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ABSTRACT 1 

Low flow conditions are governed by short-to-medium term weather conditions or long term 2 

climate conditions. This prompts the question: given climate scenarios, is it possible to 3 

assess future extreme low flow conditions from climate data indices (CDIs)? Or should we 4 

rely on the conventional approach of using outputs of climate models as inputs to a 5 

hydrological model? Several CDIs were computed using 42 climate scenarios over the years 6 

1961 to 2100 for two watersheds located in Québec, Canada. The relationship between the 7 

CDIs and hydrological data indices (HDIs; 7- and 30-day low flows for two hydrological 8 

seasons) were examined through correlation analysis to identify the indices governing low 9 

flows. Results of the Mann-Kendall test, with a modification for autocorrelated data, clearly 10 

identified trends. A partial correlation analysis allowed attributing the observed trends in HDIs 11 

to trends in specific CDIs. Furthermore, results showed that, even during the spatial 12 

validation process, the methodological framework was able to assess trends in low flow 13 

series from: (i) trends in the effective drought index (EDI) computed from rainfall plus 14 

snowmelt minus PET amounts over ten to twelve months of the hydrological snow cover 15 

season or (ii) the cumulative difference between rainfall and potential evapotranspiration over 16 

five months of the snow free season. For 80% of the climate scenarios, trends in HDIs were 17 

successfully attributed to trends in CDIs. Overall, this paper introduces an efficient 18 

methodological framework to assess future trends in low flows given climate scenarios. The 19 

outcome may prove useful to municipalities concerned with source water management under 20 

changing climate conditions. 21 

 22 
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1.  Introduction 25 

A persistent lack of precipitation (meteorological drought) can  affect soil moisture 26 

(agricultural drought) as well as groundwater and surface flows (Tallaksen and Van Lanen, 27 

2004; Mishra and Singh, 2010), resulting in a hydrological drought and low flows. The 28 

frequency of short hydrological droughts is likely to increase due to climate change, and thus, 29 

it is expected to have a strong impact at various spatial scales (i.e., local, regional, and 30 

global scales) (Jiménez Cisneros et al., 2014). Given this context, studies around the world 31 

have looked at low flow hydrological indices (HDIs) and associated temporal variability from 32 

observed series of data (Zhang et al., 2001; Svensson et al., 2005; Ehsanzadeh and 33 

Adamowski, 2007; Khaliq et al., 2009; Fiala et al., 2010; Yang et al., 2010; Masih et al., 34 

2011). But, as Smakhtin (2001) clearly demonstrated in his review, a clear understanding of 35 

low flow hydrology can help resource specialists manage, for example, municipal water 36 

supply, water allocations (i.e., for irrigation and industrial activities), river navigation, 37 

recreation, and wildlife conservation. Observed trends in low flows need to be explained and 38 

attributed to their underlying causes. Worldwide, there are few related studies and most of 39 

them linked trends in monthly or yearly flows to cumulative precipitation or temperature at the 40 

same temporal scale (Mavrommatis and Voudouris, 2007; Khattak et al., 2011; Ling et al., 41 

2013; Huang et al., 2014; Li et al., 2014; Kour et al., 2016). In Canada and the USA, trends 42 

in low flow HDIs have actually been linked to specific climate data indices (CDIs) computed 43 

from cumulative rainfall, precipitation or degree-days over the course of one month up to a 44 

year (Yang et al., 2002; Burn et al., 2004a; Burn et al., 2004b; Cunderlik and Burn, 2004; 45 

Hodgkins et al., 2005; Abdul Aziz and Burn, 2006; Novotny and Stefan, 2007; Burn, 2008; 46 

Assani et al., 2011; Masih et al., 2011; Assani et al., 2012). For example, Assani et al. (2011) 47 

linked, for the south-east region of the St. Lawrence River watershed, an increase in summer 48 

7-day low flows to an increase in summer precipitation. In the Zagros Mountains of Iran near 49 

Ghore Baghestan, Masih et al. (2011) linked a decline of the low flow conditions (1 and 7 50 
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days minima) to a decline in precipitation during April and May. It is noteworthy that, links 51 

between HDIs and large-scale climate indices such as NAO or ENSO are beyond of the 52 

scope of this study. 53 

All the aforementioned studies that locally linked HDIs to CDIs have relied on a statistical 54 

framework. As such, they required series of flow data to predict how changing climate 55 

conditions would affect hydrology at the watershed scale. However, it is possible to use a 56 

hydroclimatological modeling framework to anticipate this effect; combining a hydrological 57 

model and climate scenarios (Cunderlik and Simonovic, 2005; Cloke et al., 2010; CEHQ, 58 

2013b, 2015). This approach remains challenging and cannot be readily applied by any 59 

water organization because of the required expertise. Moreover, it combines uncertainties 60 

associated with climate simulations, bias correction as well as hydrological modeling (Dobler 61 

et al., 2012; Teng et al., 2012) and the specific challenges associated with the modeling of 62 

low flows (Smakhtin, 2001; Staudinger et al., 2011).  63 

To the best of the authors’ knowledge, no study has yet investigated the potential of directly 64 

assessing HDI trends given climate scenarios. To fill this gap, this paper combines the two 65 

aforementioned frameworks in creating a statistical framework that captures past statistical 66 

relationships between CDIs and HDIs and apply the latter relationships into the future. 67 

Demonstrating the effectiveness of this novel approach required computing HDIs using a 68 

hydrological model in order to show that it worked before actually bypassing this modeling 69 

step. To ensure that the drought-inducing mechanisms were well covered and that the 70 

method was as universal as possible, the proposed methodology relied on a broad set of 71 

complementary CDIs computed for time steps varying from one day to a year using daily 72 

precipitation and minimum and maximum temperatures.  73 

This paper is organized in four sections: (i) Material and methods, (ii) Results, (iii) 74 

Discussion, and (iv) Conclusions. The proposed methodology was developed using a case 75 

study in Québec, Canada for which: (i) future climate was built from the IPCC greenhouse 76 

gas emissions scenario SRES-A2 (Nakicenovic et al., 2000; Environnement Canada, 2010) 77 
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for the 2001-2100 period, (ii) uncertainty of the climate change signal was addressed through 78 

the use of 42 climate simulations, and (iii) future flows were simulated using a distributed 79 

hydrological model. 80 

2.  Materials and methods 81 

The organization and mapping of the Materials and methods and Results sections are 82 

introduced in Figure 1. Throughout the paper, and in accordance with CEHQ (2013a); IPCC 83 

(2013), “simulation” or “climate simulation” refers to the raw climate model outputs. 84 

“Scenario” or “climate scenario” refers to a post-processed simulation, which is a simulation 85 

for which a series of specific choices have been made (study region and period, spatial and 86 

temporal resolutions, bias-correction method). White boxes present how the climate 87 

scenarios were obtained from 42 different bias-corrected climate simulations. Grey boxes 88 

introduce the methodological framework proposed in this paper. It required computing CDIs 89 

from climate data extracted from the aforementioned climate scenarios and HDIs from 90 

simulated streamflows using a calibrated hydrological model. Afterwards, the statistical 91 

relationships between CDIs and HDIs were assessed through a correlation analysis followed 92 

by trend detection and partial correlation analyses. Black boxes refer to the results of the 93 

application of the methodological framework to a case study in Québec, Canada described in 94 

the next subsection. 95 

Figure 1: Detailed schematic of the methodological framework and mapping of the sections of this paper. 96 
White boxes stand for the computing of climate scenarios; grey boxes refer to the Material and methods 97 
section; and the black boxes refer to the Results section. 98 

2.1 Case study 99 

2.1.1 Study area 100 

Recent studies have predicted a decrease in summer flows for southern Québec, Canada 101 

(Minville et al., 2008; CEHQ, 2013b, 2015). More especially, the Yamaska River is 102 

characterized by very low flow conditions during summer, as indicated by flow records 103 

(Trudel et al., 2016). For this study, the proposed methodology was developed using two 104 
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watersheds (Figure 2) of the St. Lawrence Lowlands (Québec, Canada): (i) Bécancour and 105 

(ii) Yamaska. They were chosen for their geophysiographical proximity and to demonstrate 106 

the application potential on: (i) an unregulated watershed and (ii) a watershed with partially 107 

regulated flows. This provided a framework well suited for comparing results and getting 108 

insights into the possibility to export the captured statistical relationships from one watershed 109 

to another. 110 

Figure 2: Location of the study watersheds in: (a) the province of Québec and (b) the St. Lawrence River 111 
lowlands 112 

The Bécancour River drains a 2,620-km² watershed (Labbé et al., 2011). More than half of 113 

the landscape is forested and interspersed with agriculture areas (30%), while urban area 114 

represents 5.2% of the watershed with a population density of 25 people per km². The 115 

population of the watershed is approximately 64,000 inhabitants and is concentrated in 116 

Thetford Mines (25,790 inhabitants in 2011) and Plessiville (6,688 in 2011). Low flows 117 

typically happen between July and September and around February while the spring flood 118 

starts in March and peak flow is often reached in April. This matches a transient snow regime 119 

(mixed rain and snow) which entails spring high flows and summer and winter low flows 120 

(Morin and Boulanger, 2005). 121 

The Yamaska River drains a 4,784-km² watershed (Labbé et al., 2011). The watershed is 122 

mostly agricultural (52.4%) and forested (42.8%) while the urban area is comparable to the 123 

Bécancour watershed (3.1%). There are 250,000 people in the watershed (52 people per 124 

km²) mostly concentrated in Granby (66,000 inhabitants in 2014), Saint-Hyacinthe (54,500 125 

inhabitants in 2014) and Cowansville (13,000 inhabitants in 2015). Low flows typically occur 126 

at the same time as those of the Bécancour watershed. 127 

St. Hyacinthe and Rivière Noire, two towns located in the Yamaska watershed, have had to 128 

deal with a critical water availability problem one year out of five (based on the 1971-2000 129 

period). For the 2041-2070 time period, Côté et al. (2013) indicated that in all likelihood it 130 

would be the case one year out of two. Since water shortages are likely to occur in other 131 
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towns throughout Quebec and elsewhere in the world, therefore, robust tools that do not 132 

require hydrological modeling and could be readily used by any water utility organization are 133 

needed. 134 

2.1.2 Hydrological seasons 135 

Temporal changes in the hydrology of a watershed can be accounted for through the 136 

definition of “hydrologic seasons”; dividing the year into distinct time periods of similar 137 

conditions (Curtis, 2006). Two hydrological seasons were defined according to climate 138 

variability and signal characterizing the length of the study period (1961-2100): (i) a snow-139 

free (SF) season, and (ii) a snow-cover (SC) season. They were defined in terms of snow 140 

water equivalent (SWE) according to the following rules. SC season starts on the first day d 141 

beyond August that satisfies the following condition: 142 

                                                  Eq 1 143 

Namely, the SWE needs to be greater than 10 mm and increasing for at least eight 144 

consecutive days for the SC season to begin. The SC season ends on the first day d that 145 

meets the following condition: 146 

                                                     Eq 2 147 

Namely, the SWE is less than 10 mm and decreasing for at least eight consecutive days. 148 

The SF season starts on day d+1. If the SF season does not end before the calendar year, it 149 

continues onto the next one until conditions are met for the SC season to start, meaning that 150 

some years, especially in the future, may not have a SC season. The SWE threshold value 151 

(10 mm) and the number of consecutive days (8 days) were selected after sensitivity tests 152 

(included in supporting material 1). In more mountainous regions such as the Alps or the 153 

Rocky Mountains, these two parameters would need to be calibrated to reflect local 154 

hydrological processes and to differentiate low flows during the ice cover period from the 155 

open water period. Rousseau et al. (2014) and Klein et al. (2016) also chose a 10-mm 156 

threshold to assess whether a precipitation event was occurring in summer/fall (SWE<10mm) 157 

or in spring (SWE>10mm). 158 
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2.2 Climate simulations 159 

To investigate the effect of global warming on low flows, two IPCC greenhouse gas 160 

emissions scenarios were used: “observation of the 20th century” for the 1961-2000 period 161 

and SRES-A2 (Nakicenovic et al., 2000; Environnement Canada, 2010) for the 2001-2100 162 

period. The A2 emission scenario was used because observations of CO2 atmospheric 163 

global emissions are at the high end of the plausible IPCC SRES emissions projections 164 

(Raupach et al., 2007; Rousseau et al., 2014). The selected simulations represented 42 of 165 

the 87 original simulations from a climate ensemble called (cQ)² and produced by the 166 

Ouranos consortium (Guay et al., 2015). They consisted of simulations from the World 167 

Climate Research Programme phase 3 (CMIP3) (Meehl et al., 2007a), the North American 168 

Regional Climate Change Assessment Program (NARCCAP) (Mearns et al., 2012), and the 169 

Canadian Regional Climate Model (CRCM) (Music and Caya, 2007; de Elia and Côté, 2010; 170 

Paquin, 2010) operational runs supplied by Ouranos. The 42 simulations introduced in Table 171 

1 are based on 14 global climate model (GCM) runs with different initial conditions (one to 172 

five members) and four different regional climate models (RCMs). They were selected to 173 

avoid dependencies between models while covering all sources of climate uncertainty apart 174 

from the emissions scenario uncertainty (Hawkins and Sutton, 2011), which is discussed 175 

later on. 176 



9 

Table 1: Description of the 42 climate simulations extracted from the (cQ)² project and generated by 177 
CRCM version 4 178 

 #Simulation #GCM #RCM SRES 

CMIP3
a
 23 12 0 A2 

NARCCAP
b 

8 3 3 A2 

OURANOS
c
 1 1 1 A2 

OURANOS* 10 2 1 A2 

a
GCM used: BCCR_BCM2.0; CSIRO_MK3.0; CSIRO_MK3.5; CCCMA_CGCM3.1; GFDL_CM2.0; 179 

CNRM_CM3; IPSL_CM4; INGV_ECHAM4; ECHAM5; MIUB_ECHO_G; MIROC3.2_MEDRES; 180 
MRI_CGCM2.3.2a 181 
b
GCM used : CCSM; HADCM3; CCCMA_CGCM3.1; GFDL_CM2.0. RCM used: HRM3; RCM3; WRFG 182 

c
GCM used:CNRM_CM3. RCM used: CRCM4 183 

*Simulations generated by the CRCM4 that cover 1961 to 2100 continuously (GCM used: 184 
CCCMA_CGCM3.1; ECHAM5) 185 

Simulation data were corrected using the daily translation method (Mpelasoka and Chiew, 186 

2009) which is a quantile-quantile mapping technique removing the bias of climate model 187 

outputs. The temperature correction is additive while the correction for precipitation is 188 

multiplicative. The reader is referred to the following publications for more details (Wood et 189 

al., 2004; Lopez et al., 2009; Mpelasoka and Chiew, 2009; Guay et al., 2015). This method 190 

conserves the different characteristics and dynamics of each individual climate model. Each 191 

climate simulation has a temporal sequence of meteorological events which are different 192 

between member simulations. The post-processing method assumes the biases to be of 193 

equal magnitude in the future and reference periods; that is the relationship between 194 

simulated and observed data is still applicable in the future (Huard, 2010). The reference 195 

period 1961-2000 and observed precipitation data came from a 10-km grid covering southern 196 

Canada, that is south of 60°N (Hutchinson et al., 2009) averaged on the RCM or GCM grid 197 

before application of the bias correction methodology. Finally, besides the ten simulations 198 

supplied by Ouranos covering the 1961-2100 period continuously, other simulations (32) 199 

were available for two temporal horizons: (i) the past horizon (1971-2000) and (ii) future 200 

horizon (2041-2070). As a consequence, the following methods and results are presented for 201 

two temporal horizons. 202 
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2.3 Climate data indices – CDIs 203 

Daily precipitation and minimum and maximum temperatures at two meters of elevation were 204 

retrieved, from the climate scenarios (Figure 1). Table 2 introduces the CDIs used in this 205 

study; they were taken from the literature based on their widespread use, data requirements, 206 

and potential to corroborate (assessed through linear correlation coefficients) with low flow 207 

HDIs. The CDIs are divided into four categories with respect to the type of input data needed 208 

for their computation, that is computed from: (i) precipitation data, (ii) temperature data, (iii) 209 

blended data (both precipitation and temperature), and (iv) drought indices formulas. Other 210 

CDIs could be included if other HDIs were to be studied, illustrating the flexibility of the 211 

methodology being developed in this paper. The CDIs used are computed starting on the day 212 

of occurrence of each individual HDI and continuing backward in time, providing a framework 213 

for future work on forecasting extreme flow conditions. 214 
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Table 2 : Overview of the CDI groups used 215 

Input Variable 
Category  

CDI Groups 1-15 Sources 

Precipitation 
data 

1. Cumulative rainfall, snowfall, and 
precipitation amounts (3 CDIs) 

Zaidman et al. (2001); Yang et al. (2002); Hodgkins 
et al. (2005); Lang Delus et al. (2006); de Wit et al. 
(2007); Assani et al. (2011); Tian et al. (2011); Ge 

et al. (2012); Souvignet et al. (2013) 

Temperature 
data 

2. Minimum, mean, and maximum 
temperatures (3 CDIs) 

Yang et al. (2002); Hodgkins et al. (2005); de Wit et 
al. (2007); Engeland and Hisdal (2009); Ge et al. 

(2012) 

3. Cumulative freezing degrees, 
cumulative degrees above 0°C, 
maximum and cumulative temperature 
since last snowfall (4 CDIs) 

NA 

Blended data  

4. PET (1 CDI) Assani et al. (2011) 

5. Climatic demand (R-PET) (1 CDI) 
Paltineanu et al. (2007); Paltineanu et al. (2009); 

Institution Adour (2011) 

6. Snowpack depth, snowmelt (1 CDI) 
7. Snowmelt and rainfall amounts          
(1 CDI) 
8.Snowmelt and rainfall minus PET 
amounts (1 CDI) 

Girard (1970) 

Drought 
Indices 

9. Z score (1 CDI) Giddings et al. (2005) 

10. SPI (1 CDI) 
McKee et al. (1993, 1995); Roudier (2008); Liu et 

al. (2012) 

11. EDI (1 CDI) Byun and Wilhite (1999) 

12. EDI computed from rainfall and 
snowmelt amounts (1 CDI) 
13. EDI computed from climatic demand 
(1 CDI) 
14. EDI computed from rainfall and 
snowmelt minus PET amounts (1 CDI) 

NA 

15. PDSI (1 CDI) Palmer (1965); Choi et al. (2013) 

R stands for rainfall, PET for Potential evapotranspiration, SPI for standardized precipitation index, EDI for 216 
effective drought index, PDSI for Palmer drought severity index. 217 

The PDSI and SPI are two normalized drought indices that allow detection of dry as well wet 218 

periods. The PDSI is a cumulative index, computed on a monthly basis (Heddinghaus and 219 

Sabol, 1991) and has been linked to monthly flows (r=0.83, p<0.01) by Choi et al. (2013). 220 

The SPI assesses short term water supply deficit or surplus as well as long-term 221 

groundwater supplies. It is computed as a rainfall departure (Wilhite and Glantz, 1985; Liu et 222 

al., 2012) from any timescale. The climatic demand computes the difference between 223 

precipitation and PET (thus in the blended data type). In Romania, it has been combined to 224 

the SPI to identify water quantity issues (Paltineanu et al., 2007). The EDI is a drought 225 

recursive index based on the effective precipitation concept (Byun and Wilhite, 1999). It 226 
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takes into account antecedent rainfall conditions and is computed on a daily basis while 227 

accounting for past (from 15 to 365 days) rainfall amounts with a decreasing weight. 228 

Because it does not consider any location or climate characteristics, it can be used anywhere 229 

(Roudier, 2008; Akthari et al., 2009; Deo et al., 2016).  230 

Except for the Z score which is conceptually equivalent to the SPI (standardized anomaly of 231 

the precipitation), the SPI, and the PDSI that were computed on a monthly basis, the CDIs 232 

introduced in Table 2 were all computed for 18 time steps starting on the day of occurrence 233 

of each individual HDI and going backward in time (one to six days, one to three weeks, one 234 

to six months, eight, ten and twelve months). 235 

2.4 Hydrological model 236 

In this paper, HYDROTEL is the hydrological model calibrated from observed data and used 237 

to generate the series of past and future HDIs (Figure 1). It is a process-based, continuous, 238 

semi-distributed hydrological model (Fortin et al., 2001; Turcotte et al., 2003; Turcotte et al., 239 

2007; Bouda et al., 2012; Bouda et al., 2014), and currently used for inflow forecasting by 240 

Hydro-Quebec, Quebec’s major power utility, and the Quebec Hydrological Expertise Centre 241 

(CEHQ). It was designed to use available remote sensing and GIS data at either a 3-h or a 242 

daily time step. It is based on the spatial segmentation of a watershed into relatively 243 

homogeneous hydrological units (RHHUs, elementary subwatersheds or hillslopes as 244 

desired) and interconnected river segments (RSs) draining the aforementioned units. A semi-245 

automatic, GIS-based framework called PHYSITEL (Turcotte et al., 2001; Rousseau et al., 246 

2011; Noël et al., 2014) allows easy watershed segmentation and parameterization of the 247 

hydrological objects (RHHUs and RSs). The model is composed of six computational 248 

modules, which run in successive steps. Each module simulates a specific hydrological 249 

process and the reader is referred to Fortin et al. (2001) and Turcotte et al. (2007) for more 250 

details on these aspects of HYDROTEL. 251 
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2.4.1 Calibration and validation 252 

The main calibration parameters of HYDROTEL can be grouped (Table 3) into snow 253 

parameters, soil parameters, and interpolation coefficients for temperature and precipitation. 254 

Interpolation is computed as the average of the three nearest meteorological stations 255 

weighted by the square of the inverse distances between a RHHU and the stations 256 

(Reciprocal-Distance-Squared method). 257 

Table 3: HYDROTEL key parameters 258 

Type Parameters Units 

Snow 
parameters 

Melt factor for evergreen forests mm/d.°C 
Melt factor for deciduous forests mm/d.°C 
Melt factor for open areas mm/d.°C 
Threshold air temperature for melt in 
evergreen forests 

°C 

Threshold air temperature for melt in in 
deciduous forests 

°C 

Threshold air temperature for melt in open 
areas 

°C 

Melt rate at the snow-soil interface mm/d 
Compaction coefficient - 

Soil 
parameters 

Potential evapotranspiration multiplying factor - 
Depth of the lower boundary of soil layer #1 m 
Depth of the lower boundary of soil layer #2 m 
Depth of the lower boundary of soil layer #3 m 
Recession coefficient m/h 
Extinction coefficient - 
Maximum variation of humidity - 

Interpolation 
coefficients 

Threshold air temperature for partitioning 
solid and liquid precipitation 

°C 

Precipitation vertical gradient mm/100m 
Temperature vertical gradient °C/100m 

a 
For a complete description of snow parameters, the reader is referred to (Turcotte et al., 2007) 259 

b 
For a complete description of soil parameters, the reader is referred to (Fortin et al., 2001) 260 

Using the methodology introduced by Turcotte et al. (2003), manual calibration and validation 261 

of HYDROTEL was performed over five-year-periods according to available observed climate 262 

data provided by the CEHQ for each subwatershed over the 1990-2010 period. As reported 263 

by Bouda et al. (2014), when compared with an automatic calibration, the structured, trial-264 

and-error, procedure proposed by Turcotte et al. (2003) can achieve very similar 265 

performances. Indeed, Bouda et al. (2014) have shown that automatic calibration could 266 

provide a marginal improvement over manual calibration (less than 4.2% in terms of Nash-267 

Sutcliff Efficiency, NSE). This manual calibration used both NSE and RMSE (m3/s) as 268 
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objective functions. The modeling performance for low flows was assessed using the Nash-269 

log (NSE computed from log transformed flows) objective function which is acknowledged as 270 

the best objective function for low flow modeling (Krause et al., 2005). In each case, a one-271 

year spin up was used to minimize initialization errors. Observed climate data were 272 

computed on a grid (a 28- and 52-point grid for the Bécancour and Yamaska watersheds, 273 

respectively) by isotropic kriging following the method described in Poirier et al. (2012) using 274 

data collected through the Climate Surveillance Program of the minsitère du Développement 275 

durable, de l’Environnement et de la Lutte contre les changements climatiques (MDDELCC). 276 

Flow data were extracted from the CEHQ data base (CEHQ, 2012) that includes around 230 277 

hydrometric stations throughout Quebec.  278 

The Bécancour and Yamaska watersheds were respectively divided into 1813 and 1299 279 

hillslopes a.k.a. RHHUs with mean areas of 143 ha and 369 ha and 736 and 513 river 280 

segments with mean lengths of 1885 and 3475 m (excluding lakes), defining three regions of 281 

interest for parametrization. These regions were used to define local parameter sets of 282 

consistent values for the calibration of HYDROTEL. The discretization of both watersheds 283 

provided a good representation of the spatial heterogeneity of the landscape while allowing 284 

for a reasonable computational time. Three specific river segments and hydrological stations 285 

(see Figure 3) were selected for the calibration and validation of each watershed.  286 

Figure 3: (a) Bécancour and (b) Yamaska parametrization regions and hydrological stations used for the 287 
calibration and validation of HYDROTEL. Red, green, and blue colors stand for upstream, median, and 288 
downstream subwatersheds, repectively. # indicates the gauging stations reference number. 289 

Data from these stations (#24003, #24014, #24007, and #30302, #30304, #30345 for 290 

Bécancour and Yamaska, respectively) were deemed suitable for this study because they 291 

are all validated (except for the current year), readily available, and used in hydrological and 292 

hydroclimatic impact studies (CEHQ, 2013b; Rousseau et al., 2013; Rousseau et al., 2014; 293 

CEHQ, 2015; Fossey and Rousseau, 2016a; Klein et al., 2016; Trudel et al., 2016). 294 

Measured flows on the Bécancour watershed are natural while they are partly regulated on 295 

the Yamaska watershed. The impact of this regulation will be discussed later on. 296 
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2.4.2 Computation of the hydrological data indices - HDIs 297 

The HDIs considered in this paper are the seasonal 7dQmin and 30dQmin, which refer to the 298 

seasonal minimum of the 7 and 30 consecutive-day moving average flow, respectively. 299 

These HDIs were selected because the MDDELCC uses Q2-7 (2-year annual minimum of the 300 

7 consecutive-day average flow) to assess whether water can be abstracted from a specific 301 

source (MDDELCC, 2015). Also, the MDDEP uses the Q10-7, or Q2-7, to evaluate the 302 

exceedance of water quality criteria for the assessment of  pollutant discharge permits 303 

(MDDEP, 2007). 304 

Once calibrated, the semi-distributed hydrological model HYDROTEL was used to generate 305 

past and future seasonal HDIs (for each of the 42 selected climate scenarios) as shown in 306 

Figure 1, with the parameter values computed during the calibration/validation process. 307 

Indeed, we assumed a similar quality of model responses to future conditions as for the bias 308 

correction method for climate models. Precipitation and minimum and maximum 309 

temperatures came from the climate scenarios. They were extracted from the nearest ten 310 

grid-points of the watershed boundaries before using a Thiessen polygon routine to compute 311 

values for each RHHU. 312 

To further characterize the capacity of HYDROTEL to simulate flows inducing the observed 313 

HDIs, the latter were plotted against HDIs calculated using the calibration/validation dataset. 314 

The HDIs computed using the 42 climate scenarios were used to assess the capacity of 315 

these selected scenarios to encompass observed values. 316 

2.5 Assessing HDIs from CDIs 317 

2.5.1 Conditions governing low flows – Correlation analysis 318 

Pearson as well as Spearman correlation coefficients were calculated to assess the 319 

relationships between the four series of seasonal HDIs (7dQmin and 30dQmin for the SC and SF 320 

seasons) and the associated CDIs (Table 2). For this study, the post-processing method is 321 

based on the following assumptions: (i) the relationships between simulated and observed 322 

data for the past-period (1971-2000) will still be applicable in the future (2041-2070); and (ii) 323 



16 

the calibrated parameter values are valid over the future time horizon as well. For sake of 324 

consistency, a similar assumption was made regarding the relationship between HDIs and 325 

CDIs, but verified through what can be seen as a calibration and validation phase of the 326 

correlation analysis as is done for hydrological models. The Wilcoxon rank-sum test (Mann 327 

and Whitney, 1947) was applied to test whether median correlations between HDIs and CDIs 328 

were statistically different between past and future temporal horizons. The validity of these 329 

assumptions from the perspective of climate conditions as well as land use and land cover is 330 

examined in details in the discussion section of this paper. 331 

In short, for each one of the 15 CDI groups introduced in Table 2 and each of the 42 climate 332 

scenarios, correlation coefficients were computed individually for each HDI and each season. 333 

Then, the best median correlations (maximum absolute median value of the correlation 334 

coefficients) for the four CDI categories introduced in Table 1 were identified along with the 335 

frequency at which they occurred. Afterwards, the statistical relationships were validated over 336 

the future temporal horizon. To account for the fact that many CDIs were tested against each 337 

HDI and that correlations could be due to chance, a bootstrap resampling method based on 338 

Monte Carlo simulations was applied (Livezey and Chen, 1983) to every CDI-HDI couples as 339 

follows: 340 

(i) A year was randomly selected from the temporal horizon of interest (past or 341 

future). 342 

(ii) The paired value (CDI-HDI) for the selected year was added to the resampled 343 

data set. 344 

(iii) Steps (i) and (ii) were repeated until the resampled data set had the required 345 

number of years of data. The required number was set equal to the number of 346 

years in the initial data set. 347 

(iv) The correlation computation was applied to resampled data set and the result was 348 

saved. 349 



17 

Steps (i) to (iv) were repeated 1000 times, resulting in a distribution of the correlation 350 

coefficients computed from the 1000 resampled data set. The distribution allowed for the 351 

determination of the confidence interval (CI) of the correlation coefficient computed from the 352 

initial set of data (typically 90 or 95% CI). If the CI minimum was greater than 0, the 353 

correlation was then statistically significant. 354 

2.5.2 HDI trends and governing drivers – trend detection and partial correlation 355 

analysis 356 

Long term linear trends were analyzed using the non-parametric rank-based Mann-Kendall 357 

test (Kendall, 1938; Mann, 1945; Kendall, 1975; Gilbert, 1987) for the four series of HDIs and 358 

the associated CDIs obtained through the correlation analysis. The Mann-Kendall (MK) test 359 

has been widely used to detect a trend in hydroclimatic time series (Lettenmaier et al., 1994; 360 

Lins and Slack, 1999; Douglas et al., 2000; Zhang et al., 2000; Zhang et al., 2001; Yue and 361 

Wang, 2002; Novotny and Stefan, 2007; Li et al., 2009). The test is based on the null 362 

hypothesis that a sample of data is independent and identically distributed. The alternate 363 

hypothesis is that a trend exists in the data. To get more details about this test, the reader is 364 

referred to the previous references and especially that of Novotny and Stefan (2007). In the 365 

presence of serial correlation or autocorrelation, the assumption of serial independence is 366 

violated. The existence of positive serial correlation increases the probability that the MK test 367 

detects a trend when none exists (von Storch, 1999), whereas a negative autocorrelation 368 

makes it too difficult to find a significant trend (Hamed and RamachandraRao, 1998; Yue and 369 

Wang, 2002).The MK test can be modified to obtain the true variance of the MK correlation 370 

under the autocorrelation structure displayed by the data (Hamed and RamachandraRao, 371 

1998). Tests were conducted for each series of HDIs and CDIs as well as both temporal 372 

horizons using the modified MK test to account for autocorrelation.  373 

Partial correlations were calculated between each HDI and associated CDIs while controlling 374 

for the time step variable. This allowed for the identification of the correlation between 375 

variables independent of any common temporal trend signal and for the attribution of the 376 
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observed trends in HDIs to trends in CDIs (Burn et al., 2004a; Burn, 2008). As for the 377 

correlation analysis described in the previous sub-section, trends, especially when they are 378 

analyzed for the same CDI-HDI couple for 42 different climate scenarios can be due to 379 

chance. Livezey and Chen (1983) indicated the need to consider field-significance of the 380 

outcomes of a set of statistical tests. It accounts for the observed cross-correlation in the 381 

data for a collection of locations (which in our case was a collection of temporality or climate 382 

scenarios) and allows for the determination of the percentage of tests that are expected to 383 

show a trend, at a local given significance level, purely by chance. The bootstrap resampling 384 

method based on Monte Carlo simulations was thus applied for each scenario following the 385 

steps described in the previous subsection except for the fourth step that became: 386 

(iv) The Mann-Kendall test was applied to the data from each scenario in the 387 

resampled data set and the percentage of results that were significant at the α 388 

significance level was determined; α being the local significance level (typically 5 389 

or 10%) 390 

Steps (i) to (iv) were repeated 1000 times resulting in a distribution of the percentage of 391 

results that were significant at the α level. From this distribution, the value that was exceeded 392 

β% of the time (typically 5 or 10%) was selected as the critical value. β is referred to as the 393 

global significance level. This method was similarly applied in Burn and Hag Elnur (2002); 394 

Burn et al. (2004b) and discussed in details in Renard et al. (2008). 395 

3.  Results 396 

3.1 Hydrological model 397 

This subsection illustrates using the calibration and validation results the capacity of the 398 

model to: (i) represent flows in general and low flows in particular and (ii) produce a 399 

distribution of HDIs that includes at best the observed values. Presentation of climate data 400 

characteristics was beyond the scope of this paper; as such it can be found in supporting 401 

material 2. 402 
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3.1.1 Calibration and validation results 403 

Model performances for calibration and validation periods of the two study watersheds are 404 

given in Table 4. For each river segment, according to the hydrologic model performance 405 

rating of Moriasi et al. (2007), the results provide a “good fit” (NSE>0.65) between observed 406 

and simulated flows and even a “very good fit” for most of the results (NSE>0.75). Nash-log 407 

values vouch for the good representation of low flows with values ranging from 0.65 to 0.70 408 

and 0.74 to 0.78 for the calibration period for the Bécancour and Yamaska watersheds, 409 

respectively. There is no clear decline in performances between the calibration and validation 410 

periods, most even increase between the two periods. This validates the choice of calibration 411 

parameters as highlighted in Beven (2006). More especially, Nash-log values are larger for 412 

the validation period and range from 0.72 to 0.77 and from 0.72 to 0.76 for the Bécancour 413 

and Yamaska watersheds, respectively. 414 

Table 4: Model performance for the calibration and validation periods 415 

River 
segment 

Calibration 
period 

NSE 
Nash-

log 
RMSE 
(m

3
.s

-1
) 

Validation 
period 

NSE 
Nash-

log 
RMSE 
(m

3
.s

-1
) 

Béc TR-255 2005-2010 0.76 0.70 14.7 2000-2005 0.86 0.77 10.0 

Béc TR-102 2005-2010 0.67 0.65 34.5 2000-2005 0.72 0.75 30.1 

Béc TR-70 1995-2000 0.76 0.65 30.8 1990-1995 0.76 0.72 31.8 

Yam TR-240 2005-2010 0.76 0.77 16.9 2000-2005 0.74 0.72 14.4 

Yam TR-63 2005-2010 0.68 0.74 27.1 2000-2005 0.71 0.72 21.4 

Yam TR-61 2005-2010 0.77 0.78 47.1 2000-2005 0.77 0.76 39.0 

 416 

3.1.2 Computation of the HDIs 417 

The capacity of HYDROTEL to correctly reproduce the HDIs was assessed for the river 418 

segments with observed values closest to the outlet of the study watersheds that is TR-70 419 

and TR-61 for the Bécancour and Yamaska watersheds, respectively. Figure 4 and Figure 5 420 

introduce the boxplots of the seasonal HDIs computed using the results of the hydrological 421 

modeling of the climate scenarios (post-processed simulations) for the Bécancour and 422 

Yamaska watersheds, respectively. Figure 4 shows that the distributions of HDIs over 1990-423 

2000 (calibration and validation periods) include almost every observed as well as modeled 424 
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HDIs from the calibration/validation dataset. In fact, for the SC season (see Figure 4a and 425 

Figure 4b), only the observed 7dQmin for 1996 is not included in the computed distribution. For 426 

the SF season, three 7dQmin are not included in the distribution (1991, 1996 and 1999) while 427 

all observed 30dQmin are included in the computed distribution. 428 

Because the past temporal horizon (1971-2000) does not cover the calibration/validation 429 

period (2000-2010) for the Yamaska watershed, Figure 5 only shows the distributions of the 430 

HDIs computed from the 10 climate simulations supplied by Ouranos (available between 431 

1961-2100). For the SC season, except for the 2006 7dQmin, the computed distributions cover 432 

the observed values. Modeled 7dQmin for 2001, and 30dQmin for 2001, 2002, 2004, and 2006, 433 

are not included in the computed distributions. For the SF season, 50% of the observed HDIs 434 

are not included in the computed distributions while 27 (3/11) and 36% (4/11) of the modeled 435 

HDIs are not included in the distributions for the 7d- and 30dQmin, respectively. 436 

Figure 4: Boxplots of the HDIs computed from the modeling of the 42 climate scenarios for the Bécancour 437 
watershed: (a) SC season 7dQmin; (b) SC season 30dQmin; (c) SF season 7dQmin; and (d) SF season 30dQmin. 438 
Blue and red dots stand for the HDIs computed during the calibration/validation process from the 439 
observed and modeled flows, respectively. 440 

 441 

Figure 5: Boxplots of the HDIs computed from the modeling of the 10 Ouranos climate scenarios for the 442 
Yamaska watershed: (a) SC season 7dQmin; (b) SC season 30dQmin; (c) SF season 7dQmin; and (d) SF 443 
season 30dQmin. Blue and red dots stand for the HDIs computed during the calibration/validation process 444 
from the observed and modeled flows, respectively. 445 

  446 
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3.2 Assessing HDIs from CDIs 447 

This subsection introduces the characterization of the statistical relationships between HDIs 448 

and CDIs. First, it consists in assessing the strength and significance of the relationships 449 

(through correlation coefficients and 95% CI), their linear or non-linear character, and their 450 

consistency over temporal horizons (Past and Future) and locations (Bécancour and 451 

Yamaska). Then, it is about verifying whether the identified CDIs governing low flows: (i) 452 

complied with the hypotheses made in the methodological framework and (ii) provided 453 

insights about the HDIs. 454 

3.2.1 Performances of the CDI groups 455 

The previous subsection established that the modeling of the 42 scenarios for the past 456 

temporal horizon effectively, and in a satisfactory manner pending some assumptions, 457 

represented low flow HDIs for the Bécancour and Yamaska watersheds, respectively. Thus 458 

as illustrated in Figure 1 and in the Materials and Methods section, CDIs were computed 459 

over one to six days, one to three weeks, one to six months, eight, ten and twelve months. 460 

Figure 6 introduces the performances of the CDI groups with respect to the four categories 461 

introduced in Table 1. Results are displayed using the median of the Pearson correlation 462 

coefficients r between the HDIs and the CDIs. Meanwhile, the specific CDIs having the better 463 

correlations with the HDIs are reported in subsection 3.2.2. A Monte Carlo resampling 464 

approach was applied to compute the 95% CIs of each correlation coefficient. A Wilcoxon 465 

rank-sum test was applied to test whether median correlations were different between past 466 

and future temporal horizons. Results are presented for the Bécancour watershed only 467 

because those of the Yamaska are similar (detailed results for both watersheds available in 468 

supporting materials 3 and 4). 469 
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Figure 6: Pearson median correlations r [95% confidence interval CI] for the Bécancour watershed, for the 470 
SC (blue) and SF (green) seasons, for the 7dQmin (solid triangles) and 30dQmin (hollow triangles), and for the 471 
past (left side) and future (right side) temporal horizons. The 95% CI was computed through Monte Carlo 472 
resampling of the 42 climate scenarios. The red dotted line stands for Wilcoxon tests that rejected the 473 
null hypothesis (median correlations are equal between past and future horizons) at the 5% significance 474 
level. 475 

Past horizon 476 

The median correlations obtained for the precipitation data CDIs for the 42 scenarios over 477 

the past temporal horizon for the SC season are at least 0.62; meaning that 38% of the 478 

variability of low flows is explained through a basic CDI, namely cumulative rainfall over six 479 

or three months for the 7dQmin and 30dQmin, respectively. For the SF season, the correlations 480 

are similar and explain at least 31% (0.56²) of the variability; these are obtained for the 481 

cumulative rainfall over two months. The literature (Yang et al., 2002; Hodgkins et al., 2005; 482 

de Wit et al., 2007; Novotny and Stefan, 2007; Ge et al., 2012) reported linear correlation 483 

coefficients around 0.7 which coincides with the 8th or 9th decile (available in supporting 484 

material 3) of the computed coefficients for both the Bécancour and Yamaska watersheds. 485 

The median correlations obtained for temperature data CDIs are much lower and, thus, less 486 

interesting within the framework of this paper. The explained variability ranges from 15 487 

(0.39²) to 22% (0.47²). These figures as well as the negative and positive correlations 488 

reported for warmer and colder months respectively are in agreement with the literature 489 

(Yang et al., 2002; Hodgkins et al., 2005; de Wit et al., 2007; Ge et al., 2012). 490 

The median correlations obtained for blended data as well as drought indices are higher than 491 

those obtained for either precipitation or temperature data. They explain at least 49% (0.70²) 492 

of the variability. The classical SPI and PDSI indices, as well as the EDI were all part of the 493 

drought indices group (Table 1). In theory, the three indices were comparable; they could all 494 

be used to detect dry spells as well as wet spells, like all the CDIs introduced in Table 2. In 495 

practice, the EDI has been found to perform systematically (for all scenarios) better than the 496 

other indices. In fact, results (not shown) showed that the PDSI, the SPI as well as the Z-497 

score did not perform better (correlation difference not statistically significant) than the basic 498 
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CDIs (computed from either precipitation or temperature data). In terms of linear correlation 499 

with the HDIs, they did not provide added value. 500 

The 95% CIs (see Figure 6) demonstrate that all Pearson median correlation coefficients 501 

were significant and not obtained by chance. Indeed these ranges for the true values of the 502 

correlations were computed from 1000 resampling of the HDI-CDI couples for every 503 

scenarios. The lower bound indicates the lowest possible median correlation given a 5% 504 

chance of error. For the blended and drought indices data, these lower bounds are all greater 505 

or equal to 0.66. 506 

In addition to this linear method, the non-linear method based on the computation of 507 

Spearman median correlations rho was also used, but because median correlations of both 508 

types were systematically similar, it is not presented here (results available in supporting 509 

material 3). In itself, this result indicates that the HDI-CDI-relationship is mostly linear, which 510 

corroborates findings reported  by Assani et al. (2011) who also considered this alternative. 511 

Future horizon 512 

Results for the future horizon introduced in Figure 6 illustrate, for the same CDIs used in the 513 

past temporal horizon, the median correlations obtained for the 42 scenarios. Median 514 

correlations for the precipitation and temperature data CDIs remain of the same order of 515 

magnitude, but the 95% CIs get mostly larger. The Wilcoxon tests were unable to reject the 516 

null hypothesis that median correlations are equal between past and future horizons for all 517 

CDI-HDI couples besides the SC season precipitation data CDIs. 518 

Blended data and drought indices median correlations remained approximately the same 519 

between past and future horizons (mean difference under 5%). Except for the SC season 520 

blended data 7dQmin CDI, the Wilcoxon tests were unable to reject the hypothesis that median 521 

correlations are equal between past and future horizons. 95% CIs also got larger (decrease 522 

of the lower bound). Overall, not accounting for the CDI that passed the Wilcoxon test, 523 

median correlations still explained between 46 (0.68²) and 59% (0.77²) of the variability in the 524 

future temporal horizon. This result is quite important because, it confirms that the linear 525 
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relationship detected between CDI and HDI for the past remains valid in the future, thus it 526 

can be used to gain insights on the CDI governing low flows in the future. Furthermore, to the 527 

authors’ knowledge, no study has carried out correlation analyses from past horizons to 528 

future horizons using climate scenarios. 529 

For the remaining of the article, because of their superior performances (larger median 530 

correlations and/or narrower 95 CIs), results are limited to the CDIs computed from blended 531 

data and drought indices. For this specific case study, they are more appropriate to work with 532 

than the two other CDI groups. Also, the CDIs that passed the Wilcoxon test are not used to 533 

get insights about the future HDIs as they did not verify one of the methodological framework 534 

hypotheses. 535 

3.2.2 CDI governing low flows 536 

Table 5 introduces the results obtained after application of the methodological framework 537 

introduced in Figure 1. The Bécancour watershed was first considered as the reference and 538 

the CDIs are exported onto the Yamaska watershed for a spatial validation and vice versa. 539 
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Table 5: Pearson median correlations r (Past temporal horizon/Future temporal horizon) after application 540 
of the methodological framework using (a) Bécancour as the reference watershed and then (b) Yamaska 541 
as the reference watershed 542 

 (a) Bécancour (Reference) Yamaska (Spatial Validation) 

 
 

SC SF SC SF 

7dQmin 
Blended data N.A. 0.74/0.74 N.A. 0.70/0.67 

Drought Indices 0.74/0.68 0.78/0.75 0.76/0.72 0.73/0.70 

30dQmin 
Blended data 0.72/0.77 0.73/0.75 0.71/0.70 0.67/0.68 

Drought Indices 0.70/0.69 0.75/0.74 0.68/0.74 0.75/0.73 

 (b) Bécancour (Spatial Validation) Yamaska (Reference) 

7dQmin 
Blended data 0.69/0.68 0.73/0.69 0.69/0.63 0.70/0.65 

Drought Indices 0.74/0.71 0.78/0.75 0.76/0.74 0.73/0.70 

30dQmin 
Blended data 0.65/0.77 0.70/0.62 0.73/0.75 0.76/0.77 

Drought Indices N.A. 0.75/0.74 N.A. 0.75/0.73 

N.A. stands for CDI-HDI couples that passed the Wilcoxon rank-sum test and thus did not respect the 543 
hypothesis according to which median correlations should remain the same between past and future 544 
horizons 545 

Overall, when Bécancour was the reference watershed, the explained variability (r²) for the 546 

Yamaska watershed was greater than 45% (0.67²) for the 7dQmin and the 30dQmin for both 547 

temporal horizons. When Yamaska was used as the reference watershed, the explained 548 

variability for Bécancour past horizon varied between 42 (0.65²) and 61% (0.78²). Meanwhile 549 

for the future horizon, it varied between 38 (0.62²) and 59% (0.76²). The differences between 550 

parts (a) and (b) of Table 5, where the watersheds were in turn used for calibration or spatial 551 

validation, are not statistically significant, except for the SF season 30dQmin blended data CDI 552 

for both temporal horizon and the future only respectively for the Yamaska and Bécancour 553 

watersheds, according the Wilcoxon rank-sum test at 5% significance level. This means that 554 

it cannot be asserted that performances are significantly different for the same watershed, 555 

whether it is used as the reference or export watershed. This result can hardly be seen as a 556 

proof that the statistical relationship captured on a watershed is applicable to another, but it 557 

provides a good insight as for the potential of this method for regionalization studies. 558 

Moreover, the differences in performances might be larger if the considered watersheds were 559 

in different geological areas or further away from each other physiographically speaking. 560 
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These two points would mandate for the application of the methodological framework on 561 

other watersheds to assess the robustness with regards to physiographical differences. 562 

However, in terms of hydrologic model performance rating (Moriasi et al., 2007), the median 563 

Pearson correlation coefficients were considered “acceptable” since they were all greater 564 

than 0.5 (Santhi et al., 2001; Van Liew et al., 2003), even for the great majority of 1st deciles.  565 

As anticipated, the results are quite similar for the two studied watersheds. Indeed, the study 566 

focused on identifying the main governing indices of low flows while building on the 567 

assumption that physical links between HDIs and CDIs remained time invariant (between 568 

past and future horizons). As such, this approach may be viewed as the temporal equivalent 569 

of the global calibration strategy of distributed hydrological models (Ricard et al., 2013). It 570 

was notably used in CEHQ (2013b, 2015) to ensure the spatial consistency of the calibration 571 

parameter sets in large-scale hydrological modeling applications. Meanwhile the choice to 572 

work with best median correlations for each type of input data in this paper ensured that the 573 

identified CDIs in subsection 3.2.2 were valid for each of the 42 climate scenarios. 574 

Following the methodological framework introduced in Figure 1, the CDIs from the blended 575 

data and drought indices groups that are better correlated with the HDIs (Figure 6) are 576 

identified hereafter. For both study watersheds, the severity of 7-day low flows of the SC 577 

season was best correlated with the EDI computed from rainfall and snowmelt minus PET 578 

amounts over 10 months. SC season 30-day low flows were best correlated with the same 579 

index, but over the course of 10 and 12 months for the Yamaska and Bécancour watershed, 580 

respectively. The latter result is rather logical, given that 30-day-low flows can mobilize more 581 

water reserves than 7-day-low flows. It is noteworthy that the accumulation of rainfall and 582 

melt over three months and rainfall plus melt minus PET over two months are also correlated 583 

with the 30-day low flows of the Bécancour and Yamaska watersheds, respectfully. This 584 

would highlight the importance of working at different time scales as CDIs computed from 585 

blended data seem best correlated at lower frequencies than drought indices CDIs. Indeed, 586 

the same observation can be made for the CDIs computed for the SF season.  587 
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SF season 7- and 30-day-low flows were correlated with cumulative climatic demand over 588 

four to six months, indicating that lower rainfall amounts or higher PET amounts would 589 

translate into lower low flows. The specific case of the inclusion of melt in the CDI computed 590 

for the Yamaska watershed for the SF season 30dQmin may be startling. But in fact, this result 591 

is linked with the depletion of groundwater storage. Accumulation of rainfall over a month is 592 

the primary CDI driver (for precipitation data CDI) of 30dQmin with a median correlation of 0.72 593 

(shown in supporting material 4) and 1st and 9th deciles of 0.35 and 0.83. Accumulation of 594 

rainfall and snowmelt over a month is the primary CDI driver (for blended data) of 30dQmin with 595 

a median correlation of 0.76 ((b) Table 5) and 1st and 9th deciles of 0.52 and 0.84. The 596 

difference in median correlations is not significant, but the difference in the 1st deciles is. This 597 

could be interpreted as follows: When melt occurs shortly (less than a month) before the date 598 

of occurrence of the 30dQmin, the stored amount of snowmelt helps relieve the severity of low 599 

flows, but this happened rarely over the 42 scenarios (1st decile difference). Another 600 

explanation could be that man-made reservoirs are mainly filled thanks to snowmelt. Last but 601 

not least, this result could not be random for two reasons: (i) this phenomenological 602 

observation, however less important, manifested also for the Bécancour watershed ((b) 603 

Table 5), the correlations for 30dQmin blended data are 0.70 and 0.62 for the past and future 604 

horizons); and (ii) the 95% CI for the true value of the median correlation coefficient for the 605 

Yamaska watershed is [0.72 – 0.81] (supplemental material 4). 606 

Otherwise, SF season 7- and 30-day-low flows were best correlated with EDI computed from 607 

climatic demand over 6 months for both watersheds. 608 

3.3 HDI trends and their possible drivers – trend detection and partial 609 

correlation analysis 610 

Trend analyses of the HDI and associated CDI series were undertaken to check for long term 611 

changes, thanks to the modified MK test (Hamed and RamachandraRao, 1998). Field 612 

significance was assessed, applying a bootstrap resampling method based on Monte Carlo 613 

simulations. Both local significance and field significance were set at 1%. An overview of the 614 
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results for the ten continuous scenarios is given in Table 6. Indeed, data from the 32 non-615 

continuous scenarios came in two 29-year temporal horizons, which in most cases prevented 616 

the detection of positive or negative trends altogether 617 

Table 6 : Trends detected in the HDI and CDI series for the (a) Bécancour and (b) Yamaska watersheds for 618 
the 10 scenarios by Ouranos over 1971-2070. CDI1 stands for the CDI computed from blended data, while 619 
CDI2 stands for CDI computed from drought indices. Bold figures indicate significant trends. 620 

 
(a) Bécancour 

 
Snow Cover Season Snow Free Season 

 7dQmin 
HDI – CDI1 – CDI2 

30dQmin  
HDI – CDI1 – CDI2 

7dQmin  
HDI – CDI1 – CDI2 

30dQmin  
HDI – CDI1 – CDI2 

Positive trends 10 – N.A. – 10 10 – 10 – 10   

Negative trends   8 – 8 – N.A. 8 – 8 – 8 

Significant 
trends (positive 
& negative) 

10 – N.A. – 10 10 – 10 – 10 8 – 8 – N.A. 8 – 8 – 8 

 
(b) Yamaska 

 
Snow Cover Season Snow Free Season 

 7dQmin 
HDI – CDI1 – CDI2 

30dQmin  
HDI – CDI1 – CDI2 

7dQmin 
HDI – CDI1 – CDI2 

30dQmin  
HDI – CDI1 – CDI2 

Positive trends 9 – N.A. – 10 10 – 10 – 10  0 – 1 – 0 

Negative trends   7 – 8 – 10 7 – 2 – 9  

Significant 
trends (positive 
& negative) 

9 – N.A. – 10 10 – 10 – 10 7 – 8 – 10 7 – 3 – 9 

 621 
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Table 7 : Pearson median partial correlation coefficients r (Past horizon/Future Horizon/1971-2070) for the 622 
Bécancour and Yamaska watersheds for the CDIs obtained after application of the methodological 623 
framework for the 10 scenarios by Ouranos. CDI1 stands for the CDI computed from blended data, while 624 
CDI2 stands for CDI computed from drought indices. 625 

 
(a) Bécancour Watershed 

 
SC season SF season 

 CDI1 CDI2 CDI1 CDI2 

7dQmin N.A. 0.74/0.65/0.68 0.71/0.61/0.68 N.A. 

30d
Q

min
 0.77/0.75/0.73 0.69/0.62/0.64 0.70/0.73/0.70 0.66/0.66/0.66 

a (b) Yasmaka Watershed 

 CDI1 CDI2 CDI1 CDI2 

7dQmin N.A. 0.78/0.71/0.74 0.73/0.71/0.66 0.62/0.63/0.58 

30d
Q

min
 0.74/0.78/0.73 0.73/0.75/0.72 0.73/0.72/0.63 0.71/0.63/0.61 

All partial correlation coefficients are significant at 0.001. 626 

Both Bécancour and Yamaska SC 7dQmin as well as 30dQmin have increasing linear significant 627 

trends (Table 6) as indicated by CEHQ (2015) for most of southern Québec with a high 628 

confidence level. These trends are probably linked to an increase in freeze/thaw events or 629 

warm events during the SC season (included in supporting material 2) and as a direct 630 

consequence, modified snowmelt dynamics. The associated CDIs, whether computed from 631 

blended data or drought indices, also displayed these increasing trends (Table 6). They were 632 

in almost perfect agreement with the HDI trends. Meanwhile, the partial correlations 633 

removing the temporal trends were not only significant (Table 7 and 95% CI available in 634 

supporting materials 3 and 4), but quite high as well. Indeed, the CDIs explained more than 635 

48 (0.69²) and 38% (0.62²) of the HDI variability for the Bécancour watershed over the past 636 

and future temporal horizons, respectively. Values were even larger for the Yamaska 637 

watershed with at least 53 (0.73²) and 50% (0.71²) of the HDI variability explained for the 638 

past and future horizons, respectively. Overall, compared to median Pearson correlations for 639 

the same CDIs and the 10 continuous scenarios, median partial correlations (supporting 640 
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material 5) were only 3.2% smaller on average with a maximum difference of 6.8% for the 641 

SC season Bécancour CDIs. These partial correlations values are large, the lower bound of 642 

the 95% CI (supporting materials 3 and 4) is still considered “acceptable” (larger than 0.5 643 

(Santhi et al., 2001; Van Liew et al., 2003)) in terms of hydrologic performance rating 644 

(Moriasi et al., 2007), and the associated trends in the CDIs were in almost perfect 645 

agreement with the HDI trends (Table 6). Given these results, it is then possible to attribute 646 

the observed trends in SC low flows to trends in the CDIs identified in subsection 3.2.2 for 80 647 

to 100% of the climate scenarios. 648 

The same reasoning can be made about the SF season low flows. 70 and 80% of the 649 

decreasing trends in HDIs were significant and concurred with results reported in CEHQ 650 

(2015) for southern Québec. The associated CDIs had matching trends (except for the CDI 651 

computed using blended data for the Yamaska 30dQmin in Table 6), while the partial 652 

correlations between the HDIs and CDIs were high (above 0.62 for the past temporal horizon 653 

and above 0.61 for the future temporal horizon) and the lower bounds of their 95% CI 654 

remained “acceptable”. Given these results, it is then possible to attribute the observed 655 

trends in SF low flows to trends in the CDIs identified in subsection 3.2.2 for 70 to 100% of 656 

the climate scenarios. 657 

4.  Discussion 658 

The following section deals with the relevance of the main assumptions made throughout the 659 

paper, more specifically it: (i) shows how sources of climate uncertainty were considered 660 

while selecting the climate simulations and emissions scenarios; (ii) examines the validity of 661 

the assumptions regarding the stationarity of climate conditions, land use, and land cover; 662 

(iii) details how HDIs and (iv) CDIs actually captured what is observed; (v) discusses the 663 

robustness of the results; and (vi) argues the proposed methodology has potential to be 664 

applicable to watersheds with regulated flows. 665 
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4.1 Choice of climate simulations 666 

It has been established since the Fourth Assessment Report of the Intergovernmental Panel 667 

on Climate Change (Meehl et al., 2007b) that using a multi-model ensemble approach 668 

provides better estimates of climate on seasonal-to-interannual and centennial time scales 669 

(Palmer et al., 2004; Hagedorn et al., 2005). In this paper, the climate ensemble (cQ)² was 670 

used. It was put together while taking into account the individual performances as well as the 671 

independencies of the models. The climate ensemble was built to cover all sources of 672 

climate uncertainty (Hawkins and Sutton, 2011), but the emissions scenarios. Natural climate 673 

variability was covered through the use of different initial conditions (members) for the same 674 

GCM. Different GCMs were used to drive the same RCM to account for the uncertainty 675 

arising from the climate modeling. GCMs and RCMs were used together in the same 676 

ensemble to account for the uncertainty arising from the spatial resolution of data (dynamical 677 

downscaling). Lastly, the premise to work with only the SRES-A2 scenario was based on the 678 

following elements: (i) emissions scenarios other than SRES-A2 are non-essential to cover 679 

the uncertainty of the climate change signal (see supporting material 2) and (ii) small or even 680 

negligible uncertainty arises from emissions scenarios for all regions and lead time within the 681 

CMIP3 multi-model ensemble (Hawkins and Sutton, 2011). However, simulations of a multi-682 

model ensemble cannot span the full range of possible model configurations due to 683 

constraints in resources (Lambert and Boer, 2001). Furthermore, the use of ensemble 684 

means/medians can mask the variations between models (Kingston et al., 2011). Indeed, 685 

projections of future precipitation often disagree, even in the direction of change (Randall et 686 

al., 2007). That is why, this paper considered the model ensemble resorting to median to 687 

summarize the results, but providing the distribution or the 1st and 9th deciles to avoid 688 

masking model differences. In a future implementation of the methodology, the different 689 

sources of uncertainty could be assessed. 690 
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4.2 Non stationarity issue 691 

4.2.1 Calibration/validation 692 

Non-stationarity is an inherent issue of the calibration/validation process for hydroclimate 693 

studies. In this paper, meteorological data were the only varying characteristic of the 694 

modeling set up. We assumed that non-stationarity should not impact the values of the 695 

model parameters considering that: (i) only one calibrated parameter – related to 696 

evapotranspiration – was linked to variation in meteorological data and (ii) relatively similar 697 

ranges of mean annual/seasonal temperature and precipitation were found for both the 698 

calibration/validation period and the future period (see supporting material 2).  699 

4.2.2 CDI/ HDI statistical relationship 700 

The stationarity assumption made with respect to climate conditions, applied to the link 701 

between CDIs and HDIs, was tested in subsection 3.2. Overall, ¾ of the Wilcoxon rank-sum 702 

tests failed to reject the hypothesis that median correlations were equal between past and 703 

future horizons at the 5% significance level (Figure 6). That is why it was assumed that the 704 

stationarity assumption was valid with respect to the captured statistical links. Nonetheless, it 705 

could prove useful in a future paper to challenge this assumption by allowing the frequency 706 

at which CDIs are computed for the past horizon to change. This would allow assessing the 707 

effect of climate change on lags between the occurrence of the HDIs and the building of the 708 

CDIs. 709 

In this study, it was assumed that land use and land cover would remain stationary in the 710 

future. The exact influence of any changes in these watershed attributes, however, could be 711 

accounted for by defining future land cover scenarios, but this was beyond the scope of the 712 

paper. Nonetheless, as showed by Savary et al. (2009), significant changes in land use 713 

and/or land cover can occur over a long period (e.g., 30 years) and, as illustrated using 714 

distributed hydrological modelling, modify stream flows. However, these changes would not 715 

nullify the intrinsic relationships between flows and weather data. Indeed, the evaluation of 716 

the impact of land use and land cover modifications performed by Savary et al. (2009) was 717 
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carried out with the same sets of parameter values without impeding the calibration results. 718 

This is definitely an argument to be made in favor of asserting that land cover and land use 719 

modifications would not dramatically change the developed CDI – HDI correlations. 720 

4.2.3 Post-processing of climate data 721 

As for the post-processing method, a change factor approach could have also been used. It 722 

consists in computing the difference between raw climate model outputs for the future and 723 

reference periods, resulting in “climate anomalies” which are then added to the present day 724 

observational dataset (Wilby et al., 2004; Karyn and Williams, 2010). 725 

4.3 Computation of the HDIs 726 

The goal of this paper is not to predict seasonal HDIs accurately but rather to establish 727 

whether it is possible or not to evaluate their trends and governing CDIs computed using 728 

climate data. The observed HDIs are properly captured for the Bécancour watershed (Figure 729 

4), but less so for the Yamaska watershed (Figure 5c and d). Indeed, for the SF season, the 730 

observed HDIs are greater than the modeled HDIs. This may be attributed in part to the 731 

presence of small man-made reservoirs used for water supply. Indeed, these were not 732 

explicitly modeled by HYDROTEL, although they are currently used to support low flows 733 

(especially the Choinière Reservoir, see Figure 3b) which would explain that observed low 734 

flows are larger than those modeled. Moreover, this would explain the better agreement 735 

between observed and modeled HDIs over the SC season when the reservoirs are not used 736 

to either support low flows or mitigate floods. The underlying assumption is that this 737 

supporting/mitigating function does neither alter the CDIs governing low flows, nor modify the 738 

trends of HDIs. This assumption is validated by the results obtained when exporting the CDIs 739 

identified for the Bécancour watershed to the Yamaka watershed (Table 5). 740 

4.4 CDI driving low flows 741 

The CDIs identified as the drivers of low flows (see subsection 3.2.2) concurred with those 742 

reported in the literature (Table 2) and deemed responsible for low flow generating 743 
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processes (Waylen and Woo, 1987; Sushama et al., 2006). Low flows generally result from: 744 

(i) storage depletion (following below freezing temperatures) in winter and (ii) lack of 745 

precipitation and increased evapotranspiration during summer. As for the associations 746 

between CDIs and HDIs, it should be kept in mind that association does not always imply 747 

causation. Although the discussion of this issue is beyond the scope of this paper, the reader 748 

is referred to Hill (1965) who proposes a series of questions to differentiate association and 749 

causation: 750 

- Strength: Is the correlation between HDIs and CDIs identified in subsection 3.2 751 

sufficiently stronger than the correlation between HDIs and any CDI taken from the 752 

literature? 753 

- Specificity: Is the association with HDIs limited to a few specific CDIs? 754 

- Consistency: Has the association been repeatedly observed in different places, 755 

circumstances and times? 756 

- Plausibility and coherence: Was the association hydrologically plausible? Did the 757 

cause and effect interpretation of the data conflict with the generally known facts of 758 

low flow hydrology (coherence)? 759 

4.5 Trend detection 760 

The detected trends in SF and SC low flows were attributed to the corresponding trends in 761 

CDIs through partial correlation analysis and modified MK test. These trends appeared more 762 

often that one could expect from chance alone. Assessing the trends and their attribution for 763 

the 42 scenarios, instead of the 10 supplied by Ouranos, would improve the confidence in 764 

the stated results. Indeed, the 10 CRCM simulations used two GCMs only (Table 1) and are 765 

not enough to establish any measure of climate uncertainty. But they are enough to get a first 766 

idea about the variability of the direction of changes considering the meteorological variations 767 

they propose. Indeed, they were deemed representative of a myriad of potential climate 768 

changes using the cluster method (Hartigan and Wong, 1979). Plus, the two selected GCMs 769 

are very well rated (Gleckler et al., 2008) when compared to models of the CMIP3 ensemble. 770 
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These GCM-RCM combinations are commonly used (Grillakis et al., 2011; Rousseau et al., 771 

2014; Fossey and Rousseau, 2016b; Klein et al., 2016) and were therefore deemed suitable 772 

for this study.  773 

Velázquez et al. (2013) showed that the choice of a hydrological model can affect the 774 

detected changes from past to future horizons, especially for low flow indices. But they did 775 

not work with trends at all. Nonetheless, for a more comprehensive study it would be useful 776 

to use different hydrological models to compute the studied HDIs and their matching CDIs. 777 

Despite these shortcomings in trend detection, the attribution of trends in HDIs to trends in 778 

CDIs is rather important, as it illustrates the potential of using solely the more recent climate 779 

continuous simulations of CMIP5 (Guay et al., 2015) to assess HDI trends. 780 

4.6 Regulated flows of the Yamaska watershed 781 

The flows of the Yamaska watershed are partly regulated. Stations 030302, 030304 and 782 

030345 (see Figure 3b) respectively measure monthly and daily regulated flows (CEHQ, 783 

2017). These regulations are of different kinds. Over the watershed, there are 149 dams of 784 

more than one meter in height (COGEBY, 2010). But the only one that has more than a local 785 

effect on flows (COGEBY, 2010) is the Choinière reservoir (Figure 3b). Some dams are used 786 

for irrigation purposes while others receive water from agricultural drainage systems. Côté et 787 

al. (2013) developed a low flow warning system prototype for the Yamaska watershed. They 788 

decided to model the watershed with HYDROTEL while removing the effect of the Choinière 789 

reservoir (by setting the outflows) to model natural flows (at least with respect to the flow 790 

regulation from this dam). This resulted in calibration and validation results not exceeding 791 

NSE values of 0.46 and 0.53 at river segment TR-61 (Figure 3b), respectively. These results 792 

are clearly not as good as those obtained in Table 4. Plus, the results obtained in this paper 793 

for the Yamaska watershed are comparable to those of the Bécancour watershed, 794 

suggesting that flow regulation may be limited or at least that the calibration was able to 795 

account for it. On top of that, the issue of regulated flow is one that needs addressing. Over 796 

the 9000 USGS hydrometric stations, more than ¾ are at least partly regulated (Falcone, 797 
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2011). For these reasons, the Yamaska watershed was modeled without removing the effect 798 

of the Choinière reservoir, with only the meteorological data input varying from past to future 799 

horizon. 800 

Results with respect to the Yamaska watershed throughout this paper are comparable to 801 

those obtained for the unregulated flows of the Bécancour watershed. Pearson median 802 

correlations (Figure 6) were of similar for all types of CDIs, the CDIs identified as governing 803 

low flows were almost identical between watersheds, even the trend detection and attribution 804 

analyses (Table 6 and Table 7) gave really similar results. Overall, this paper shows that the 805 

statistical framework introduced in this paper has potential to be applicable to watersheds 806 

with regulated flows. This topic of course needs in-depth research and will be further 807 

reinforced in a future paper dealing with more watersheds from different hydrological regions 808 

of Québec including a distinct paring process, clustering watersheds according to their 809 

physiographic descriptors. 810 

5.  Conclusion 811 

This paper introduced the development of a statistical framework to assess future trends and 812 

forcing phenomena associated with low flows at the watershed scale using solely climate 813 

data. From 22 CDIs, reported in the literature, a list of CDI-HDI couples was produced 814 

according to their relationship captured through Pearson linear correlation coefficients for 42 815 

climate scenarios (post processed simulations) under the greenhouse gas emissions 816 

scenario SRES-A2. 817 

For the hydrological SC season of the Bécancour watershed, the 7dQmin and 30dQmin were 818 

paired with the EDI computed from rainfall plus snowmelt minus PET amounts over ten 819 

months and the cumulative rain and snowmelt over three months, respectively. These CDIs 820 

explained 55/46% (r=0.74²; r=0.68²) and 53/58% of the 7dQmin and 30dQmin over the past/future 821 

temporal horizons, respectively. For the SF season, the 7dQmin and 30dQmin were paired with 822 

the cumulative difference between rainfall and PET over five months and the EDI computed 823 
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from the latter difference over eight months, respectively. These couples had median 824 

correlations of 0.74/0.73 and 0.77/0.74. These results correspond to the median 825 

performances obtained when applying the methodology to 42 climate scenarios of the (cQ)2 826 

project (Guay et al., 2015). The statistical relationships remained valid for the future horizon 827 

(no difference between median correlations of past and future temporal horizons according to 828 

a Wilcoxon test), statistically significant and not due to chance (the lower bound of the 95% 829 

CI for each median correlation coefficient remained at least above 0.6), and were applicable 830 

to the second study watershed with no significant loss in performance. 831 

Furthermore, significant trends between 1971 and 2070 in the HDIs extracted from 10 832 

scenarios supplied by Ouranos were attributed to trends in the matching CDIs. This finding 833 

was assessed using linear trend and partial correlation analyses. For both watersheds, 834 

observed trends in SC and SF low flows were attributed to trends in the aforementioned 835 

CDIs for 80 to 100% and 70 to 100% of the climate scenarios, respectively. SF season 836 

trends indicated a downward tendency, while SC season trends indicated an upward 837 

tendency. These four assessed trends agreed with the results presented by CEHQ (2015) 838 

who did use a hydroclimatological modeling framework. This is rather important as it 839 

demonstrates the ability of the proposed framework to indicate whether or not a HDI will 840 

increase or decrease without requiring the use of a hydrological model. 841 

The developed methodology can be adapted easily. Indeed, in this paper, we worked with 22 842 

CDIs; chosen because of their known relationships with low flows. Working with other HDIs 843 

or in another field of study could entail working with other indices. The methodology was 844 

designed with the intent of accounting for recent advances in climate research and could be 845 

further corroborated using the CMIP5 simulations (PCMDI, 2016); carrying out the same 846 

framework and obtaining a score based on a larger number of continuous scenarios. 847 

Furthermore, application of the proposed methodology would lead to a screening 848 

assessment of future drought-prone-watersheds; that is those that could benefit from an in-849 

depth hydroclimatic modeling study. 850 
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Overall, this paper contributes to the advancement of knowledge in the climate phenomena 851 

governing low flows. When compared to the conventional approach (i.e. combining climate 852 

scenarios with hydrological models) widely used to assess future low flows at the watershed 853 

scale, this paper, based on a limited case study with a single hydrological model, introduced 854 

a relatively simple methodology to assess hydrological trends using solely climate data and 855 

proposed, for a future temporal horizon, statistical relationships between CDIs and HDIs. 856 

  857 
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Figure 1: Detailed schematic of the methodological framework and mapping 

of the sections of this paper. White boxes stand for the computing of 

climate scenarios; grey boxes refer to the Material and methods section; 

and the black boxes refer to the Results section. 
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Figure 2: Location of the study watersheds in: (a) the province of Québec 

and (b) the St. Lawrence River lowlands 
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Figure 3: (a) Bécancour and (b) Yamaska parametrization regions and 

hydrological stations used for the calibration and validation of 

HYDROTEL. Red, green, and blue colors stand for upstream, median, and 

downstream subwatersheds, repectively. # indicates the gauging stations 

reference number. 
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Figure 4: Boxplots of the HDIs computed from the modeling of the 42 

climate scenarios for the Bécancour watershed: (a) SC season 7dQmin; (b) 

SC season 30dQmin; (c) SF season 7dQmin; and (d) SF season 30dQmin. Blue 

and red dots stand for the HDIs computed during the 

calibration/validation process from the observed and modeled flows, 

respectively. 
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Figure 5: Boxplots of the HDIs computed from the modeling of the 10 

Ouranos climate scenarios for the Yamaska watershed: (a) SC season 

7dQmin; (b) SC season 30dQmin; (c) SF season 7dQmin; and (d) SF season 

30dQmin. Blue and red dots stand for the HDIs computed during the 

calibration/validation process from the observed and modeled flows, 

respectively. 
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Figure 6: Pearson median correlations r [95% confidence interval CI] for 

the Bécancour watershed, for the SC (blue) and SF (green) seasons, for 

the 7dQmin (solid triangles) and 30dQmin (hollow triangles), and for the 

past (left side) and future (right side) temporal horizons. The 95% CI 

was computed through Monte Carlo resampling of the 42 climate scenarios. 

The red dotted line stands for Wilcoxon tests that rejected the null 

hypothesis (median correlations are equal between past and future 

horizons) at the 5% significance level. 
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