were set to the mean 

(continuous variables) or most common (categorical variables) value in the dataset. Surrounding was 

an exception to that rule since this variable was set to the same value as vegetation. 

 

Figure 5: Spatially explicit analysis of shrubification patterns for 1994-2010 in the Tasiapik valley (a-

c) and 1990-2010 on the coast (d-f) near Umiujaq, Québec, Canada. Areas that have undergone 

shrubification during the timespan of the study are shown for (a) the valley and (d) the coast along 

with associated probabilities of transition to shrub dominance estimated from (b, e) binomial and (c, f) 

multinomial models. Areas that were already dominated by shrubs at the beginning of the study 

period were masked from all maps and thus appear in white. Note the different map scales for the 

valley and the coast. 

 

Figure 6: Quantity disagreement, allocation disagreement and kappa values for eight different model 

realizations of land cover change near Umiujaq, Québec, Canada. Kappa values corresponding to each 

model realization are shown to the right of the bar. Values computed for stochastic realizations are 

mean ± standard deviation from 100 independent runs. Standard deviation values were also computed 

for quantity and allocation disagreement but are not represented graphically as they were all ~ 0.001 

or smaller. 

 

Figure 7: Long-term predictions of the proportions of different land cover classes over time near 

Umiujaq for (a) the Tasiapik valley and (b) the Umiujaq coast as estimated from spatially explicit 

binomial and multinomial model predictions. Values for 2010 (dashed vertical line) and earlier 

represent actual data, whereas data points after 2010 represent predictions generated from 

deterministic realizations of the models for 5 time steps of 16 years (valley) or 20 years (coast). 

Variables that changed with the spatial configuration of the data (e.g. surrounding and shrub edge) 

were dynamically updated after each time step to take into account the new spatial configuration of 

land cover. 
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Figure 8: Validation of the land cover models from field data near Umiujaq, Québec, Canada. (a) 

Predicted probabilities of transition to shrub dominance estimated from binomial and multinomial 

model predictions in the Tasiapik valley according to whether the field survey quadrats were located 

at the margin of a shrub patch or not. (b) Predicted probabilities of transition to shrub dominance 

estimated from binomial and multinomial model predictions on the Umiujaq coast as a function of the 

percentage of shrub cover in the survey quadrats. 

 

Figure 9: Sample of NDVI trends over the period 2010-2016 as a function of binomial (y = 0.01x + 

0.01, R2 = 0.07) or multinomial (y = 0.01x + 0.01, R2 = 0.06) predicted shrubification probabilities for 

2030 on the Umiujaq coast. 
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