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Abstract 

Smart energy management mandates a more decentralized energy infrastructure, entailing energy 

consumption information on a local level. Household-based energy consumption trends are becoming 

important to achieve reliable energy management for such local power systems. However, predicting energy 

consumption on a household level poses several challenges on technical and practical levels. The literature 

lacks studies addressing prediction of energy consumption on an individual household level. In order to 

provide a feasible solution, this paper presents a framework for predicting the average daily energy 

consumption of individual households. An ensemble method, utilizing information diversity, is proposed 

to predict the day-ahead average energy consumption. In order to further improve the generalization ability, 

a robust regression component is proposed in the ensemble integration. The use of such robust combiner 

has become possible due to the diversity parameters provided in the ensemble architecture. The proposed 

approach is applied to a case study in France. The results show significant improvement in the 

generalization ability as well as alleviation of several unstable-prediction problems, existing in other 

models. The results also provide insights on the ability of the suggested ensemble model to produce 

improved prediction performance with limited data, showing the validity of the ensemble learning identity 

in the proposed model. We demonstrate the conceptual benefit of ensemble learning, emphasizing on the 

requirement of diversity within datasets, given to sub-ensembles, rather than the common misconception 

of data availability requirement for improved prediction.  

Keywords: household energy consumption; ensemble learning; robust regression; day-ahead energy 

forecasting. 
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1. Introduction and Motivation 

The demand for energy is continuously rising and, consequently, leading to unsustainable exhaustion of the 

nonrenewable energy resources. The increase in urbanization have led to an increase in electricity 

consumption in the last decades [1-3]. Many countries are continuously moving toward decentralized power 

systems; therefore, the use of distributed generation of electrical energy instead of the traditional centralized 

system is becoming popular [4-8]. To face the growing electricity demand and reinforce the stability of this 

new energy infrastructure, a more decentralized microgrid represents the key tool to improve the energy 

demand and supply management in the smart grid [9, 10]. This is achieved via utilizing information about 

electricity consumption, transmission configuration and advanced technology for harvesting renewable 

energy on a finer demand/supply scale. These systems are expected to improve the economy and deliver 

sustainable solutions for energy production [11, 12].  

Furthermore, power balance is one of the major research frontiers in decentralized energy systems; the high 

penetration levels of renewables prompt additional demand-supply variability which may lead to serious 

problems in the network [13, 14]. Also, the relatively small scale of new decentralized energy systems 

highlights the importance of predicting the demand projections, which are not similar to the demand 

projections in the main grid and impose additional variability in the net-load of the system [9, 15]. Hence, 

short-term load forecasting at the microgrid level is one of the critical steps in smart energy management 

applications to sustain the power balance through proper utilization of energy storage and distributed 

generation units [3, 16, 17]. Day-ahead forecasting of aggregated electricity consumption has been widely 

Nomenclature 

ANFIS  adaptive neuro fuzzy inference system    MLR   multiple linear regression 

ANN  artificial neural network     OLS   ordinary least squares 

BANN   ANN based bagging ensemble model    RBF  radial basis functions 

DT  decision tree     rBias  relative bias error 

EANN   proposed ensemble framework   RF-MLR   robust fitting based MLR 

KF   kalman filter      RMSE   root mean square error 

MAD  median absolute deviation    rRMSE   relative RMSE 

MAPE   mean absolute percentage error   SANN   single ANN model 

MDEC   mean daily electricity consumption   SCG   scaled conjugate gradient 

MLP   multi-layer perceptron    SVM  support vector machines 
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studied in the literature; however, forecasting energy consumption at the customer level, or smaller 

aggregation level, is much less studied [13, 18]. The recent deployment of smart meters helps in motivating 

new studies on forecasting energy consumption at the consumer level [11, 13, 19]. On the other hand, 

forecasting energy consumption at smaller aggregation level, down to a single-consumer level, poses 

several challenges. Small aggregated load curves are nonlinear and heteroscedastic time series [13, 20, 21]. 

The aggregation or smoothing effect is reduced and uncertainty, as a result, increases as the sample size of 

aggregated customers gets smaller. This is one of the major issues leading to the different challenges in 

household-based energy consumption forecasting. The studies in [22-24] discuss the importance and the 

difficulties in forecasting the energy consumption at the household level.  

Further, the behavior of the household energy consumption time series becomes localized by the consumer 

behavior. Additional information on the household other than energy consumption, such as household size, 

income, appliance inventory, and usage information can be used to further improve prediction models. 

Obtaining this information is very difficult and poses several user privacy challenges. For example, Tso 

and Yau [25] achieve improved household demand forecasts by including information on available 

appliances and their usage in each household. The authors describe the different challenges in attaining 

such information via surveying the public. As a result, innovating new models that can overcome prediction 

issues with the limited-information challenge is indeed one of the current research objectives in this field. 

In short-term forecasting of individual households’ energy consumption, ensemble learning can bring 

feasible and practical solutions to the challenges discussed earlier. Ensemble learners are expected to nullify 

bias-in-forecasts, stemming from the limited features available to explain the short-term household 

electricity usage. However, to the best of our knowledge, there has not been much work done on utilizing 

ensemble learning frameworks for the problem at-hand.  

This work focuses on the specific problem of practical short-term forecasting of energy consumption at the 

household level. More specifically, we present a proper ensemble-based machine learning framework for 

day-ahead forecasting of energy consumption at the household level. The study emphasizes on the 
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successful utilization of diversity-in-learning provided by the two-stage resampling technique in the 

presented ensemble model. This ensemble framework allows for utilizing robust linear combiners, as such 

combiners are not used before due to the unguided overfitting behavior of the ensemble model in the 

training stage. The results of the study focus on the ability of the presented ensemble to produce improved 

estimates while having limited amount of information about the household energy usage history (in terms 

of variables and observations available for the training).  

This paper is organized as follows; Section 2 presents a concise background on common techniques for 

forecasting of energy consumption as well as the significance of ensemble learning in such case studies. In 

Section 3, we introduce the methodology of the proposed ensemble. Section 4 is devoted to an application 

of our method to mean daily household energy forecasting. The case study in this paper and the comparison 

studies are given in this section as well. The discussion of the results is provided in Section 5, and 

concluding remarks are given in Section 6. 

2. Background and Literature Review 

A summary of the methods commonly used in the literature for forecasting energy consumption is 

presented. Table 1 provides an overview of the advantages and disadvantages of the different categories of 

models discussed in this section. Common techniques for energy consumption forecasting include time 

series models [26], Exponential Smoothing [27], Linear Regression [28], Generalized Additive Models [29, 

30], and Functional Data Analysis [13]. Such classical methods, also referred to as non-machine learning 

methods, have been comprehensively studied in the literature, and a useful overview of their common 

attributes can be found in [31]. The previously mentioned techniques have been demonstrated on aggregated 

demand studies. On the other hand, such techniques are expected to yield unsatisfactory results at the 

household level due to the challenges in the individual household energy usage patterns [32, 33]. Instead, 

the limited literature on forecasting household-level (not aggregated) energy consumption suggests 

machine learning techniques.  
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Table 1: General characteristics of classical, single and ensemble machine learning models (not only for energy 

applications).  

Broad 

Group 
Attributes and Advantages Weaknesses and Disadvantages 

Non-

Machine 

Learning 

Methods 

- Common and well established in the wide 

literature. 

- Perform well in forecasting aggregated load 

time series at different temporal resolutions. 

- Provide statistical significance of prediction. 

- Usually quantify uncertainty in obtained 

predictions. 

- Fast-Implementation to any case study. 

- Poor performance in forecasting short-term 

complex time series. 

- Dependence of various assumptions which may be 

very unreliable. 

- Limited ability to utilize additional variables in the 

prediction model. 

- Sensitivity to correlations within explanatories. 

- Curse of dimensionality. 

Single 

Machine 

Learning 

Methods 

- Do not require assumptions on the nature of 

variables. 

- Increasingly accepted methods for various 

applications in the literature. 

- More flexible methods that can fit better to 

complex time series. 

- Can accommodate different variables in 

time series forecasting. 

- Often provide better generalization ability 

than classical methods. 

- May be computationally more expensive than 

classical methods. 

- In time series forecasting, mostly used for curve-

fitting objectives rather than statistical 

interoperability of predictions. 

- Fitting-behaviour of many methods are still poorly 

understood. 

- Curse of dimensionality. 

- Inherent instability in the learning of a case study, 

even with similar training configurations. 

Ensemble 

Machine 

Learning 

Methods 

- Do not require assumptions on the nature of 

variables. 

- Very flexible methods that can provide the 

best fitting approaches. 

- Enjoy far more stable performance than 

single modeling frameworks. 

- Can provide information on uncertainty. 

- Can significantly reduce the effect of 

dimensionality; high dimensional systems 

are handled better without significant 

impact on performance. 

- Relatively new learning frameworks. 

- Learning in-series may create computationally 

expensive methods. 

- Mostly available for classification problems rather 

than regression. 

- Diversity concept, contribution to its generalization 

ability, is not usually tackled in an explicit manner 

in many of the common ensemble models. 

- Generalized learning frameworks require careful 

consideration when applied to a definite field and a 

certain case study. 

 

 Machine Learning in Forecasting Energy Consumption 

Examples of machine learning models are Support Vector Machines (SVMs), Adaptive Neuro-Fuzzy 

Inference Systems (ANFISs), Kalman Filters (KFs), Decision Trees (DTs), Radial Basis Functions (RBFs) 

and Artificial Neural Networks (ANNs) [3, 34-37]. The literature is abundant with research studies stating 

that machine learning models significantly outperform the classical statistical methods [38, 39]. For 

example, Pritzsche [40] compares machine learning models to classical ones and shows that the former can 

significantly improve forecasting accuracy in time series. In the specific literature of forecasting electricity 

consumption, the work in [25] utilizes DTs in predicting energy consumption levels. The use of KF is 
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proposed in [41]. It is critical to note that the two previous studies use a large dataset of consumers, not 

individuals, but refer to the work as household energy forecasting. In addition, the earlier study relies on 

household appliance information, which is a significantly impractical requirement to build prediction 

models. In [36], the authors demonstrate a forecasting approach using SVM applied on a multi-family 

residential building. Also, SVMs and ANNs are adopted for household energy forecasting in [42]. However, 

the study focuses on determining the optimum aggregation size of households rather than energy 

consumption forecasts. A more recent study by Xia et al. [43] develops wavelet based hybrid ANNs in 

electrical power system forecasting, which can be applied to forecast electricity price or consumption. The 

results of the study show a significant improvement in the generalization ability of this model when used 

to forecast power system states. Nevertheless, wavelet based machine learning techniques are expected to 

provide a deteriorated performance when individual-human behavior becomes a driving variable to the 

power system. In other word, decomposing the individual household electricity consumption time series is 

expected to provide misleading patterns that are not useful for daily load forecasting. 

The day-ahead average energy consumption forecasts of individual households are important for a wide 

variety of real life applications. For example, household energy forecasts on a daily basis can support 

wholesale electricity market bidding, where the load serving entity may submit a fixed Demand Response 

offer curve that is constructed from knowledge of the day-ahead average energy consumption of individual 

smart homes [44]. In addition, day-ahead average energy consumption can benefit the energy storage of 

relatively small and islanded power systems, down to a household level [45]. Also, this forecasting problem 

has recently been targeted in estimating greenhouse gas emissions and short-term carbon footprints of 

individual households [46].  

Perhaps the alluring nature of machine learning is also considered one of its major drawbacks. More 

precisely, machine learning models are instable learners; optimization of a certain model can yield different 

optimum configurations, even with the same training and validation environment. In the case of ANNs, this 

instability manifests in the random initiation of the hidden neuron’s weights, required to start the training 
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stage, which leads to different local optimum solutions for the model. This suggests that such instability 

can negatively affect the generalization ability of machine learning models if certain inferior conditions 

exist in the variables considered or in the data available for training and validation. To this extent, ensemble 

learning is a recent advancement to common machine learning techniques, and has been suggested over a 

wide spectrum of applications in the literature [47-50].  

 Common Ensemble Models in the General Literature 

The main advantages of ensemble models, compared to single models, are depicted in their improved 

generalization ability and flexible functional mapping between the system’s variables [51, 52]. Figure 1 

depicts the common architecture of ensemble models, in a homogeneous-learning setting where the sub-

ensemble processes are similar. Hybrid ensembles, also called Nonhomogeneous or Heterogonous 

ensembles, comprise a combination of different models. Ensemble learning commonly comprises three 

stages [34] which are resampling, sub-model generation and pruning, and ensemble integration. 

Resampling, which deals with generating a number of data subsets from the original dataset, is often the 

main character behind a key-ensemble model, as described later. Sub-model generation defines the process 

of choosing a number of appropriate regression models for the system at-hand. Pruning the sub-models (or 

ensemble members) determines the optimum ensemble configurations and the sub-models’ structures. 

Lastly, ensemble integration is the specific technique that transforms or selects estimates coming from the 

members, creating the ensemble estimate.  

The most common ensemble learning frameworks throughout the applied science literature are Bagging 

[53], Generalized Stacking [54] and Boosting [55]. These ensembles can be used to in a Homogeneous as 

well as Nonhomogeneous (Hybrid) setting. Bagging ensembles, for example, employ Bootstrap resampling 

to generate the subsets and use a mean combiner to create the ensemble estimates. A wide variety of 

machine learners can be used as ensemble members, whereas this is a common feature to all ensemble 

models rather than Bagging. Stacked Generalization (or Stacking) is a two-level learner, where resampling 
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and model generation and training are done as a first level training stage in the ensemble process. The 

second level training stage is the generation of the ensemble integration, which is a weighted sum of the 

members’ estimates.  

While Bagging and Stacking are viewed as ensembles with parallel learning framework (i.e. individual 

members can be trained independent from each other), Boosting is an in-series ensemble that creates 

members, in a receding horizon, based on the performance of the previous members in predicting all the 

observations in the training set. The first member will take in the observations of the original sample set as 

observations with the same probability of occurrence, and the observations with poor estimates will prompt 

an informed change in the whole sample to shift the focus of training toward such observations in 

succeeding ensemble members. For more information about ensemble learners, a survey of common 

ensemble techniques in the machine learning literature can be found in [48, 56]. 

The main advantages of ensemble models, compared to single models, are depicted in their improved 

generalization ability and flexible functional mapping between the system’s variables [51].  Figure 1 depicts 

the common architecture of ensemble models, in a homogeneous-learning setting. Ensemble learning 

commonly comprises three stages [34] which are resampling, sub-model generation and pruning, and 

ensemble integration. Resampling, which deals with generating a number of data subsets from the original 

dataset, is often the main character behind a key-ensemble model, as described later. Sub-model generation 

defines the process of choosing a number of appropriate regression models for the system at-hand. Pruning 

the sub-models (or ensemble members) determines the optimum ensemble configurations and the sub-

model’s structure. Lastly, ensemble integration is the specific technique that transforms or selects estimates 

coming from the members, creating the ensemble estimate.  
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Figure 1: Typical ensemble learning frameworks specific to homogeneous ensemble models; a) In-Series Learning, native 

to Boosting ensembles; b) Parallel Learning, as in Bagging ensembles. 

 

 Diversity Concept 

The main attribute of ensemble learning, in which the improved generalization ability is manifested, is 

theorized to be the diversity-in-learning phenomenon. Diversity is simply the amount of disagreement 
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between the estimates of the sub-models [58, 59]. One major source of ensemble diversity is the nature of 

the resamples in the training stage. When the resamples are created for the members’ training, the relative 

uniqueness of the information available in each subset prompts the members to capture different patterns 

along the system dynamics. While infrequently highlighted in the literature, the concept of diversity is not 

directly tackled in the most employed ensemble methods and is commonly of-interest for classification-

based studies rather than the regression [60, 61].  

In regression settings, the realization of diversity effects on the ensemble generalization ability has been 

implied by Krogh and Vedelsby [62], as the variance in estimates by the ensemble members. The authors 

also suggest that an ensemble whose architecture successfully increases ensemble diversity, while 

maintaining the average error of the sub-models, should have an improved generalization ability, in terms 

of mean squared error of the ensemble estimates. Ueda and Nakano [63] extend the previous work to derive 

an explicit description to ensemble diversity, manifested in the bias-variance-covariance decomposition of 

a model’s expected performance. This notion is the main reason behind the common preview “the group is 

better than the single expert” and becomes an identity, defining a proper ensemble. More recently, Brown 

et al. [64] develop a diversity-utilizing ensemble learning framework, which is inspired from an ANN 

learning technique [65]. The authors show that an error function for each individual can be derived by 

taking the ensemble integration stage into account, enabling explicit optimization of ensemble diversity. 

The authors also show that resultant ensemble models provide improved generalization over many case 

studies when compared with common ensemble learners, such as Bagging.  

In this work, a robust ensemble learning framework is presented. One of the major characteristics of the 

presented model is the direct utilization of ensemble diversity investigation in the training process. This 

diversity is created from the first ensemble learning component, the resampling technique. It is expected 

that creating diverse resamples will prompt the whole model to become diverse. The novelty in the 

presented model is its ability to measure diversity, via introducing information mixture parameters, without 

affecting the random learning character of the training stage. In addition, the suggested ensemble can utilize 
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linear combiner as ensemble combiner, unlike common ensemble learners. This enables the addition of a 

robust combiner, which significantly contribute to the prediction accuracy of the problem at-hand.  

Furthermore, ANNs are selected in this study as sub-ensembles, or ensemble members, due to their 

resiliency in generating diverse realizations, facilitating the resampling plan to create the expected diversity 

in the ensemble learner [49, 66]. The bias-variance-covariance composition of ANN-based ensemble 

models have been studied in the literature. They show many benefits of ANNs as ensemble members [38, 

58, 62]. More recent, the work by Mendes-Moreira et al. [48] provides a survey on ensemble learning from 

diversity perspective and concludes that the most successful ensembles are those developed for unstable 

learners that are relatively sensitive to changes in the training set, namely Decision Trees and ANNs. The 

next section provides a detailed overview of the proposed model. 

3. Methodology 

In general, the three main stages that make up ensemble learning are: resampling, sub-ensemble generation 

and training, and ensemble integration. A certain ensemble learning framework utilizes a method in one or 

more of these three stages, unique to that ensemble. In this work, an ensemble-based ANN framework with 

minute-controlled resampling technique and robust integration is proposed. In addition, an ensemble model 

is constructed using the proposed framework to estimate the day-ahead average energy consumption for 

individual households. Figure 2 summarizes the ensemble learning process presented in this work. From a 

machine learning perspective, the novelty in the presented ensemble learning framework exists within the 

first and third ensemble learning stages; the developed two-stage resampling technique utilizing diversity 

within the ensemble members allow explicit diversity-control within the resamples and, consequently, the 

sub-ensemble models. Also, the ability of the presented ensemble framework to exploit robust linear 

combiners for the ensemble integration stage is unique, compared to common ensemble frameworks. 
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In this section, the description of the ensemble learning methodology follows a systematic process that 

takes into consideration the ensemble identity, namely resampling, model generation and pruning, and sub-

ensemble integration. Also, the methodology is designed to describe the utilized techniques in resampling 

and ensemble integration because the proposed ensemble model is unique in these two stages. 

 

Figure 2: Comprehensive methodology to the ensemble learning process within a potential application. The dashed 

arrows indicate processes that are out of the scope of the current paper. 

 

 The Two-Stage Resampling Plan 

The resampling plan consists of a two-stage diversity controlled random sampling procedure. In the first 

stage, the dataset is divided into k resamples, where k is the size of the ensemble model (i.e. number of sub-

models in the ensemble). These resamples are referred to as first-stage resamples, and are described as 

follows: 

 𝑛1  =  
𝑁 − 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑

𝑘
=
𝑁 (1 − 𝑚𝑐)

𝑘
 ,           1 ≤ 𝑘 ≤ (𝑁 − 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑), (1) 
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where 𝑛1 is the first-stage subsample size, and 𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 is the number of the blocked observations from the 

training sample, N is the size of the sample set available for the training, and 𝑚𝑐 is the mixture ratio used 

to determine the amount of blocked information which will be utilized in the training of the linear ensemble 

combiner.  

Typically, 𝑚𝑐 can vary between 10% and 30%, depending on the availability of training data, the ensemble 

size, and the nature of the ensemble combiner used. A simple random sampling without replacement is used 

to pick out the samples for the purpose of blocking them from the members’ training. Although the 

resamples have the same size, each subsample will have different observations from each other; no 

observation can be found in more than one first-stage subsample. 

The second-stage resamples are then generated by random, but controlled, information exchange between 

all the first-stage resamples. Using a parameter that controls the amount of information mixture in each 

resample, a certain number of observations is given from one resample to another. In this work, the mixture-

control parameter is utilized in the generation of the second-stage resamples as follows: 

 𝑛2𝑖  =  𝑛1𝑖 +∑𝑚𝑒 × 𝑛1𝑗

𝑘

𝑗=1
𝑗≠𝑖

 ,  (2) 

where 𝑛2𝑖 is the size of the ith second-stage resample, 𝑚𝑒 is the information-mixture ratio, 𝑛1𝑗 and 𝑛1𝑖 are 

the size of the jth and of the ith first-stage subsample, respectively (𝑖, 𝑗 = 1,2,3, . . , 𝑘). It is worth noting that 

although all first-stage and consequent second-stage resamples have the same size, the subscripts i and j are 

added in order to emphasize the fact that the first-stage resamples hold different information. 

The mixture ratio, 𝑚𝑒, should vary between 0 and 1. The value 0 means that the second-stage resamples 

are the same as the first-stage resamples (no information-mixture). The value 1 means that all the second-

stage resamples have the same observations in the original dataset (and have the same size). Figure 3 
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presents the relationship between the information-mixture and the ratio of the second-stage resamples to 

the net sample set. It is expected that the optimum resamples (i.e. prompts the best ensemble learning 

performance) lie somewhere between the two values. In addition, the zero-mixture downgrades diversity-

in-learning, and the saturation of the second-stage resamples (𝑚𝑒 = 1) implies that diversity will only arise 

from the individual member models rather than the training resamples.  Consequently, the mixture ratio, 

for all the second-stage resamples, is defined as: 

 𝑚𝑒 = 
𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗
𝑛1𝑗

, 0 ≤ 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗 ≤ 𝑛1𝑗 , (3) 

where 𝑛𝑠ℎ𝑎𝑟𝑒𝑑𝑗 is the number of observations shared by the jth first-stage resample, and 𝑛1𝑗 is the size of 

the same resample. Notice that equation (4) states that the jth homogeneity ratio, 𝑚𝑒, will have a value 

between 0 and 1, bounding the amount of information shared by the jth first-stage resample in order not to 

exceed its size (preventing redundancy in shared information). In addition to the diversity reasoning behind 

the mixture ratio, equation (4) distinguishes the proposed resampling technique from that suggested in the 

common Bagging ensembles. The information-mixture ratio 𝑚𝑒 can be optimized for a given case study by 

a validation plan, where a set of mixture ratio values is defined and used to generate the resamples. The 

effect of the resamples on the overall ensemble performance is then investigated for each value, discussed 

in the following section. 

 Sub-Ensemble Models 

After the resamples are prepared, sub-ensemble models are created and trained using the resamples. The 

choice of the ensemble members (sub-ensemble members) depends on the type of the problem, available 

variables as well as the dataset itself. In this paper, the ensemble members used are ANN. Multi-Layer 

Perceptron (MLP) Feed-Forward ANN is well established in the literature and detailed information about 

this model can be found in [34, 66]. Hence, discussing MLP-based ANNs is not necessary. However, 

optimum design of ANN-based ensemble architecture (parameter selection) is discussed in the next section. 
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The Scaled Conjugate Gradient (SCG) is used as the training algorithm for the ANNs [67]. SCG has been 

shown to provide satisfactory learning performance to ANNs with relatively complex inputs [68, 69].  

 
Figure 3: Relationship between the information-mixture parameter and the amount of information contained in the 

second-stage resamples. 

  

The ensemble size, k, plays a major role in the proposed resampling plan, as it determines the size of the 

first-stage resamples and the size of the shared information, along with the mixture ratios in the second-

stage resamples. On the other hand, determining the optimum number of sub-models, i.e. the ensemble size 

k, is expected to be time consuming and very complex. When the dataset is relatively large, fixing the 

ensemble size to reasonable value, with respect to the available training information, can be considered in 

order to reduce the computation cost. In the case of a limited dataset, it is recommended to investigate the 

optimum ensemble size by running a validation check to different ensemble models. The ensemble size 

should provide enough training observations to successfully train the ensemble members with resampled 
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subsets, and at the same time allow generalization over the whole target variable space. In this study, the 

ensemble size k is set to equal 10, and the effect of different mixture ratio values is investigated for optimum 

parameters’ selection, explained in the experimental setup section. 

 Ensemble Integration Using a Robust Combiner 

Ensemble integration is the last stage in ensemble modeling. In this stage, estimates obtained from the 

ensemble members are combined to produce the final ensemble estimate [70]. Unlike the available 

ensemble models in the literature, the presented ensemble can utilize Multiple Linear Regression (MLR) 

combiners as integration techniques. This is allowed due to the controlled diversity in the ensemble 

members, the training approach to the whole ensemble, and the introduction of the parameter mc. The 

diverse resamples prompt the ensemble members to have different optimum configurations, with localized 

overfitting, i.e. each member overfits to its own resample. At this stage, when MLR is used as an ensemble 

combiner, the training is carried out using different information. This allows for MLR parameters to 

generalize over the behavior of the sub-ensemble estimates for unseen information, successfully utilizing it 

as a linear combiner.  

The common MLR technique is utilizing Ordinary-Least-Squares (OLS) algorithm to derive the solution 

of its parameters. The MLR function maps the sub-model estimates, �̂�𝑗,𝑖, into the ensemble estimate, �̂�𝑒,𝑖, 

and is represented as: 

 �̂�𝑒,𝑖 = 𝐵𝑜 +∑𝐵𝑗 × �̂�𝑗,𝑖

𝑘

𝑗=1

 , (4) 

where 𝐵𝑜 and 𝐵𝑗’s are the unknown MLR coefficients that can be estimated by using the OLS approach 

with all the sub-models’ estimates at all the available observations in the training phase to the coefficients 

of the MLR which can be obtained analytically [71-73]. 
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The use of OLS-based MLR combiner is inspired by the idea of assessing the performance of linear 

combiners in ensemble modeling. Such combiner uses fixed coefficients, derived from inferences about all 

estimates coming from the sub-models, to combine all sub-models’ estimates into one ensemble estimate, 

for each observation. Nevertheless, while the OLS estimates stem from a Gaussian distribution assumption 

of the response data, outliers (and skewed response variables) can have dramatic effects on the estimates. 

As a consequence, Robust Fitting based MLR (RF-MLR) of the sub-models’ estimates should be considered 

[74-78]. In this work, a RF-MLR technique is used as an ensemble integration method. This method 

produces robust coefficient estimates for the MLR problem. The algorithm uses an iterative least-squares 

algorithm with a bi-square as a re-weighing function. The robust fitting technique requires a tuning constant 

as well as a weighing function, by which a residual vector is iteratively computed and updated. Robust 

regression overcomes the problem of non-normal distribution of errors. Robust regression has been 

thoroughly studied and various robust MLR techniques exist in the literature, but outside of ensemble 

learning applications [75, 79, 80]. This technique computes the ensemble output �̂�𝑒,𝑖 from the 𝑘 sub-

ensemble estimates �̂�𝑗,𝑖 in the following form: 

 �̂�𝑒,𝑖 = 𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑜 +∑(𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑗 × �̂�𝑗,𝑖)

𝑘

𝑗=1

 , (5) 

where  𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑜 and  𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑗 are the robust regression bias and explanatory variables’ coefficients, 

respectively. The robust regression coefficients are obtained as the final solution using the iterative 

weighted least square function of a robust multi-linear regression estimate of the training data: 

 ∑ (𝑟𝑖𝑡+1)
2𝑁

𝑖=1 = ∑ 𝑤𝑖𝑡+1 [𝑦𝑖 − (𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑜𝑡+1
+ ∑ 𝐵𝑟𝑜𝑏𝑢𝑠𝑡𝑗𝑡+1

× �̂�𝑗,𝑖
𝑘
𝑗=1 )]

2
𝑁
𝑖=𝑖 , (6) 
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where 𝑟𝑖𝑛+1 is the (𝑡 + 1)𝑡ℎ iteration of weighted residual of the sub-model estimates of the 𝑖𝑡ℎ  observation 

from the training data, and 𝑤𝑖𝑡+1 is the corresponding weight. 𝑦𝑖  is the 𝑖𝑡ℎ observation from the training 

data, and �̂�𝑗,𝑖 is the estimate of the 𝑖𝑡ℎ  observation coming from the 𝑗𝑡ℎ sub-model. 

The weighing function takes the form: 

 𝑤𝑖𝑛+1 =

{
 
 

 
 𝑟𝑖𝑛+1 × [(𝑟𝑖𝑛+1)

2
− 1]

2
 ,      0 ≤ 𝑟𝑖𝑛+1 ≤ 1  

−𝑟𝑖𝑛+1 × [(𝑟𝑖𝑛+1)
2
− 1]

2
,    − 1 ≤ 𝑟𝑖𝑛+1 < 0

[(𝑟𝑖𝑛+1)
2
− 1]

2
                 ,    |𝑟𝑖𝑛+1| > 1          

 (7) 

The updating process of the weighted residuals takes the form: 

 𝑟𝑖𝑛+1 = [(
𝑟𝑖𝑛

𝑡𝑢𝑛𝑒 × 𝜎𝑛
) × √(1 − 𝑒𝑖)] , 𝜎𝑛 = 

𝑀𝐴𝐷𝑛
0.6745

 , (8) 

where 𝑟𝑖𝑛 is the residual for the 𝑖𝑡ℎ observation from the previous iteration, and 𝑒𝑖 is the leverage residual 

value for the 𝑖𝑡ℎ observation from an OLS-based MLR fit in the training process. Further, 𝑡𝑢𝑛𝑒 is a tuning 

constant to control the robustness of the coefficient estimates, 𝜎𝑛 is an estimate of the standard deviation of 

the error terms from the previous iteration, and 𝑀𝐴𝐷𝑛 is the median absolute deviation of the previous 

iteration residuals from their median. 

The tuning constant is set to be 4.685, which in return produces coefficient estimates that are approximately 

95% as statistically efficient as the ordinary least-squares estimates [79], assuming that the response 

variable corresponds to a normal distribution with no outliers. Increasing the tuning constant will increase 

the influence of large residuals. The value 0.6745  generally makes the estimates unbiased, given the 

response variable has a normal distribution. 
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As an advantage over Stacked Generalization ensembles, which utilizes non-negatives coefficients to 

combine sub-ensemble estimates, RF-MLR introduces a bias correction parameter in addition to the 

weighted sum of the sub-model estimates. This integration technique is expected to be a good choice for 

many cases. Like any other linear fitting tools, the amount of information dedicated to training is critical to 

the generalization ability of that regression-based combiner tool. This issue should be taken into 

consideration before deciding on choosing the robust fitting tool. 

4. Experimental Setup 

One of the main objectives of this work is to illustrate the benefits of utilizing ensemble learning for short-

term forecasting of energy consumption on the household level. More precisely, improved forecasts of day-

ahead average energy consumption for individual households are expected. The proper application of any 

method is an important factor contributing to the success of such method. In this section, the considered 

case study is presented and the application of the presented ensemble framework is then demonstrated.  

 Description of the Data 

Mean daily electricity consumption (MDEC) of a household in France, observed from 24/09/1996 to 

29/06/1999, is considered. In addition, the temperature variation in France for the same period is used 

because it is well known that it describes the daily, weekly and seasonal behavior of the electricity 

consumption and therefore it is relevant for localized load forecasting. The temperature data are of hourly 

resolution; therefore, a preprocessing plan is adopted to represent the temperature for a given day via 

maximum linear-scaling transformation of the hourly temperature data. The temperature observations over 

the considered study period are linearly scaled to be transformed to values between 0 and 1. Then, for each 

day, the scaled maximum hourly observation is used to represent the temperature of that day. The 

considered temperature preprocessing plan preserves sufficient correlation with the mean daily energy 

consumption. One of the main challenges in this case study is the limited number of useful features 
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describing the variation of the household energy consumption. Hence, the considered representation of the 

time series, as input variables, should alleviate this problem. 

 

 

Since our target in this paper is day-ahead forecasting of energy consumption, it is reasonable to utilize 

energy consumption observations of the previous days and transformed temperature variations as 

explanatory variables. The descriptor statistics of energy consumption throughout the week are summarized 

in Table 2. Also, Figure 4 provides a comprehensive view of the nature of the daily variations in energy 

consumption and temperature variations. The figure shows negative correlation between daily energy 

consumptions and scaled temperatures. While seasonality is not explicitly treated in the learning 

framework, it is expected to be captured in the increased MDEC and decreased temperature observations 

Figure 4: Daily energy consumption and normalized temperature variations from 24/09/1996 to 20/06/1999. 
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which will describe the projected MDEC estimates. Hence, no data split, for further hierarchy in building 

additional models that account for seasonality, is required.  

Table 2: Descriptive statistics of the case study variables. 

MDECs (KWh) Normalized Maximum Temperatures 

Day Mean Std. Min Max Day Mean Std. Min Max 

Saturday 1.908 1.031 0.324 4.988 Saturday 0.517 0.129 0.223 0.841 

Sunday 1.804 0.996 0.335 4.276 Sunday 0.524 0.130 0.245 0.878 

Monday 1.753 1.004 0.323 4.201 Monday 0.522 0.127 0.231 0.900 

Tuesday 1.773 1.014 0.317 5.407 Tuesday 0.526 0.125 0.154 0.775 

Wednesday 1.760 0.985 0.327 5.122 Wednesday 0.527 0.118 0.197 0.797 

Thursday 1.711 0.935 0.344 4.805 Thursday 0.525 0.118 0.223 0.795 

Friday 1.769 0.962 0.333 4.561 Friday 0.523 0.124 0.231 0.851 

 

In this work, a fixed input-variable configuration is selected. It is worth mentioning that the specific number 

of features to be used comprises a different study (feature selection) for ensemble learning frameworks and 

is beyond the scope of this paper. However, the used feature configuration aligns with that commonly 

applied in the literature and is justified due to the immediate relation between the target variable and the 

used features, i.e. explanatory variables [38, 81]. For a given day, the MDEC is assumed to be explained 

by 8 variables, two temperature variables and six MDEC variables. The temperature variables (represented 

as the current and day-before maximum linearly-scaled temperatures) are those for the day on which MDEC 

prediction is considered, and the day before. The six MDEC variables are as follows; the MDEC values of 

four previous days as well as the MDEC value of the same day, but from two previous weeks. Hence, the 

six variables have different lags. For example, the ensemble model dedicated to predict the MDEC of a 

given Saturday will have the input variables as the temperature on the same day, the temperature from the 

previous Friday, the MDECs from the previous Tuesday to Friday, and the MDECs of two previous 

Saturdays. Moreover, it is expected that energy profiles, on an individual level, may depend on socio-

economic variables. Examples of such variables are the economic state of the country where the household 

is located, the urban/suburban categorization of the household, changes in household income, etc. On the 

other hand, it is expected that such variables categorize or scale the expected usage profile among the 
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different households on a long-term basis. Therefore, since the modeling problem is on the household level 

and in a short-term setting, the economic impact on the targeted energy consumption trends may not be 

apparent. 

 Parameter Selection and Model Comparison 

The two-stage resampling ANN ensemble framework with robust linear combiner is proposed to predict 

day-ahead household energy consumption. The search process for the optimum uniform ANN 

configuration, diversity (or information mixture) parameter and combiner-information parameter are 

presented here. The information mixture parameter, me, is used to investigate and eventually tune the 

information diversity between the ensemble members. The combiner-information parameter, mc, is used to 

identify sensitivity and performance of linear combiners to available information for ANN training as well 

as dedicated information to the combiner’s training. The optimum values of these parameters, along with 

the ANN sub-models’ parameters, are found by cross-validation studies. Seven ensemble models should be 

selected to represent each day of the week, as the study will predict day-ahead MDECs for Saturday through 

Friday. Hence, for each ensemble model, a cross-validation study should be carried out. 

Initially, the system inputs and outputs are pre-processed. The observations are normalized and then linearly 

scaled to meet the range-requirement of the ANN and ensemble members [34]. As described in the 

methodology, MLP-based feed-forward ANN models are used as the sub-ensembles. All the ANNs will be 

initiated with one hidden layer because the nature of the input variables does not require further hidden 

layers. The hidden neurons are defined to utilize log-sigmoid transfer functions. The optimum model 

configuration of the ANNs, in terms of the number of hidden neurons in the hidden layer, is found via a 

separate validation study. The number of hidden neurons, which appears to be suitable for all or most of 

the days, is then selected for all ensemble models. This allows for practically uniform and, therefore, fast 

application to such case study. Complex-enough ANNs are needed so that overfitting is achieved and the 

diversity within the ensemble is manifested. Moreover, the validation study is carried out such that 40% of 
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the data is randomly selected and used to train a single model, while the remaining 60% of the data is 

estimated to evaluate the testing performance. This process is repeated ten times for each hidden neuron 

configuration and each day of the week. The performance of the ten versions of the same configuration is 

then averaged to reliably select the best configuration over all the examined ensemble models. A step-by-

step summary of the ANN selection study is provided as follows: 

1) Retrieve the dataset for a given day of the week. 

2) Using random sampling without replacement, split the dataset into testing set and training set, 

where the testing set comprises 40% of the dataset and the training set has the remainder 60% of 

the dataset.  

3) Initiate the predefined ANN models, each with different number of hidden neurons.  

4) Perform training and testing using the constructed training/testing set. 

5) Repeat steps 2 to 4 for ten times, where the testing performance for each ANN model is saved after 

each time. 

6) Retrieve the average testing performance of the ANN models and select the ANN configuration 

with the best performance to represent that day (selected in step 1). 

7) Repeat steps 1 to 6 and retrieve the best ANN configuration results for each day of the week. 

8) Using majority voting, select the ANN configuration that persists throughout most of the days to 

set a uniform-optimal configuration for the ensemble learning framework.  

The above procedure indicates that once the optimum ANN configuration for each day is selected, the 

number of hidden neurons is found as a majority vote and becomes fixed for all the ensemble model 

validation studies. This will enforce a homogeneous ensemble model (the ANN individual members have 

the same structure), which will then undergo performance evaluation for each me and mc case. In other 

words, the next step is to find the optimum ensemble model, in terms of mixture ratios. To do so, the two-

stage resampling is carried out for a different information-mixture me case, after reserving the dedicated 

data for combiner training via the mc parameter. At this point, the parallel nature of the ensemble framework 

will allow for each sub-ensemble model to be trained in the same time, and the trained ensemble combiner 

is used to produce the ensemble estimates for that particular ensemble architecture. This process is repeated 

until the optimum ensemble parameters are found.  
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A Jackknife validation technique is used to evaluate the relative performances of the proposed ensemble 

models [82]. For a given ensemble model, the Jackknife validation is used to determine the optimum values 

of me and mc as follows. The MDEC value of an observation is temporarily removed from the database and 

is considered as a testing observation. The ensemble members and the ensemble combiners are trained using 

the data of the remaining observations. Then, sub-ensemble estimates are obtained for the testing 

observation using the calibrated ensemble model. Figure 5 depicts the process of creating the ensemble 

learner for any given day. The performance of the proposed model is examined for all the seven days of the 

week, where each day will have an ensemble model. Jackknife validation is used for each simulation. These 

simulations investigate different combinations of homogeneity parameters to find the optimum ensemble 

configuration. In the next section, the validation results are then presented and the performances of the 

optimal ensemble models are compared to the benchmark studies. The following is a step-by-step summary 

of the study experiment: 

1) Choose a potential ensemble configuration (type and size of ensemble members, k, me, mc, and 

ensemble combiner) as described above in this section; 

2) Keep one observation from the original sample as a test observation; 

3) Create k subsets using the proposed resampling technique and train the ensemble models (members 

and combiner) using the generated resamples; 

4) Estimate the test observation (create the ensemble estimate); 

5) Repeat steps 2 to 4 for all observations in a jackknife framework; 

6) Repeat steps 1 to 5 for every ensemble configuration; 

7) Compare the jackknife results for all ensemble configurations and choose the optimum model. 
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Figure 5: The utilized ensemble learning process, where the different components used in the initial modeling problem 

and in the update/forecasting setting are highlighted. 

 

 Evaluation Criteria 

For each ensemble configuration (in terms of me and mc values), a Jackknife validation is carried out. In 

each simulation, the Jackknife process is repeated until we obtain the ensemble estimates for all available 

observations. The estimates are then evaluated using predefined evaluation criteria in order to select the 

optimum values for these ensemble parameters. The reason behind using Jackknife validation in this work 

is due to its ability to evaluate the optimum parameters with relatively better independence of the model’s 

performance from the available training information [83, 84]. Hence, the final models’ performance for the 

seven days are presented as jackknife validation results, for the chosen models.  

Root mean square error (RMSE), bias (Bias), relative root mean square error (rRMSE) relative bias (rBias) 

and mean absolute percentage error (MAPE) are used as measures of model performance and generalization 

ability over different ensemble parameter values, i.e. mixture ratios. The rBias and rRMSE measures are 
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obtained by normalizing the error magnitude of each point by its own magnitude. The MAPE measure is 

similar to rRMSE and rBias in the relative sense, yet it provides a different outlook on the model’s 

generalization ability. The considered performance criteria are defined as follows: 

 𝑅𝑀𝑆𝐸𝑑 = √
1

𝑁
 ∑(𝑀𝐷𝐸𝐶𝑑𝑖 −  𝑀�̂�𝐸𝐶𝑑𝑖)

2
𝑁

𝑖=1

  (9) 

 𝑟𝑅𝑀𝑆𝐸𝑑 = 100 × √
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𝑁
 ∑(
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𝑖=1

   (10) 

 𝐵𝑖𝑎𝑠𝑑 =
1

𝑁
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|
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 (13) 

where 𝑀𝐷𝐸𝐶𝑑𝑖 is the ith observation of the d-day mean daily load (d = Saturday, Sunday, …, Friday), 

𝑀�̂�𝐸𝐶𝑑𝑖 is the ensemble model-based estimation of 𝑀𝐷𝐸𝐶𝑑𝑖, and N is the number of observations.  

The use of the above criteria is motivated due to the different information they provide. RMSE and Bias 

criteria are typical performance measurements. MAPE is a common relative evaluation criterion among 

energy forecasting studies. However, using this criterion as the only relative measure of error to compare 

the performance of different methods is not recommended. MAPE may favor models which consistently 

produce underestimated forecasts. Consequently, rRMSE and rBias complement the latter, as they provide 

information of the models’ performance distribution. Low rRMSE and rBias values indicate that the target 
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variable’s lower observations have relatively low prediction errors, which is obviously the preferred target. 

In contrast, if these measures are found high, it would imply that the low and high target variable’s 

observations are poorly predicted. Hence, using the five error measurement criteria is important. 

5. Results and Discussion 

 Baseline Study 

The forecasting error of a baseline model is shown in Table 3 for all days of the week. A baseline model 

simply takes the previous year’s consumption as the predicted value. This methodology has been utilized 

in previous work as well as in real-life by utility companies to contextualize model performance [36, 85, 

86]. As for the baseline study, the household’s daily energy consumption observations of the year 1997 are 

used to predict the next year’s daily energy consumption. Furthermore, two procedures are used for the 

latter in order to provide better investigation; in the first procedure, the days are matched by their order in 

the year without initial matching of their order in the week. For example, the first day in year 1998 is 

matched with the first day in year 1997, and then its order in the week is identified. Following on the same 

example, after matching the first day in 1998 with its predecessor, we note that it is a Tuesday. Finally, the 

prediction errors for this method are computed. The first procedure allows for all the days in the year to be 

matched without sacrificing incomplete weeks in the year.  

In the second procedure, the weeks are matched by their order in the year. For example, the first complete 

week in the year 1998 is matched by the first complete week in 1997; this process is continued until all the 

weeks in the test year are matched by their predecessors. By using this procedure, all the days in the week 

are automatically matched by their predecessors in the previous year and a direct computation of the 

prediction errors can be performed. When using this procedure, the first and last incomplete weeks are 

removed to facilitate the baseline’s matching process. 
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It is clear that such approach produces highly biased estimates and imposes large errors. The errors are not 

only very high, but also as large as the MDEC Summer values. This observation confirms that relying on 

such approach, while accepted for aggregated energy consumption profiles, does not provide reliable 

estimates for individual energy consumption patterns. This can be justified by “the law of large number,” 

where after a certain aggregation size, an individual pattern does not significantly affect the aggregated 

pattern of interest [36]. Moreover, at smaller aggregation levels, it is shown that predicting individual 

consumption patterns produce better generalization than predicting the aggregate profile [16]. As a 

consequence, in decentralized energy systems, forecasting individual energy consumption and using 

relatively complex modeling methods is essential. 

Table 3: Results from the baseline approach utilizing two different matching procedures. 

Matching by day order in the year 

Day 
RMSE 

(Wh) 

Bias 

(Wh) 

rRMSE 

(%) 

rBias 

(%) 

MAPE 

(%) 

Saturday 16604.9553 5476.5043 41.9352 9.1171 35.3899 

Sunday 18068.6212 3738.6620 43.6786 9.0668 33.5021 

Monday 17282.1621 6270.5751 41.4660 13.4870 32.0965 

Tuesday 18848.2342 9019.5154 38.7687 19.0378 33.1553 

Wednesday 17390.0661 5288.3485 33.4044 9.1637 26.0439 

Thursday 15960.6825 4928.6506 38.6116 7.5580 30.1641 

Friday 17271.1943 5613.3848 41.6465 10.8698 33.8656 

Overall 17370.1576 5756.6904 40.0639 11.1799 32.0351 

Matching by week order in the year 

Day 
RMSE 

(Wh) 

Bias 

(Wh) 

rRMSE 

(%) 

rBias 

(%) 

MAPE 

(%) 

Saturday 15891.3994 6041.8763 39.5552 11.7022 33.6286 

Sunday 15105.6683 6738.6625 35.5347 14.7011 28.0739 

Monday 15124.4780 7371.1598 34.1216 17.7495 28.9715 

Tuesday 16399.8998 8358.8231 34.3080 15.4531 28.7541 

Wednesday 15674.2832 6953.0586 33.6084 13.8170 28.2473 

Thursday 16899.5181 5343.4271 39.7344 10.0129 32.8762 

Friday 17494.0647 5582.4879 40.2594 10.2682 32.6001 

Overall 16105.6490 6627.0707 36.8352 13.3863 30.4502 
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 Proposed Ensemble Performance 

The proposed robust ensemble framework is demonstrated in the day-ahead forecasting of individual 

household energy consumption and compared against single models and Bagging models, as described in 

Section 4. For each day of the week, the models are created and trained. The optimum ensemble parameters 

for each robust ensemble model are then found using Jackknife simulations over different configurations.  

Moreover, from the separate validation study, dedicated for selecting the uniform ANN configuration, the 

optimum configuration of the ensemble members is found such that individual ANNs comprise 1 hidden 

layer and 16 hidden neurons. However, ANNs are inherently instable learners and they provide different 

optimum configurations every time a single-model validation study is carried out. Hence, the ensemble of 

ANNs prompts the important benefit of shifting this validation issue towards the ensemble parameters. In 

other words, the ensemble model produces enhanced generalization ability, and reduces the dependency of 

performance stability on the ANN sub-models’ individual generalization ability [58, 87]. In the current 

study, tackling this problem is important because individual household energy consumption is a relatively 

complex time series, which induces bigger challenges to single ANNs [88]. This is verified in the results 

provided in this section. 

The proposed robust ensemble framework, EANN, is applied on the case study and compared against a 

single ANN model, SANN, and an ANN-based Bagging ensemble model, BANN. Table 4 shows the results 

of the optimum EANN configuration for each day of the week. The results agree with the expected behavior 

as working days, except for Friday. The results show that the household’s MDECs exhibit a more 

predictable consumption behavior. In addition, the relatively limited mixture of information required by 

working days suggests that the robust combiners need small amount of information, dedicated for their 

training. The opposite is seen when the diversity is lowered (higher information sharing), as mc increases 

for optimum ensembles describing the weekend days.  
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This finding further extends the novelty in the proposed ensemble learning framework, as it validates the 

ensemble learning identity of the proposed method; ensemble learners with higher me are expected to be 

coupled with combiners which are trained with higher mc. From Table 4, it can be deduced that the ensemble 

model describing Wednesday is found to be the “least complex day”, while Friday is found to be the most 

complex day. From a household energy consumption viewpoint, the results indicate that the household have 

fairly regular energy consumption patterns during most of the business days and the proposed model can 

successfully capture them in the optimum ensemble configuration. On the other hand, energy consumption 

in Fridays is less regular because the household is expected to consume energy more actively at the end of 

this business day. Similarly, the proposed ensemble model is able to inform this requirement by the 

relatively higher information-mixture values for the optimum ensemble model at that day. 

Table 4: Ensemble parameters selection. 

Day me (%) mc (%) 

Saturday 70 20 

Sunday 70 20 

Monday 50 10 

Tuesday 50 20 

Wednesday 50 10 

Thursday 70 20 

Friday 70 30 

Figure 6 presents Jackknife results for the EANN models’ parameters, performed for each day of the week. 

Different ensemble configurations are investigated. The figure shows the Jackknife validation performance 

with respect to changes in the homogeneity parameters. All EANN models provide the best model 

performance with mixture level values less than unity. This result agrees with the ensemble learning theory 

and clearly indicates that diversity-controlled ensembles are better than data-saturated ones. In other words, 

the ensembles do not require all the available training information in order to improve their generalization 

ability, but rather diverse-enough models with limited information-sharing among their sub-ensembles. In 

the proposed model, this identity stems from a controlled information-exchange environment suited to the 

nature of the relationship and the available intelligence on the system. In addition, each curve in Figure 6 
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has a relatively convex shape; this observation suggests that optimal mixture levels are expected to be found 

between 0 and 1. Each case study is expected to have information-mixture parameter curves with global 

optimum corresponding to a unique ensemble configuration.  

 

 

After identifying the best EANN models, summarized in Table 4, their performances are compared to 

SANN and BANN models. For reliability, all the optimum models are constructed repeatedly, where in 

each time they are retrained and retested; the average performance is reported. Table 5 presents the 

performance results of the proposed ensemble, compared to SANN and BANN models. The proposed 

model has significantly improved the estimation performance in terms of absolute and relative errors. 

Considering RMSE, rRMSE, and MAPE, the EANN models outperform the SANN and BANN models. 

BANN models’ performance is slightly better than SANN models’ performance, which is expected from 

Figure 6: Validation plots for each ensemble model. 
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an ensemble model. Among all the day-wise EANN models, EANN models for Wednesday and Thursday 

have the lowest errors, while EANN model for Friday has the highest error in terms of RMSE, rRMSE, and 

MAPE results. This important finding further validates the proposed ensemble learning framework’s 

interpretability. Also, the three measurement criteria have consistent results among themselves throughout 

the day-wise models. Where the best MAPE result is found (Wednesday), the second-best RMSE (with a 

close margin from the lowest) and the best rRMSE are also located.  

If we recall the results retrieved for optimum day-wise EANN models’ information-mixture parameters, 

i.e. diversity requirement, the generalization ability is found to be proportional to the amount of 

information-sharing. For example, the optimum EANN model configuration for Wednesday requires the 

lowest amount of information-mixture (highest induced diversity) and produces the second-lowest error 

(second-highest accuracy). In a similar manner, the optimum EANN model configuration for Friday 

requires the highest amount of information-mixture and has the highest error (lowest accuracy) among all 

EANN models. It should be noted that most of the day-wise EANN models exhibit this characteristic, 

except in the EANN model that forecasts Mondays. Due to the heuristic nature of the model, this slight 

inconsistency is expected. Hence, the novel characteristic of the proposed ensemble framework relates the 

model’s optimum parameters to its performance and the corresponding physical interpretation of the results 

is still apparent. 

The Bagging ensemble produces inferior results in terms of Bias and rBias criteria, even when compared 

to the SANN models. EANN also outperforms BANN in terms of Bias in all the days, with 5 out of 7 days 

when compared to SANN models. The EANN clearly outperforms SANN and BANN in rBias and provides 

the biggest improvement in this error criterion. The significant improvement by EANN in rBias is also a 

positive feedback on the proposed ensemble since most of the relevant studies in the literature use similar 

criterion to evaluate the model performance. To this extent, the poor BANN performance in the Bias and 

rBias criteria exemplifies one of the main limitations discussed regarding the common ensemble learners, 

which is partly due to their relatively simple ensemble integration methods; the utilization of the diverse 
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ensemble model with the robust linear combiner significantly reduces the Bias errors among all the EANNs. 

This result confirms the added benefit from utilizing the proposed ensemble learning framework. In the 

current study, the bias in estimates is expected to persist due to the various challenges inherent in forecasting 

the individual household energy consumption time series, as discussed in Section 2. Hence, the robust 

combiner of the proposed ensemble framework overcomes such challenges as opposed to the conventional 

ensemble models.  

Furthermore, the overall performance of the three models is shown at the end of Table 5. This performance 

is computed when the forecasts coming from all the day-wise models are combined in one dataset and then 

compared to their corresponding true observations. The overall performance by the EANNs is the best 

among all the five error measurement criteria, where the relative improvement of EANN (compared with 

SANN and BANN) is 6% to 28% in RMSE, 42% to 49 in Bias, 7% to 32% in rRMSE, 23% to 26% in rBias, 

and 5% to 21% in MAPE. The overall performance results further verify the significant improvement which 

the proposed ensemble learning framework can bring to short-term forecasting of individual household 

energy consumption.  

It is worth noting that seasonality, whether in climate patterns or in energy consumption patterns throughout 

the year, is not expected to be a significant contributor to the uncertainty in short-term energy forecasts, as 

described in Section 4. However, the representativeness of the dataset may have implications on the 

heuristic performance. On one hand, this may relieve the learner from comprehending various consumption 

patterns throughout the year and fit more concisely on what the cluster pertains. On the other hand, in the 

case of limited dataset, such hierarchy or clustering approach to data may result in inferior performance due 

to the threshold of available intelligence in each cluster [27, 34]. Investigating the effects of various feature 

selection and preprocessing frameworks are usually considered a whole research endeavour, at least in the 

pure literature (machine learning literature). Hence, the scope of the current paper is defined to utilize useful 

features which are in-line with the expected behaviour of the household energy consumption for each day 

of the week. Furthermore, preprocessing the dataset to comprise subsets with pre-informed consumption 
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patterns may influence the proposed ensemble performance, and all other models, in a similar fashion. 

Consequently, the proposed ensemble model as well as the other models are expected to yield performances 

relative to that in the current work, in the case of utilizing different feature selection and preprocessing 

approaches. 

Table 5: Average performance results of the Jackknife validation trials for each SANN, BANN and EANN models. 

Test Day Model 
RMSE 

(Wh) 

Bias 

(Wh) 

rRMSE 

(%) 

rBias 

(%) 

MAPE 

(%) 

Saturday 

SANN 390.7422 8.1163 30.6702 -4.0987 19.0982 

BANN 309.6022 4.0803 22.9882 -4.2767 16.2373 

EANN 296.3437 3.7044 22.3428 -3.4599 15.9396 

Sunday 

SANN 380.9260 1.6561 30.5878 -3.7723 18.7060 

BANN 297.5115 4.4247 21.3936 -3.7635 15.4263 

EANN 281.9481 3.2886 19.0598 -2.4197 14.2594 

Monday 

SANN 418.5348 1.8121 34.1406 -4.4712 19.8222 

BANN 319.9523 3.4112 24.8202 -4.7937 15.4446 

EANN 292.5657 -0.0124 23.7829 -3.4176 15.1994 

Tuesday 

SANN 401.0588 4.6344 33.9507 -4.2647 19.7371 

BANN 300.8767 4.1910 24.7131 -4.6775 16.8281 

EANN 282.1321 1.8963 23.1508 -3.8161 15.3191 

Wednesday 

SANN 350.6744 3.2774 26.4935 -2.6130 15.4042 

BANN 252.1614 4.8091 17.6680 -2.7473 12.1256 

EANN 237.9751 2.3352 16.0088 -1.7264 11.3952 

Thursday 

SANN 344.2010 4.6539 27.0493 -3.8769 16.6223 

BANN 252.0307 2.3348 19.4401 -3.6889 13.7674 

EANN 237.5945 0.9854 17.6581 -2.5564 13.1932 

Friday 

SANN 410.5117 -0.1925 30.8874 -4.4366 18.6940 

BANN 313.4764 3.9016 23.2305 -4.5422 16.2791 

EANN 303.1284 1.7418 21.8580 -3.7033 15.7323 

Overall 

SANN 386.1477 3.4225 30.6643 -3.9333 18.2977 

BANN 293.4122 3.8790 22.1767 -4.0700 15.1583 

EANN 277.0966 1.9913 20.7362 -3.0142 14.4340 

Bold numbers indicate best results 

At this point, the expected performance of the proposed model has been investigated over the five 

considered error measurement criteria; to provide a complete assessment on the stability of the proposed 

ensemble, the variation of the proposed model’s performance criteria from their expected values should 

also be investigated. Due to the nature of the forecasting problem, the stability of the relative performance 

measurement criteria is considered, rRMSE, rBias, and MAPE criteria. Moreover, the variation results can 
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be observed in Figure 7, where the latter depicts the Box Plots for the three relative error measurements. In 

all the days, the performance variation of EANN models is significantly less than the performance 

variations in SANN and BANN models. Hence, the EANN models’ generalization ability is significantly 

more stable than the common single and ensemble machine learning techniques. Also, the confidence in 

the limited variability of EANN models’ relative performance is better than the other models. This is shown 

by lower and higher bounds of the EANN Box Plots which are better than those in SANN and BANN (more 

concise).  

To further explain the benefit from utilizing the proposed ensemble learning framework, a final result is 

also presented. In Figure 8, a density scatterplot of the estimates coming from the compared models is 

presented. The underestimation of higher MDEC values and the overestimation in lower MDEC values, 

manifested in BANN models, are significantly reduced by the EANN models. In other words, although 

each day of the week is forecasted using a different EANN model, pooling of forecasts does not induce 

unwanted deviations, that may occur due to the day-wise forecasting approach. A close inspection of each 

density scatter plot also shows that the EANNs produce forecasts that are relatively closer to the 

observations along all the magnitudes of MDEC, while BANN and SANN forecasts are clearly poor at 

higher MDEC observations, beyond 30 KWh. Hence, SANN and BANN are not able to produce reliable 

forecasts of higher MDEC events. This is due to challenges in the energy consumption time series of 

individual households as well as the models’ inability to utilize all the available information from various 

sub-members’ forecasts (in the case of BANN). On the other hand, the proposed ensemble’s combiner not 

only provides robust weights to integrate the ensemble members’ estimates, but also uses a bias-correcting 

term which works properly with the learning process. The resampling technique as well as the controlled 

exchange of random data, to be introduced in the integration stage (manifested in mc), enable overfitted 

members to be combined using a regression technique. As a consequence, diversity, which really defines 

ensemble learning, is maintained in the proposed model, and a generalization of the integration weights is 

successfully achieved. 



36 
 

 

Figure 7: Box plots of Monte Carlo simulation on the models’ generalization ability; a) rRMSE performance, b) rBias, and 

c) MAPE performance criteria. 

 

a) rRMSE 

 

b) rBias 

 

c) MAPE 
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Figure 8: Density scatter plots of the estimated vs. observed MDEC values for all the days from SANN, BANN and EANN 

models, respectively. 

 

 Computational Requirement 

Given the current availability of computational resource and power, the time requirement to create a 

complex forecasting model is very competitive to simple forecasting procedures (in addition to the added 

benefit of significantly lower errors). Table 6 summarizes the time requirement expectation when utilizing 
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the ensemble models and simple models in the case study. It can be shown that the computational 

requirement for a sophisticated model is competitive when compared to simple models. In a single 

computing environment, the ensemble model may take longer than simple methods in the first stage 

(accounting for feature selection and model validation); however, if a parallel computing paradigm is 

utilized for this stage, the time requirement for this step significantly drops. In addition, from all the 

presented results, the household-based forecasting problem is shown to require a more complex modeling 

approach to produce reliable forecasts, as the generalization ability of simple models is very poor.  

Table 6: Comparison of time requirement for different stages of computations. 

Activity Real-Life Scenario Ensemble Model Simple Models 

Training/ 

Validation 

New participant  

(New Household) 

Single Node-all cases: ~1.4 hours 

Single Node-one case: ~1 minute 

Parallel-all cases: ~12 minutes** 

Parallel-one case: Seconds** 

Seconds up to minutes (depends 

on the model, feature selection, 

validation study utilized, etc.) 

Forecasting 

Day-Ahead 

Operation by a given 

SEMP* 
Less than a second Less than a second 

Updating 

Models 

Operation by a given 

SEMP* 

Single Node: ~1 minute 

Parallel: Seconds** 
Seconds 

* SEMP: Smart Energy Management Program: such as a Demand Response program. 

**The exact computational time depends on the configuration of the parallel computing environment. In this case, we 

used local parallelization, 4 cores sharing 24 GB (note: The four cores used less than 1 GB). 

 

6. Conclusions 

In this paper, a robust ensemble model was proposed to predict day-ahead MDECs on the household level. 

The proposed ensemble learning strategy utilized a two-stage resampling plan, which generated diversity-

controlled but random resamples that were used to train individual ANN members. The ensemble members 

were trained in-joint with a robust linear combiner containing a bias-correcting term. The proposed model 

was compared with single ANN models and Bagging ensemble. The Jackknife validation results showed 

that the proposed ensemble could more adequately generate MDEC estimates. The generalization ability 

was also shown to be more stable or less variant than those of the compared models. In other words, the 

results also showed that optimum ensemble required less, but diverse, information to produce improved 
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prediction performance. Furthermore, the results showed that the proposed ensemble model produced 

optimum diversity information that matched expectations on the dynamics within the case study in which 

the model was applied. In this work, the values of the optimum information-mixture parameters provided 

information on the nature of the household energy consumption behavior during each day of the week. This 

result allowed validating the ensemble model’s identity in the proposed learning framework and suggested 

further benefit from utilizing the proposed model. 

In addition, the proposed ensemble learning framework helped to improve the reliability of individual 

household energy consumption forecasts required for various state-of-the-art applications. From a system 

operator point-of-view and considering different smart energy management programs, having a reliable 

day-ahead prediction of the average household consumption provides a better anticipation of the flexibility 

which consumers can offer to the system. A daily average of a single household provides the operator with 

a proper selection parameter when choosing individual consumers to change their behavior (whether 

increasing or decreasing their consumption). Even if the agreement between the two parties is to allow the 

utility side to directly control the household loads, consumer satisfaction is a main pillar of the Demand 

Response concept. Moreover, future work will extend the current proposed framework to address day-ahead 

hourly energy consumption for other operational planning applications.  
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