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Abstract

Speech-based biometrics is one of the most effective ways for identity management and one of the
preferred methods by users and companies given its flexibility, speed and reduced cost. In speaker
recognition, the two most popular tasks are speaker identification (SI) and speaker verification (SV).
Commonly, SV exhibits greater practical applications related to SI, especially in access control and
identity management applications. Current state-of-the-art SV systems are known to be strongly
dependent on the condition of the speech material provided as input and can be affected by unex-
pected variability presented during testing, such as environmental noise or changes in vocal effort.
In this thesis, SV using whispered speech is explored, as whispered speech is known to be a natural
speaking style that despite its reduced perceptibility, still contains relevant information regard-
ing the intended message (i.e., intelligibility), as well as the speaker identity and gender. However,
given the acoustic differences between whispered and normally-phonated speech, speech applications
trained on the latter but tested with the former exhibit unacceptable performance levels. Within
an automated speaker verification task, previous research has shown that i) conventional features
(e.g., mel-frequency cepstral coefficients, MFCCs) do not convey sufficient speaker discrimination
cues across the two vocal efforts, and ii) multi-style training, while improving the performance for
whispered speech, tends to deteriorate the performance for normal speech. Moreover, by exploring
the performance boundaries achievable with whispered speech for speaker verification, it was found
that the lack of sufficient data to train whispered speech speaker models is a major limiting factor.
As such, this thesis aims to address these three shortcomings and proposes i) innovative features
that are less sensitive to changes from normal to whispered speech, thus helping to reduce the mis-
match gap, ii) fusion strategies that improve accuracy for both normal and whispered speech, and
iii) machine learning principles that overcome the limited resources/data problem.

To properly address the task at hand, we first perform a comparative analysis among some
of the most common feature based approaches and training techniques reported in related fields
that have shown benefits in the mismatch problem induced by vocal effort variations, including
whispered speech. This allowed us to narrow down candidate solutions and strategies that could be
useful for whispered speech speaker verification after some careful fine tuning. Next, by combining
these insights, with those previously reported in the literature, as well as statistical analysis tools,
innovative features are proposed that provide not only invariant information across the two vocal
efforts, but also features that provide complementary information. Subsequently, in order to take
advantage of the complementary information extracted from the different feature representations,
we explore fusion schemes at different levels. When using a combination of normal and whispered
speech data during parameter estimation, improved multi vocal effort speaker verification is achieved
and relative improvements as high as 68% and 70% for normal and whispered speech, respectively,
could be seen relative to a baseline system based on MFCC features. When including whispered
speech during enrollment, further improvements are achieved for whispered speech without severely
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affecting performance for normal speech. These results show that the proposed strategies allow to
efficiently use the limited resources available, and achieve high performance levels for whispered
speech inline with performance obtained for normal speech.

Index terms— Whispered speech, speaker verification, modulation spectrum, mutual infor-
mation, system fusion, mismatch problem, neural networks.
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Synopsis

0.1 Introduction

La parole humaine est un mode de communication naturel et flexible transmettant non seulement

un message, mais aussi des traits tels que l’identité, l’âge, le sexe, l’origine, ainsi que les états

émotionnels et ceux de la santé. Les systèmes de traitement de la parole sont devenus, sous des

conditions contrôlées, utiles pour certains domaines. Par exemple, la reconnaissance automatique

de la parole a ouvert la porte à l’utilisation de la parole comme une interface homme-machine fi-

able, permettant aux humains de contrôler les téléviseurs, les smartphones et les systèmes stéréo

de voiture, sans oublier l’interaction avec des services automatisés de support à la clientèle. Les

progrès des technologies de reconnaissance des locuteurs ont permis d’utiliser la voix humaine pour

des fins d’authentification, à titre d’exemple, dans un système téléphonique automatisé des services

bancaires. Ce domaine présente un grand potentiel. En effet, des rapports récents prévoient que

le marché mondial de la technologie de la parole dépassera 31 milliards de dollars en 2017, princi-

palement en raison de trois applications de la parole: la reconnaissance automatique de la parole

(automatic speech recognition, ASR), la vérification automatique du locuteur (automatic speaker

verification, ASV) et la synthèse vocale (text-to-speech synthesis, TTS) [1]. Une bonne partie de

ce marché a été motivée par la prolifération des smartphones et des tablettes à travers le monde. À

titre d’exemple, plusieurs applications qui ont vu le jour permettent aux utilisateurs d’utiliser leur

voix pour interagir avec leurs appareils (par exemple l’application Siri d’Apple), de se connecter

à des services sécurisés (par exemple, le service d’identification vocale de Bell Canada) ou même

de déverrouiller leurs appareils mobiles, (exemple du service de vérification des locuteurs du centre

de recherche Baidu-I2R). Toutefois, ces systèmes commerciaux existants ont été développés pour

des scénarios “typiques”: des voix adultes claires avec des accents limités de langue étrangère et
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peu de bruits ambiant. Ces hypothèses et conditions sont toutefois difficiles à satisfaire dans des

environnements du monde réel et dans des applications à utilisation quotidienne.

Dans cette dissertation, le problème de reconnaissance du locuteur est d’un intérêt particulier.

Le potentiel des applications de reconnaissance automatique du locuteur réside particulièrement

dans les applications de contrôle d’accès et de gestion d’identité où l’authentification basée sur la

connaissance (knowledge-based authentication, KBA) demeure le mode dominant d’authentification

des utilisateurs [2]. KBA requiert des informations personnelles des utilisateurs afin d’accorder

l’accès à un service; les détails représentatifs peuvent inclure une combinaison de mots de passe, de

noms d’utilisateurs et de questions personnelles. Cette méthode présente cependant de nombreux

inconvénients qui peuvent mettre à risque des informations critiques, ainsi que des problèmes de

confidentialité lors de la collecte d’informations. À titre d’exemple, avec l’utilisation généralisée des

réseaux sociaux, de nombreux utilisateurs ne sont pas conscients que l’information qu’ils partagent

peut être utilisée à des fins de vérification pour autoriser des transactions (par exemple la date

de naissance). En outre, les méthodes d’authentification existantes sont sujettes à de nombreuses

attaques documentées. Des méthodes plus sûres et plus fiables ont fait l’objet de recherches récentes

[3, 4, 5].

La méthode d’authentification basée sur la biométrie est une alternative à KBA. Elle combine

les mathématiques et les techniques de traitement numérique du signal pour analyser les caractéris-

tiques physiologiques. Cette méthode obtient une attention significative. Contrairement à KBA,

la biométrie est basée sur l’identité de l’utilisateur, plutôt que sur ce que l’utilisateur connait. Ces

technologies sont en pleine expansion dans le domaine de la gestion des identités. En effet, elles

n’exigent pas de numéros personnels d’identification ni de mots de passe ou de questions de sécurité

[6]. Malgré les nombreux avantages de l’utilisation de la biométrie à des fins d’identification, des

défis et des problèmes non résolus persistent, entravant ainsi l’utilisation généralisée. Par exem-

ple, la reconnaissance biométrique est compromise par des facteurs externes qui peuvent altérer les

modèles qui sont analysés (par exemple, des coupures et les brûlures aux doigts dans les systèmes

à empreinte digitale; le bruit ambiant dans les solutions basées sur la voix), ainsi que par des fac-

teurs physiologiques humains naturels tels que le vieillissement et la maladie (par exemple, dans les

systèmes basés sur les caractères faciaux et sur la voix) [6, 7].
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Les préférences des utilisateurs jouent également un rôle important lors de la décision de la

méthode à utiliser pour l’authentification. Selon des statistiques récentes, la biométrie basée sur la

parole se classe très bien dans la préférence des clients, dépassant les méthodes à empreintes digitales

et les solutions de numérisation de l’iris (iris scanning solutions) [8, 9]. En raison de l’utilisation

répandue des smartphones dans le monde entier, la biométrie basée sur la parole gagne rapidement

du terrain en terme de popularité, particulièrement dans les institutions financières [8]. Dans de

telles applications, les clients peuvent accéder à leurs services sécurisés bancaires et d’assurance en

parlant simplement dans leurs téléphones. Pour les institutions financières, cette facilité d’utilisation

améliore la satisfaction du client tout en réduisant les coûts de prise en charge des clients et ceci

grâce aux taux d’automatisation élevés. D’autre part, étant donné la flexibilité de la communication

basée sur la parole et étant dans une situation particulière, les clients peuvent poser de grands défis

à ces types d’applications en changeant par exemple leur effort vocal de chuchotement à des cris

selon l’environnement. Ceci, ainsi que le bruit ambiant, ont posé de gros problèmes à la performance

des applications vocales. Le bruit ambiant a des effets néfastes sur les systèmes biométriques basés

sur la parole, en particulier ceux formés avec des caractéristiques classiques, tels que les coefficients

MFCC (mel-frequency cepstral coefficients). À titre d’exemple, des précisions aussi faibles que

7% ont été rapportées dans des environnements très bruyants [10]. Au fil des années, plusieurs

algorithmes d’amélioration de la parole ont été proposés pour des applications de reconnaissance de

la parole dans des environnements robustes [11]. D’autre part, le fait de varier les efforts vocaux

peut également entraîner des effets néfastes sur la performance du processus de vérification du

locuteur. Par exemple, des précisions aussi faibles que 20% ont été rapportées pour l’identification

de locuteur à voix basse [12] dans des conditions propres, alors que des exactitudes aussi basses que

8.71% ont été rapportées pour le cas d’une voix crieé [13]. En effet, il est très probable que des

clients utilisant une application mobile de services bancaires sur leurs smartphones vont murmurer

des informations sensibles ou bien parler plus fort, voire crier, si’ils perçoivent que leurs paroles ne

sont pas entendues.

Dans la reconnaissance automatique des locuteurs, il existe deux tâches classiques qui peuvent

être effectuées: l’identification du locuteur (speaker identification, SI) et la vérification du locu-

teur (speaker verification, SV) [14]. Généralement, SV a plus d’applications pratiques par rapport

à SI, particulièrement dans des applications de contrôle d’accès et de gestion d’identité. Les sys-

tèmes basés sur le modèle GMM (Gaussian mixture model), avec la reconnaissance automatique des
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locuteurs, utilisant l’adaptation du maximum a posteriori (MAP) et MFCC comme vecteurs carac-

téristiques, ont été pendant de nombreuses années l’approche dominante pour la reconnaissance du

locuteur indépendante du texte[15]. Les avancées récentes ont introduit le concept de supervector,

qui, combiné avec les machines à vecteurs de support (SVM), ont conduit à des résultats améliorés

de reconnaissance [16]. Récemment, les approches inspirées des variables latentes (latent variable)

pour l’extraction de caractéristiques telles que l’analyse factorielle conjointe (joint factor analysis,

JFA), seules ou combinées avec la SVM, se sont révélées être une approche efficace pour la compen-

sation des effets des canaux et la réduction du temps de notation [17, 18]. Selon le Framework JFA,

les systèmes actuels SR sont basés sur l’extraction de vecteurs d’identité (i-vectors) avec une nota-

tion basée sur la distance cosinus ou sur l’analyse probabiliste discriminante linéaire (probabilistic

linear discriminant analysis, PLDA) [19, 20].

En outre, étant donné les progrès récents des deux domaines d’apprentissage profond et des

réseaux de neurones, de nouvelles approches basées sur les fonctionnalités de goulot d’étranglement

(bottleneck features, BNF) [21] émergent. Les premières expériences montrent des performances

améliorées par rapport aux caractéristiques conventionnelles tels que les MFCC [22, 23]. Toujours

dans le domaine de l’apprentissage profond, des études récentes ont également commencé à explorer

l’utilisation de réseaux de neurones afin de remplacer les GMMs dans le calcul des statistiques

nécessaires lors de l’extraction i-vectorielle [22].

0.2 Description du problème

Nous tâcherons à attirer l’attention, le long de cette dissertation, sur l’un des nouveaux défis que les

développeurs d’applications vocales automatisées rencontrent: variation des efforts vocaux. Dans

[24], Traunmuller et Eriksson caractérisent l’effort vocal par: “la quantité que les locuteurs ordinaires

varient quand ils adaptent leur discours aux exigences d’une distance de communication accrue ou

réduite.” Même s’il s’agit d’une mesure subjective, nous identifions cinq niveaux d’effort vocal: 1)

chuchotement, 2) voix douce, 3) voix normale, 4) voix forte et 5) des cris. Les deux extrêmes,

c’est-à-dire la parole chuchotée et les cris, sont les deux efforts vocaux qui produisent des change-

ments majeurs dans les caractéristiques acoustiques ainsi que dans les caractéristiques dynamiques

générales du signal de la parole comparées à la voix normale [24]. Ces changements affectent de

manière significative les performances des systèmes de la reconnaissance automatique de la parole
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ainsi que des locuteurs, surtout si seulement la parole normale a été utilisée lors de l’entraînement

(c’est-à-dire, les conditions d’inadéquation de entraînement/test) [12, 13, 25, 26, 27]. Cela pose un

grand défi pour la plupart des tâches de reconnaissance à être développé à l’aide de la biométrie

vocale; principalement les tâches qui tiennent compte uniquement des différences entre les locuteurs

telles que les tâches de reconnaissance des locuteurs.

Parmi les cinq efforts vocaux, le discours chuchoté attire une grande attention pour les applica-

tions de sécurité ces derniers temps. Malgré sa perception et son intelligibilité réduites, la parole

chuchotée est un mode naturel de production de la parole transmettant des informations pertinentes

et utiles pour de nombreuses applications. Par exemple, tout comme la parole avec une voix normale,

la parole chuchotée transmet non seulement un message, mais aussi des traits tels que l’identité, le

sexe, l’émotion, et létat de santé, pour n’en nommer que quelques-uns [25, 28, 29, 30, 31, 32]. Comme

mentionné auparavant, le discours chuchoté est couramment utilisé dans des situations publiques

où des informations privées ou discrètes doivent être échangées, à titre d’exemple, lorsqu’on fournit

un numéro de carte de crédit, un numéro de compte bancaire ou d’autres renseignements person-

nels. Malgré la quantité d’informations présentes dans la voix chuchotée, certaines caractéristiques

rendent ce style de la parole difficile à traiter par les applications vocales. Citons l’exemple de la

caractéristique la plus importante pour un discours chuchoté qui est l’absence de vibration du pli

vocal. De plus, quand une personne chuchote, plusieurs changements se produisent dans la con-

figuration de la voie vocale, altérant ainsi non seulement la source d’excitation, mais aussi le taux

syllabique et les caractéristiques générales de dynamique temporelle du signal de la parole généré

[25, 33]. En conséquence, on s’attend à ce que les méthodes classiques conçues pour la caractérisa-

tion vocale à voix normale échouent lorsqu’elles sont testées dans des scénarios atypiques, telle que

la parole chuchotée [12, 25, 26, 27].

Malgré le nombre limité de recherche dans ce domaine, plusieurs approches visant à surmonter

certains de ces inconvénients ont été signalées, particulièrement dans des conditions d’inadéquation

entre l’entraînement et le test où les modèles de locuteurs étaient formés avec la parole normale

et testés avec des discours murmurés [12, 26, 34, 35, 36, 37]. Dans ces travaux, on a signalé

une faible précision dans des conditions incompatibles d’entraînement et de test. Aussi, certaines

stratégies visant à remédier aux limitations intrinsèques des systèmes actuels de la parole pour

traiter la parole chuchotée ont été proposées. Parmi les exemples représentatifs, nous pouvons

citer: les caractéristiques robustes telles que les coefficients cepstraux linéaires modifiés (linear-
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frequency cepstral coefficients, LFCC) et le mappage des caractéristiques [34], la déformation des

caractéristiques sur MFCC (feature warping over MFCC) et la combinaison de scores au niveau des

trames [35], les schémas d’adaptation de modèles tels que la régression linéaire maximale (MLLR)

et la transformation des caractéristiques -de la parole normale à la parole chuchotée- à utiliser

lors de l’adaptation du modèle (MAP-adaptation) [37]. Malgré les nombreux efforts déployés, les

améliorations relatives vont de 8% à 46% et, pour tous les cas, les résultats de classification obtenus

ne sont toujours pas utiles pour des applications réelles [26, 37].

En général, pour les applications vocales, telles que la reconnaissance de la parole, deux stratégies

principales sont utilisées pour gérer le problème de désadaptation, à savoir, (i) reconnaisseur de

modèle multiple, où des modèles vocaux dédiés sont obtenus pour différents efforts vocaux [27] et

(ii) modèles à styles multiples (multi-style), où chaque modèle est obtenu à partir d’une combinaison

de la parole normale et de petites quantités de parole de divers efforts vocaux [25, 27]. Néanmoins,

les deux différentes méthodes ont montré avoir des avantages et des inconvénients. Par exemple,

bien que les deux améliorent la performance de la parole chuchotée [26, 27], l’entraînement de

plusieurs modèles nécessite des quantités significatives de données vocales murmurées afin d’obtenir

des modèles de locuteurs, ce qui peut être difficile à obtenir dans la pratique. Pour les systèmes

basés sur le multi-style, malgré qu’ils exigent moins de données provenant de discours chuchoté pour

former les modèles, ils échangent des gains dans la parole chuchotée en des pertes dans la précision

normale de la parole, souvent par la même quantité [27]. En ce qui concerne le problème spécifique

que nous abordons dans cette thèse, dans le domaine de reconnaissance de locuteurs, les auteurs

ont également signalé que la stratégie la moins coûteuse et la plus efficace est d’ajouter de petites

quantités de discours chuchoté de locuteurs cibles lors de l’inscription [26, 35], c-à-d utiliser des

modèles multi-styles.

L’approche multi-style convient plus à la tâche à accomplir, car les systèmes actuels SV exigent

des quantités importantes de données pour l’estimation des paramètres. La grande variabilité en-

tre les intervenants dans l’ensemble d’apprentissage est nécessaire afin de garantir un échantillon

représentatif de l’ensemble des locuteurs qui sont prévus lors de la phase de test. Comme nous

le décrivons dans le chapitre suivant, dans les bases de données existantes disponibles au public,

le nombre de locuteurs avec des enregistrements de parole chuchotée est relativement faible com-

paré au nombre de locuteurs avec une parole normale. Comme tel, le défi lors de l’estimation des

paramètres est d’apprendre autant de variabilité que possible à partir des deux styles de la parole
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et ceci afin de modéliser correctement l’information discriminative entre les locuteurs, mais avec des

ressources limitées disponibles à partir d’un effort vocal (c’est-à-dire chuchoté). Avec les fonction-

nalités actuelles de goulot d’étranglement, ceci devient un problème encore plus difficile, car il est

nécessaire de former un système automatique de reconnaissance vocale à grande échelle et d’utiliser

sa sortie pour former un réseau de neurones profond [22]. Au meilleur de notre connaissance, aucun

corpus à grande échelle avec discours chuchoté annoté n’est disponible pour entraîner un système

ASR. Ainsi, si des fonctionnalités de goulot d’étranglement doivent être explorées pour la tâche à

accomplir, des solutions innovantes sont nécessaires pour minimiser les effets de ressources limitées

sur l’efficacité du vecteur caractéristique extrait. En résumé, alors que les modèles multi-style peu-

vent offrir une alternative viable à la parole vocale murmurée SV, des techniques adéquates doivent

encore être mises en place afin de surmonter les problèmes qui découlent de cette stratégie (par

exemple, ceux rapportés dans [25, 27] pour ASR).

Dans cet esprit, les problèmes que nous abordons dans cette thèse peuvent être résumés comme

suit:

1. Dans le domaine de la reconnaissance des locuteurs, le discours chuchoté n’a été étudié que

dans le cadre du problème d’identification des locuteurs, avec une exploration limitée des

limites de performances réalisables avec la parole chuchotée pour la vérification des locu-

teurs dans différents scénarios d’entraînement/tests et en utilisant des techniques standard

développées pour la parole normale.

2. Problème d’inadéquation d’entraînement/test: au cours de la phase de test, quand il n’y

a pas de données vocales murmurées disponibles pour l’entraînement ou pour inscrire les

locuteurs cibles, la parole chuchotée peut induire des effets néfastes sur la performance de

reconnaissance du locuteur. En fait, même si des données vocales chuchotées sont disponibles

pour l’estimation des paramètres, le problème d’incompatibilité peut toujours être présent,

car les variations de l’effort vocal peuvent être considérées comme une variation “à l’intérieur

du locuteur” et cette variation n’est pas bien représentée dans les échantillons d’inscription

des locuteurs cibles.

3. Ressources limitées: des systèmes typiques de pointe sont formés sur de grands ensembles

de données, avec des de milliers d’intervenants, de plusieurs heures d’enregistrement, d’une

variété de canaux et de sessions d’enregistrement différentes. Cependant, un large éventail

de variations de l’effort vocal n’est toujours pas inclus dans les tâches d’évaluation à grande
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échelle. Les systèmes standards de vérification des locuteurs doivent être compensés par des

techniques permettant d’utiliser efficacement la quantité limitée d’informations disponibles

des efforts vocaux différents de la parole vocale normale, tout en maintenant des niveaux

élevés de performance dans la parole normale.

4. Effets négatifs dans les modèles multi-style: dans les systèmes de reconnaissance de la parole,

des effets négatifs ont été observés lors de la combinaison de données issues de différents

efforts vocaux. Plus précisément, alors que la précision de la reconnaissance d’une parole

chuchotée s’est améliorée, la précision de la parole normale a diminué [25, 27]. L’impact de

la combinaison de données de deux efforts vocaux différents pour la tâche à accomplir n’est

pas clair. Les stratégies pour surmonter ce compromis de perte de gain avec un discours

murmuré-normal restent toujours nécessaires.

0.3 Contributions de thèse

Le but de cette thèse est d’aborder les quatre problèmes mentionnés auparavant avec un accent

particulier sur deux efforts vocaux: normal et chuchoté. Bien qu’il y ait eu un certain travail dans

la littérature traitant de la question de l’identification de locuteur avec une parole chuchotée, nous

nous concentrons ici sur la vérification du locuteur, pour lequel il y a plus d’applications pratiques.

En particulier, cette thèse aborde plusieurs aspects du pipeline de vérification des locuteurs, y

compris l’extraction de caractéristiques, où des fonctionnalités novatrices sont proposées contenant

des informations indépendantes du locuteur et invariantes à travers les efforts vocaux, ainsi que

différents schémas de fusion pour obtenir une précision exacte de reconnaissance de l’effort multi-

vocal. Plus précisément, les principales contributions de cette thèse peuvent être résumées comme

suit:

1. Des limites de performances réalisables avec un discours chuchoté pour la vérification du

locuteur ont été signalées pour la première fois. Nous avons constaté que la parole chu-

chotée peut contenir autant d’informations spécifiques au locuteur que la parole normale,

mais les approches standard conçues pour la parole normale ont tendance à échouer pour la

parole chuchotée. L’un des problèmes limitant l’utilisation généralisée de ce style de parole

pour les applications d’authentification est le manque de données suffisantes à l’entraînement

de modèles. À cet égard, nous avons développé des stratégies qui utilisent efficacement les
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ressources limitées disponibles, comme le nombre limité de locuteurs avec des enregistrements

vocaux chuchotés; à utiliser pendant l’estimation des paramètres. Les résultats expérimen-

taux montrent des niveaux de performances élevés conformes aux performances obtenues

pour la parole normale. Ces résultats ont été rapportés dans les publications #2, #5, #6,

et #7 listées dans la section 1.3.

2. La proposition de fonctionnalités innovantes et hautement informatives pour améliorer la

vérification des locuteurs multi-vocaux à l’aide d’informations acoustiques et d’analyse statis-

tique. Plus précisément, trois algorithmes d’extraction de caractéristiques ont été proposés:

i) caractéristiques de la modulation d’amplitude inspirée par l’audit et ii) deux variantes des

coefficients classiques MFCC utilisant des versions modifiées du pipeline de traitement du

signal utilisé pour le calcul des MFCC. Le premier cas a été motivé par des preuves montrant

que le fait de varier lentement l’enveloppe des signaux passe-bande permet de transmettre

des informations importantes sur le locuteur, utiles pour les tâches de reconnaissance des

locuteurs. De plus, l’information mutuelle (MI) a été utilisée comme mesure d’analyse pour

identifier l’information invariante entre les caractéristiques de modulation d’amplitude de la

voix normale et de la parole chuchotée. Cela permet de ne pas tenir compte des canaux

dont les valeurs de MI sont faibles tout en préservant des informations importantes sur les

locuteurs. Les caractéristiques extraites à l’aide de la dernière méthode ont montrés pour

extraire des informations complémentaires qui réduisent l’impact négatif lors de tests avec un

discours chuchoté. Les variantes MFCC se sont aussi avérés être utiles, et les informations

relatives à ces caractéristiques ont également été utiles lors de l’entraînement des réseaux

de neurones profonds pour l’extraction de caractéristiques de goulot d’étranglement. Dans

les deux cas, les systèmes formés avec les caractéristiques nouvellement proposées ont sur-

passé les systèmes formés avec les MFCC classiques. Ces résultats ont été rapportés dans les

publications #1, #3, et #4, listées dans la section 1.3.

3. La proposition d’un Framework pour explorer des schémas de fusion à différents niveaux, à

savoir: i) trame, ii) i-vecteur et iii) niveau de score. Ce Framework nous permet d’explorer

la complémentarité des différents ensembles de caractéristiques et d’étudier comment utiliser

plus efficacement les informations encodées dans les différentes représentations de carac-

téristiques, réduisant ainsi le besoin de locuteurs supplémentaires avec des enregistrements

chuchotés. En utilisant ce cadre de travail, nous avons appuié les résultats précédemment

rapportés montrant que pour la parole normale, la fusion au niveau de la trame est plus
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efficace [23]. Cependant, pour la parole chuchotée, nous avons trouvé qu’il est préférable de

former des systèmes séparés et de les fusionner à des niveaux plus élevés, soit en concaténant

les i-vecteurs, soit en utilisant la fusion au niveau du score. Ces résultats ont été rapportés

dans les publications #3, #4, #7 et #8 listées dans la section 1.3.

4. En résumé, des performances améliorées ont été obtenues pour la vérification de l’effort vocal

multiple avec une disponibilité de ressources limitées provenant d’un effort vocal (c’est-à-dire

chuchoté) et en utilisant des modèles multi-styles et des schémas de fusion. Des stratégies

de fusion telles que la concaténation de i-vecteurs et la fusion au niveau des scores des vari-

antes MFCC, le goulot d’étranglement et les caractéristiques de la modulation d’amplitude

inspirée par l’audit se sont avérées être efficaces pour résoudre des problèmes tels que l’état

d’incompatibilité entraînement/test. Pour les discours chuchotés, par exemple, des gains

aussi élevés que 61% ont été observés lors de l’utilisation d’enregistrements vocaux chuchotés

pendant la phase d’entraînement, tandis qu’en combinant des enregistrements vocaux nor-

maux et chuchotés à partir de locuteurs cibles durant l’inscription, on pouvait voir des gains

aussi élevés que 71% par rapport à un système de référence basé sur les caractéristiques

MFCC. D’autre part, pour la parole normale, ces stratégies aident non seulement à réduire

les effets négatifs observés lorsque les enregistrements de parole avec deux types d’efforts vo-

caux différents ont été combinés durant l’entraînement et l’inscription, mais aussi à obtenir

des gains aussi élevés que 79% par rapport au système de référence. Ces résultats ont été

rapportés dans les publications #3, #4, et #8 listées dans la section 1.3.

0.4 Résumé

Cette thèse de doctorat a abordé un problème très important, mais pas suffisamment exploré, de la

vérification des locuteurs dans les scénarios de test d’efforts vocaux multiples. En particulier, nous

avons centré l’attention sur deux styles de la parole, c’est-à-dire, la parole normale et celle chuchotée.

Nous avons constaté que la parole chuchotée peut contenir autant d’informations spécifiques au

locuteur que la parole normale. Toutefois, les approches standard conçues pour la parole normale

ont tendance à échouer pour la parole chuchotée. À cet égard, nous avons développé des stratégies

pour intégrer ce style de parole dans les scénarios de tests des systèmes standards de vérification des

locuteurs. Ces stratégies permettent d’utiliser efficacement les ressources limitées disponibles ainsi
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que d’atteindre des niveaux de performance élevés pour la parole chuchotée conformément avec les

performances obtenues pour la parole normale.

0.4.1 Chapitre 2: Contexte de travail

Le chapitre 2 fournit le contexte sur le discours chuchoté, en soulignant les principales différences

avec la parole normale. Il présente les principaux points de vue des études de recherche perceptuelle

et acoustique, ainsi qu’une revue des principales applications pratiques où la parole chuchotée a été

utilisée. Ce chapitre décrit également le problème de la vérification des locuteurs et donne un aperçu

général des principales techniques du traitement de la parole, de l’extraction des caractéristiques et

de l’apprentissage automatique impliquées dans les blocs de construction d’un système de vérification

automatique des locuteurs, ainsi qu’une description des bases de données vocales utilisées pour les

expériences présentées ici.

0.4.2 Chapitre 3: Analyse comparative pour la vérification de l’effort vocale

multiple

Dans le chapitre 3, nous avons exploré les avantages des différentes méthodes de prétraitement ex-

istantes, des stratégies de déformation de fréquences, des représentations de caractéristiques et des

configurations des systèmes SV. Cela nous permet principalement d’étudier certaines stratégies déjà

proposées dans la littérature. L’objectif général de ce chapitre est d’explorer l’enveloppe de perfor-

mance réalisable avec la parole chuchotée, en particulier dans le cadre d’une tâche de vérification

de locuteur (SV) à petite échelle, guidant ainsi les orientations de recherche des chapitres suivants

pour des applications à plus grande échelle.

Ces expériences ont été réalisées dans un scénario idéal, en utilisant un nombre limité de locu-

teurs et un ensemble pour la vérification des locuteurs en utilisant des enregistrements de parole

de locuteurs cibles aussi pour l’estimation des paramètres. Compte tenu de la quantité limitée

de locuteurs et d’enregistrements vocaux, un système de classification fondé sur des modèles de

mélange gaussiens (Gaussian mixture models) et une adaptation a posteriori maximale étaient plus

appropriés dans ce scénario. Pour le système décrit, les coefficients MFCC, largement utilisés dans

le domaine, ont été adoptés pour implémenter un système SV indépendant du texte.
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Le corpus vocal CHAINS (Caractérisation des locuteurs individuels, Characterizing Individual

Speakers) a été utilisé [12]. Le corpus contient les enregistrements de 36 locuteurs obtenus sur

deux sessions différentes dans un interval de deux mois, il ya trois accents différents: 28 locuteurs

d’Irlande (16 hommes), 5 locuteurs des états unis (2 hommes) et 3 locuteurs du Royaume-Uni

(2 hommes). Des détails supplémentaires sur la base de données peuvent être trouvés dans [12].

Le stimulus de la parole a été généré selon six conditions de parole, à savoir solo (lecture à taux

naturel), récapitulation sans contraintes de temps, lecture synchrone à deux personnes, imitation

synchrone répétitive, lecture à vitesse accélérée et lecture chuchotée.

Selon les résultats expérimentaux; et en utilisant une déformation (warping) de fréquence dif-

férente de l’échelle de Mél; en limitant la bande de fréquences pour éliminer les différences spectrales

entre les deux styles de parole et en utilisant des représentations de caractéristiques alternatives, des

améliorations entre 13% et 38% relatif ont eté obtenus. Ces améliorations, toutefois, ont entraîné

une pénalité sévère pour le scénario adapté, et ceci a été observé pour tous les ensembles de car-

actéristiques évalués. En ce qui concerne la combinaison de caractéristiques, d’entités ou la fusion

au niveau de la trame, les résultats ont montré que cette stratégie n’aide pas à obtenir d’autres

améliorations de la performance lors d’incompatibilité entraînement/test . Cependant, certaines

combinaisons de caractéristiques peuvent aider à maintenir les performances conformes avec le sys-

tème de base pour la condition correspondante, tout en réalisant des améliorations modeste dans

l’état d’incompatibilité (environ 21% par rapport au système de base).

Des modèles à styles multiples ont également été explorés, c’est-à-dire l’utilisation de la parole

normale et chuchotée durant l’ntraînement et l’adaptation du modèle comme ce qui a été fait

dans les études précédentes sur l’identification du locuteur [26, 35]. Cela permet de modéliser

correctement les informations; spécifiques au locuteur; présentes dans les traits vocales chuchotés.

Selon nos résultats, en augmentant progressivement la durée de la parole chuchotée, la performance

du système s’améliore aussi progressivement, confirmant ainsi les résultats précédents [26, 35]. En

outre, on a également observé que l’augmentation de la quantité de parole chuchotée augmente

légèrement le taux d’erreur égal (equal error rate, EER) pour la parole normale. Par exemple, en

utilisant uniquement la parole normale pour l’entraînement, un EER de 2,13% a été signalé. En

utilisant la même quantité de données pour les deux efforts vocaux, un EER de 3,05 % (c’est-à-dire,

43 % plus élevé) a été atteint. Selon ces résultats, pour une tâche de vérification de locuteur (SV)
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réel, des performances améliorées peuvent être obtenues lors de tests avec des discours chuchotés,

mais au prix d’une performance inférieure pour la parole normale.

Conclusions

Dans ce chapitre, les limites de performance d’un système standard de vérification des locuteurs

GMM–UBM ont été obtenues en utilisant plusieurs stratégies, telles que la déformation de fréquence,

l’analyse sous-bande, les représentations de fonctions alternatives, la combinaison de traits ainsi que

des modèles multi styles. Notre évaluation expérimentale montre que les conditions de discordance

entraînement/test peuvent affecter fortement les performances d’un système SV, indépendamment

de la représentation de caractéristique utilisée. Comme dans les études précédentes, il a été démontré

que pour qu’un système de SV puisse traiter à la fois la parole normale et chuchotée pour des

applications pratiques, l’entraînement d’un modèle de locuteur doit impliquer des données contenant

les deux types d’efforts. Une telle approche, cependant, a entraîné des performances de vérification

plus faibles pour la parole normale. Dans l’ensemble, les représentations de caractéristiques évaluées

ici ont été principalement proposées pour des applications vocales à voix normale, ce qui suggère que

d’autres représentations de fonctionnalités, réglées pour la vérification de locuteur de voix chuchotée,

sont toujours nécessaires.

0.4.3 Chapitre 4: Feature Mapping et schémas de fusion

Dans le chapitre 4 nous avons adopté un schéma d’évaluation plus réaliste en incluant des ensembles

de données supplémentaires enregistrés dans des conditions différentes, à savoir les bases de données

TIMIT [38] et wTIMIT [39]. De plus, en suivant les protocoles d’évaluation standard pour la vérifi-

cation des locuteurs [14, 40], une distinction claire est établie entre les locuteurs en arrière-plan et les

locuteurs ou clients cibles. Nous explorons tout d’abord ce qui est réalisable avec les caractéristiques

standards MFCC et des caractéristiques dérivés du modèle AM-FM, en utilisant l’approche actuelle

de vérification de locuteurs. En utilisant les stratégies de feature mapping (mappage de caractéris-

tiques), nous avons verifié si les caractéristiques spécifiques des locuteurs peuvent être mappées à

des domaines de caractéristiques spécifiques afin de compenser le manque de données vocales mur-

murées à partir de locuteurs cibles. Ensuite, la complémentarité des caractéristiques dérivées des

modèles AM-FM par rapport au MFCC conventionnel est explorée en utilisant trois schémas de



14

fusion. Les résultats montrent que, dans le contexte de modèles multi-styles, les stratégies de fusion

sont plus efficaces que les stratégies de mappage des caractéristiques. Plus de recherches devraient

être faites dans cette direction.

Tout d’abord, nous avons exploré les effets de l’ajout de discours chuchoté lors de l’estimation

des paramètres. Pour ces expériences, les données d’entraînement contiennent des enregistrements

provenant des deux styles de parole, mais pour le langage normal, le nombre de locuteurs est signi-

ficativement plus grand que le nombre de locuteurs pour la parole chuchotée. Nous avons constaté

que l’ajout de la parole chuchotée lors de l’estimation de la matrice de variabilité totale (T-matrix)

peut ajouter des gains de performance d’environ 30% lors de tests avec discours chuchoté, mais aussi

de petites pertes ont été observées lors de tests avec la parole normale. Il est important de noter

que l’extracteur i-vecteur et le système SV en général, peuvent apprendre une certaine variabilité

à partir des enregistrements de parole qui ont été inclus lors de l’estimation des paramètres. Ceci

n’est toutefois pas suffisant, en effet, un écart de performance d’environ 17% subsiste entrela parole

normale et murmurée.

Ensuite, deux techniques de mappage des caractéristiques ont été évaluées dans nos expériences.

La première est une technique classique GMM [41], proposée à l’origine pour la synthèse texte-

parole. La deuxième technique est basée sur des réseaux de neurones, qui s’est avérée utile dans

la littérature de conversion vocale [42]. Selon nos résultats, les deux mappages de caractéristiques

ajoutent quelques gains lors de tests avec discours chuchoté, avec des améliorations relatives jusqu’à

37%. L’approche de mappage GMM semble être optimale pour compenser lorsque le discours

chuchoté est présent pendant le test. Néanmoins, dans ce cas, l’écart de performance reste encore

considérable, environ 14% (EER) entre pour la parole normale et chuchotée.

Enfin, trois schémas de fusion ont été étudiés dans ce chapitre, deux au niveau de l’entrée et

un au niveau de la sortie, à savoir: i) fusion de niveau de trame, ii) concaténation de i-vecteurs

et iii) fusion au niveau du score. En comparant les trois schémas de fusion, nous avons observé

des différences significatives. Par exemple, la fusion au niveau de la trame semble être la manière

la moins efficace de combiner les informations des deux ensembles de caractéristiques. La fusion

aux niveaux supérieurs, tels que i-vecteur ou niveau-score, se révèle être de meilleures options. Il

est nécessaire de tenir compte du fait que cette fusion au niveau du score nécessite l’entraînement

d’un système de fusion, alors que pour la concaténation du i-vecteur, il n’est pas nécessaire de
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entraîner de systèmes supplémentaires. Cependant, en terme de performance, la fusion au niveau

du score présente des résultats légèrement supérieures que la concaténation du i-vecteur. En fait, les

meilleurs EER globaux sont atteints avec ce schéma. En comparaison avec le système de référence,

des améliorations relatives de 44% et de 42% on été obtenus pour la parole normale et murmurée

respectivement.

Conclusions

Dans ce chapitre, nous avons abordé la question de la vérification des locuteurs basée sur la parole

chuchotée dans un scénario plus réaliste. Trois bases de données ont été regroupées afin d’augmenter

le nombre de locuteurs et d’ajouter plus de souplesse à l’évaluation expérimentale. L’ajout de

données chuchotées durant l’entraînement, afin d’ajouter des informations sur la variabilité de la

parole chuchotée, combinée avec des techniques de mappage des caractéristiques, pour compenser

le manque de données vocales murmurées à partir de locuteurs cibles, nr suffit pas à améliorer la

performance de vérification du locuteur pour la parole chuchotée. Nous avons également exploré la

complémentarité des informations extraites des ensembles de caractéristiques WIF et MFCC par

l’intermédiaire de trois schémas de fusion, à savoir: i) niveau de trame, ii) concaténation i-vecteur

et iii) niveau de score. On obtient des gains aussi élevés que 42% et 44% pour un discours murmuré

et normal, par rapport à un système de base basé sur i-vecteurs/PLDA + MFCC sans discours

chuchoté dans l’ensemble de entraînement.

Dans l’ensemble, nous avons observé que les fonctionnalités existantes (par exemple, MFCC) ne

transmettent pas suffisamment d’informations fiables sur l’identité du locuteur à travers différents

efforts vocaux. Étant donné le manque de locuteurs suffisants pour entraîner des modèles indépen-

dants et dédiés à la parole chuchotée, des techniques telles que le mappage des caractéristiques

demeurent insuffisantes pour améliorer les performances et les schémas de fusion semblent être plus

efficaces. Néanmoins, le problème d’inadéquation est toujours présent et l’écart de performance

reste considérable entre la parole normale et chuchotée.
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0.4.4 Chapitre 5: Exploration de l’information invariante dépendante du locu-

teur à travers les efforts vocaux

Dans le chapitre 5, nous avons continué à explorer les schémas de fusion afin de combiner les

avantages des différents systèmes et représentations des caractéristiques. Ici, pour compléter les

stratégies décrites dans les chapitres 3 et 4, nous explorons le calcul de caractéristiques innovantes qui

extraient des informations invariantes intégrées dans les deux styles de parole. i) Nous présentons des

preuves sur la façon dont nous pouvons calculer des variantes des caractéristiques standard MFCC

pour extraire des informations complémentaires et réduire l’impact négatif lors de tests avec discours

chuchoté, et ceci en utilisant des connaissances acoustiques. ii) Calcul des caractéristiques de

modulation d’amplitude inspirée par l’audition (Auditory Inspired Amplitude Modulation Spectrum

based features, AAMF). Ceci est motivé par des résultats antérieurs qui ont montré dans le passé

comment les caractéristiques basées sur le spectre de modulation peuvent séparer de façon précise

la parole des composants basés sur l’environnement (par exemple le bruit et la réverbération)[43], ce

qui ajoute de la robustesse aux systèmes de reconnaissance des locuteurs. De même, dans le chapitre

4, l’enveloppe (lentement variable) des signaux de bande passante combinée à l’information de phase

a montré porter des informations importantes dépendantes du locuteur ainsi que des informations

complémentaires utiles pour les schémas de fusion.

Pour le cas spécifique des caractéristiques basées sur le spectre de modulation, nous utilisons

l’information mutuelle (MI) comme mesure d’analyse afin d’identifier l’information invariante entre

les paires de caractéristiques de la voix normale et la parole chuchotée. MI permet d’analyser

les dépendances statistiques linéaires et non linéaires entre les deux ensembles de caractéristiques.

Cette mesure s’est avérée être un moyen efficace de mesurer la pertinence et la redondance entre les

fonctionnalités pour la sélection des fonctionnalités ou même la caractérisation [44, 45, 46]. Ceci,

combiné à un système de fusion, contribue non seulement à réduire les taux d’erreur lorsqu’il n’y

a pas d’enregistrements vocaux chuchotés par les locuteurs cibles, mais aussi à réduire l’impact

négatif observé de l’ajout de la parole chuchotée durant l’estimation des paramètres.

Nous avons tout d’abord évalué les caractéristiques individuelles afin de caractériser leur per-

formance dans une tâche de vérification des locuteurs. Ces expériences ont été réalisées en utilisant

des modèles multi-style comme ce qui a été fait lors du chapitre 4. Ensuite, en évaluant les deux

variantes MFCC, nous avons constaté que dans le premier cas, le calcul des MFCC, sur le signal
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résiduel présentait des performances médiocres pour les deux styles de parole, de sorte que les

systèmes basés uniquement sur cet ensemble de caractéristiques ne devraient pas fonctionner au

même niveau que les MFCCs, mais ils peuvent fournir des informations complémentaires. Ensuite,

en calculant les MFCCs sur une bande de fréquences limitée, on a observé que cet ensemble de

caractéristiques fonctionne aussi bien que les MFCCs pour la parole normale, mais améliore le taux

d’erreur de vérification du locuteur à voix chuchoté de 20% à 16,67% EER. Enfin, les caractéristiques

basées sur le spectre de modulation d’amplitude inspirées par l’audition (AAMF) ont présenté des

performances supérieures lors des tests avec la parole normale. Toutefois, l’écart de performance

entre la parole normale et la voix chuchotée demeure supérieur de 16% EER.

Avant d’explorer les schémas de fusion, et compte tenu du nombre de combinaisons possibles, une

analyse statistique a été effectuée afin d’explorer les contributions de chaque ensemble de caractéris-

tiques. Dans ce cas, nous avons effectué une analyse en utilisant comme caractéristiques les scores

de sortie des systèmes formés sur les ensembles de caractéristiques proposés. Pour l’analyse, nous

utilisons la statistique de Lawley-Hotelling [47], une mesure communément utilisée dans l’analyse

MANOVA (analyse de variance multivariée) quand nous voulons comparer les vecteurs moyens de

k groupes d’échantillons pour vérifier s’il y a des différences significatives. À partir de l’analyse

statistique, nous avons trouvé les combinaisons de caractéristiques qui peuvent offrir une meilleure

performance pour les deux styles de paroles. Ces prédictions ont été vérifiées lors de la compara-

ison des résultats obtenus avec le système de base. On a observé que des améliorations relatives

variant de 19% à 39% pouvaient être atteintes pour la parole normale, tandis que pour la parole

chuchotées, les améliorations se situaient entre 26% et 57%, en utilisant dans les deux cas les ensem-

bles de caractéristiques proposés. D’autre part, en comparant les schémas de fusion, on a observé

que la fusion au niveau du score obtenait la meilleure performance pour la parole chuchotée, tandis

que la meilleure solution pour la parole normale était la fusion au niveau de la trame. D’autre part,

la concaténation de i-vecteur était le schéma montrant un compromis entre la performance et la

charge de calcul, car un entraînement supplémentaire n’est pas nécessaire, comme c’était le cas avec

la fusion au niveau du score.
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Conclusions

Dans ce chapitre, nous avons décrit trois ensembles de caractéristiques innovantes fournissant des

informations invariantes à travers les efforts vocaux et des informations complémentaires aux fonc-

tionnalités existantes d’une tâche SV. Les caractéristiques proposées ont été construites à partir des

informations recueillies dans les chapitres précédents, ainsi que de celles rapportées dans la littéra-

ture. Deux variantes du MFCC ont été proposées, l’une focalisée principalement sur le résidu LP,

soulignant ainsi les similitudes des segments de parole non vocalisés entre les deux efforts vocaux. La

deuxième variante est basée sur la sous-bande de 1,2-8 kHz qui est moins affectée par les chuchote-

ments. Il a été montré que les deux variantes MFCC fournissent des informations complémentaires

au MFCC classique et fournissent des gains aussi élevés que 39% et 41% respectivement pour la

parole normale et chuchotée. Un troisième ensemble de caractéristiques a été construit à partir de la

preuve du chapitre 4 montrant que les enveloppes de sous-bandes lentement variées véhiculent des

informations utiles pour l’effort vocal croisé SV. En utilisant le critère de l’information mutuelle, un

masque binaire a été développé pour sélectionner des canaux acoustiques/ de modulation qui sont

invariants aux changements de l’effort vocal. Lorsque les trois ensembles de caractéristiques ont été

combinés, des améliorations de 66% et de 63% par rapport à un systeme de base basée sur MFCC

ont été obtenues pour la parole normale et chuchotée, respectivement. Alors que l’écart entre l’EER

de la parole normale et chuchotée était considérablement réduit, les niveaux atteints pour la parole

chuchotée peuvent encore être considérés comme élevés à environ 10% EER. Le chapitre suivant va

explorer l’utilisation de ces nouvelles caractéristiques proposées comme contribution aux approches

actuelles des réseaux de neurones.

0.4.5 Chapitre 6: Approches d’apprentissage profond pour la vérification des

locuteurs multi-vocaux

Dans le chapitre 6, nous avons continué à explorer l’information invariante relative au locuteur à

travers les efforts vocaux en utilisant des approches d’apprentissage profond. Les systèmes actuels

de pointe reposent sur l’extraction de i-vecteurs [19]. Les techniques les plus récentes remplacent

le MFCC classique, comme caractéristique acoustique, par des approches basées sur l’apprentissage

profond afin d’extraire les caractéristiques dites de goulot d’étranglement (BNF). Cependant, la

robustesse de ces approches, n’a pas été testée sous différents styles de parole tel que la parole
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chuchotée. Dans ce chapitre, nous visons à combler cette lacune. Tout d’abord, en explorant une

configuration de réseaux de neuronnes de goulot d’étranglement standard, où les entrées sont les

sorties classiques du filtre log mel-scale. Et deuxièmement, lorsque l’entrée au réseau de neuronnes

est un ensemble de vecteurs concaténés associés aux ensembles proposés dans le chapitre 5. Ces

vecteurs permettent de réduire l’impact de la condition d’inadéquation entre entraînement/test lors

de tests avec discours chuchoté et en absence d’information de ce style de parole dans l’ensemble d’

entraînement.

Les réseaux de neurones avec goulot d’étranglement sont des réseaux de neurones profonds

(DNN, deep neural networks) avec une topologie particulière, où l’une des couches cachées a une

dimension significativement plus faible que les couches voisines; cette couche est connue sous le

nom de couche de goulot d’étranglement. Un vecteur de caractéristiques de goulot d’étranglement

(bottleneck feature, BNF) est obtenu en envoyant un vecteur de caractéristiques d’entrée primaire à

travers le DNN et en lisant le vecteur de valeurs au niveau de la couche du goulot d ’étranglement [21].

Dans nos expériences, les cibles pour le DNN ont été obtenues à l’aide d’un système automatique de

reconnaissance de la parole (ASR) entraîné avec kaldi [48]. Dans notre cas le nombre de cibles est de

4121. Les données d’ entraînement correspondent à 460 heures extraites de l’ensemble de données

LibriSpeech [49]. Pour les expériences présentées ici, deux approches ont été testées, d’abord les

caractéristiques d’entrée DNN sont des contextes temporels concaténés de 15 trames, chaque trame

étant représentée par 27 sorties de filtres à échelle de Mel (Mel-scale filterbank), en utilisant le même

réglage que celui utilisé dans le calcul des caractéristiques MFCC. La troisième couche cachée est la

couche de goulot d’étranglement et nous allons référer à cette fonctionnalité par FBBNF (filterbank

bottleneck features). Pour la deuxième approche, nous avons concaténé des caractéristiques de

treize trames consécutives: i) Treize MFCC, ces caractéristiques sont destinées à la tâche originale

pour former le DNN, classification des unités sub-phonétiques. ii) 27 sorties de filtre à échelle de

Mel, les filtres triangulaires sont espacés entre 1,2 kHz et 8 kHz. iii) 27 sorties de filtre à échelle

de Mel, extraites du résidu LP. Nous avons également varier l’emplacement de la couche de goulot

d’étranglement, de la deuxième couche à la quatrième couche. Nous allons référer à cet ensemble de

caractéristiques par LRBNFi, où i représente la couche où le goulot d’étranglement est situé, et LR

représente les sorties de filtre limité et résiduel. Pour tous les cas, la couche goulot d’étranglement

a 80 neurones.
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Tout d’abord, nous avons évalué les ensembles de caractéristiques de goulots d’étranglement

individuels et les avons comparé au système de référence MFCC/PLDA. Nous avons constaté que

dans notre environnement expérimental, le système standard MFCC surpasse le système basé sur

FBBNF. Ceci est dû à la faible variabilité phonétique présente dans les énoncés de courte durée

utilisés pour notre tâche d’évaluation. Toutefois, les caractéristiques FBBNF sont plus robustes

contre les changements dans l’effort vocal, les différences relatives sont plus de 45% comparées au

MFCC, les tests sont effectués avec une parole chuchotée. Ensuite, en évaluant le système avec

l’entrée proposée au DNN et en faisant varier la couche de goulot d’étranglement, c’est-à-dire les

ensembles de caractéristiques LRBNFi, on a observé que les deux ensembles de caractéristiques

utilisant la couche de goulot d’étranglement plus proche de l’entrée, ont un meilleur rendement que

celui qui se rapproche de la sortie, ce qui renforce les observations dans [50]; cette constatation

s’applique aux deux styles de parole. Lors de la comparaison des ensembles de caractéristiques

extraits dans la troisième couche, c’est-à-dire les ensembles de caractéristiques FBBNF et LRBNF3,

il était clair que le DNN formé avec le schéma d’entrée proposé, c’est-à-dire les informations d’entrée

concaténées provenant des MFCC, montre un compromis entre les deux styles de parole.

Ensuite, en utilisant les caractéristiques du goulot d’étranglement dans les schémas de fusion et

les tests avec la parole normale, on a observé qu’indépendamment du schéma de fusion, les meilleurs

résultats globaux ont été obtenus en utilisant des systèmes combinés formés avec les ensembles

de caractéristiques proposés au Chapitre 5 ainsi que les caractéristiques de goulot d’étranglement

extraites du schéma d’entrée proposé. En outre, il a été observé que les différences de performances

entre les différents paramètres étaient minimes. Cela suggère que les ensembles de caractéristiques

proposés contiennent des informations fortement discriminatives relatives au locuteur, capables de

compenser les limitations dont souffrent les caractéristiques de goulot d’étranglement standard de

notre cadre expérimental. Pour la parole normale, la concaténation i-vector est la meilleure approche

de fusion car elle n’obtient pas seulement les taux d’erreur les plus faibles (EER = 0,63%), mais

ne nécessite aucune donnée supplémentaire pour former le schéma de fusion. D’une autre part,

pour le discours chuchoté, les caractéristiques basées sur le spectre de modulation sans sélection

de caractéristique, c’est-à-dire l’ensemble de caractéristiques antérieur à l’analyse de l’information

mutuelle, combinées aux caractéristiques de goulot d’étranglement au niveau du score ont atteint

les taux d’erreur les plus faibles.
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Enfin, nous avons évalué les effets de l’ajout de discours chuchoté lors de l’ entraînement en

augmentant progressivement le nombre d’énoncés vocaux chuchotés par les locuteurs cibles et en

comparant la concaténation i-vecteur et la fusion au niveau du score. Nous avons observé que les

deux schémas de fusion utilisant les ensembles de caractéristiques proposés, seulement en ajoutant

une énonciation la performance pour la parole chuchotée était déjà conforme avec la performance

du système de base (système basé sur MFCC/PLDA ) lors de l’utilisation de huit énoncés. L’autre

aspect à mettre en évidence est la dégradation de la performance pour la parole normale avec l’ajout

de prononcés de discours chuchoté au cours de l’inscription. Il s’agit d’un problème qui affecte à la

fois les schémas de fusion de référence et celui proposé, mais est plus visible dans le cas du système

de référence. Dans l’ensemble, les schémas de fusion proposés maintiennent le taux d’erreur inférieur

à 2% pour la parole normale, ce qui est en fait meilleur que la performance obtenue par le système

de base MFCC/PLDA sans discours chuchoté. Pour ces résultats, la concaténation de i-vecteur

semble être le schéma qui montre un compromis entre la performance et la charge de calcul, etant

donné qu’aucun entraînement supplémentaire est nécessaire.

Conclusions

Dans ce chapitre, nous avons abordé le problème de la recherche d’informations invariantes dépen-

dantes du locuteur à travers les efforts vocaux en utilisant des réseaux de neurones profonds. En

plus de cela, nous avons continué à explorer les avantages de deux schémas de fusion (niveau de score

et niveau i-vecteur) pour surmonter les défis existants, à savoir: i) les énoncés de courte durée (4,5

secondes en moyenne), ii) absence de donnée vocale murmurée disponible durant l’entraînement à

partir de locuteurs cibles, et iii) les effets négatifs observés lors de l’ajout d’enregistrements vocaux

chuchotés durant l’ entraînement.

Dans les travaux précédents, il a été démontré que les performances des systèmes de vérification

des locuteurs dépendent fortement du type de parole fourni comme entrée [51]. En caractérisant les

systèmes de référence (Tableau 6.1) pour la parole normale, il est devenu évident que les MFCCs et

les caractéristiques standards BNF ont atteint des valeurs EER plus élevés que ce qui est générale-

ment rapporté dans la littérature [49]. Ceci est probablement dû à la courte durée de la parole qui

limite la variabilité phonétique présente dans l’ensemble d’entraînement [52, 53]. Néanmoins, les

caractéristiques proposées du LRBNFi semblent réduire cet effet négatif, en particulier lorsque la
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couche de goulot est plus proche de l’entrée. Pour les discours chuchotés, d’autre part, les carac-

téristiques BNF surpassent, significativement, tous les ensembles de caractéristiques individuelles

précédemment étudiés. On suppose que cela était dû aux capacités supérieures du DNN pour mod-

éliser les informations invariantes lors de la comparaison de la parole normale et chuchotée. Dans

l’ensemble, si un seul système de référence devait être utilisé, celui basé sur le BNF en utilisant

comme entrée la combinaison de MFCC, les sorties résiduelles et à bande limitée de log-filtre ainsi

qu’une couche de goulot d’étranglement plus proche de l’entrée (LRBNF2) donneraient les meilleurs

résultats globaux de l’effort vocal multiple.

Les stratégies de fusion ont clairement démontré de nombreux avantages. Elles ont non seulement

réduit les taux d’erreur lorsqu’il n’y avait pas d’enregistrements vocaux chuchotés par les locuteurs

cibles, mais ont également contribué à réduire l’impact négatif de l’ajout de mots chuchotés lors de

l’estimation des paramètres. En général, l’ensemble de fonctionnalités AAMF proposé s’est avéré

être le plus informatif pour la parole normale et chuchotée, à utiliser dans un schéma de fusion

avec des fonctionnalités de goulot d’étranglement quand il n’y a pas de données vocales chuchotées

provenant des locuteurs cibles. Cependant, cette configuration ne montre pas les meilleurs résultats

lorsque des enregistrements vocaux chuchotés provenant de locuteurs cibles ont été inclus, et des

fonctionnalités alternatives telles que LRBNF3, LMFCC, RMFCC et AAMF(FS) se sont avérées être

un meilleur choix dans une tâche de vérification de locuteurs à voix multiple. Lors de la comparaison

des schémas de fusion, le schéma de concaténation i-vecteur s’avère être la meilleure stratégie de

fusion à utiliser. Cela n’est pas seulement justifié par les résultats obtenus, mais aussi par le fait

qu’il n’est pas nécessaire d’entraîner un système de fusion supplémentaire, comme c’est le cas pour

la fusion au niveau du score. Dans l’ensemble, avec le schéma de fusion proposé, il est démontré que

seulement 4,5 secondes (approximativement) de données d’entraînement chuchotées sont nécessaires

pour obtenir les mêmes performances que le système de référence, qui nécessitait à son tour 22,5

secondes (approximativement) de données d’inscription chuchotées. En conséquence, les systémes

proposées sont efficace pour gérer les variations de l’effort vocal et les tâches de vérification des

locuteurs à faible ressources.
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Introduction

Human speech is a natural and flexible mode of communication that not only conveys a message,

but also traits such as identity, age, gender, social and region of origin, emotional, and health

states, to name a few. Under controlled conditions, speech processing systems have become useful

across a number of domains, as depicted by Figure 1.1. For example, automatic speech recognition

has opened doors for speech to be used as a reliable human-machine interface, letting humans

control things such as televisions, smartphones, and car stereo systems, not to mention interact

with automated customer support services. Advances in speaker recognition technologies, in turn,

have allowed humans to use their voice to e.g., authenticate themselves into their bank’s automated

phone system. Such is the potential in this field, that recent reports suggest that the global speech

technology market is expected to surpass the $31 billion mark by the end of 2017, mostly due

to three speech applications: automatic speech recognition (ASR), automatic speaker verification

(ASV), and text-to-speech synthesis (TTS) [1]. A good portion of this market has been driven by

the proliferation of smartphones and tablets across the globe. As examples, a number of applications

have emerged that allow people to use their voices to interact with their devices (e.g., Apple’s Siri),

login to secure services (e.g., Bell Canada’s Voice Identification Service), or even unlock their mobile

devices (e.g., Baidu-I2R Research Centre’s Speaker Verification Service). Notwithstanding, these

existing commercial systems have been developed for “typical” scenarios, such as clear adult voices

with limited foreign language accents and small amounts of ambient noise. These assumptions and

conditions, however, are difficult to satisfy in real-world environments and in everyday applications.
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Figure 1.1 – Diagram of representative information sources available with human speech and their
potential applications.

Particularly, in this dissertation the speaker recognition problem is of special interest. The

potential of automatic speaker recognition applications lies especially in access control and iden-

tity management applications where knowledge-based authentication (KBA) is still the dominant

way of authenticating users [2]. KBA requires users personal information in order to grant access

to a service; representative details can include: passwords, user names, personal questions, or a

combination of them. This method, however, has many drawbacks that can put at risk critical

information, as well as concerns regarding privacy while collecting information. As an example,

with the widespread use of social networks, many users are not aware of the information they share,

which in many situations can be the same information used for verification purposes when authoriz-

ing a transaction (e.g. birth date). Moreover, existing authentication methods are prone to many

documented attacks, thus more secure and reliable methods have been the focus of recent research

[3, 4, 5].

As an alternative to KBA, biometrics based authentication, which combines mathematics and

digital signal processing techniques to analyze physiological characteristics, is one such domain that

has gained significant attention. In contrast to KBA, biometrics is based on who the user is, instead

of what the user knows. Such technologies are burgeoning for identity management as they elim-

inate the need for personal identification numbers, passwords, and security questions [6]. Despite

the several advantages of using biometrics for identification purposes, challenges and unresolved

problems still remain, thus hampering widespread usage. For example, biometrics recognition is
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compromised by external factors that may alter the patterns that are being analyzed (e.g., cuts and

burns to the finger in fingerprint-based systems; ambient noise in speech-based solutions), as well as

by natural human physiological factors, such as aging and disease (e.g., in facial and speech-based

systems) [6, 7].

User preference also plays an important role when deciding the method to be used for authenti-

cation. In this regard and according to recent statistics, speech-based biometrics have ranked highly

in costumer preference, outranking fingerprint and iris scanning solutions [8, 9]. Due to widespread

usage of smartphones worldwide, speech-based biometrics are quickly gaining popularity, particu-

larly in financial institutions [8]. Within such applications, customers can gain access to their secure

banking and insurance services by simply speaking into their phones. For financial institutions, this

ease-of-use enhances customer satisfaction, whilst reducing customer care costs through increased

automation rates. Costumers, on the other hand, given the flexibility of speech based communica-

tion and being in a particular situation, can pose big challenges to these types of applications by

changing e.g. their vocal effort from whispering to shouting according to the environment. This,

together with ambient noise, have posed serious threats to speech enabled applications performance

in general. Ambient noise has detrimental effects on speech based biometrics systems, particularly

those trained with conventional features, such as mel-frequency cepstral coefficients (MFCC). As

an example, speaker identification accuracy as low as 7% have been reported in very noisy envi-

ronments [10]. As such, over the years several speech enhancement algorithms have been proposed

for environment-robust speaker recognition applications [11]. Varying vocal efforts, on the other

hand, also can induce severe detrimental effects on speaker verification performance. For example,

whispered-speech speaker identification accuracy as low as 20% have been reported [12] in clean

conditions, whereas accuracies as low as 8.71% have been reported for shouted speech [13]. In

fact, it is highly likely that customers utilizing a mobile banking application on their smartphones

will whisper sensitive information or to speak louder, even shout, if the user perceives that his/her

spoken words are not being heard.

In automatic speaker recognition there are two classical tasks that can be performed: speaker

identification (SI) and speaker verification (SV). Identification is the task of deciding, given a speech

sample, who among a set of speakers said it. This is an N–Class problem (given N speakers), and

the performance measure is usually the classification rate or accuracy. Verification, in turn, is the

task of deciding, given a speech sample, whether the specified speaker really said it or not. The
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SV problem is a two class problem of deciding if it is the same speaker or an impostor requesting

verification. Commonly, SV exhibits greater practical applications related to SI, especially in access

control and identity management applications [14]. With automatic speaker recognition, Gaussian

mixture model (GMM) based systems using maximum a posteriori (MAP) adaptation and MFCC as

feature vectors were for many years the dominant approach for text-independent speaker recognition

[15, 54]. Recent advances have introduced the concept of supervector, which combined with support

vector machines (SVM), have lead to improved recognition results [16]. More recently, latent variable

inspired approaches for feature extraction such as joint factor analysis (JFA), alone or combined with

SVM, showed to be an effective approach to compensate channel effects and reduce scoring time [17,

18]. Following the JFA framework, current state-of-the-art SR systems are based on identity vectors

(i-vectors) extraction with cosine distance or probabilistic linear discriminant analysis (PLDA) based

scoring [19, 20]. Moreover, given the recent advances in deep learning and deep neural networks, new

approaches based on the so-called bottleneck features (BNF) [21] are emerging and first experiments

are showing improved performance over conventional MFCC features (e.g., [22, 23]). Still within

the deep learning realm, recent studies have also started exploring the use of deep neural networks

to replace the GMMs in the computation of necessary statistics during i-vector extraction [22].

1.1 Problem description

In this dissertation we want to focus attention on one of the emerging challenges for developers

of automated speech-enabled applications: varying vocal efforts. Traunmuller and Eriksson in

[24] characterized vocal effort as: “the quantity that ordinary speakers vary when they adapt their

speech to the demands of an increased or decreased communication distance”. Even though it is a

subjective measure, we can identify five vocal effort levels: 1) whisper, 2) soft voice, 3) normal voice,

4) loud voice and 5) shouting. The two extremes, i.e. whispered and shouted speech, are the two

vocal efforts that produce major changes in the acoustic and the general dynamic characteristics

of the speech signal when comparing with normal voice [24]. These changes have proven to affect

significantly the performance of automatic speech recognition and speaker recognition systems,

especially if only normal speech was used during training (i.e., training/testing mismatch conditions)

[12, 13, 25, 26, 27, 55]. This poses a big challenge for most recognition tasks to be developed using

voice biometrics, mostly in those that account only for differences between speakers such as speaker
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Figure 1.2 – Diagram of typical train/test mismatch issue encountered with whispered speech.

recognition tasks. For the sake of clarity, normal voice is also referred to as neutral speech in different

publications [26, 37], and it refers to the case when a speaker uses a natural and comfortable level of

speech in typical communication environments (e.g. a conversation, a phone call, etc.), and within

this thesis we will refer constantly to it as normal speech (short for normally-phonated speech).

Among the five vocal efforts, whispered speech has gained great attention for security appli-

cations lately. Despite its somewhat reduced perceptibility and intelligibility, whispered speech is

a natural mode of speech production that still conveys relevant and useful information for many

applications. For example, just as normal-voiced speech, whispered speech not only conveys a

message, but also traits such as identity, gender, emotional, and health states, to name a few

[25, 28, 29, 30, 31, 32]. As previously mentioned, whispered speech is commonly used in public sit-

uations where private or discrete information needs to be exchanged, for example, when providing

a credit card number, bank account number, or other personal information. Despite the amount of

information present in whispered speech, there are certain characteristics that make this speaking

style challenging when presented as a possible input to speech enabled applications. As an example,

the most salient characteristic of whispered speech is the lack of vocal fold vibration. Furthermore,

when a person whispers, several changes occur in the vocal tract configuration, thus altering not

only the excitation source, but also the syllabic rate and the general temporal dynamics characteris-

tics of the generated speech signal [25, 33]. Hence, it is expected that classical methods designed for

normal-voiced speech characterization will fail when tested in atypical scenarios including whispered

speech [12, 25, 26, 27], as illustrated by Figure 1.2.

Despite the limited research done in this field, different approaches attempting to overcome some

of these disadvantages have been reported, particularly within training/test mismatch conditions

where speaker models were trained with normal speech and tested with whispered speech [12, 26,

34, 35, 36, 37]. In these works, low accuracy in mismatched training/testing conditions have been

reported, and some strategies to address the intrinsic limitations of current speech enabled systems
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Approach Number of speakers Baseline Achieved accuracy
and gender Accuracy - (Relative improvement)

Modified LFCC (MLFCC) [34] 10 (Male) 48% 58% (20.8%)
MLFCC and Feature Mapping [34] 10 (Male) 48% 68% (41.6%)
AM-FM based features [12] 36 (20 Male and 16 Female) 19% 30% (57%)
Feature Mapping using CMLLR [37] 28 (Female) 79% 82% (4.1%)
Feature Mapping using ConvTran [37] 28 (Female) 79% 88% (12%)

Multi-style approaches

Addition of 4.5 secs. of Whsp. [26] 28 (Female) 79% 91% (14%)
Addition of 15 secs. of Whsp. [35] 22 (Male and Female) 20% 90% (350%)

Table 1.1 – Comparison among different approaches reported in the literature for speaker identification
using whispered speech in mismatched train/test conditions. In the Table: CMLLR - Constrained
Maximum Likelihood Linear Regression, ConvTran - Convolutional Transformation, Whsp - Whis-
pered speech,

to process whispered speech have been proposed. Representative examples include: robust features

such as modified linear cepstral coefficients (LFCC) and feature mapping [34], feature warping over

MFCC and score combination at the frame level [35], model adaptation schemes such as maximum

linear regression (MLLR), and feature transformation from normal to whispered speech to be used

during map adaptation [37]. Despite the many different efforts, relative improvements range from 8%

to 46% and for all cases, achieved classification results are still not useful for practical applications

[26, 37].

Table 1.1 reports details from different approaches that have been reported in the literature

for speaker identification using whispered speech in mismatched train/test conditions (top) as well

as two examples showing the benefits of whispered speech addition during parameter estimation

(multi-style models - bottom). In the Table we have also included the number of speakers, the

gender, and, when available, the specific number of male and female speakers. As can be seen, the

reported accuracy for female speakers is higher than the accuracy for male speakers, which signals

that gender dependencies occur with whispered speech, as has been also reported for normally-

phonated speech [56, 57]. Another key aspect to notice is that regardless of the lower accuracy

for male speakers, relative improvements are higher when using only male speakers, and this also

happens for gender independent experiments, i.e., mixed male and female speakers. These results

from previous research also illustrate how challenging the task at hand is, and given the variability

observed within a speaker identification task, it is hard to predict what effects will be seen within

a speaker verification task.
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Typically, in speech enabled applications such as speech recognition, two main strategies are used

to handle the mismatch problem, namely, (i) multiple model recognizer, where dedicated speaker

models are obtained for different vocal efforts [27] and (ii) multi-style models, where each model

is obtained from a combination of normal speech and small amounts of speech of varying vocal

efforts [25, 27]. Notwithstanding, the two different methods were shown to have their advantages

and disadvantages. For example, while both improve the performance of whispered speech [26, 27],

multiple model training requires significant amounts of whispered speech data to obtain the speaker

models, which can be hard to obtain in practice. Multi-style based systems, in turn, despite requiring

lower amounts of whispered speech to train the models, trade gains in whispered speech to losses

in normal speech accuracy, often by the same amount [27]. More recent approaches in ASR have

explored model adaptation by using artificially generated whispered speech samples from transcribed

normal speech recordings (pseudo-whisper data) [58, 59]. It has been shown that by using this

approach it is possible to outperform an ASR system that has been directly adapted to available

transcribed whispered samples. This approach, however, for speaker recognition seems to not

have similar benefits. As an example, in Table 1.1 it is reported that by using a Convolutional

Transformation (ConvTran) to generate pseudo-whisper data, relative improvements of 12% were

obtained [37], while by using 4.5 seconds of whispered speech data per target speaker, the relative

gains were 14% [26], contrary to the ASR case. Therefore, it seems that while phonetic information

can be mapped from whispered speech domain to normal speech domain for speech recognition

purposes, mapping identity related information is a more challenging task. Hence, regarding the

specific problem we are addressing in this thesis, in the speaker recognition field, the less expensive

and most effective strategy is to add small amounts of whispered speech from target speakers during

enrollment [26, 35], i.e., to use multi-style models.

The multi-style approach suits better the task at hand, as current state-of-the-art SV systems

require significant amounts of data for parameter estimation. More importantly, high variability

between speakers in the training set is required in order to guarantee a representative sample of

the universe of speakers that are expected during the testing stage. As we will describe in the

following chapter, in existing publicly available databases the number of speakers with whispered

speech recordings is relatively small when compared to the number of speakers with normal speech.

As such, the challenge during parameter estimation is to learn as much variability as possible from

both speaking styles in order to properly model discriminative information between speakers, but
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with limited available resources from one vocal effort (i.e., whispered). With current state-of-the-art

bottleneck features, this becomes an even more challenging problem, as it is necessary to train a

large scale automatic speech recognition system and use its output to train a deep neural network

[22]. To the best of our knowledge, no large scale corpus with annotated whispered speech is

available to train an ASR system. As such, if bottleneck features are to be explored for the task at

hand, innovative solutions are needed to minimize the effects of limited resources on the efficiency of

the extracted feature vector. In summary, while multi-style models can offer a viable alternative to

whispered speech based SV, adequate techniques still need to be put in place in order to overcome

issues that arise from such strategy (e.g., such as those reported in [25, 27] for ASR).

With this in mind, the problems we address in this dissertation can be summarized as follows:

1. In the speaker recognition field, many advances have been reported in the literature to tackle

the train/test mismatch issue. Moreover, within the more closely related field of speaker

identification a handful of techniques have also been proposed. As we show in Chapter 3,

however, the gains achieved with these tools and techniques developed for normally-phonated

speech and for whispered speech SID do not necessarily translate to the whispered speech

speaker verification task. As such, new solutions are still needed within a SV scenario.

2. Train/test mismatch problem: during the testing stage, when there is no whispered speech

data available for training or to enroll target speakers, whispered speech can induce severe

detrimental effects on speaker recognition performance. In fact, even if whispered speech

data is available for parameter estimation, the mismatch problem can still be present as

changes in the vocal effort can be viewed as “within-speaker” variation, and such variation

is not well represented in the enrollment samples from target speakers.

3. Limited resources: Typical state-of-the-art systems are trained on large datasets considering

thousands of speakers, several hours of recordings, a variety of channels and different record-

ing sessions. However, a wide spectrum of vocal effort variations is still not included in

large scale evaluation tasks. Standard speaker verification systems need to be compensated

with techniques allowing to efficiently use the limited amount of information available from

vocal efforts different to normal voiced speech, while maintaining high performance levels in

normal speech.

4. Negative effects in multi-style models: In speech recognition systems negative effects were

observed when combining data from different vocal efforts. More specifically, while whispered
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speech recognition accuracy improved, the accuracy for normally-phonated speech decreased

[25, 27]. It is not clear what the impact will be when combining data from two different vocal

efforts for the task at hand. Strategies to overcome this gain-loss tradeoff with whispered-

normal speech, respectively, are still drastically needed.

1.2 Thesis contributions

The aim of this thesis is to address the four abovementioned problems with particular emphasis

on two vocal efforts: normal and whispered. While there has been some significant advances in

the literature addressing the issue of whispered speaker identification, which have given important

insights on how to address the mismatch problem in speaker recognition, here we focus on speaker

verification. These two tasks are closely related, but as previously mentioned, SI is a N -class

problem while SV is a two class problem. Hence, granting that previously proposed strategies

for SI are also expected to contribute for SV, given the fundamental difference in the definition

of the tasks we consider relevant to explore SV in more detail and propose strategies to allow a

standard SV to handle inputs from the two vocal efforts and give reliable decisions. In particular,

this thesis addresses several aspects of the speaker verification pipeline, including feature extraction,

where innovative features are proposed containing speaker-dependent information less sensitive to

normal/whisper mismatch, as well as different fusion schemes to achieve accurate multi-vocal effort

recognition accuracy. More specifically, the key thesis contributions can be summarized as:

1. Performance boundaries achievable with whispered speech for speaker verification have been

explored and a comprehensive review of previously reported strategies in related areas have

been put in place to analyze their contribution to the speaker verification task with whispered

speech. We found that whispered speech can contain as much speaker specific information

as normal speech, but standard approaches designed for normal speech tend to fail for whis-

pered speech. One of the problems limiting the widespread usage of this speaking style for

authentication applications is the lack of sufficient data to train the models. In this regard,

we have developed strategies that efficiently use the limited resources available, such as lim-

ited number of background speakers with whispered speech recordings to be used during

parameter estimation. Experimental results show high performance levels inline with perfor-
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mance obtained for normal speech. These findings have been reported in publications #2,

#5, #6, and #7 listed in Section 1.3.

2. The proposal of innovative and highly informative features for improved multi-vocal speaker

verification using acoustical insights and statistical analysis. More specifically, three feature

extraction algorithms were proposed: i) Auditory-Inspired Amplitude Modulation features,

and ii) Two variants of the classical mel-frequency cepstral coefficients (MFCC) using mod-

ified versions of the signal processing pipeline used for MFCC computation. The former

case was motivated by evidence showing that the slowly varying envelope of bandpass sig-

nals convey important speaker-dependent information useful for speaker recognition tasks.

We propose an approach using short time Fourier transform instead of a time domain filter

bank analysis as has been done before for modulation based features. In addition to this,

mutual information (MI) was used as an analysis measure to identify invariant informa-

tion between amplitude modulation features of normal-voiced and whispered speech. This

allows channels with low MI values to be disregarded while preserving important speaker

dependent information. Features extracted using the later, in turn, were shown to extract

complementary information and reduce the negative impact during testing with whispered

speech. The MFCC variants were shown to be useful on their own, and information related

to these features also showed to be useful during training of deep neural networks for bottle-

neck feature extraction. In both cases, systems trained with the the newly-proposed features

outperformed systems trained with the classical MFCCs. These findings have been reported

in publications #1, #3, and #4, listed in Section 1.3.

3. The proposal of a framework to explore fusion schemes at different levels, namely: i) Frame,

ii) i-vector, and iii) Scoring level. This framework allows us to explore the complementarity

of the different feature sets and to study how to use more efficiently the information encoded

in the different feature representations, thus reducing the need of additional speakers with

whispered recordings. By using this framework, we corroborated previously reported results

showing that for normal speech, fusion at frame level is more effective [23], however for

whispered speech we found that it is better to train separate systems and fuse them at

higher levels, either by concatenating i-vectors or using score level fusion. These findings

have been reported in publications #3, #4, #7, and #8 listed in Section 1.3.

4. In summary, improved performance was achieved for multiple vocal effort speaker verifica-

tion with limited available resources from one vocal effort (i.e., whispered) using multi-style
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models and fusion schemes. Fusion strategies such as i-vector concatenation and fusion at

the score level of MFCC variants, bottleneck and Auditory-Inspired Amplitude Modulation

features showed to be effective to address problems such as the train/test mismatch condi-

tion. For whispered speech, for example, gains as high as 62% (absolute error rate reduction

from 20.83% to 7.73 %) were observed when using whispered speech recordings only during

the training stage, whilst by combining normal and whispered speech recordings from target

speakers during enrollment gains as high as 71% (absolute error rate reduction from 8.25%

to 2.35%) could be seen relative to a baseline system based on MFCC features. For normal

speech, on the other hand, these strategies not only help to reduce the negative effects ob-

served when speech recordings from two different vocal efforts were combined during training

and enrollment, but also gains as high as 79% (from EER=3.13% to 0.63%) were observed

relative to the baseline system. These findings were reported in publications #3, #4, and

#8 listed in Section 1.3.
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1.4 Organization of this dissertation

Chapter 2 provides the background on whispered speech, emphasizing the main differences with

normal speech, and presents the principal insights from perceptual and acoustic research studies,

together with a review of the main practical applications where whispered speech has been used.

This chapter also describes the speaker verification problem, and provides a general background

on the main techniques from speech processing, feature extraction and machine learning involved

in the building blocks of an automatic speaker verification system, as well as a description of the

speech databases used for the experiments herein. Chapter 3 explores the performance envelope

achievable with whispered speech, particularly within the scope of a small scale speaker verifica-

tion (SV) task. To this end, we explore the benefits of different existing preprocessing methods,

frequency warping strategies, feature representations, and SV system configurations. In Chapter 4

we adopt a more realistic evaluation scheme by including additional datasets recorded in different

conditions, which also increases the number of speakers. By following standard evaluation proto-

cols for speaker verification, we make a clear distinction between background speakers and target

speakers or clients. In this chapter we explore the advantages of feature mapping alongside other

mismatch compensation strategies, such as fusion schemes at different levels. Chapter 5 describes

three innovative feature extraction approaches aiming at extracting invariant information embedded

within both speaking styles. We present evidence on how to compute perceptually-relevant variants

of the standard MFCC features to extract complementary information and reduce the negative im-

pact during testing with whispered speech. We also describe how the auditory-inspired modulation

spectrum can be used to extract discriminative features. Chapter 6 explores the effects of whispered
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speech in a standard speaker verification system when using the current state-of-the-art bottleneck

features. In this chapter, we propose an approach to compute more informative bottleneck features

useful for tasks involving short length utterances and variations in vocal effort. In addition to this,

we present an approach to implement dedicated models for each vocal effort to guarantee the best

approach per speaking style is used during testing stage. Finally, we explore robustness of the pro-

posed feature sets when the testing recordings have been contaminated with environmental noise.

Lastly, Chapter 7 provides a general discussion, provides the conclusions of this thesis, as well as

lists potential areas of future research.





Chapter 2

Background

2.1 Whispered speech

In normal speech, air from the lungs causes the vocal folds to vibrate, exciting the resonances of the

vocal tract in a particular configuration. This configuration modulates the excitation source allowing

the speaker to produce a great variety of voiced sounds [68]. In whispered speech, the glottis is

opened and turbulent flow created by exhaled air passing through this glottal constriction provides

a source of sound [25, 33]. From the very definition of whispered speech, there is a fundamental

difference with normal phonated speech: the complete lack of vibration of the vocal folds being

the main physical difference. However, when a person whispers, different changes occur in the

vocal tract configuration. Besides the excitation source, the syllabic rate, and the general dynamic

characteristics of the speech signal also differ from those of normal speech [69]. These differences

have been analyzed from a perceptual and acoustical point of view, resulting in notable cues that

give us insights about what is achievable by automated systems using whispered speech.

Perceptual studies have addressed important topics such as pitch perception and the correlation

between perceived pitch and formant location, as well as the measurement of the formant shifts

towards higher frequencies [70, 71]. For automatic speech recognition systems, subjective intelli-

gibility tests would be necessary to analyze the possible losses and predict the performance of an

automated system designed to recognize whispered speech. For instance, consonant discrimination

and identifiability of vowels has been studied and whispered speech was shown to be highly intelli-
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gible but still poorer than normally-phonated speech [29, 30]. These studies have also shown that

whispered speech, despite its reduced perceptibility, conveys relevant speaker identity and gender

information [28, 30, 72], which makes it feasible to also develop speaker recognition systems.

Acoustic studies have corroborated and complemented perceptual findings. For instance, whis-

pered speech has a lower and flatter power spectral density [25]. In [33], it was found that the

duration of consonants in whispered speech is prolonged by about 10% relative to normally-voiced

speech. In addition to the duration increase, the intensity of the whispered consonants is lower

by about 12 dB. Perceptual findings regarding the formant shifts in whispered mode were also

corroborated in [73]. In addition to this, in [74] a statistical analysis was carried out to compare

several acoustic and visual features between the two speaking styles. In total, 64 acoustic features

referred as low level descriptors (LLDs) grouped in three categories, i.e., spectral LLDs, prosody

LLDs and voice quality LLDs were compared and 56 showed to be statistically different. But not

everything regarding normal-voiced and whispered speech is different; for example while it has been

documented that characteristics of vowels and voiced consonants are significantly different, unvoiced

consonants are relatively similar [33]. The above-mentioned insights have been used by the research

community to tackle different challenges, such as reconstruction of normal speech from whispers

[75, 76, 77], speech recognition [25, 27], and speaker identification [12, 26, 35, 37] with whispered

speech.

To illustrate some of the significant differences between normal and whispered speech, their

waveforms and spectrograms are depicted by Figure 2.1 (normal: left; whisper: right), for the

utterance “Here I was in Miami and Illinois”, these speech recordings correspond to a male speaker

and were extracted from the CHAINS speech corpus (see Section 2.3). From Figure 2.1 (right),

it can be observed that whispered speech is mostly turbulent noise modulated by the vocal tract

with no clear structure. With normal speech (left), on the other hand, the glottal excitation is

clear. Moreover, the time waveform for whispered speech is significantly lower in amplitude; in this

particular case about 15 dB lower. Figure 2.2(a) in turn, illustrates the average power spectrum

for the same utterance, using 25 ms windows and a 12th order linear predictive model to estimate

the spectral envelope. From Figure 2.2(a), it is evident that the differences lie mostly in the low

frequencies. For normal speech, most of the energy is concentrated below 1 kHz, whereas for

whispered speech it is concentrated below 500 Hz, with frequency shifts in the spectral peaks and

valleys. Between 1 kHz and 4 kHz the two spectral envelopes follow a similar trend, where spectral
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Figure 2.1 – Comparison of waveform and spectrogram of the speech signal “Here I was in Miami
and Illinois” from the same speaker in: normal (left) and whispered (right) speech mode. Speech
recordings were extracted from the CHAINS speech corpus (see Section 2.3)

peaks and valleys are located in approximately the same frequency values, however the differences

in magnitude are not constant. Regarding frame energy distribution, the histogram in Figure 2.2(b)

was computed using male and female speech and utterances of about 55 s from 36 speakers and

shows that the concentration of high-energy frames is higher for normal speech, with 60% of the

frames having energy between -10 dB and 10 dB. For whispered speech, on the other hand, 70% of

the frames have energy between -35 dB and -10 dB. Combined, these findings show that significant

differences exist between whispered and normal-voiced speech in terms of temporal, spectral and

energy dynamics. As such, it is expected that any speech-based technology trained on normal speech

will perform poorly when tested on whispered speech unless clever strategies are put in place.

Differences related to frame energy distribution and average power spectrum can be reduced

by using two pre-processing steps. First, each speech recording is normalized in amplitude, then

pre-emphasized using a first order finite impulse response filter with constant a; this reduces the

dynamic range of the speech spectrum and helps to model formants of differing intensity equally

well. A typical value for the constant is a = 0.97. To illustrate the effects of pre-emphasizing

and normalizing the speech recording, Figure 2.3(a) and 2.3(b) depict the average spectrum and

frame energy distribution, respectively, of amplitude-normalized and pre-emphasized recordings

using male and female speech. As can be seen, the gap between the two speaking styles seen in

Figure 2.2 has been greatly diminished, although most of the differences remain below 1.2 kHz.
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Figure 2.2 – Plots of average power spectrum and frame energy distribution. (a) average power
spectrum comparison of the utterance “Here I was in Miami and Illinois" spoken by same speaker and
(b) frame energy distribution for normal and whispered speech using combined male and female data
across 36 speakers.

(a) (b)

Figure 2.3 – Plots of (a) average power spectrum and (b) frame energy distribution after preprocessing
for normal and whispered speech (averaged over 36 speakers).

Despite many potential applications where whispered speech can be used to increase privacy and

improve identity management, most recent studies have argued that speaker dependent whispered

training data is generally not available in real-world scenarios [26, 34, 37]. Notwithstanding, the

interest in this speaking style is rising and now different researchers are collecting data and making

it available for research, as is the case of the CHAINS [12] and the whispered TIMIT (wTIMIT)

[39] databases. Availability of both, normal and whispered speech, allows techniques and strategies

in small scale experiments to be explored, thus providing insights about the performance and what

is achievable with whispered speech for future large scale applications.



Chapter 2. Background 41

Figure 2.4 – Building blocks for a general purpose pattern recognition system that can be applied to
speaker verification.

2.2 Automatic speaker recognition

Humans perform fairly well at identifying people based on their voice. This fact has lead to the idea

that within the speech signal there are some biometric cues much like the fingerprint. After almost

30 years of research in this area, today it is possible to implement digital speech processing systems

that can perform, with high reliability, tasks related to automatic speaker recognition [14, 40], thus

replacing the human listener with a machine. Applications with voice biometrics are burgeoning

as a secure method of authentication, which eliminates the common use of personal identification

numbers, passwords, and security questions.

Figure 2.4 depicts a diagram with the basic building blocks for a general purpose pattern recog-

nition system that can be applied to speaker verification, namely feature extraction, feature trans-

formation (optional) and classification. More details of each block are given in the subsections

below.

2.2.1 Feature extraction

Speech is produced from a time varying vocal tract system, which makes speech signals dynamic

or time-varying in nature. Even though the speaker has control over many aspects of speech pro-

duction, e.g., loudness, voicing, fundamental frequency and vocal tract configuration, much speech

variation is not under speaker control and is random, e.g., vocal fold vibration is not truly periodic.

These random variations also make speech sound more natural, thus do not affect intelligibility

[68]. Most of the developments and tools from applied mathematics to study systems and signals,

however, assume time invariant systems and time invariant excitations, i.e. stationary signals. Since

speech is inherently an non-stationary signal, in order to be able to use these analysis tools, short
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Figure 2.5 – Speech analysis over short time duration blocks to estimate parameters of interest such
as formant location or energy.

Figure 2.6 – Block diagram of the source filter model of speech production.

time duration blocks need to be used, as depicted by Figure 2.5. Such “short time” processing

methods, as they are known, can be performed either in time or in frequency domain [68, 78].

Typical methods of feature extraction for speech enabled applications are based on the conven-

tional model of speech production, the source-filter model. In this model it is possible to split the

speech signal in two components, i) an excitation signal (known as the residual) that can be visu-

alised as the combination of two different signal generators, one for voiced-speech and another for

voiceless (noise-like) speech, and ii) a transfer function which models the vocal tract configuration

and shapes the spectral envelope of the resulting speech [68], as depicted by Figure 2.6, where h(t)

represents the impulse response of the transfer function modelling the vocal tract configuration.

The human auditory system appears to pay much more attention to spectral aspects of speech (e.g.,

amplitude distribution in frequency) than to phase or timing aspects. Thus, spectral or frequency

analysis methods have been the preferred approaches to estimate most parameters from speech

[68]. Next, we describe in more detail some of the typical feature extraction methods that will be

explored within this research.
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Mel Frequency Cepstral Coefficients

According to psychophysical studies, human perception of the frequency content of sounds can be

characterized by what is known as critical bands. A critical band defines a frequency range in psy-

choacoustic experiments for which perception abruptly changes as a narrowband sound stimulus is

modified to have frequency components beyond the band, and the frequency distribution of these

critical bands follows a subjectively defined nonlinear scale [68]. Although many analytical expres-

sions have been proposed to describe this nonlinear scale, over the years the mel scale, originally

proposed in [79], has been the most widely used for speech characterization. The mapping from

acoustical frequency to perceptual frequency resolution is approximately linear in frequency up to

1 kHz and logarithmic at higher frequencies [68], and is commonly defined as:

fmel = 2595 log10(1 +
f

700
), (2.1)

where f is the acoustic frequency and fmel is the resulting mel scale frequency warping.

The most popular analysis method for automatic speech recognition combines cepstral analysis

theory [80] with aspects related to the human auditory system [68]. The so-called mel-frequency

cepstral coefficients (MFCC) are the classical frame based feature extraction method widely used in

speech applications. Originally proposed for speech recognition, MFCC also became a standard for

many speech enabled applications including speaker recognition. One of the reasons for widespread

usage of MFCCs is that they provide an alternative and efficient representation for speech spectra

which incorporates some aspects of audition. Still, some authors argue that MFCCs are suboptimal,

and except for the first two coefficients, it is difficult to relate MFCC to any clear aspects of speech

production or perception [68, 81].

For MFCC computation, each speech recording is pre-emphasized and windowed in overlapped

frames of length τ using a Hamming window to smooth the discontinuities at the edges of the

segmented speech frame. Let x(n) represent a frame of speech that is pre-emphasized and Hamming-

windowed. First, x(n) is converted to the frequency domain by an N point discrete Fourier transform

(DFT) and the resulting energy spectrum can be written as |X(k)|2, with 1 ≤ k ≤ N . Next, P

triangular bandpass filters spaced according to the mel scale are imposed on the spectrum. These

filters do not filter time domain signals, they instead apply a weighted sum across the frequency
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Figure 2.7 – General scheme of MFCC, ∆ and ∆2 computation.

indexes k, which allows to group the energy of frequency bands into a single value, resulting in P

energy values E(l) with 1 ≤ l ≤ P . Finally, a discrete cosine transform (DCT) is applied to the log

filter bank energies and the final MFCC coefficients can be written as:

MFCCm =

√

2
P

P −1
∑

l=0

log [E(l + 1)] cos
[

m

(

2l − 1
2

)

π

P

]

, (2.2)

where 0 ≤ m ≤ R − 1, and R is the desired number of cepstral coefficients. The elements of these

coefficients are highly correlated. The DCT has the effect of decorrelating these elements which

allows the use of diagonal covariance matrices in subsequent statistical modelling steps.

The temporal changes in adjacent frames play a significant role in human perception. To capture

this dynamic information in the speech, first- and second-order difference features (∆ and ∆∆

MFCC) can be appended to the static MFCC feature vector. Dynamic or transitional features are

computed by means of an anti-symmetric Finite Impulse Response (FIR) filter with an odd number

of coefficients (e.g., five or nine) to avoid phase distortion of the temporal sequence. Figure 2.7

depicts a diagram with the basic building blocks for MFCC computation. Further details can be

found in [82].

Alternatively, different frequency warping strategies have been proposed and can be used in

lieu of the classical mel scale. These frequency warpings allow greater resolution to be placed

at certain frequency ranges. Commonly used scales include: linear, exponential [34, 36] and the

whisper sensitive scale (WSS) [83]. Table 2.1 shows the mappings between the original (f) and

warped (f̂) frequencies previously mentioned. Previous studies using the exponential and linear

scales showed that relative improvements of around 20% could be achieved; however, for further

improvements some knowledge about the speaking style was needed for testing [34, 36]. Furthermore,
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Scale Frequency warping

Linear f̂ = f

Exp. f̂ = 10610 × (10f/50000 − 1)

WSS f̂ =

{

2475f4

12204+f4 , 0 < f < 2000
4100 − 2000

1+e(f−300)/310 , 2000 ≤ f < 4000

Table 2.1 – List of frequency warping strategies used in the experiments. Cepstral coefficients derived
are LFCC (linear), EFCC (exponential - Exp. in the table) and WSSCC (WSS).

the improvements were shown only for the whispered speech speaker identification task, thus there

is no evidence about the effects of this front-end in the speaker verification task.

Bottleneck features - BNF

Before describing in detail this approach for feature extraction, some general background in neural

network notation is presented. Given an input vector o, a neural network performs a sequence of

N non-linear operations that can be expressed as follows [42]:

G(o) = g̃
(

W (N) . . . g
(

W (2)g
(

W (1)o
)))

, (2.3)

where W (i) denotes the weight matrix of i-th layer, g(·) is a non-linear operation denoting the

activation function for the hidden layers, typically a sigmoid or hyperbolic tangent function, g̃(·) is

the output activation function, which usually is a linear or identity function, but this depends on

the specific task the neural network is being used for. The parameters are estimated to optimize a

cost function which is also related to the task at hand. Typically, the mean square error is used for

regression problems and the cross-entropy function for classification tasks [21, 84].

Most recent feature extraction techniques have replaced the classical MFCC as acoustic features

by approaches based on deep learning to extract the so-called bottleneck features. Bottleneck

Neural-Networks are deep neural networks (DNN) with a particular topology, where one of the

hidden layers has significantly lower dimensionality than the surrounding layers; such layer is known

as the bottleneck layer. A bottleneck feature (BNF) vector is obtained by forwarding a primary

input feature vector through the DNN and reading off the vector of values at the bottleneck layer

[21]. For speaker recognition purposes, the DNN for feature extraction needs to be trained first for
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Figure 2.8 – Bottleneck Neural Network architecture used in this work.

a specific frame-by-frame classification task. According to previous reports, excellent results were

observed with features extracted using DNN trained for a phone-like classification, specifically where

the targets are sub-phonetic units known as “senones”, by minimizing the cross-entropy function

[22].

The typical configuration of a DNN used for BNF extraction is depicted by Figure 2.8, where

d is the dimensionality of the input feature vector and K is the number of target labels defined

by the output transcription file given by an automatic speech recognition (ASR) system. In this

case the number of units in the bottleneck layer or dimensionality of the feature vector was fixed

to bnf = 80, all displayed values are typical in the normal speech speaker verification literature

[21, 22, 23].

Alternate feature representations

Different types of low-level features have been proposed in the speaker recognition area with the

motivation to improve the performance of MFCC baseline systems under noisy/reverberant condi-

tions, or to provide complementary information to MFCCs [85]. Some of these features are extracted

from slowly varying subband envelopes, as an example, features derived from the AM-FM [86] signal

representation have proven to be more robust in noisy conditions and perform at the same level as

cepstral coefficients in clean conditions [12, 87]. The main difference is that cepstral coefficients are
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Figure 2.9 – AM-FM signal representation. Block diagram to decompose the speech signal in bandpass
channels and compute the low frequency modulator and the instantaneous frequency per channel.

based on power spectrum estimation (i.e., frequency domain) whilst features derived from the AM-

FM signal representation are computed in the time domain. More specifically, the AM-FM model

decomposes the speech signal into bandpass channels and characterizes each channel in terms of its

envelope and phase (instantaneous frequency) [12, 88]. The speech signal s(n) is filtered through a

bank of NK filters, resulting in the bandpass signal yk(n) = s(n) ∗ hk(n), where hk(n) corresponds

to the impulse response of the k-th filter. After filtering, each analytic sub-band signal sk(n) is

uniquely related to a real–valued bandpass signal yk(n) by the relation:

sk(n) = yk(n) + j · ŷk(n), (2.4)

where ŷk(n) stands for Hilbert transform of yk(n). There are two approaches to decompose each

analytic signal in terms of its envelope and phase: i) the Hilbert envelope approach (non–coherent

demodulation) and ii) coherent demodulation [88]. The main difference between these two ap-

proaches is in the allocation of phase between the envelope and carrier. Whereas the Hilbert en-

velope places all of the sub-band phase in the carrier, coherent demodulation makes the important

distinction between carrier and modulator phase. For the sake of notation, let mk(n) denote the

low–frequency modulator and fk(n) the instantaneous frequency for each bandpass signal. Figure

2.9 depicts the general process to decompose the speech signal into bandpass channels and their

respective modulator and instantaneous frequencies when using the Hilbert envelope approach.
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Here, two features are explored based on the AM-FM signal decomposition. The first is the so

called Weighted Instantaneous Frequencies (WIF). These features are computed by combining the

values of mk(n) and fk(n) using a short-time approach [12]:

Fk =

n0+τ
∑

i=n0

fk(i) · m2
k(i)

n0+τ
∑

i=n0

m2
k(i)

, k = 1, . . . , NK , (2.5)

where τ , as before, represents the length of the time frame. Fk is calculated over the full length of

each mk(n) with increments of τ/2.

The second feature set is the mean Hilbert envelope coefficients (MHEC) proposed in [87] and

shown to perform better than traditional MFCC features under noisy conditions for normal speech

for speaker verification. In this case, the envelope mk(n) is blocked into frames and the mean

Hilbert envelope for a specific frame in channel k is calculated as:

Ek =

log

(

1
τ

n0+τ
∑

i=n0

w(i − n0 + 1) · mk(i)

)

Ēk

, k = 1, . . . , NK , (2.6)

where w(n) is a Hamming window of length τ , and the term Ēk represents the long-term average

in each channel which normalizes the values of Ek. Finally, for a specific frame and using all 23 Ek

values, a DCT is applied to produce the MHEC features [87].

These two feature sets, WIF and MHEC, are just some examples of modulation based features.

Other authors have proposed related features, including the Medium Duration sub-band Speech

Amplitudes (MMeDuSA) [89], nonlinear Teager energy operator (TEO) derived features [90], and

Gammatone Filterbank (GFBs) Energies [91], to name a few. After pilot experiments, WIF and

MHEC were the feature sets that showed best performance for the task at hand. Hence, experiments

in Chapter 3 are presented using these two feature sets.
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2.2.2 Feature transformation

This stage relies on a suitable change (simplification or enrichment) of a representation, e.g. by a

reduction of the number of features, relations or primitives describing objects, or some non-linear

transformation of the features, to enhance the class or cluster descriptions [84]. Typically, for

speech processing applications, such transformation are designed to mitigate the effects of linear

channel mismatch, and to add robustness to the overall system. Feature normalization techniques

such as Short-Time Mean and Variance Normalization (STMVN), Short-Time Mean and Scale

Normalization (STMSN) and Short-Time Gaussianization (STG) techniques are a standard pre-

processing procedure in the state-of-the-art speaker verification systems [92]. But it is not only

limited to normalization algorithms, if we assume the output of the triangular filterbanks in the

MFCC pipeline to be the features, then the DCT can be seen as a feature transformation process,

which reduces the dimensionality and decorrelates the variables, thus resulting in a more compact

and informative feature vector. Techniques such as principal component analysis (PCA) or linear

discriminant analysis (LDA) are commonly used for more general classification tasks [84]. Current

state-of-the-art SV systems use latent variable inspired approaches to map typical variable length

frame based representation to a fixed dimensional feature vector. We will describe such methods

later in Section 2.2.3, as different modeling techniques needed for transformation should first be

introduced.

Moreover, in some specific tasks it is necessary to perform more elaborate transformations, for

example to map from a feature space to a different one. This is particularly useful when there is

a mismatch between the training data and what the model encounters in real life. The model is

trained on a specific source distribution, but during testing, it receives data from a different, target

distribution. Two typical techniques in speech applications to address this problem have been used:

the first one relies on Gaussian mixture models based regression and the second on neural networks

[13, 41, 42]. The use of these techniques in the context of whispered speech speaker verification will

be described in detail in Chapter 4.

2.2.3 Classification - generalization and inference

Once we have a set of features or parameters to describe the speech recordings, another important

stage, when implementing a speaker recognition system, is the generalization/inference stage. In
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this stage, a classifier/identifier is trained. The training process involves the parameter tuning of

models to describe training samples, i.e., features extracted from speech recordings. The learning

process requires assumptions on the general form of model or the classifier, and use the training

samples to estimate the unknown parameters of the model. Then an algorithm is applied in order

to reduce the error on a set of training data or in general terms, optimize a cost function related

to the task at hand [93]. In this regard, for speaker modelling, the well known Gaussian mixture

model has succeeded to remain in the scope of speaker recognition research for many years. It

is considered an extension of an earlier approach known as vector quantization that allows the

modelling of probability density functions by the distribution of prototype vectors, i.e., a feature

vector is assigned to the nearest prototype vector (cluster). In Gaussian mixture models, the clusters

are overlapping, and each cluster is described by a single Gaussian density function [40]. The use of

Gaussian mixture models for speaker recognition is motivated by their capability to model arbitrary

densities, and the individual components of a model are interpreted as broad acoustic classes [40, 94].

Adapted Gaussian Mixture Models

Herein, we describe the most popular approach based on Gaussian mixture models (GMM), which

for many years was the dominant approach for text-independent speaker verification: Adapted

Gaussian Mixture Models using Maximum a Posteriori (MAP) adaptation. First of all, we will

describe the generalities of a GMM model and how, using training samples, the parameters are

tuned.

A GMM is composed of a finite mixture of multivariate Gaussian components and the set of

parameters denoted by λ. It is characterized by a weighted linear combination of C unimodal

Gaussian densities by the function:

p (o |λ) =
C
∑

i=1

αiN (o, µi, Σi), (2.7)

where o is a D-dimensional observation or feature vector, αi is the mixing weight (prior probability)

of the i-th Gaussian component, and N (·) is the D-variate Gaussian density function with mean

vector µi and covariance matrix Σi.
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Let O = {o1, · · · , oK} be a training sample with K observations. Training a GMM consists of

estimating the parameters λ = {αi, µi, Σi}
C
i=1 to fit the training sample O while optimizing a cost

function. The typical approach is to optimize the average log-likelihood (LL) of O with respect to

the model λ and is defined as [84]:

LL (O, λ) = log p (O|λ) =
1
K

K
∑

k=1

log
C
∑

i=1

αiN (ok, µi, Σi). (2.8)

The higher the value of LL, the higher the indication that the training sample observations orig-

inate from the model λ. Although gradient-based techniques are feasible, the popular expectation-

maximization (EM) algorithm is used for maximizing the likelihood with respect to a given data.

The interested reader is referred to [84] for more complete details.

For speaker recognition applications, first a speaker-independent world model or universal back-

ground model (UBM) is trained using several speech recordings gathered from several speakers.

Regarding the training data for the UBM, selected speech recordings should reflect the expected

alternative speech to be encountered during recognition. This applies to both the type and the

quality of speech, as well as the composition of speakers. Next, the speaker models are derived by

updating the parameters in the UBM using a form of Bayesian adaptation [15]. In this way, the

model parameters are not estimated from scratch, with prior knowledge from the training data being

used instead. It is possible to adapt all the parameters, or only some of them from the background

model. For instance, adapting the means only has been found to work well in practice [15, 40].

Consider an enrollment sample Oj , with K observations from a new speaker. The first step to

obtain a GMM model for this speaker is to compute the sufficient statistics for the weight, mean,

and variance parameters using the UBM and the sample Oj . Then, these sufficient statistics are

used to update the old UBM parameters. For instance, the adapted mean vector for the i-th mixture

component is given by:

µ̂i = κiEi (ok) + (1 − κi)µi, (2.9)

where

Ei (ok) =
1

Ni

K
∑

k=1

p(i|ok)ok, (2.10)
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Figure 2.10 – General scheme of MAP adaptation using target speakers enrollment data.

Ni =
K
∑

k=1

p(i|ok), (2.11)

p(i|ok) =
αiN (ok, µi, Σi)

∑C
j=1 αjN (ok, µj, Σj)

, (2.12)

κi =
Ni

Ni + ρ
. (2.13)

The relevance parameter ρ controls the effect of the sample Oj on the resulting model with

respect to the UBM. And the new resulting model is denoted as λtarget. Figure 2.10 illustrates how

using MAP adaptation, the Gaussian components of the universal background model are adapted

using target speakers enrollment data. Equation 2.12 represents the probabilistic alignment of the

enrollment sample Oj into the UBM mixture components (posteriors). Equation 2.11 represents the

zero-order statistics, and it accumulates the probability of observations ok being generated by the

i-mixture component. Finally, Equation 2.10 represents the first-order statistics, are the weighted

sum of the means per a component [15].

During testing, in a verification scenario, we consider a testing sample Ot and a hypothesized

speaker with model λhyp, the task of the speaker verification system is to determine if Ot matches

the speaker model. There are two possible hypotheses: 1) Ot is from the hypothesized speaker
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and 2) Ot is not from the hypothesized speaker. The decision can be made by computing the log-

likelihood (score) between the two hypotheses, which is given by s = LL(Ot, λhyp) − LL(Ot, λUBM )

[15]. If s is greater than a decision threshold then hypothesis 1) is accepted otherwise the hypothesis

2) is accepted.

i-vectors/PLDA approach

Current state-of-the-art speaker recognition systems are based on identity vectors (i-vectors) ex-

traction [19] and matching between a test utterance and a target speaker is done using either a fast

scoring method based on cosine distance between i-vectors or probabilistic linear discriminant anal-

ysis (PLDA) [20] based scoring. Next, we describe the most common approach, the i-vectors/PLDA

approach. i-vectors extraction can be considered as a feature transformation stage, as depicted by

Figure 2.4, prior to the generalization/inference block.

The i-vectors extraction technique was proposed to map a variable length frame based repre-

sentation of an input speech recording to a small-dimensional feature vector while retaining most

relevant speaker information. First, a C-Component GMM is trained as an universal background

model (UBM) using the Expectation – Maximization (EM) algorithm and the data available from

all speakers from the train set or background data, as described in the previous section. Speaker

and session-dependent supervectors of concatenated GMM means are modeled as:

M = m + T φ, (2.14)

where m is the speaker- and channel-independent supervector, T ∈ R
CF ×D is a rectangular matrix of

low rank covering the important variability (total variability matrix) in the supervector space. C, F

and D represent, respectively, the number of Gaussians in the UBM, the dimension of the acoustic

feature vector and the dimension of the total variability space. Finally φ ∈ R
D×1 is a random

vector with density N (0, I) and referred to as the identity vector or i-vector [19]. A typical i-

vector extractor can be expressed as a function of the zero- and first-order statistics (Equations

2.11 and 2.10) generated using the GMM-UBM model, and it estimates the Maximum a Posteriori

(MAP) point estimate of the variable φ. This procedure is complemented with some post-processing

techniques such as linear discriminant analysis (LDA), whitening, and length normalization [95].
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Figure 2.11 – i-vector extraction from a speech recording.

These techniques can be used to remove nuisance effects in the total variability space. For the

experiments herein, an i-vector is computed per enrollment utterance and then they were averaged

to obtain a single i-vector per target speaker. The interested reader is referred to [19, 95] for more

complete details. Figure 2.11 depicts a diagram with the basic steps for i-vector computation.

The cosine distance is a fast and efficient method of scoring which eliminates the need of en-

rolling and model parameter estimation and is commonly used with i-vectors. Given a target or

hypothesized speaker (φhyp) and the test (φtest) feature vectors, the cosine distance is given by:

s =
〈φhyp, φtest〉

(‖φhyp‖ ‖φtest‖)
, (2.15)

where 〈·, ·〉 and ‖·‖ correspond to dot product and magnitude respectively. Finally, a decision is

made based on thresholding [19].

The PLDA model [20, 96], on the other hand, splits the total data variability into within-

individual and between-individual variabilities, both residing in small-dimensional subspaces. Orig-

inally introduced for face recognition, PLDA has become a standard in speaker recognition. PLDA

was formulated in [96] as:

φij = µ + V yi + Uxij + εij , (2.16)

where φij is the i-th feature vector associated to the j-th speaker, the matrices V ∈ R
D×P and

U ∈ R
D×M span the between- and within- individual spaces, µ is a global mean, yi ∼ N (0, I)

and xij ∼ N (0, I) are hidden variables in the spaces spaned by V and U , respectively, and

the residual εij ∼ N (0, Σ) is defined to be Gaussian with zero mean and diagonal covariance

Σ. In a verification scenario, there are two possible hypotheses: 1) φtest and φenrol share the
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same class, and 2) φtest and φenrol are from different classes. Lastly, the corresponding score

can be obtained by computing the log-likelihood between the two hypotheses, which is given by

s = ln(P (φtest, φenrol))− ln(P (φtest)P (φenrol)); details can be found in [20, 96]. For the experiments

herein, the dimensionality of matrices V and U were set to P = dimLDA and M = 0, where dimLDA

represents the dimensionality of the LDA model, which is tuned accordingly per feature set.

2.2.4 Variants of the general structure of the pattern recognition system

Features described in Section 2.2.1 place emphasis on different aspects of the signal (e.g., temporal,

spectral, phase), thus likely contain complementary information. This hypothesis has motivated the

exploration of fusion at different levels to combine the strengths of feature representations extracting

complementary information [14, 97]. Referring to the general scheme illustrated by Figure 2.4, it

is possible to perform fusion at two different levels: i) Fusion at the input, i.e., at the feature

level, where different feature representations can be concatenated in order to obtain and enriched

representation, and ii) Fusion at the output, i.e., at the score level, where the outputs of systems

trained on different feature representation are combined in a new feature vector and feed to a

new model for decision making. Notwithstanding, the overall general scheme still follows the same

structure as depicted by Figure 2.4.

Recent literature on SI and ASR has recommended the use of speaking-style dependent models

[25, 27, 35], as depicted by Figure 2.12. The method builds on the previously described general

pattern recognition system and takes into account the different subclasses that can be modelled in

order to build a complete automated system. This scheme is useful for gender- or speaking style

dependent systems and is commonly known as multiple model recognizer. This approach has shown

to improve the performance of whispered speech recognition [25, 27], and has been used in speaker

verification tasks for gender dependent models [15]. Multiple model training, however, requires

significant amounts of representative data per sub-class to properly estimate models, which can be

hard to obtain in practice for some applications, as is the case for whispered speech.
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Figure 2.12 – Multimodel framework for automatic classification using a K-class model selector

2.3 Speech databases

Publicly available speech corpora containing normal and whispered speech are not common. In fact,

several have been reported in the literature but have not been made available to the public, such as

the UT-Vocal Effort I and II datasets [98]. In this section we describe the publicly available speech

databases used the experiments herein for speaker verification purposes, namely:

TIMIT: This database is largely known in speech processing related fields. TIMIT contains

broadband recordings of 630 speakers of eight major dialects of American English, each reading

ten phonetically rich sentences. It comprises 6300 speech recordings (approximately five hours),

recorded using 16 bits precision at 16 kHz. Even though the TIMIT corpus of read speech has

been designed to provide speech data for acoustic-phonetic studies and for the development and

evaluation of automatic speech recognition systems, given the relatively large number of speakers,

it is reasonable to be used also for speaker recognition applications [38].

wTIMIT: The whispered TIMIT (wTIMIT) corpus is designed for the study and construction

of large vocabulary speech recognizers. This corpus contains recordings of 48 speakers, where each

speaker utters 450 phonetically balanced sentences of the TIMIT prompt set in both normal-voiced

and whispered speech, recorded using 16 bits precision at 16 kHz. The corpus has two accents

(Singaporean-English, and North American English), with roughly 20 to 28 speakers from each

accent group. This speech corpus is gender balanced [39].

CHAINS: the Characterizing Individual Speakers speech corpus contains the recordings

of 36 speakers obtained in two different sessions with a time separation of about two months, there

are three different accents: 28 speakers from Ireland (16 male), 5 speakers from the USA (2 male)

and 3 speakers from the United Kingdom (2 male). Additional details about the database can be

found in [99]. Speech stimuli was generated under six speaking conditions, namely solo (natural rate
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Database
Num. of speakers recordings/speaker
Female Male Norm. Whsp.

TIMIT 192 438 10 –
wTIMIT 24 24 450 450
CHAINS 16 20 37 37

Table 2.2 – Details about the three databases used in our experiments.

reading), retelling without time constraints, two-person synchronous reading, repetitive synchronous

imitation, accelerated-rate reading, and whispered. All recordings are available as 16 bit PCM

encoded files with a sampling rate of 44.1 kHz [99].

As can be seen, the TIMIT database contains a large number of speech recordings from different

speakers only in normal speech mode, while the CHAINS and wTIMIT databases contain normal

and whispered speech. Table 2.2 presents details about the number of speakers and recordings per

speaker available in the datasets.

LibriSpeech: This is a Large-scale corpus of read English speech, and contains approximately

1000 hours of speech derived from read audiobooks from the LibriVox project [49]. The speech

is recorded using a sampling rate of 16 kHz using 16 bits precision. The data has been carefully

segmented and aligned which makes it a suitable database for training ASR systems. In total,

training data corresponds to 400 hours of continuous speech. The aim of including this dataset is

solely to train the BNF extractor system which comprises two stages, first training an ASR system

which generates the target labels or “senones”, next, training the bottleneck neural network using

as input acoustic features extracted from the training speech recordings and as targets the senones

generated by the ASR system.

2.4 Summary

This chapter has presented a general overview of whispered speech. We have presented the main

insights from perceptual and acoustic studies which also helps to illustrate some of the main dif-

ferences with normally-phonated speech. In addition to this, we have presented a brief description

of the building blocks needed to implement a standard speaker verification system. In the next

chapter, we will explore what is achievable for whispered speech speaker verification using tech-
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niques described above, within an ideal experimental setup. Ultimately, by performing experiments

in such limited experimental conditions will help us to understand the performance envelope of

existing solutions and guide where significant efforts need to be placed.



Chapter 3

Comparative Analysis for Normal and

Whispered Speech Speaker

Verification

3.1 Preamble

Results presented in this chapter were published in publications #2 and #5 listed in Section 1.3

[61, 64]. The overarching goal of this chapter is to explore the performance envelope achievable with

whispered speech, particularly within the scope of a small scale speaker verification (SV) task, thus

guiding the research directions of subsequent chapters for larger-scale applications. To this end,

we explore the benefits of different existing preprocessing methods, frequency warping strategies,

feature representations, and SV system configurations.

3.2 Introduction

In the past, whispered speech has only been explored within the SI problem [12, 26, 34, 35, 36,

37], where the use of the accuracy metric does not give a clear picture of the actual impact of

mismatch conditions between training and testing [14]. In addition, it is not clear whether the

strategies proposed for SI systems can also be useful for SV systems. Currently, state-of-the-art SV
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Figure 3.1 – Block diagram of a general SV system. Top and bottom diagrams represent the training
and testing stages, respectively, for a GMM-UBM SV based system

systems based on normal speech use highly elaborate techniques, such as i-vectors [19]. However,

to properly train such systems, large amounts of training data are required [40, 100]. Reliable

training of an i-vector extractor requires datasets with large number of speakers as well as samples

per speaker, which is not the case for the experimental setup we want to explore in this chapter.

Furthermore, these methods are heavily dependent of the data, i.e., the nature of the testing data

should be the same with the one the i-vector extractor was trained on [51]. According to our

experiments, a classification system based on Gaussian mixture models (GMM) and maximum a

posteriori (MAP) adaptation, as depicted by Figure 3.1, was more suitable for the small amount

of speakers and recordings we have dedicated for these preliminary experiments and dealing with

mismatched scenarios. For the described system, the widely-used mel-frequency cepstral coefficients

(MFCC) are used to implement a text–independent SV system [15, 40]. First an C-Component

GMM is trained as an universal background model (UBM) using the Expectation – Maximization

(EM) algorithm and the training data available from all speakers. Then, a GMM for each speaker

is obtained using MAP adaptation, as depicted by top half diagram in Figure 3.1. During the

recognition phase (bottom half of Figure 3.1), the hypothesized speaker model is scored against the

UBM and a decision is made based on thresholding as described in Section 2.2.3. More details can

be found in [15].
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3.3 Baseline performance characterization in matched and mis-

matched conditions

For the experiments described in this chapter only the CHAINS speech corpus was used. A complete

description can be found in Section 2.3 and in [12]. In particular, two speaking styles were used -

solo and whispered - where the same text was read in both conditions. We used the speech stimuli

generated from reading the paragraph of the Cinderella story (average duration: 55 seconds, mini-

mum duration: 48 seconds) for training, and kept the stimuli generated from reading the Rainbow

Text (average duration: 30 seconds; minimum duration: 23 seconds) segmented in short sentences of

3 seconds, plus 32 individual sentences (nine selected from the CSLU Speaker Identification corpus

and 23 from the TIMIT corpus) for testing. Data was originally recorded at 44.1 kHz sample rate

but downsampled to 8 kHz. The sampling rate is motivated by results reported in [12], where using

the same dataset in a speaker identification task they found that MFCC computed on the acoustic

band from 0 to 4 kHz where more robust to the mismatched train/test condition.

Prior to feature extraction, and motivated by Figure 2.3, in our experiments we normalized

the speech data to -26 dBov (dB overload) using the ITU-T P.56 speech voltmeter [101], and pre-

emphasized using a first order FIR filter with constant a = 0.97. Then 19 MFCC were computed on

a per-window basis excluding the 0–th order cepstral coefficient, using a 32 ms window with 50%

overlap and 24 triangular bandpass filters. Delta coefficients were also included to convey temporal

dynamics information. Delta coefficients were computed by means of an anti-symmetric Finite

Impulse Response (FIR) filter of length nine to avoid phase distortion of the temporal sequence.

For all experiments herein, the training data was fixed to 35 seconds per speaker, and the number

of Gaussian components per model was fixed to C = 32, showing a tradeoff between performance

and computational burden. Parameters such as window length and overlap, and number of cepstral

coefficients are motivated by previous research works in speaker identification [26, 36, 34] using

similar configurations.

Table 3.1 reports the Equal Error Rate (EER %) obtained with the baseline system under

different train/test conditions. In the table, ‘c’ stands for cepstral coefficients and ‘∆’ for delta

coefficients. As can be seen, for normal speech in the normal/normal (train/test) matched condition

inclusion of delta coefficients did not provide any advantage over using only MFCCs. In fact, in

the normal/whisper and whisper/whisper scenarios, inclusion of delta parameters had a negative
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Training Testing
EER(%)

c c + ∆
Normal Normal 2.13 2.33
Normal Whisper 35.75 38.62
Whisper Normal 29.81 28.18
Whisper Whisper 2.90 3.12

Table 3.1 – EER(%) comparison for different training/testing conditions after power normalization and
pre-emphasis. Results in bold represent the baseline systems with which the tested improvements will
be gauged against.

impact on system performance, as previously reported by [26] for a speaker identification task. Only

in the mismatch whisper/normal condition, was an improvement in EER with the inclusion of ∆

parameters observed. Differences, however, between the two experimental conditions were modest

and we can not considerate this as a significant advantage or disadvantage and draw definitive

conclusions on the basis of these results. Typically, for large scale speaker verification evaluations,

first- and second-order time derivative estimates are included as it is considered that they still

convey useful speaker-specific information [22, 15, 40].

Overall, it can be seen that significant performance degradation occurs in the mismatch con-

ditions. When testing with whispered speech, the obtained EER for the mismatch condition was

more than 10 times greater than in the matched condition. Moreover, a gap of approximately 6 –

9% can be seen in mismatched cases, depending on what speaking style is used for training. As

can be seen, lower EER is achieved when training with whispered speech and testing with normal.

This was expected, as in our dataset, approximately 70/30% of the normal-speech training data was

comprised of voiced/unvoiced speech segments. When training with normal speech, it is likely the

GMMs became biased towards voiced characteristics which are not present in whispered speech. On

the other hand, when training with whispered speech, the GMMs could more accurately represent

unvoiced normal-speech segments, as only small differences have been observed between unvoiced

consonants in whispered and normal speech modes [33]. To better illustrate this point, Figure 3.2

shows the plots of the scores distribution for target speakers and impostors under the two training

conditions. Continuous lines represent the speaking style used for training (i.e., normal speech in

subplot (a) and whispered speech in subplot (b)).

Similar experiments were performed by Xing Fan [26] for SID. Since the results reported in [26]

relied on only a subset of 28 females as target speakers, direct comparisons cannot be made, but

the obtained trends can be compared. For example, in both cases, higher performance levels were
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(a) (b)

Figure 3.2 – Plots of score distributions for target and impostor speakers using normal and whispered
speech files. The scores were computed using two different systems, the system in (a) was trained
only with normal speech and the system in (b) was trained only with whispered speech. Continuous
lines are representative of the speaking style used for training.

achieved in the train/test matched conditions, with normal/normal outperforming whisper/whisper.

In the mismatch conditions, however, [26] reported speaker identification accuracies of almost 80% in

the normal/whisper condition, but of around 10% with whisper/normal. In our case, we obtained

opposite trends and showed that for a speaker verification task involving both male and female

speakers, the whisper/normal condition resulted in slightly lower error rates than training with

normal speech and testing with whispers. Such differences motivate further analysis to truly gauge

the benefits that previously-proposed methods for whispered SID may have on whisper SV.

Figure 3.2(a) shows that by using normal speech for training the scores of normal speech are less

scattered than those for whispered speech, which, in turn, show a high degree of overlap. Figure

3.2(b), on the other hand, shows the scores obtained when training only with whispered speech. As

can be seen, scores from whispered speech testing recordings are still more scattered than those for

normal speech, but the overlap has been reduced. Overall, as expected the matched normal/normal

scenario resulted in the lowest EER. Together these findings suggest that alternate strategies are

needed to improve the performance of SV systems based on whispered speech, particularly in mis-

matched cases. This is the focus of the sections to follow.

A final and important aspect is the difference between reported accuracy for a speaker identifi-

cation system using the same dataset and a similar experimental setup, and the error rates reported

herein for speaker verification. While accuracy using MFCC computed in the 0-4kHz frequency

band for normal speech was lower than 80% (error rate higher than 20%) according to results re-

ported in [12], in our experiments the error rate is less than 3%. In mismatched condition, on
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the other hand, the reported accuracy when testing with whispered speech was around 20% (80%

error ) in [12] and in our case the error rate is around 38%. As can be seen, speaker verification

and speaker identification are related areas within the scope of speaker recognition, but they are

not directly comparable and we do not expect that techniques that have shown to work in speaker

identification to present similar results or be equally effective in speaker verification. Hence the

need for the comparative analysis presented in this chapter.

3.4 Comparative analysis using different system configurations

Using the same settings as before, 19 cepstral coefficients were computed using the frequency warp-

ing strategies described in Table 2.1, along with the mel scale and the delta coefficients. More

specifically, cepstral coefficients derived are MFCC (mel), EFCC (exponential), WSSCC (WSS),

and LFCC (linear). This experiment allows us to determine which frequency warping strategy can

better reduce the negative impact of train/test mismatch. Additionally, to mitigate the effects

of linear channel mismatch, a widely accepted method is called feature warping, which maps the

distribution of the cepstral features to a normal distribution (N (0, 1)) by using a 3-second sliding

window, also known as short-time Gaussianization (STG) [102]. For the sake of comparison, the

different feature sets are evaluated in the two possible scenarios: with and without STG.

Results are shown in Table 3.2 where two training/testing conditions are evaluated, namely nor-

mal/normal and normal/whisper (represented in the table as N/N and N/W, respectively). Whilst

the negative impact of mismatch is still evident, all frequency warping strategies have improved the

MFCC performance. As an example, by using the whisper sensitive scale and appending delta coef-

ficients it is possible to reduce the EER by approximately 13% relative to the baseline in mismatch

condition without using feature warping. Furthermore, STG can result in additional improvements

in the mismatch condition, leading to improvements up to 31% relative to the baseline. Notwith-

standing, one disadvantage of frequency and feature warping is the drop in performance obtained

in the matched N/N condition. For example, with MFCCs the EER doubles after STG. The other

frequency warping strategies, on the other hand, resulted in more stable results after STG. As

before, no significant advantages were observed by appending the delta coefficients.
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without STG with STG
Cepstral c c + ∆ c c + ∆
Coefficients N/N N/W N/N N/W N/N N/W N/N N/W
MFCC 2.13 35.75 2.33 38.62 5.08 32.23 4.78 35.23
LFCC 4.88 31.04 4.60 30.20 4.17 24.33 5.20 25.82
EFCC 5.09 31.36 5.21 30.10 4.18 24.57 5.26 25.64
WSSCC 6.01 31.02 6.21 29.08 6.17 25.70 7.50 27.26

Table 3.2 – EER(%) comparison for matched and mismatched training/testing condition, using differ-
ent frequency warping strategies and comparing the effects of using STG as feature warping. N/N
and N/W correspond to training with normal speech and testing with normal or whispered speech,
respectively. All feature representations where computed from the full 0 to 4 kHz band. EER values
in bold highlight the best performance achieved in matched and mismatched conditions.

3.4.1 Frequency sub-band analysis

Results presented in Tables 3.1 and 3.2 suggest that whispered speech conveys information highly

related to each speaker, but significant differences are still present between the two speaking styles.

Motivated by the results in Figure 2.3(a), we also explore the use of only a sub-band of the speech

signal in which their difference is minimized. According to Figure 2.3(a), this sub-band ranges

from approximately 1.2 kHz to 4 kHz. As such, the frequency-warpings are calculated between

1.2 and 4 kHz. This frequency band comprises mostly information from the second and third

formants (F2 and F3). EER performance results are shown in Table 3.3. As observed, further gains

are obtained in the mismatch condition, but at the cost of reduced performance in the matched

scenario. Notwithstanding, these findings corroborate previously-reported cues showing a significant

amount of speaker-specific information in the second and third formants [103, 104]. An additional

advantage of focusing within this sub-band is that for whispered speech, shifts in F2 of 2 - 24%

and in F3 of 1 - 10% have been observed relative to normal-voiced speech [73]. This is a rather low

variation when compared with the shift for F1 that can be 50% or higher [73]. The most relevant

improvement in mismatch condition is achieved using MFCC; when comparing with the results in

Table 3.2, a relative reduction in the error rate of approximately 38% is achieved using STG and

without appending delta coefficients. It is important to emphasize that in the matched condition

the error rate is three times higher than that reported in Table 3.2. Together, these results show

the high relevance of speaker identity information contained below 1.2 kHz, particularly for normal

speech.
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without STG with STG
Cepstral c c + ∆ c c + ∆
Coefficients N/N N/W N/N N/W N/N N/W N/N N/W
MFCC 8.64 26.50 9.02 26.82 7.14 21.81 9.20 24.51
LFCC 9.58 27.54 9.53 25.96 7.44 21.81 9.62 22.89
EFCC 9.39 27.18 9.45 26.24 7.74 22.47 9.38 23.43
WSSCC 8.36 27.75 8.85 26.93 8.89 24.87 11.62 25.58

Table 3.3 – EER(%) comparison for matched and mismatched training/testing condition using the sub-
band from 1.2 kHz to 4 kHz to compute the different feature sets with different frequency warping
strategies and comparing the effects of using STG as feature warping. N/N and N/W correspond to
training with normal speech and testing with normal or whispered speech, respectively. EER values
in bold highlight the best performance achieved in matched and mismatched conditions.

3.4.2 Alternate feature representations

Features described in Section 2.2.1 were used for the following experiments. First, as there are

different approaches for filter design that have been used in speech applications, for the experiments

herein, two approaches were tested: a gammatone filterbank [105], and the Gabor filterbank [12],

each with 23 channels. Filter center frequencies range from 50 Hz to 3528 Hz and their bandwidths

are characterized by the mel frequency scale. Originally, it was proposed to use a 80-channel

Gabor filterbank [12], however, according to our experiments it is not necessary to have such a high

resolution and for extracting speaker dependent information a NK = 23-channel filterbank suffices.

Second, since there are two approaches to decompose each analytic signal in terms of its envelope

and phase, i.e., i) the Hilbert envelope approach (non–coherent demodulation) and ii) coherent

demodulation, in a pilot experiment we explored the performance of different features in the matched

testing condition (i.e., train/test on whispered speech). As a result, features that were computed

using the the Hilbert envelope approach achieved performance inline with those obtained with

the classical MFCC features. As such, for feature extraction purposes, only the Hilbert envelope

approach is used for the following experiments. Detailed results appeared in publication # 5 listed

in Section 1.3 [64].

Table 3.4 reports the EER obtained with the different filterbank characterizations, considering

both the full band and the limited sub-band (1.2–4 kHz) components. In the matched condition,

MHEC and WIF perform better than cepstral coefficients without STG and at the same level using

STG. However, in mismatched condition both WIF [12] and MHEC [87] achieve error rates similar

to the ones achieved with cepstral coefficients. These results suggest that the information present in
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Filter Bank
EER–Full band EER–limited band
N/N N/W N/N N/W

W
IF

Gammatone 1.63 33.73 5.87 24.63
Gammatone + STG 4.48 29.48 7.86 23.19
Gabor 2.18 35.65 6.53 24.27
Gabor + STG 4.17 30.92 7.99 22.77

M
H

E
C

Gammatone 2.06 42.24 9.80 26.72
Gammatone + STG 5.51 41.34 10.71 28.78
Gabor 1.57 36.73 9.13 26.24
Gabor + STG 4.23 34.09 11.62 26.78

Table 3.4 – EER(%) comparison for matched and mismatched training/testing conditions, using fea-
tures derived from the AM-FM signal representation. Limited band corresponds to 1.2–4 kHz.
Norm/Norm and Norm/Whsp correspond to training with normal speech and testing with normal
or whispered speech, respectively. For each feature representation (WIF and MHEC) EER values in
bold highlight the best performance per train/test condition.

the slowly varying envelope of the bandpass signals is highly discriminative, but extremely sensitive

to changes in the vocal effort. By limiting the analysis frequency band to 1.2–4 kHz, a significant

reduction of approximately 36% could be achieved relative to the baseline system in mismatched

condition (see Table 3.1). This, however came at a severe penalty for the matched scenario, as was

similarly observed with the cepstral coefficients (see Table 3.3).

3.4.3 Feature combination

As described in Section 2.2, different feature representations can extract complementary informa-

tion, and one way to combine the strengths of these features is by combining them at the frame

level. For this experiment, and based on the results presented in Table 3.3, the mel and linear scales

were selected to compute the cepstral coefficients in the 1.2–4kHz sub-band with STG. Moreover,

motivated by results in Table 3.4, the WIF features using the Gammatone filter bank and the

MHEC features using the Gabor filter bank were selected as they showed to be more effective in

the matched condition without STG.

Results for feature combination are shown in Figure 3.3(a) and Table 3.5. Figure 3.3(a) depicts

the Detection Error Tradeoff (DET) curves comparing different feature combinations and testing

with normal and whispered speech. In the table, the features labeled in the columns are combined

with the features labelled in the rows to produce a new feature space and the EER corresponding

to each testing condition is presented in the respective intersection. According to these results,

feature combination does not help to obtain further reductions of the EER in mismatch condition



68

Cepstral WIF MHEC
Coefficients N/N N/W N/N N/W
MFCC 2.17 29.35 2.29 36.96
LFCC 2.29 28.16 2.05 36.60

Table 3.5 – EER(%) comparison with different feature combination, where the best features from
Tables 3.3 and 3.4 were selected. EER values in bold represent the best performance per train/test
condition.

(a) (b)

Figure 3.3 – Plots of (a) DET curves for feature combination and (b) contours of an estimated Gaussian
distribution for the scores of testing utterances. These Plots were obtained by using only normal speech
for training and normal and whispered speech for testing.

(N/W). Notwithstanding, combining WIF and LFCC and comparing the results with the baseline

system, this combination can help to maintain the performance inline with the baseline system

for the match condition, whilst achieving relative reduction of the EER in the mismatch condition

by approximately 21%. To extend the analysis, the scores of target speakers and impostors were

calculated separately using WIF and LFCC. These scores were used to estimate the parameters of

a 2 dimensional full covariance Normal distribution. The contours of the distributions are depicted

by Figure 3.3 (b) with continuous lines for normal speech and dashed lines for whispered speech.

As can be seen, the overlap between target speakers and impostors for normal speech is minimum,

however for whispered speech the scores are more scattered and higher overlap exists. As such, any

decision boundary minimizing the error rate for normal speech will not necessarily be optimal for

whispered speech. Such findings suggest the need for speaking-style dependent models, as will be

described in Section 3.4.5.
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3.4.4 Training with combined normal/whisper data

Results presented so far have shown that reliable performance can be achieved in matched conditions,

but significant drop in performance occurs in mismatched conditions. As an alternate solution, here

we explore the use of both normal and whispered speech during training and model adaptation as has

been done in previous studies for SI [26, 35]. This allows speaker-specific information represented

in whispered speech features to be properly modeled. Since whispered speech training data can

be sparse, it is not clear how much whispered speech material is necessary to achieve acceptable

performance levels for practical applications. In order to be able to perform a comparison with

the baseline system, we investigate the effects of adding small amounts of whispered speech to the

training set, using a MFCC–GMM system (without delta coefficients). Experiments were conducted

using a fixed duration length of normal speech (35 seconds per speaker) and different duration

lengths of whispered speech for training.

Results of these experiments are illustrated in Figure 3.4 and Table 3.6. As can be seen, there

is significant improvement by adding as little as 5 seconds of whispered speech per speaker relative

to the mismatch performance reported in Table 3.1. By gradually increasing the duration length

of whispered speech, the performance of the system also gradually improves, thus corroborating

previous speaker identification findings [26, 35]. Nevertheless, using the same amount of data (35

s) for both vocal efforts shows that improved performance is still achieved with normal speech with

respect to whispered speech (11% lower EER). In addition, it is necessary to pay attention to the

slight losses induced by the addition of whispered speech, which slightly increases the EER for

normal speech. For example, using only normal speech for training, an EER of 2.13 % was reported

in Table 3.1. Here, in the case of using the same amount of data for both vocal efforts, an EER

of 3.05 % (i.e., 43% higher) was found. According to these results, for a practical SV verification

task, improved performance can be achieved for whispered test speech, but at the cost of lower

performance for normal test speech. These results agree with previously reported research work for

speech recognition, where multi-style models can offer a feasible alternative to tackle the mismatch

problem [25, 27].
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Figure 3.4 – DET curves exploring the effects of adding different amounts of whispered speech to the
35 s of normal speech during the training phase.

Amount of whispered EER(%)
training data (s) Normal Whispered
1 2.54 30.97
5 2.53 13.25
10 2.49 7.91
15 2.60 5.47
20 2.62 4.24
25 2.66 3.94
30 2.63 3.52
35 3.05 3.45

Table 3.6 – Effects of adding different amounts of whispered speech to the normal speech training set.

3.4.5 Speaking–style dependent SV systems

Up to now speaking-style independent SV systems have been described to handle both vocal efforts.

In this section, two classes are investigated: normal and whispered modes. In order to develop

a speaking-style dependent SV system, a classification stage is needed in order to detect specific

speaking styles. With speaking style dependent systems, the concept of “mismatch” shifts from

one of train/test mismatch to one of errors in speaking style classification. In order to analyze the

benefits of having dedicated speaker models for each speaking style, this first set of experiments will

assume an “oracle” system in which perfect normal/whisper classification is achieved. Within this

scenario, we are particularly interested in the performance obtained with the whispered test speech
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Cepstral coefficients
EER(%)
c c + ∆

MFCC 2.90 3.12
LFCC 2.90 3.08
EFCC 3.12 4.15
WSSCC 4.22 6.02

Table 3.7 – EER(%) comparison in W/W condition using speaking style dependent models. Results
are for whispered test files and using different warping strategies to compute cepstral coefficients.

Filter Bank
AM-FM features
WIF MHEC

Gammatone 2.55 3.10
Gabor 2.62 2.60

Table 3.8 – EER(%) comparison in W/W condition using speaking style dependent models. Results
are for whispered test files and using AM-FM based features. Highlighted results are the best EER
values per feature representation.

files. Tables 3.7 and 3.8 show the EER comparison for different frequency warpings and AM-FM

feature representations, respectively. As can be seen from Table 3.7, inclusion of delta coefficients

degrades performance of the system. Overall, the Linear-Frequency Cepstral Coefficients (LFCC)

and MFCC showed to be the two sets of feature vectors that can achieve the lowest error rates,

outperforming the WSS scale, which was developed specifically for whispered speech [83]. From

Table 3.8, in turn, it can be seen that the AM-FM based features provide a modest improvement

over the cepstral-based features. When using the gammatone filterbank, WIF features outperformed

the MHEC ones. The opposite behaviour was observed with the Gabor filter bank. In both cases

(cepstral and AM-FM based features), the EER results obtained with whispered test speech files

are slightly higher than those obtained with the normal-voiced files in Table 3.2, where an EER of

2.13% was reported with MFCCs.

Subsequently, feature combination was explored. Motivated by the results presented in Tables

3.7 and 3.8, the mel and linear scales were chosen to compute the MFCC and LFCC features,

respectively. The gammatone filterbank was used to compute the WIF features and the Gabor

filterbank to compute the MHEC features. Since the inclusion of delta coefficients did not present

any advantage for the considered feature sets, they were not included in this feature combination

analysis. Results are shown in the Table 3.9. According to these results, significant improvements

can be achieved by combining features, thus corroborating their complementarity. A relative reduc-
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Cepstral AM-FM features
Coefficients WIF MHEC
MFCC 1.79 2.03
LFCC 1.91 1.85

Table 3.9 – EER(%) comparison in W/W condition with different feature combination, where the best
features from Tables 3.7 and 3.8 were selected.

tion of the EER of approximately 33% can be seen when comparing the best results from Tables

3.7 and 3.8, and outperforming those for normal speech reported in Table 3.1.

These experiments show that whispered speech carry important speaker dependent information,

and by using the adequate feature representations it is possible to achieve high performance in

speaker verification tasks. As an example, by comparing results presented in Table 3.1 in the

Whispered/Whisper condition with best results presented in Table 3.9, a relative EER reduction

of 38% can be achieved by combining MFCC and WIF. It is important to emphasize, however,

that dedicated whispered speaker models for large-scale applications will be more challenging to be

developed, thus limiting the potential applications of speaking-style aware solutions.

3.5 Discussion

There is evidence based on subjective studies suggesting that invariant speaker identity across

different vocal efforts exists [30], i.e., a listener can recognize a speaker without training, using

only the experience with normally voiced speech of the same speaker. Despite different strategies,

such as frequency warping, preprocessing, and alternate feature representations, our results suggest

that the invariant information between normal and whispered speech is not sufficient to achieve

reliable performance in an SV task for both speaking styles. A compromise must be kept in order to

guarantee system performance in normal and whispered speech. Notwithstanding, for most of the

cases evaluated herein, improvements in the mismatched condition were accompanied with reduced

performance in the matched scenario. Moreover, the strategies that performed better for normal

speech did not exhibit the same benefits for whispered speech. This makes it difficult to find a

speaker feature representation that stores speaker identity information invariant across both vocal

efforts. More research is needed to find vocal effort invariant features.
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Frequency warping strategies, in the matched condition for whispered speech showed interesting

results. Simple approaches such as mel and linear scales showed to outperform the WSS scale, which

was designed specifically for whispered speech. This WSS scale divides the frequencies into several

critical bands from 0 Hz to 4 kHz giving more emphasis to the frequencies where the resonance

peaks of F1 and F3 are located. We found that the only advantage given by this strategy is an

error rate reduction in the mismatched condition. While the mel scale places emphasis on lower

frequencies around F1 and F2, WSS can better handle the mismatch condition due to the lower

variation of the third formant between normal and whispered speech relative to F1 and F2 [73].

According to our results, two techniques have shown promising results. First, feature combi-

nation, or fusion at the input level, helps to maintain the performance for normal speech inline

with the baseline system, whilst achieving gains in the relative EER reduction for the mismatched

condition. Second, multi-style modeling is the most effective way to actually bring down error rates

for whispered speech to comparable levels with normal speech. This however, is not enough for

practical applications, as according to our results negative effects were observed for normal speech

speaker verification when combining data from both speaking styles. Furthermore, a gap in perfor-

mance is still expected when comparing the two speaking styles, thus signaling the need of additional

strategies to compensate the expected losses and close the gap in performance. Experiments with

multi-style models, however, showed promising results.

3.6 Conclusions

In this chapter, the speaker verification (SV) task based on whispered speech recordings was ad-

dressed. More specifically, the performance bounds of a standard GMM–UBM SV system were

obtained using several strategies, such as frequency warping, sub-band analysis, alternate feature

representations, feature combination, as well as class-dependent modeling (i.e., speaking-style).

Our experimental evaluation shows that mismatch train/test conditions can highly affect the per-

formance of a SV system, independent of the feature representation used. As in previous studies in

adjacent areas, it was shown that in order for a SV system to handle both normal and whispered

speech for practical applications, speaker model training had to involve data of both vocal efforts.

Such approach, however, resulted in poorer verification performance for normal speech. Overall,

feature representations evaluated here have been mainly proposed for normal-voiced speech appli-
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cations, thus suggesting that alternate feature representations, tuned for whispered speech speaker

verification, are still needed.

Experiments in the subsequent chapter will focus on multi-style models and fusion schemes in a

more realistic scenario. This will be done by including additional speakers from different datasets

and using more recent proposed approaches for speaker verification. More specifically, by following

results presented in this chapter, we will focus on specific feature representations such as the classical

MFCC and WIF as they showed a good tradeoff between performance in matched and mismatched

conditions for both speaking styles.



Chapter 4

Feature Mapping and Fusion Schemes

4.1 Preamble

Results presented in this chapter were published in publications #6 and #7 listed in Section 1.3

[65, 66]. In this chapter, we first explore what is achievable with standard mel-frequency cepstral

coefficients and features derived from the AM-FM model. By using feature mapping strategies, we

explore if speaker specific characteristics affected when the speaker changes the speaking style can

be mapped to specific feature domains in order to compensate for the lack of whispered speech

data from target speakers. Next, complementarity of features derived from AM-FM models over

conventional MFCC is explored using three fusion schemes. Results show that in the context of

multi-style models, fusion strategies are more effective than feature mapping strategies and more

research should be done in this direction.

4.2 Introduction

Here, we build on the insights presented in Chapter 3 and compare the performance of different

speaker verification systems trained and tested under different scenarios and using different feature

representations. Furthermore, experiments in the previous chapter were carried out in an ideal

scenario, using a limited number of speakers, and a closed set scheme for speaker verification by

using speech recordings from target speakers also for parameter estimation. In this chapter, we adopt
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Figure 4.1 – Different data recordings involved during training, enrollment and testing of a speaker
verification system.

a more realistic evaluation scheme by including additional datasets recorded in different conditions,

which also increases the number of speakers. Besides, following standard evaluation protocols for

speaker verification, we make a clear distinction between background speakers and target speakers

or clients. Figure 4.1, shows the protocol typically followed during training, enrollment and testing

stages. As can be seen, three different sets of speech recordings are needed. First, large amounts of

speech data are needed to train e.g., the so-called GMM universal background model (UBM) and

estimate other parameters needed for i-vector extraction (e.g., the T matrix estimation). During

enrollment, a separate set is needed from each target speaker to allow for e.g., maximum a posteriori

adaptation in GMM-based systems or for i-vector extraction to match with testing samples. Lastly,

a third unseen data set is needed for system accuracy calculation. In the case of multi-style training,

whispered speech data can be available in one or multiple datasets [14, 40].

Results in Chapter 3 have focused on exploration of different features for whispered speaker

verification. As shown in Figure 2.4, one optional block includes feature transformation or feature

mapping. Such strategy was not explored in Chapter 3, thus is investigated here. A recent study

showed that such an approach can be helpful in speaker identification scenarios when the input

presented is shouted speech [13]. For feature mapping, neural networks and Gaussian mixture

models have been widely used in the voice conversion and voiced speech reconstruction literature

(from whispered to normal-voiced speech) [42, 106, 107]. It is not clear, however, if such mappings

can alter speaker identity information relevant for automated speaker recognition when using whis-

pered speech. This chapter explores the advantages of feature mapping alongside other mismatch

compensation strategies, namely fusion at the i-vector level.
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Num. speakers/Database Total record.
TIMIT wTIMIT CHAINS Norm. Whsp.

UBM estimation 462 0 0 3696 0
T-matrix estimation 462 14 0 9996 6300
LDA and PLDA training 462 14 0 9996 6300
Enrollment 100 24 36 1280 480
Testing 100 24 36 320 120
Fusion system 68 10 0 780 230

Table 4.1 – Number of speakers and total number of recordings per database for training, enrollment
and testing, and train the fusion system at score level.

Moreover, results presented previously have focused on a small scale baseline system. Here,

a larger scale is performed, thus a more relevant baseline is needed with which performances can

be compared to. Prior to investigating the benefits of feature mapping and new fusion schemes,

accurate characterization of the baseline is needed, as detailed next.

4.3 Baseline SV system characterization

In this section we describe how the datasets described in Section 2.3 are used for SV system training

and a baseline system is presented and characterized.

4.3.1 Task design

Speakers from the three databases were divided into three disjoint sets, one for training (to be

used as background data), a second for enrollment and testing, and a third one to train the score-

level fusion system. Recordings from 462 speakers from the TIMIT database and 14 speakers from

wTIMIT, 476 in total, are included in the training set. Recordings from 100 speakers from TIMIT,

24 speakers from wTIMIT and 36 speakers from CHAINS are included in the enrollment and testing

set. Average duration of each speech recording is 4.5 seconds, thus are rather short utterances with

limited phonetic variability compared to typical NIST datasets for normal SV (which are around

120 seconds). To characterize the baseline system we included only normal speech recordings for

training and enrollment, for testing we used two recordings per speaker, and if there are whispered

speech recordings available then two additional sentences were included per speaker. Details can be

found in Table 4.1.
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Since fusion at the score-level requires training of the fusion system, we selected an independent

set of speakers, namely 68 from the TIMIT database and 10 from the wTIMIT database, to create

a new evaluation list. For enrollment, a configuration similar to the one used for the original

evaluation list was used, including eight additional recordings of whispered speech for the 10 speakers

of wTIMIT. For the new evaluation list, in order to have approximately the same amount of target

and impostor scores from each speaking style, two recordings of normal speech and 15 recordings

of whispered speech per speaker were used. For i-vector fusion, on the other hand, training of an

additional system was not required, thus represents an advantage of such fusion scheme.

4.3.2 Settings for feature extraction and parameter estimation

For all databases in this study and prior to feature extraction, each speech recording was down-

sampled to 16 kHz and the signal values were normalized to the range [−1, 1]. Feature vectors

were computed on a per-window basis using a 25 ms window with 40% overlap. In particular

for MFCC features, 27 triangular bandpass filters spaced according to the mel scale were used in

the computation of 13 MFCC features including the 0–th order cepstral coefficient (log-energy)

motivated by [40]. A 13 dimensional MFCC feature vector was shown to be an optimal setting

for i-vector extraction, opposed to the 19 dimensional feature vector used for the GMM-UBM +

MAP adaptation approach. Dynamic or transitional features (∆ and ∆∆ MFCC) were computed

by means of an anti-symmetric Finite Impulse Response (FIR) filter of length nine to avoid phase

distortion of the temporal sequence. After dropping frames where no vocal activity was detected,

cepstral mean and variance normalization was applied per recording to remove linear channel effects.

The other feature set considered is the WIF, in this case and according to results presented in

Chapter 3, a gammatone filterbank [43] with 27 channels was used. Filter center frequencies (fck)

range from 100 Hz to 7000 Hz and their bandwidths are characterized by the mel scale. Pre-

emphasis filter and feature normalization are not used for this feature set as they were shown

to perform better without these pre-processing stages. Parameters such as sampling rate, window

length, window overlap, number of filters and number of cepstral coefficients were selected motivated

by [37, 40, 43].

For the UBM, different number of Gaussians were tested, i.e., C = {128, 256}, and results

presented in the baseline characterization are those that turned out to be the best ones. The same
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SV system EER
Baseline system (LFCC) [97] 2.68

MFCC WIF
GMM-UBM + MAP adaptation 2.38 1.33
i-vector/cosine kernel 2.91 2.94
i-vector/PLDA 1.79 1.37

Table 4.2 – EER comparison with the baseline system using only the TIMIT database. For these
results C = 256, and D = 400.

GMM-UBM was later used for different purposes such as for adapting to speakers specific models

by using MAP adaptation or to compute the Baum-Welch statistics during T matrix estimation.

For the T matrix, different dimensions were evaluated, i.e., D = {200, 300, 400}.

4.3.3 Baseline results

To characterize the performance of a valid baseline system to compare performances to, we follow

the steps suggested in [97]. In [97], the authors provided the lists for background, enrollment and

test sets using the TIMIT dataset. By using the same lists we report equal error rate (EER) results

in Table 4.2 using two scoring strategies, i.e., cosine kernel and PLDA based scoring, and as feature

vectors we used MFCC and WIF.

According to our results, and referring only to cepstral coefficients for this particular task, MFCC

seems to be a better choice than LFCC when comparing the two SV approaches, i.e., the system

reported in [97] which uses LFCC and the system we implemented using MFCC. It is important

to notice that WIF outperformed MFCCs with the GMM-UBM + MAP adaptation, while for the

PLDA based schemes, the two feature vectors have similar performance. Also, in the context of

i-vectors, the PLDA based system is preferable to the cosine distance based system. Hence, in the

experiments to follow we evaluated only the PLDA based system.

Next we performed similar experiments by using the three databases and the configuration

described in Section 4.3.1. Results are presented in Table 4.3. In the table we also included the

error rates when the system is evaluated with whispered speech.

As can be seen, for a standard speaker verification system based on the classical GMM+MFCC

paradigm, addition of new speakers during enrollment whose recordings have been obtained in
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SV system
MFCC WIF

Norm Whsp Norm Whsp
GMM + MAP 4.38 25.83 2.50 29.17
i-vector/PLDA 2.81 27.31 2.19 25.28

Table 4.3 – EER comparison between MFCC and WIF for the GMM+MAP adaptation based system
with train/test mismatch where C = 256, and the i-vectors/PLDA based system with C = 256 and
T = 400. Recordings from three databases were combined in these experiments, CHAINS, wTIMIT
and TIMIT.

different conditions can highly affect the performance of the system. Additionally, the performance

is highly affected if we evaluate the system with whispered speech. When we used WIF features,

on the other hand, the error rates are affected as well for normal speech, but this feature set seems

to handle in a better way the nuisance effects of the addition of new speakers. In the case of the

i-vector/PLDA based system, both feature vectors resulted in high performance when testing with

normal speech, in both cases better than the GMM+MAP adaptation based system. When testing

with whispered speech, again, the negative effects of the mismatch train/test condition are evident.

In the following sections strategies such as multi-style models, feature mapping and fusion schemes

will be explored.

Lastly, we performed an additional experiment in the context of the i-vectors/PLDA based

system by using only static MFCC. Results of these experiments were EER of 3.44% for normal

speech and 32.5% for whispered speech, which justify the inclusion of dynamic or transitional

features for MFCC in the experiments described above.

4.4 Multi-style model training

Previous results have shown the need to find strategies to compensate for the negative effects when

whispered speech is considered into the possible testing scenarios. If we assume that whispered

speech recordings are not available from target speakers, but there is data available from speakers in

the training set (background speakers), two strategies are possible: i) include whispered recordings

in the training set such that those recordings can be used during parameter estimation. From the

baseline experiments it is clear that the total variability matrix can map to a highly discriminative

space as long as there is sufficient statistics to learn from. This is the case for normal-voiced speech,

but not for whispered speech. The lack of sufficient whispered speech recordings for parameter
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(a) (b)

Figure 4.2 – Use of background data to train i) multi style models and ii) feature mapping.

estimation is one of the problems that has been discussed before. Even if a large number of recordings

were collected, it would not suffice as long as the number of speakers is small. This is the case for

the experiments herein, however, this scenario allows us also to evaluate how efficiently a system

uses the data available during training or parameter estimation. ii) Feature mapping, i.e., by using

training pairs of whispered and normal speech we can learn a mapping function and then apply this

transformation either from normal to whispered speech to create artificial whispered enrollment

observations or from whispered to normal speech to be used during testing, and compensate for the

differences between training and testing data. Figure 4.2 illustrates how to use the speech recordings

from background speakers in these two possible solutions.

For the following experiments we will use only MFCC feature vectors; this allows us to better

illustrate different configurations of a classical SV system and point out the need for better or

complementary feature representations such as WIF. First, the objective is to explore the effects

of adding whispered speech during parameter estimation. As mentioned previously, training data

contains recordings from both speaking styles, however for normal speech the number of speakers

is significantly larger than the number of speakers for whispered speech. In a pilot experiment we

found that for the parameter estimation of the GMM-UBM it sufficed to use only normal speech

recordings to estimate the parameters of the Gaussian components because the role of the GMM

model in this context is to cluster the acoustic features into broad acoustic classes. When adding

whispered speech recordings during T-matrix estimation, as illustrated in Figure 4.2 (a), significant

differences were observed.

For MFCC feature vectors, results presented in Table 4.4 show that the addition of whispered

speech during T matrix estimation can add gains in performance of about 30% when testing with

whispered speech, but also small increments are observed when testing with normal speech. It
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Normal Whispered
Feature UBM T matrix dimension

Set (C) 200 300 400 200 300 400

M
F

C
C

Only normal speech in T-matrix
128 3.23 3.44 3.38 30.00 29.17 28.56
256 3.05 2.92 2.81 29.43 28.52 27.31

Norm. and Whsp. speech in T-matrix
128 3.78 3.69 3.36 20.99 21.11 20.83
256 3.18 3.44 3.13 20.00 21.91 20.83

W
IF

Only normal speech in T-matrix
128 1.54 1.88 2.63 26.34 24.04 26.67
256 1.38 1.56 2.19 25.83 24.17 25.28

Norm. and Whsp. speech in T-matrix
128 2.71 3.13 3.44 18.81 19.13 21.53
256 1.88 2.81 3.41 18.72 19.17 18.42

Table 4.4 – EER comparison using MFCC and WIF feature vectors, between using only normal speech
recordings for parameter estimation and using normal and whispered speech for parameter estimation.

is important to notice that the i-vector extractor, and the SV system in general, can learn some

variability from the speech recordings that were included during parameter estimation, but it is not

enough, and there is a gap in performance of about 17% between EER for normal and whispered

speech. This gap in performance is expected as the mismatch problem is still present. While we

have added some general structure of the whispered speech feature space which is being learned by

the recognition system, during enrollment there are still within-speaker variations that are not well

represented in the samples used from the target speakers. Thus, the mismatch problem is present

as session variability within the target speaker that the recognition system is not able to handle.

For the sake of completeness, we perform a similar experiment as the one presented for MFCC

using WIF feature vectors. Results are also presented in Table 4.4. As can be seen, WIF perform

better than MFCC in the matched and mismatched conditions. These results are in line with the

preliminary experiments we performed in Chapter 3 and points towards the idea that the information

present in the slowly varying envelope of the bandpass signals is highly discriminative, but we cannot

disregard the phase of these signals and WIF are a feature set that combines the information from

the envelope and the phase resulting in a feature vector highly discriminative. The remainder of

this chapter will explore the potential of feature mapping and alternate fusion schemes as strategies

to reduce this gap between normal and whispered speech, without the need for whispered speech

recordings from target speakers.
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4.4.1 Feature mapping

Two feature mapping techniques were evaluated in our experiments. The first approach is the

classical Gaussian mixture model (GMM) regression [41], originally proposed for text-to-speech

synthesis. Such method models both the source and the target feature vectors using a joint density

GMM of time aligned target and source features. Model parameters are estimated using the standard

expectation-maximization (EM) algorithm. With the estimated parameters a mapping function is

formulated to compute the minimum mean square error estimate of the target feature vectors. Let

X be the source feature space, and Y the target feature space, then the feature mapping operation

is denoted by ŷ = fΘ(x) = R
d → R

d, where d is the dimensionality of the feature vectors, Θ denotes

the model parameters, and ŷ is the estimated target feature vector from the input x. The GMM is

trained using the stacked feature vectors zt =
[

xT
t , yT

t

]T
of dimensionality 2d. The joint probability

density function is given by:

p (zt|Θ) =
C
∑

i=1

αiN (zt, µ
(z)
i , Σ(z)

i ), (4.1)

where µ
(z)
i =

(

µ
(x)
i

µ
(y)
i

)

, and Σ(z)
i =

(

Σ
(xx)
i

Σ
(yx)
i

Σ
(xy)
i

Σ
(yy)
i

)

are the mean vector and covariance matrix, respec-

tively. The four sub-matrices in Σ(z)
i are full covariance matrices. Once the parameters of the joint

probability density function have been estimated via the EM algorithm, the mapping function can

be written as [41]:

ŷ = fΘ(x) =
C
∑

i=1

p(i|x)
(

µ
(y)
i + Σ(xx)

i

(

Σ(xx)
i

)

−1
(x − µx

i )
)

, (4.2)

where is p(i|x) the posterior probability that the i-th Gaussian component generated x, and can be

calculated as described by Equation 2.12. Additional details can be found in [41]. This mapping

can be used to transform whispered to normal speech features or vice-versa, by properly defining

source and target feature vectors.

The second technique is based on neural networks, which have been shown to be useful in

the voice conversion literature [42]. Here, we explore the use of emerging deep neural networks

(DNN), which have achieved state-of-the-art results across several research domains. We explore
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Figure 4.3 – Deep neural network architecture for feature mapping.

their flexibility in learning the direct mappings between whispered and normal speech features. By

using the same notation as before, the feature mapping ŷ = fΘ(x) = R
d → R

d in this case is a

sequence of non-linear operations that can be expressed using the same notation as used in Equation

2.3 [42]:

ŷ = G(x) = g̃
(

W (3)g
(

W (2)g
(

W (1)x
)))

. (4.3)

For the experiments herein, two stacked pre-trained autoencoders [108] with 512 hidden units

each were used in our experiments, with g(·) as a sigmoid function and g̃(·) the identity function.

Figure 4.3 illustrates the DNN architecture used in our experiments. This technique is also used to

transform whispered to normal speech features or vice-versa, depending on the specific setting.

Alignment of normal and whispered speech features

Before learning any mapping it is necessary to guarantee the correspondence in time of the sequences

to be used during training. To align the time sequences we used a similar approach as the one in

[13], where alignment is achieved using dynamic time warping (DTW). The alignment algorithm,

however, needs to be adapted in order to be useful for whispered speech. Initially, we compared two
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(a) (b)

Figure 4.4 – Plots comparing two alignment strategies (a) Using full band MFCC and (b) using limited
band LFCC.

feature representations to compute the distance matrix between the two recordings to be aligned,

then we selected the best alignment and compare the final performance of the system. For the

sake of completeness, here we describe the two approaches and how the best approach was selected.

The first feature representation is the standard MFCC previously described in Section 2.2.1. The

second approach is based on results presented in previous studies [34] and the analysis performed in

Chapter 2 (see Figure 2.3), where it was shown that on average comparing the spectral envelope of

both speaking styles, the frequency band where there are less differences is approximately between

1.2 - 4 KHz. As such, a linear spaced filterbank within this acoustic sub-band and 12 linear

frequency cepstral coefficients were used to compute the distance matrix. A linear spaced filterbank

is preferred for this purpose in order to not emphasize any particular frequency band. Figure

4.4 compares spectrograms before and after warping for the two approaches and illustrate how

the choice in feature representation affects considerably the final result. Figure 4.5 on the other

hand, compares the two alignment paths; as can be seen, the second approach can be considered

as optimal because the lowest-cost paths are always close to the diagonal, which allows that the

replicated frames to be evenly distributed along the whole recording and not in a single area, as is

the case with the MFCC.
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(a) (b)

Figure 4.5 – Plots comparing the lowest cost path computed with two feature representations, namely:
(a) standard MFCC, and (b) limited band LFCC (1.2 - 4 kHz).

Evaluation Norm to Whsp Whsp to Norm
Measures GMM DNN GMM DNN
MCD 13.84 12.78 13.96 12.75
εrms 0.644 0.596 0.649 0.595

Table 4.5 – Evaluation measures comparison between the two feature mapping techniques. MCD -
Mean Cepstral Distance and εrms - root mean square error

Feature mapping

First, recordings from 14 speakers, seven female and seven male, from the wTIMIT database were

used. Each speaker uttered approximately 450 different sentences, each of them in normal-voiced

and then in whispered mode; in total 6298 pairs of utterances were included into the analysis. Since

phonemes uttered by the same speaker have different duration in time for whispered and normal-

voiced speech, we need to ensure that training utterances are phonetically aligned. To guarantee

this, we used the alignment algorithm with limited band LFCC to compute the distance matrix.

Table 4.5 compares the feature mappings in terms of mean cepstral distance and root mean square

error between the original signal and its mapped counterpart. In terms of these measures the

DNN performs better than the GMM-based mapping. However, the advantages of using a feature

mapping should be decided on the basis of speaker verification performance, as detailed next.

Table 4.6, in turn, reports the equal error rate (EER) results obtained with the standard i-

vector/PLDA based system, again using the conventional MFCC features. Four cases are reported to

completely illustrate our experiments: Baseline illustrates the scenario where only normal speech is

available for training and enrollment, no feature mapping is applied and no whispered speech features
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Normal Whispered
Scenario Feature Mapping

none GMM DNN none GMM DNN
Baseline 2.81 – – 27.31 – –
Mapping - case a 3.13 8.75 6.25 20.83 24.17 20.00
Mapping - case b 3.13 3.13 3.13 20.83 17.50 21.07

Table 4.6 – EER comparison with the baseline system and the two feature mappings in different
scenarios. For these results C = 256, and D = 200.

were used for parameter estimation. Mapping - case a): illustrates the case where normal speech

features from the enrollment set were mapped to whispered ones using GMM or DNN mapping

functions. Mapping - case b), in turn, exemplifies the scenario where whispered speech features in

the test set were mapped to normal speech ones using the GMM/DNN mapping functions. The latter

case assumes an oracle normal/whisper classification system, thus the results for normal speech are

unaffected. In both Mapping case a) and b), whispered speech features from the background speakers

set were also included during parameter estimation, i.e., for T-matrix, i-vector post-processing and

PLDA training, because by using only the mapped features slight improvements were observed (in

the order of 2%), i.e., these two cases complement the multi-style model with feature mapping. The

three columns in the Table represent no feature mapping (none), GMM or DNN based mapping. For

these experiments the model parameters are C=256 and D=400, for the GMM-UBM and T-matrix,

respectively.

As can be seen from Table 4.6, both feature mappings add some gains when testing with whis-

pered speech, with relative improvements up to 37%. Despite the results reported in Table 4.5,

suggesting that DNN mapping was better than GMM, such gains are not reflected in the EER

results. These results also show that the addition of whispered speech during parameter estimation

does not suffice to boost performance when testing with this speaking style, as whispered speech

data does not contain enough inter-speaker variability.

In summary, feature mapping showed to provide some benefit for the train/test mismatch prob-

lem, but still resulted in a large gap between whispered and normal speech performances. As seen

previously, addition of whispered recordings from target speakers seems to be the most effective

method of shortening this gap [26], but with the disadvantage of hampering normal speech SV

accuracy. Next, we explore alternate fusion schemes to investigate how efficiently these approaches

can use the limited resources available during parameter estimation.
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4.4.2 Fusion schemes

Three fusion schemes are investigated in this chapter, two at the input level and one at the output

level, namely: i) Frame level fusion, ii) i-vector concatenation and iii) score-level fusion. Diagrams

in Figure 4.6 (a)-(c) depict these fusion schemes, respectively. For frame-level fusion, MFCC and

WIF features are concatenated into a final feature vector. Principal component analysis is then

performed to remove redundant variables and only the top components are kept as features with

99% of cumulative variance retained. These top components are then used for i-vector computa-

tion. With i-vector concatenation, in turn, i-vectors extracted from MFCC and WIF features are

concatenated into a final feature vector prior to post-processing, i.e., prior to LDA, whitening, and

length normalization. This strategy has shown to be effective in various scenarios such as language

recognition and short utterance speaker recognition [109, 110] to combine strengths of i-vectors

estimated from different feature representations. This approach does not require training of an ad-

ditional system thus represents an advantage over score level fusion. Fusion at frame- and i-vector-

level (i.e., Figure 4.6 (a) and (b)) are both cases of fusion at the input level when seen in a general

scheme as previously depicted by Figure 2.4.

Lastly, for score-level fusion, separate data (different from background and target speakers) is

needed to train the fusion system and the systems to be fused (i.e., systems trained on MFCC and

WIF feature sets) are evaluated using an unseen evaluation set. A logistic regression function is

used as a fusion system and maps evaluation scores into a final decision using the Bosaris toolkit

[111]. To estimate the parameters of this fusion system, speech recordings from TIMIT and wTIMIT

datasets were used as described in Section 4.3.1.

Next, we present the results of the three fusion schemes, frame-level fusion, i-vector concate-

nation and score-level fusion. Results are presented in Table 4.7, with the best overall results

highlighted in bold per speaking style. By comparing the three fusion schemes we can see signifi-

cant differences; for example, fusion at frame level seems to be the less efficient way to combine the

information from the two feature sets. Results presented for the feature sets separately in Table

4.4 are better than those attained by combining the two feature sets at the frame level. Fusion

at higher levels, on the other hand, such as at the i-vector- or score-level, shows to be a better

option. While the i-vector concatenation has the advantage of not requiring the training of a sepa-

rate mapping function, score level fusion resulted in the lowest overall EER. When comparing with
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(a)

(b)

(c)

Figure 4.6 – General building blocks of the fusion schemes: (a) Frame level fusion, (b) i-vector con-
catenation and (c) Score-level fusion.

the baseline system presented in Table 4.3, relative improvements are 44% and 42% for normal

and whispered speech, respectively, were obtained relative to MFCC features and 28% and 37%,

respectively, relative to WIF features. Figure 4.7 complements EER results with the DET curve of

the best configuration per speaking style and per fusion scheme. Solid and dashed lines correspond

to testing with normal and whispered speech, respectively. As can be seen, for these feature sets,

frame-level fusion performs the poorest. When comparing i-vector concatenation and score-level

fusion, there are slight differences and the later is the best choice for the task at hand.

These experimental results show the advantages of using system fusion when using the classical

MFCC and features extracted from the AM-FM model as feature vectors. Furthermore, the use

AM-FM based features suggested that the phase and envelope of bandpass signals can contain

highly discriminative speaker specific information for i-vector extraction purposes and complement
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UBM
Normal Whispered

T matrix dimension
200 300 400 200 300 400

Frame-level fusion
128 4.15 3.35 3.44 19.85 22.00 20.83
256 4.04 3.14 3.37 21.67 19.98 20.83

i-vector concatenation
128 2.19 2.19 2.19 16.54 16.67 17.46
256 1.87 2.03 2.29 21.67 16.67 16.43

Score-level fusion
128 2.07 2.50 2.38 15.83 15.84 16.67
256 1.56 1.88 2.30 15.97 19.98 16.67

Table 4.7 – EER comparison using three different fusion schemes, and two feature sets MFCC and
WIF.
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Figure 4.7 – DET curve comparison of the best configuration per fusion scheme. Solid and dashed
lines correspond to testing with normal and whispered speech, respectively.

classical MFCC based schemes for both normal and whispered speech. While feature mapping and

fusion resulted in improvements over the baseline, the gap between normal and whispered speech

still remains, thus suggesting that alternate feature representations may be needed.
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4.5 Conclusions

In this chapter we have addressed the issue of speaker verification based on whispered speech in

a more realistic scenario. Three databases were pooled together in order to increase the number

of speakers and add more flexibility to the experimental evaluation. The addition of whispered

data during training, in order to add information about whispered speech variability, combined

with feature mapping techniques, to compensate for the lack of whispered speech data from target

speakers, was shown to not suffice to boost speaker verification performance for whispered speech.

As an alternative, we explored complementary information extracted from WIF and MFCC feature

sets via three fusion schemes, namely: i) frame level, ii) i-vector concatenation, and iii) score level.

Gains as high as 42% and 44% were obtained for whispered and normal speech, respectively, relative

to a baseline system based on i-vectors/PLDA+MFCC with no whispered speech in the training

set.

Overall, we observed that existing features (e.g. MFCC) do not convey sufficient reliable speaker

identity information across different vocal efforts. Given the lack of sufficient speakers to train

independent and dedicated models for whispered speech, techniques such as feature mapping seem

to be insufficient to improve performance and fusion schemes seem to be more effective. Nonetheless,

the mismatch problem is still present and the gap in performance is still considerable between normal

and whispered speech.

These insights suggest that innovative features conveying more speaker-dependent invariant

information across different vocal efforts are needed. From the results obtained with WIF features,

information extracted from slow varying envelope from bandpass signals or information related to

the phase seems to be an alternative to be explored. These new features are described in the next

chapter.





Chapter 5

Exploring Speaker-Dependent

Invariant Information Between

Normal and Whispered speech

5.1 Preamble

Results presented in this chapter are also detailed in papers #3 and #8 listed in Section 1.3. Paper

#3 has been accepted with minor revisions to be published in the journal Computer Speech &

Language and paper #8 has been submitted to EUSIPCO 2017 [62, 67]. In this chapter, we focus

attention on the extraction of invariant speaker-dependent information from normal and whispered

speech, thus allowing for improved multi-vocal effort speaker verification.

5.2 Introduction

In previous chapters we have explored different techniques that have been reported in the literature

to be useful in adverse conditions, or to extract important speaker-dependent information useful for

speaker recognition tasks. In Chapter 3, for example, we evaluated different feature representations

and system configurations. Chapter 4, in turn, evaluated the combination of multi-style models

with feature mapping and fusion schemes. Here, to complement the above-mentioned strategies, we
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explore the computation of innovative features that extract invariant information embedded within

both speaking styles.

Motivated by findings from the previous chapters and from the literature, two classes of features

are proposed. First, we propose variants of the classic MFCC feature in order to better extract

vocal-effort invariant information. Second, we extract a new feature set based on modulation

spectral analysis. Our pilot experiments with AM-FM features have highlighted the advantages

of the slowly varying envelope for the task at hand. Moreover, previous studies have shown that

the modulation spectral signal representation accurately decouples speech from environment- based

components (e.g., noise and reverberation) [43], thus can potentially add robustness to practical

speaker recognition systems. Performance of the new features sets are compared to the classical

MFCCs and the baseline system described in Section 4.4.

5.3 Towards cross-vocal effort SV: new feature representations

5.3.1 Variants of the MFCCs

According to perceptual and acoustic studies, two of the most salient differences between normal

and whispered speech are related to the spectral envelope, i.e. i) whispered speech has a lower and

flatter power spectral density [25] and ii) the formants shift towards higher frequencies [71, 73].

This last observation is more noticeable for the first three formants (F1, F2 and F3), where, F1

shifts can be up to 71% for men and 52% for women; F2 shifts can be up to 24% for men and 20% for

women; and F3 shifts can be of 10% and 4.8%, respectively [73]. These differences were discussed

in Chapter 2, where it was shown that most of the differences remain below 1.2 kHz. Figure

2.3 illustrates these differences by depicting the average power spectrum of amplitude-normalized

and pre-emphasized recordings from 36 speakers (male and female). For normal speech, most of

the energy is concentrated below 1 kHz, whereas for whispered speech it is concentrated below

500 Hz, with frequency shifts in the spectral peaks and valleys (F1 shifts are most prominent). In

Chapter 2 it was also discussed that there are some similarities between the two speaking styles;

for example while it has been documented that characteristics of vowels and voiced consonants are

significantly different, unvoiced consonants are relatively similar [33]. Based on these insights, two

MFCC variants are explored.
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As mentioned in Section 2.2.1, following the source-filter model of speech generation shown in

Figure 2.6, it is possible to split the speech signal in two components: an excitation signal and a

transfer function which models the vocal tract configuration [68]. The excitation can be visualised

as the combination of two different signal generators: one for voiced-speech and another for voiceless

(noise-like) speech. The excitation signal is also known as residual. In the past, features extracted

from the residual have been shown to contain important speaker-dependent information useful for

speaker recognition tasks [112, 113, 114]. This is relevant for whispered speech because by removing

the influence of the vocal tract, then differences related to the spectral envelope are no longer a

nuisance factor affecting SV performance.

It is widely known that the residual signal of normal speech contains quasi-period pulses corre-

sponding to glottal closure/opening instances during vocal fold vibration of voiced speech segments.

Unvoiced segments, in turn, are not caused by a regular vibration (glottal excitation) but rather by

turbulent airflow due to a constriction in the vocal tract [68]. Unvoiced sounds have been shown to

remain unaffected during whispering mode [33], and also to contain important speaker-dependent

information for speaker recognition tasks using whispered speech [26, 115]. As such, it is expected

that features extracted from the residual signal will carry some invariant speaker information, par-

ticularly from the unvoiced segments. While it is not expected that the residual based feature will

perform accurately alone, as most of the speaker-dependent information is typically embedded in

spectral envelope associated to the vocal tract configuration, it should carry complementary infor-

mation that can be fused with other features [114, 116]. These features are termed RMFCC and

are used for i-vector computation.

Previously, residuals were also explored for speaker verification of normal narrowband speech

(i.e., 8kHz sampling) [114]. In such case, the residual modelled differences in excitation energy and

periodicity information amongst speakers. Here, residuals are explored for alternate reasons, as there

is no periodicity to be modelled with whispered speech due to the lack of vocal fold vibrations. Our

hypothesis is that the resulting spectrally flat signal, even with the harmonic structure for normal

speech, has reduced differences when comparing the two speaking styles. Furthermore, unvoiced

sounds have more energy concentration at higher frequencies [68] and consonants such as stops,

fricatives and affricates have more spectral similarities at frequencies higher than 4 kHz [25]. As

such, by analyzing residuals from wideband speech, more information related to the unvoicedness

will be captured. Given the similarities between the two vocal efforts for unvoiced speech segments,
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it is believed that this information will contain useful speaker-dependent information invariant across

the two vocal efforts.

The process to compute the residual or excitation signal is as follows: Given the speech signal,

using linear predictive analysis, it is possible to rebuild the vocal tract transfer function by esti-

mating the parameters of a low-order all-pole filter. By definition, linear prediction analysis uses

the redundancy in the speech signal to predict the current sample, x̂(n), as a linear combination

of past p samples, as shown by Equation 5.1, where {ai} are the linear prediction coefficients and

x(n) is the speech sequence. The residual e(n) is the prediction error obtained as the difference

between the predicted speech sample and the actual sample [68], as shown in Equation 5.2. Since

the excitation signal is spectrally flat, uncorrelated white noise, the transfer function of this all-pole

model represents the spectral envelope of the speech signal. Having the transfer function, inverse

filtering is used to recover the excitation or residual signal [68], the relation error (output) to speech

signal (input) of the inverse filtering process is shown in Equation 5.3.

x̂(n) =
p
∑

i=1

aix(n − i), (5.1)

e(n) = x(n) − x̂(n) = x(n) −
p
∑

i=1

aix(n − i), (5.2)

E(z)
X(z)

= 1 −
p
∑

i=1

aiz
−k. (5.3)

Typically, the use of narrowband (NB) signals for telephone based communications has limited

the analysis of speech signals for feature extraction to the range of frequencies in 0.3 - 3.4 kHz. With

the use of emerging wideband (WB) communications and advanced digital signal processing tech-

nology in the telecommunications infrastructure, this range has been expanded to 8 kHz [117]. This

has motivated detailed analyzes to explore the role and relevance of different frequency subbands for

speaker recognition tasks. As an example, for NB speech signals in [118] it was shown that the 1.5 -

3.4 kHz frequency sub-band contains more discriminative information than the lower 0.3 - 1.5 kHz

frequency sub-band, except for nasals. For WB speech signals, on the other hand, in [119] it was

shown that the frequency sub-band 4-8 kHz provides a performance similar to that obtained with
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the frequency sub-band 0-4 kHz, thus suggesting the presence of relevant speaker-discriminative

information beyond 4 kHz. In a different study, it was shown that for text-dependent speaker iden-

tification, higher frequency channels were more relevant for speaker recognition than those located

at lower frequencies [120]. It was reported that the lowest identification rates were associated to

channels containing information of first and second formants, and that there was a high negative

impact in performance when removing channels containing information from the frequency band

between 5 kHz to 8 kHz [120]. Moreover, preliminary results presented in Chapter 3 suggested that

by using the sub-band from 1.2 kHz to 4 kHz to compute the different feature sets it was possible

to improve performance in the mismatch condition, but at the cost of reduced performance in the

matched scenario.

By using these insights, we propose an alternate variant of the MFCC, which follows the typical

processing pipeline described in Section 2.2.1, but is computed from the 1.2-8 kHz sub-band. By

doing this, the sub-band that comprises mostly information from the first formant (F1) is removed

which, as mentioned above, can have shifts as high as 71% for men and 52% for women, relative to

F1 from their normal speech counterparts. Hence, most of the speaker specific information relevant

for speaker recognition tasks is preserved and the performance in normal speech should not be

affected. These features are termed LMFCC and are used for i-vector computation.

For the experiments herein, as described for MFCC features in Sections 2.2.1 and 4.3.2, 39-

dimensional feature vectors were used, i.e., thirteen LMFCC and RMFCC features were computed

including the 0–th order cepstral coefficient using 25 ms windows with 40% overlap. Delta and

double delta coefficients were appended to include dynamic or transitional information.

5.3.2 Auditory-inspired amplitude modulation features - AAMF

For the analysis in this section we assume that an observed time-domain signal is the result of

multiplying a low-frequency modulator (temporal envelope) by a high-frequency carrier. Hence, the

modulation spectrum characterizes the rate of change of long-term speech temporal envelopes [121],

and the analysis is carried out by using acoustic subbands. The modulation frequency (modulation

domain) represents the frequency content of the subband amplitude envelopes and it potentially

contains information about speaking rate and other speaker specific attributes [40]. Auditory-

inspired amplitude modulation features have been effectively used in the past to improve automatic
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speaker identification in realistic environments, as it was shown that they accurately separate speech

from environment-based components [43]. In that case, the technique relied on identifying the

modulation frequencies that remained unaffected by environmental noise based on energy levels,

and disregarding those that presented significant changes when affected by noise. A similar idea

can be applied for the task at hand. However, identification of channels or variables containing

invariant information cannot be based on energy levels given their inherent differences between

normal-voiced and whispered speech. For this reason, mutual information (MI) is chosen to compare

pairs of variables coming from the two speaking styles and determine whether a specific modulation

frequency channel contains shared information that can be useful for speaker recognition purposes.

The proposed auditory-inspired amplitude modulation features are computed following the ap-

proach described in [122] with some adaptations required fit our needs. More specifically, the

speech signal x(n) is first processed by an N -point short-time discrete Fourier transform (STDFT)

to generate X(nLa, fa) given by:

X(nLa, fa) =
∞
∑

m=−∞

x(m)wa(nLa − m)e−i 2πk
N

m, (5.4)

where wa(n) is an acoustic frequency analysis window and La denotes the frame shifts, the subscript

a stands for acoustic domain. Acoustic frequency components (termed fa) are aligned in time to form

the conventional time-frequency representation. In order to emulate human cochlear processing, the

squared magnitudes of the obtained acoustic frequency components are grouped into 27 subbands

(|Xj(·)|, j = 1, . . . , 27), spaced according to the perceptual mel scale as depicted by Figure 5.1 (top

plot). A second transform is then performed across time for each of the 27 subband magnitude

signals to yield:

Xj(mLm, fm) =
∞
∑

n=−∞

|Xj(n)|wm(mLm − n)e−j 2πk
N

n, (5.5)

where wm(m) is a modulation frequency analysis window, Lm the frame shift, the subscript m

stands for modulation domain, j indexes the acoustic frequency bands, and fm represents modu-

lation frequency bins. Following recent physiological evidence of an auditory filterbank structure

in the modulation domain [123], we further group squared modulation frequency bins into eight

subbands using logarithmically-spaced triangular bandpass filters distributed between 0.01 − 80

Hz modulation frequency as depicted by Figure 5.1 (bottom plot). The speech modulation spec-

trum results in a high-dimensional feature representation (e.g., 27 acoustic bands ×8 modulation
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Figure 5.1 – Plots of frequency response of the 27- (top) and 8-channel (bottom) filterbanks used in
the experiments herein.

bands= 216 dimensions), finally log10 compression is applied. Figure 5.2 summarizes the above

described process. As can be seen, each recording is represented as a 3-dimensional array with

dimensions being acoustic frequency channel, modulation frequency channel and modulation frame

index. For a given modulation frame, which for this work is 100 ms, a two dimensional array repre-

sents the energy distribution across the different channels in both frequency domains. The evolution

through time of a particular point with acoustic frequency j and modulation frequency i represents

the variable ξ(i,j), as highlighted in dark gray in Figure 5.2.

Each modulation frame (a matrix with 27 × 8 = 216 elements) can be collapsed into a vec-

tor and used as standard features. However, given the high dimensionality of the resulting space

and correlation among different dimensions, each feature vector is projected to a lower dimensional

space using principal component analysis (PCA) with 40 components retaining 98.7% of cumulative

variance, which according to our experiments showed to be an optimal value. These 40 components

are then used for i-vector calculation. The main differences between our approach and the one

presented in [122] are in the way the modulation bins are grouped in logarithmic distributed bands,

thus better simulating the human auditory system; the log compression, and finally the dimension-
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Figure 5.2 – Decomposition of a speech recording in terms of acoustic and modulation frequency
components in a short time basis.

Normal Whispered
T matrix dimension

Feature set UBM 200 300 400 200 300 400

MFCC
128 3.23 3.44 3.38 30.00 29.17 28.56
256 3.05 2.92 2.81 29.43 28.52 27.31

AAMF
128 1.25 1.07 1.25 22.85 25.71 23.33
256 0.94 0.94 1.04 24.17 26.85 25.00

Table 5.1 – EER comparison between MFCC and AAMF using different values for the number of
Gaussian components in the UBM and T matrix dimension. No whispered speech recordings were
used during parameter estimation.

ality reduction, which according to our experiments result in a more informative feature vector for

the task at hand.

As a first step, in order to validate the discriminative capabilities of this feature representation,

we carried out an experiment by comparing with the standard MFCC feature vectors using different

configurations of the SV system as described in Section 4.4. Results are presented in Table 5.1 with

best results highlighted per feature set and per speaking style. As can be seen, AAMF not only

performed better in the matched condition for all cases but also helps to reduce error rates in

the mismatched condition. Since these results do not rely on whispered speech being used during

training, they suggest that the proposed AAMF features are more discriminative than standard
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MFCCs for both normal and whispered speech. The gap remaining between the two vocal efforts

is still high, however, thus indicating that further processing is needed. As in [43], further analysis

is needed in order to investigate which acoustic/modulation channels carry invariant information

across the two vocal efforts. This analysis is described next.

Mutual information (MI) based feature selection: In order to verify which acoustic/modulation

channels contained invariant information across vocal efforts, we relied on the mutual information

(MI), as it conveys both linear and non-linear statistical dependencies between the two efforts. MI

has been shown to be an effective tool to measure relevance and redundancy among different modal-

ities (e.g., [44, 45, 46]). By definition given two random variables X and Y with probability mass

functions p(x) and p(y) respectively, and joint distribution p(x, y), then the mutual information

between X and Y is given by [124]:

MI(X, Y ) =
∑

x,y

p(x, y) log2

p(x, y)
p(x)p(y)

. (5.6)

To derive p(x), p(y) and p(x, y) the variables X and Y were partitioned in N uniform intervals

and then the observed values for x and y were discretized. Having the number of data pairs, the

number of intervals and the discretized values, then the probability mass functions are represented

by a histogram [124].

Here, in order to compute MI, recordings from 14 speakers, seven female and seven male, from

the wTIMIT database were used. Each speaker uttered approximately 450 different sentences,

each of them in normal-voiced and then in whispered mode; in total 6298 pairs of utterances were

included into the analysis. Since phonemes uttered by the same speaker have different duration

in time for whispered and normal-voiced speech, we need to ensure that training utterances are

phonetically aligned such that during MI analysis all sentences have the same duration and the

analysis can be performed between two equivalent frames. To guarantee this, we used the dynamic

time warping (DTW) approach described in Section 4.4.1. However, since we are exploring the MI

of AAMFs between normal and whispered speech, using the LFCCs for time alignment may result

in unnatural temporal dynamics that may affect AAMF computation. As such, here we also explore

time alignment based on the AAMFs themselves. Figure 5.3 compares the two alignment paths; as
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can be seen, both achieve lowest-cost paths close to the diagonal, which allows the replicated frames

to be evenly distributed along the whole recording and not in a single area.

Finally, having the time series aligned, MI values were computed per variable per speaker (i.e.,

acoustic/modulation pair); thus resulting in 216 MI values per speaker. Each value is normalized

using the sum of entropies as:

M̂I =
2 · MI

H1 + H2
, (5.7)

where M̂I is the normalized MI value, H1 and H2 are the entropy values of the two variables being

compared. Next, having all MI values for a given speaker, they are re-scaled to the range [0-1] by

using the transformation :

x̂ =
(

x − minx

maxx − minx

)

, (5.8)

where x is the original value of a given variable to be re-scaled and x̂ the scaled value. Finally, all

MI values were averaged over the 14 speakers. Results from this analysis allow us to identify which

acoustic/modulation channels have a high degree of shared information between normal-voiced and

whispered speech by thresholding, we can then create a binary mask to be used to select which

channels to keep for SV system. training. For the experiments herein, the threshold was set to 0.4,

which resulted in the selection of 141 and 157 variables depending on which alignment approach is

used, i.e., LFCC or AAMF, respectively.

Figures 5.4 depicts the processing steps used in the creation of the MI-based binary mask.

Figure 5.5, depicts the obtained binary masks using the LFCC- (left) and AAMF-based (right)

alignment algorithms. As can be seen, both approaches eliminate the lower acoustic bands, with

the LFCC based alignment method resulting in more suppression in the 2-5 kHz acoustic bands

and modulation bands greater than 20 Hz. Finally, principal components analysis (PCA) was used

to reduce the high-dimensional feature set to 40 dimensions, accounting for 99.3% and 99.1% of

accumulated variance when using LFCC and AAMF for alignment, respectively. Figure 5.6 depicts

this final dimensionality reduction step prior to SV system training. Even though there were no big

differences in terms of error rate when (pilot) testing with normal speech, the alignment based on

AAMF showed to have better performance when testing with whispered speech. As such, results

reported henceforth will be based on AAMF alignment. The features resultant from this MI-
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(a) (b)

Figure 5.3 – Plots comparing the lowest cost path computed with three feature representations. (a)
Using limited band LFCC (1.2 - 4 kHz) as in Section 4.4.1, (b) Using AAMF.

Figure 5.4 – Identification of relevant variables (acoustic and modulation channels) using MI.

based feature reduction method will be referred to as AAMF(FS), which are then used for i-vector

calculation.

To test the effectiveness of the proposed feature sets, SV systems as described in Section 4.4 were

used (i.e., whispered speech recordings used only for T matrix estimation); results are presented

in Table 5.2. For completeness and comparison purposes, the MFCC results from Table 4.4 are

included as well.

As can be seen, by using the standard MFCC, there is a gap in performance between normal

and whispered speech around 17%, in the best case. Next, by using the RMFCC feature set, it is
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Figure 5.5 – Acoustic and modulation bands selected, these bands contain high degree of information
that is common for both, normal-voiced and whispered speech. Grey areas correspond to selected
channels, while the black ones to the disregarded channels.

Figure 5.6 – Process to compute modulation spectrum based features using the MI-based binary mask
and decorrelation using PCA.

clear that by removing the information related to the spectral envelope important speaker specific

information is also removed. Systems based only on this feature set are not expected to perform

at the same level as standard MFCCs, but may provide complementary information. And finally,

LMFCC are shown to perform equally well to MFCCs for normal speech, but to lower whispered

speaker verification error rate from 20% to 16.67%. Moreover, the AAMF(FS) feature set, results

in superior performance when testing with normal speech, regardless of the alignment method used
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UBM (C)
Normal Whispered

T matrix dimension
200 300 400 200 300 400

S1: MFCC
128 3.78 3.69 3.36 20.99 21.11 20.83
256 3.18 3.44 3.13 20.00 21.91 20.83

S2: RMFCC
128 8.44 8.14 7.50 25.83 24.42 25.95
256 8.44 7.50 6.70 24.20 25.00 22.95

S3: LMFCC
128 3.13 3.13 3.44 18.13 17.13 17.81
256 3.15 3.44 3.13 17.97 18.29 16.67

AAMF(FS) - LFCC alignment
128 1.56 1.58 1.55 21.22 19.82 20.86
256 1.60 1.36 1.26 20.51 19.17 20.83

S4: AAMF(FS) - AAMF alignment
128 1.00 1.25 1.18 20.00 20.00 20.57
256 1.56 1.12 0.94 18.44 18.29 14.80

Table 5.2 – EER comparison using three different feature sets: MFCC, RMFCC, LMFCC and
AAMF(FS).

to generate the binary mask. Regarding the configuration of the SV system, i.e., the number of

components in the GMM-UBM and the dimensionality of the T-matrix, we can see that for almost

all compared feature sets the configuration that offered the best results is C=256 and D=400,

hence, these settings will be used henceforth. In the Table, each feature set has received a label

“Si”. These labels will be used in Section 5.5 to indicate which feature sets were used during fusion.

5.4 Score-domain feature complementarity analysis

In order to better understand the contributions and complementarity of each newly proposed feature

set, we perform an analysis on the output scores of the systems trained on them. A comparison in

the score domain is more feasible and easier to interpret than a comparison in the feature space,

given that they are encoding different characteristics of the speech signals. For the analysis we use

the Lawley-Hotelling statistic [47], a commonly used measure in MANOVA (multivariate analysis

of variance) to compare the mean vectors of k groups of samples for significant differences. In this

case, we want to test whether or not the mean of impostor scores equals the mean of target speakers.
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The hypotheses are, therefore: H0 : µi = µt, vs. H1 : µi 6= µt, where µi and µt stand for impostors

and target speakers mean, respectively. The Lawley-Hotelling statistic is defined as [47]:

U (s) = tr(E−1H) =
s
∑

i=1

λi, (5.9)

where E and H are the “between” and “within” matrices respectively, λi are the eigenvalues of

E−1H, and s = min{p, k}, being p the number of variables and k the number of groups or classes.

The main advantage of this test is that the multivariate information in E and H about separation

of mean vectors is summarized into a single scale, on which we can determine if the separation

of mean vectors is significant. We reject H0 for large values of U (s). This test is carried out by

combining different systems in an incremental way, and separating the scores from normal and

whispered speech. This allows us to better understand the effect that the addition of a particular

system has in the separability of impostors and target speakers scores for each speaking style. The

analysis is also carried out per gender and the results are summarized in Figure 5.7.

In Figure 5.7 (a), bars represent the U (s) measure for the combined systems, normalized by the

max value because we are interested in the relative improvements from the baseline and not in the

absolute value per se. In the plots, normal scores are in dark grey, whispered speech scores, in turn,

are in light grey. Dashed lines represent the same measure for the baseline system, black for normal

and grey for whispered speech. As can be seen, for all cases the addition of a new system should

increase the separability for normal speech scores, but the same effect is not observed for whispered

speech. When combining with the baseline MFCC system, the feature set that seems to be most

beneficial for whispered speech is RMFCC; whereas AAMF(FS) seems to add more separability to

normal speech scores. When the three proposed sets are combined, benefits occur for both vocal

efforts. Lastly, maximal separation is seen to occur once the proposed features are combined with

MFFCs. It is important to emphasize, however, that these results only give an idea of how each

system contributes to the separation of impostors and target speakers scores, and the actual gains

in SV accuracy still need to be calculated.

Lastly, in order to explore possible gender biases within these feature sets, Figures 5.7 (b) and

(c) depict the same analysis, but separately for female and male speakers only, respectively. As can

be seen, the overall behaviour seems to be independent of gender, but the gains over the baseline for
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(a) (b)

(c)

Figure 5.7 – Lawley-Hotelling statistic analysis using combination of different systems to explore
contributions of individual feature sets. (a) Gender independent, (b) Female speakers and (c) Male
speakers.

whispered speech were shown to be higher for males. This corroborates the that male speech is highly

affected in whispered mode [73], thus most recent whispered speech speaker verification studies

have relied solely on female speakers [26, 37, 125]. These observations suggest that the proposed

features can improve whispered speech separability for target and impostor speakers particularly for

male speech recordings. Notwithstanding, given the limitations in our available whispered speech

datasets (e.g., gender imbalance with roughly twice as many male data points as female), gender-

specific models are not explored herein and are left for a future study. As such, results in the

following section refer only to gender independent systems.
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Fusion S5: S1 + S2 + S3 S6: S1+S2 S7: S1+S3 S8: S2+S3
level Norm Whsp Norm Whsp Norm Whsp Norm Whsp
Score 2.50 13.49 2.81 15.63 2.81 15.83 2.50 11.67
i-vector 2.19 14.71 2.19 16.46 2.53 15.70 2.19 13.26
Frame 1.88 15.63 2.19 16.84 2.34 16.33 1.95 15.40

Table 5.3 – EER comparison for different fusion systems. For these experiments C = 256 and T = 400.
Si: Sj+Sk represents the combination of feature set Sj and Sk according to the label in Table 5.2

5.5 Multi-style models trained with proposed feature sets

The results reported in Section 5.4 suggest that the proposed features encode information that is

invariant across vocal efforts and that they carry information that is complementary to each other

and to MFCCs. In Chapter 4, it was observed that system fusion was a reliable way of combining

information from complementary feature sets, thus the same approach is explored here as well.

More specifically, three fusion schemes are explored: i) frame level, ii) i-vector concatenation, and

iii) score level, as depicted by Figures 4.6 (a), (b), and (c), respectively.

Table 5.3 reports EER values for different combinations of MFCC and proposed MFCC variants,

for each of the three fusion strategies; lowest EER values are highlighted in bold per speaking style.

As can be seen, fusion of conventional MFCC with either of the proposed feature sets (i.e., set S6

and S7 in the Table) showed improvements for both normal and whispered speech, relative to the

S1 results reported in Table 5.2, thus highlighting the complementarity of the proposed features

to conventional ones. Notwithstanding, fusion of only the proposed MFCC variants (i.e., set S8)

resulted in further gains, particularly for whispered speech, with score-level fusion achieving the

lowest EER for whispered speaking mode. These findings corroborate those from the score analysis

shown in Figure 5.7 (a). Lastly, fusion of all features (i.e., set S5), while it did not improve the

performance for whispered speech, it did slightly lower the EER for normal speech when using the

frame-level fusion strategy.

Relative EER improvements, when comparing best results with the standard MFCC/PLDA

system presented in Table 5.2 (S1), are 19% and 43% for normal and whispered speech, respectively,

with score-level fusion. With i-vector concatenation, in turn, 30% and 36% gains for normal and

whispered speech are seen, respectively. Lastly, frame-level fusion resulted in relative improvements

of 39% for normal speech and 26% for whispered speech. Comparing to the baseline results presented
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Feature sets
Fusion level

Score i-vector
Norm. Whsp. Norm. Whsp.

S9: S2 + S4 1.44 12.64 1.28 14.17
S10: S3 + S4 0.94 13.40 0.94 15.69
S11: S2 + S3 + S4 0.94 10.04 1.20 12.14
S12: S1 + S2 + S3 + S4 1.25 12.43 0.94 13.22

Table 5.4 – Equal Error Rate (EER) comparison for different feature sets and fusion schemes under
two testing conditions. For these results C = 256 and T = 400.

in Table 4.4, the relative improvement achieved with the fusion of the proposed features in the

mismatch condition was of 57%.

By comparing the fusion schemes, it can be seen the one with best performance for whispered

speech is score-level fusion, while the best for normal speech is frame-level fusion. For normal speech,

these results are in agreement with most recent reports showing that feature concatenation to be

the an effective strategy to improve speaker verification accuracy [22, 23]. i-vector concatenation, on

the other hand, showed to be the scheme with a tradeoff between performance and computational

burden, as additional fusion scheme training is not needed, as was the case with score level fusion.

A major drawback of frame-level fusion is the need for synchronization of frame size and frame rate

of the features being concatenated. This poses a challenge, for example, when exploring fusion of

AAMFs with the MFCC variants. As a consequence, in the subsequent analyzes, score- and i-vector

level fusion only are explored.

Table 5.4 reports EER values of the fusion of the two classes of proposed features. As can

be seen, fusion of the AAMF set with either RMFCC (S9) or LMFCC (S10) resulted in gains in

normal speech, relative to results reported in Table 5.3, but not for whispered speech. Gains were

seen irrespective of the fusion strategy. Improvements for whispered speech were only seen when all

three proposed feature sets were combined (set S11) and score-level fusion was used. Interestingly,

the best results were achieved with set S11, i.e., without the inclusion of the baseline MFCCs.

These findings contradict those of the theoretical score-level analysis in Figure 5.7 where fusion of

all four feature sets indicated the best separability. This is likely due to the fact that the limited

amount of data available to train the linear function for score fusion did not model the boundary

found with the Lawlel-Hotelling analysis. Notwithstanding, the fusion analysis results from Table

5.4 follow the general tendencies observed in Figure 5.7 and show the proposed features extracting
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complementary information from speech recordings, thus helping not only to reduce error rates

when testing with whispered speech, but to also improve system performance for normal speech.

These observations apply also for i-vector concatenation, where we can see that attained results are

slightly better for normal speech than those achieved with fusion at score-level, but error rates for

whispered speech are on the contrary slightly higher.

Overall, fusion of the systems using the proposed feature sets (S11) achieved relative improve-

ments of 66% and 63% for normal and whispered speech, respectively, when comparing to the

MFCC/PLDA system without whispered speech in the background set (Table 4.4), and 69% and

51% when comparing to S1, respectively, using fusion at score-level (Table 5.2). Overall, the pro-

posed feature sets were capable of reducing the gap between normal and whispered speech from

17% (Table 4.4) to 9%. While this improvement is substantial, an EER of 10% for whispered speech

is the equivalent EER of a state-of-the-art PLDA based system using multi-condition training to

handle noisy and reverberant conditions [126]. Next, we will explore the use of these innovative

features as input to BNF systems.

5.6 Conclusions

In this chapter we have described three innovative feature sets shown to provide invariant informa-

tion across vocal efforts and complementary information to existing features for an SV task. The

proposed features were built on insights obtained from previous chapters, as well as from those

reported in the literature. Two variants of the MFCC were proposed, one focused on just the LP

residual, thus emphasizing the similarities in unvoiced speech segments between the two vocal ef-

forts, and the other on the 1.2-8 kHz subband shown to be less affected by whispering. Both MFCC

variants were shown to provide complementary information to the classic MFCC and to provide

gains as high as 39% and 41% for normal and whispered speech, respectively, relative to using just

MFCCs. A third feature set was built on evidence from Chapter 4 showing that slowly varying

subband envelopes conveyed useful information for cross vocal effort SV. By using the mutual in-

formation criterion, a binary mask was developed to select acoustic/modulation channels invariant

to vocal effort changes. When all three features sets were combined, improvements of 66% and 63%

over an MFCC-based baseline were achieved for normal and whispered speech, respectively. While

the gap between normal and whispered speech EER was substantially reduced, the levels attained
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for whispered speech can still be considered high at around 10% EER. As such, the next chapter

explores the use of these newly proposed features as input to state-of-the-art deep neural network

approaches.





Chapter 6

Deep Learning Approaches for

Multi-Vocal Effort Speaker

Verification

6.1 Preamble

Results presented in this chapter are also detailed in the paper #4 listed in Section 1.3 and is under

preparation, to be submitted to to the journal Speech communications [63]. In this chapter, we focus

attention on the extraction of invariant speaker-dependent information from normal and whispered

speech using deep learning approaches and exploring the complementarity of these approaches with

features proposed in Chapter 5.

6.2 Introduction

Existing state-of-the-art systems rely on the extraction of i-vectors [19], and most recent techniques

have replaced the classical MFCC as acoustic features by approaches based on deep learning to

extract the so-called bottleneck features (BNF). The robustness of these approaches, however, has

not been tested under varying speaking styles such as whispered speech. In this chapter we aim to fill

this gap. First, we explore a standard bottleneck neural network configuration with input consisting
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of the classical log Mel-scale filterbank outputs. Next, we explore the use of the newly proposed

features from Chapter 5 as alternate input modalities to the DNN. We evaluate how efficiently the

proposed approaches handle the addition of whispered speech data from target speakers. Overall,

it is found that different strategies result in optimal results for normal speech and whispered speech

separately. Such findings suggest the need for a multi-model approach [25, 27], as depicted by

Figure 2.12.

In order for these systems to work, whispered speech needs to be detected, such that the correct

vocal-effort speaker models can be used for authentication. Whispered speech detection in silent

environments has been proposed in the past. As examples, the ratio between the spectral energy in

high- (≥ 2.5 kHz) and low-frequency bands (≤ 1 kHz) was explored by [127]. Alternately, spectral

tilt, spectral flatness, and linear prediction analysis have been shown to be useful indicators of

whispered speech [127, 128]. These measures, however, can be severely affected by ambient noise,

as well as by pre-processing stages present in existing ASR and ASV systems, such as pre-emphasis

filtering and/or power normalization. To overcome these limitations, more recent work has explored

the use of entropy-based speech features [129], linear prediction analysis based on minimum variance

distortionless response modelling of speech [128], and mel-frequency cepstral coefficients (MFCC)

[27, 35]. Here, we explore the use of the auditory-inspired modulation features for detection of

whispered speech. Lastly, to explore the noise robustness of the proposed features and developed

systems, we explore the accuracy of such a multi-model approach in realistic settings involving

different levels of ambient noise.

6.3 Exploring bottleneck feature representations

As described in Section 2.2.1, bottleneck features (BNF) are the current state-of-the-art paradigm

for feature extraction in speaker verification systems. It uses a DNN trained to classify sub-phonetic

units, known as “senones” which are generated by an ASR system. In our experiments, the targets

for the DNN were obtained using a CD-GMM-HMM (context dependent - hidden Markov model

using Gaussian mixture models to model observations) ASR trained with kaldi [48]. Training data

corresponds to 460 hours extracted from the LibriSpeech dataset [49] (see Section 2.3). The DNN

input features are concatenated time contexts of 15 frames, each frame is represented by 27 log Mel-

scale filterbank outputs, using the same setting as in MFCC feature computation, which results in
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a d=405 dimensional vector (27 × 15). In our case, K, the number of target labels defined by

the output transcription file given by the ASR system, is set to 4121 senones. For the baseline

experiments a DNN with five hidden layers is used as depicted by Figure 2.8, and we fix as the

bottleneck layer the third hidden layer, and its number of units is bnf = 80; all these are typical

values used in previous reports [21, 22, 23]. The DNN was trained using Theano [130].

Even though there is little evidence regarding how exactly the non linear operations in the

DNN simulate the auditory system, the above described DNN architecture is chosen on the basis of

recently presented evidence pointing towards the idea that the position of the bottleneck layer has

to do with the task at hand and how similar the data used for training the DNN is to the evaluation

set. For practical applications it is suggested to use the bottleneck layer close to the DNN output

layer when DNN training data is matched to the evaluation conditions, and a layer more central to

the DNN otherwise [50]; this latter setting represents the task at hand. Due to the limited amount

of whispered speech available for DNN training, it is assumed that since humans can still recognize

speakers in whispered mode [30], a DNN trained on normal speech, with a fairly central bottleneck

layer, will capture vocal-effort invariant information useful for SV tasks. We will refer to the feature

set based on mel filterbank outputs as filterbank bottleneck features (FBBNF).

In addition to this, in Section 5.5, we have shown that it is possible to extract invariant speaker-

dependent information from normal and whispered speech using variants of the mel-frequency cep-

stral coefficients (MFCC). Using these insights, we propose to use a DNN architecture to extract

bottleneck features using as input information related to these MFCC variants. In a similar setting

as described above for the FBBNF feature set, we concatenated features from thirteen consecu-

tive frames: i) Thirteen MFCC, these features are aimed at the original task to train the DNN,

sub-phonetic units classification, ii) 27 log Mel-scale filterbank outputs, the triangular filters are

spaced between 1.2kHz and 8kHz, and iii) 27 log Mel-scale filterbank outputs, extracted from the

LP residual. The time context of thirteen frames was defined after an exploratory analysis, where

this number was found to best tradeoff the time needed to train the DNN and overall system per-

formance. The hypothesis in this case is that while the MFCCs contain useful phonetic information

together with speaker dependent information important for normal speech related tasks, limited

band and residual log-filterbank outputs contain mostly information related to speaker identity

invariant across vocal efforts. The second and third feature sets, however, disregard important in-

formation useful to discriminate among phonetic sounds. Hence, the feature vectors used as input to
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Normal Whispered
Feature

UBM
T matrix dimension

set 200 300 400 200 300 400

MFCC
128 3.78 3.69 3.36 20.99 21.11 20.83
256 3.18 3.44 3.13 20.00 21.91 20.83

FBBNF
128 8.13 6.25 6.56 12.50 12.50 13.33
256 6.88 6.25 5.94 14.19 12.14 12.33

LRBNF2
128 2.98 2.50 2.19 14.17 14.17 13.80
256 2.35 2.37 2.19 13.74 12.89 12.50

LRBNF3
128 5.68 5.31 4.38 13.73 14.59 12.68
256 5.31 5.00 4.39 12.97 13.33 11.41

LRBNF4
128 4.02 3.96 3.69 20.14 22.50 20.69
256 3.44 3.44 2.75 19.59 21.96 20.00

Table 6.1 – Equal Error Rate (EER) comparison between MFCC, BNF and AAMF using different
values for the number of Gaussian components in the UBM and T matrix dimension.

DNN are complementary to each other, and we expect the resulting feature vector in the bottleneck

layer to be more informative than the FBBNF feature set described above. With this, the input to

the DNN is a d=871 dimensional vector ((13 + 27 + 27) × 13). In addition to this, motivated by

[50], we also vary the location of the bottleneck layer, from layer two to layer four and will refer

to these features as LRBNFi, with 2 ≤ i ≤ 4, where i stands for the layer where the bottleneck is

located, and LR stands for limited band and residual information.

We compared the performance of the four bottleneck SV systems using whispered speech from

background speakers during T-matrix parameter estimation as described in Section 4.4. Results are

reported in Table 6.1, where, for the sake of comparison, results using the standard MFCC/PLDA

system have been included as well. For the UBM and T matrix, different number of Gaussians and

dimensions were tested, i.e., C = {128, 256} and D = {200, 300, 400}, respectively. Best results are

highlighted in bold letters in the table per feature representation and per speaking style.

In a similar way as done for the standard MFCC/PLDA based system, these experiments help

to quantify the effects of whispered speech on a multi-style SV system using bottleneck features,

and their limitations in our specific task using short length utterances. First we compare the

FBBNF feature set with the baseline system. As can be seen, when testing with normal speech,

the standard MFCC based system outperforms the FBBNF based one. FBBNF features, on the

other hand, are more robust against changes in vocal effort. Next, by evaluating the system with

the proposed input to the DNN, and varying the bottleneck layer i.e., the LRBNFi feature sets,
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we can observe that the two feature sets using the bottleneck layer closer to the input seems to

perform better than the one closer to the output, which corroborates the observations in [50]; and

this applies for both speaking styles. If we compare the feature sets extracted in the third layer, i.e.,

the FBBNF and LRBNF3 feature sets, it is clear that the architecture of the DNN is important,

but the input used for parameter estimation plays an equally important role. In this case, the

LRBNF3 feature set shows a tradeoff in performance between the two speaking styles, which also

corroborates our hypothesis. When comparing the different LRBNFi feature sets, we can see that

the scheme using the bottleneck in the second layer is the best configuration for normal speech.

For whispered speech, on the other hand, the best results are achieved with the bottleneck in the

third layer (EER = 11.41%), but with an absolute difference in EER values of just 1% relative to

LRBNF2. Next, we explore the potential gains that fusion schemes can bring to systems based on

DNNs and the proposed input features.

6.4 Fusion schemes using bottleneck features

In Chapter 5, it was shown that optimal results could be achieved by combining systems indepen-

dently trained with AAMF(FS), LMFCC and RMFCC feature sets, for both score level fusion and

i-vector concatenation. In Table 6.2, we show the results obtained with different fusion schemes

(score-level and i-vector concatenation) based on the different proposed BNF features and the top

features from Chapter 5. In the Table, best results have been highlighted in bold letters per speaking

style and per fusion scheme.

As can be seen, for normal speech, fusion of BNF-based features and the proposed features

from Chapter 5 resulted in the lowest EER, irrespective of the fusion strategy. Interestingly, the

fusion of the LRBNF4 feature set with AAMF(FS) and with AAMF resulted in the lowest EER for

i-vector concatenation and score-level fusion, respectively. Such findings show the complementarity

of the bottleneck DNN setup with slowly varying envelope features. Overall, for normal speech,

i-vector concatenation showed to be the best fusion strategy and achieved the lowest error rates

(EER=0.63%). It is worth emphasizing that i-vector fusion does not require the training of a

separate score fusion mapping, thus exhibits an interesting practical advantage.
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Feature sets from Chapter 5
Fusion BNF AAMF(FS) AAMF S11 S13
Level features Norm Whsp Norm Whsp Norm Whsp Norm Whsp

Sc
or

e
FBBNF 1.88 10.83 2.19 7.73 1.65 10.00 1.88 8.33
LRBNF2 1.25 12.50 1.00 11.02 1.02 11.20 0.98 9.97
LRBNF3 1.07 11.54 1.19 10.51 0.88 10.00 0.94 9.17
LRBNF4 0.96 16.39 0.85 10.66 0.94 11.94 0.94 9.17

i-
ve

ct
or

FBBNF 1.20 11.43 1.56 8.74 0.65 9.63 1.11 9.03
LRBNF2 0.63 15.00 1.20 11.67 0.94 11.63 0.94 10.00
LRBNF3 0.71 12.43 0.94 11.50 0.63 10.83 1.06 10.83
LRBNF4 0.63 17.50 0.73 10.46 1.25 14.17 0.90 11.72

Table 6.2 – Equal Error Rate (EER) comparison between two fusion schemes for systems trained
with FBBNF, LRBNFi, AAMF, AAMF(FS), LMFCC and RMFCC features. Columns labelled as Si

represent fusion of systems trained with S11: AAMF(FS), LMFCC and RMFCC and S13: AAMF,
LMFCC and RMFCC. For these results C=256 and D=400.

With whispered speech, fusion of LRBNFi with AAMF(FS), LMFCC and RMFCC did not result

in improvements, relative to EER values reported in Table 5.4, thus suggesting that bottleneck

features were not adding complementary information. As such, we explored the fusion with the

entire AAMF feature set, i.e., prior to mutual-information based feature selection, as it has already

been shown to be highly discriminative and to be more robust than standard MFCC (see Table 5.1).

The hypothesis in this case is that by not eliminating channels before dimensionality reduction, we

expect that additional and non redundant information to be included into the fusion schemes with

bottleneck features. As a result, the fusion of FBBNF and AAMF features resulted in the lowest

EER for whispered speech.

Overall, when comparing with previous results, we can see that for normal speech a relative

gain of 79% was achieved when comparing with the standard MFCC based system presented in

Table 6.1. This is achieved by concatenating i-vectors extracted from AAMF(FS) features with

LRBNF2 or LRBNF4 feature sets. When comparing with fusion at score level of systems trained

with AAMF(FS) and LMFCC feature sets, for whispered speech, on the other hand, a relative gain

of 61% was achieved relative to the MFCC based system presented in Table 6.1. In this case, the

best performance was attained by combining two systems trained with AAMF and FBBNF at the

score level.
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Figure 6.1 – Use of whispered speech data in the different stages of the speaker verification system.
(a) Depicts the use of whispered speech recordings from a limited set background speakers, (b) depicts
the combination of enrollment utterances from target speakers using both speaking styles.

6.5 Multi-style models with whispered during enrollment

Results presented up to now have only considered small amounts of whispered speech from back-

ground speakers for T-matrix estimation (as depicted by Figure 6.1(a)). Notwithstanding, whispered

speech from target speakers could also be used during enrollment, as shown in Figure 6.1(b). Here,

we explore the addition of small amounts of whispered speech from target speakers using the S11

and S12 feature sets described in Section 5.5.

Results are presented in Table 6.3. The column labeled Number of Wshp. utterances in en-

rollment represents the number of whispered speech utterances, each in average 4.5 seconds, from

target speakers that were added during enrollment. The columns labeled as Baseline, represent the

performance of the standard i-vector/PLDA based system with MFCC as feature vectors. As can

be seen, for the two fusion schemes and using the S11 feature set, only by adding one utterance

the performance for whispered speech is already inline with the performance of the baseline system

when using eight utterances. In addition to this, for each new utterance in the enrollment set there

is a relative difference of about 50% between the baseline system and the proposed schemes. This

shows that less data is needed to improve performance when testing with whispered speech, which

clearly represents an advantage. The other aspect to highlight is the degradation in performance

for normal speech as more utterances of whispered speech are present during enrollment. This is a

problem that affects both the baseline and the proposed fusion schemes, but is more noticeable in

the baseline system. Overall, the proposed fusion schemes keep the error rate below 2% for normal
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Number
Baseline

Fusion level
of Whsp. Score i-vector

utterances in S1 S11 S12 S11 S12
enrollment Norm. Whsp. Norm. Whsp. Norm. Whsp. Norm. Whsp. Norm. Whsp.

0 3.13 20.83 0.94 10.04 1.25 12.43 1.20 12.14 0.94 13.22
1 3.03 17.14 0.97 8.33 1.25 10.40 1.25 8.95 1.01 9.76
2 3.44 14.17 1.02 7.50 1.25 9.07 1.25 6.97 1.25 8.33
3 3.75 13.07 1.16 6.51 1.56 7.50 1.23 5.83 1.25 7.37
4 4.23 11.56 1.14 5.72 1.64 6.59 1.25 5.21 1.25 5.99
5 4.69 10.80 1.25 4.61 1.56 5.45 1.53 4.98 1.25 5.00
6 4.87 9.58 1.56 4.47 1.56 4.86 1.56 4.17 1.25 4.24
7 5.31 8.92 1.56 3.63 1.80 3.71 1.88 4.17 1.47 4.17
8 5.31 8.25 1.61 3.33 1.56 3.33 1.88 4.32 1.61 3.13

Table 6.3 – Equal Error Rate (EER) comparison for different feature sets and the fusion systems under
two Training/Testing conditions with varying amounts of whispered speech during enrollment. For
these results C = 256 and T = 400. S1: MFCC, S11: AAMF(FS), RMFCC and LMFCC feature sets,
S12: AAMF(FS), RMFCC, LMFCC and MFCC

speech, which is in fact better than the performance achieved by the initial MFCC/PLDA system

without whispered speech in the background set (see Table 4.4). An additional and important as-

pect is that the final error rate achieved for whispered speech is closer to the performance achieved

by the baseline system with normal speech, thus supporting the idea that within whispered speech

there is as much discriminative information as in normal speech, as was suggested by the preliminary

experiments performed in Chapter 3.

Lastly, by comparing the two fusion schemes, we can see that there are no significant differences

between the two. Notwithstanding, the performance achieved with feature set S12 is somewhat

lower than the performance with S11 for both speaking styles with fusion at score level, except

when adding eight whispered speech utterances. With i-vector concatenation, on the contrary, best

performance is achieved by using the feature set S12, i.e., concatenating i-vectors from the four

feature sets, which coincides with the separability analysis shown in Figure 5.7. With score-level

fusion, it is not necessary to include MFCC features into the fusion scheme, and the proposed feature

sets are capable of handling both speaking styles. With i-vector concatenation, it is necessary to

include four feature sets with the advantage that no fusion scheme is needed to be trained.

Next, we perform similar experiments using fusion schemes with bottleneck features. Two feature

sets were used: i) Systems trained with FBBNF and AAMF feature sets, as this combination showed

to be the best for whispered speech according to Table 6.2; we will refer to this set as S14, and ii)

Systems trained with LRBNF3, LMFCC, RMFCC and AAMF(FS), which is a combination that not

only shows the best performance for normal speech but also shows a competitive performance for
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Number S12 from Fusion level
of Whsp. Table 6.3 with Score i-vector

utterances in i-vector concatenation S14 S15 S14 S15
enrollment Norm. Whsp. Norm. Whsp. Norm. Whsp. Norm. Whsp. Norm. Whsp.

0 0.94 13.22 2.19 7.73 0.88 10.00 1.56 8.74 0.63 10.83
1 1.01 9.76 2.19 6.67 0.76 8.02 1.52 8.88 0.94 9.41
2 1.25 8.33 1.95 5.83 0.73 7.50 1.25 7.19 1.04 6.67
3 1.25 7.37 1.89 5.00 1.01 5.83 1.25 5.83 1.05 5.40
4 1.25 5.99 1.88 4.61 1.25 4.74 1.30 5.00 1.02 4.32
5 1.25 5.00 1.88 4.69 1.42 4.17 1.88 4.75 1.14 3.53
6 1.25 4.24 1.90 4.17 1.59 3.54 1.90 4.17 1.41 3.33
7 1.47 4.17 1.90 3.95 1.86 3.33 2.41 4.17 1.56 2.78
8 1.61 3.13 2.01 3.87 2.19 3.33 2.50 3.24 1.66 2.35

Table 6.4 – Equal Error Rate (EER) comparison between two fusion schemes for systems trained with
different feature combinations. S12: MFCC, LMFCC, RMFCC and AAMF(FS), S14: FBBNF and
AAMF, and S15: LRBNF3, LMFCC, RMFCC and AAMF(FS). With varying amounts of whispered
speech during enrollment. For these results C = 256 and T = 400.

whispered speech independent of the fusion approach; we will refer to this setting as S15. Results

are reported in Table 6.4.

As can be seen, addition of whispered speech enrollment utterances induce similar negative

effects for normal speech speaker verification as reported in Table 6.3. At the same time, systems

involving feature sets S12 and S15 better handle the addition of whispered speech data, and final

error rates are below 2% for normal speech using i-vector concatenation. In particular, fusion

schemes using systems trained with FBBNF and AAMF feature sets (S14) present competitive

performance for both speaking styles, but are less efficient using the new information included by

whispered speech utterances from target speakers. This contrasts with results in Table 6.2, where

it was shown that in absence of whispered speech recordings from target speakers, these were the

best feature sets to use in a fusion scheme.

It is important also to note that with five utterances of whispered speech in the erollment set,

fusion schemes using S15 have already better performance than S12 and S14 for both normal and

whispered speech. These results show that the proposed feature sets, using insights from acoustic

studies and mutual information, combined with a DNN architecture using also as input a feature

vector aimed to carry invariant speaker-dependent information across vocal efforts, can handle both

speaking styles in a multi vocal effort speaker verification task. However, when comparing best

results achieved for normal speech in Table 6.2 and best results for whispered speech in Table 6.4,

we can see that different strategies can offer different benefits for each speaking style. For example,

best error rates when testing with normal speech were achieved when no whispered speech was
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Number of Whsp. Baseline Fusion level
utterances in System Score i-vector
enrollment MFCC S12 S14 S15 S12 S14 S15

3 11.51 3.31 5.40 3.33 5.83 9.17 5.16
4 11.67 2.71 5.71 2.98 5.66 8.60 5.79
5 10.00 2.50 5.00 2.50 5.83 8.33 5.00
6 10.71 2.70 5.04 2.50 5.72 8.33 4.31
7 9.84 2.85 4.76 2.84 5.01 8.09 4.18
8 10.83 2.50 5.00 2.50 4.27 7.43 3.33

Table 6.5 – EER comparison only for whispered speech among different systems using two fusion
schemes with varying amounts of whispered speech during enrollment, normal speech recordings are
not included for enrollment. S12: MFCC, RMFCC, LMFCC and AAMF(FS), S14: FBBNF and
AAMF, and S15: LRBNF3, LMFCC, RMFCC and AAMF(FS). For these results C = 256 and T = 400.

added during the enrollment stage. Lowest error rates for whispered speech are achieved with a

different scheme. This opens the possibility to implement dedicated systems for each speaking style,

and combined with a normal/whisper speech classification system, to implement a multi-style type

system, such as that shown in Figure 2.12.

Before exploring dedicated systems, we explore the performance of the same systems but en-

rolling and testing only with whispered speech, normal speech recordings were not included for

enrollment and testing in this experiment. Results are presented in Table 6.5. In the Table, we

have included the performance of the standard MFCC/PLDA based system as a baseline. Accord-

ing to these results, for some systems the performance of whispered speech is dependent on having

normal speech recordings in the enrollment set as well. That is the case for the baseline system, and

also for the fusion schemes using the S13 feature sets. We refer for example to Table 6.3, where the

baseline system achieved an EER=8.25% by combining eight normal and whispered speech utter-

ances during enrollment. Similar behaviour is observed with S13; when combining both speaking

styles during enrollment, the achieved error rates were 3.24% and 3.87% for i-vector concatenation

and score level fusion, respectively. Regarding S12 and S15 feature sets, even though they are

less dependent on having normal speech as well during enrollment, it can be seen in Table 6.4 that

the lowest error rate is achieved with S15 feature sets, using i-vector concatenation and including

normal speech during enrollment; the differences are minimal nevertheless.

Results in Table 6.5 can be explained by the fact that the features that better perform in

this scenario, are features aimed to extract invariant information from both speaking styles. By

not enrolling normal speech, we are not including important variability that is shared by normal

and whispered speech, which is better modelled in the T-matrix, post-processing stage of i-vectors
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Figure 6.2 – Building blocks for a speaker verification system using a normal/whispers classification
system in the input to select the best system. In this case, it is assumed that there are not whispered
speech recordings from target speakers.

and the PLDA model and has been learned from the background speakers. With this, the optimum

system for multi vocal effort speaker verification involving normal and whispered speech is as shown

in Figure 6.2, when there are no whispered speech recordings for enrollment. Figure 6.2, on the other

hand, illustrates the case when there are whispered speech recordings from target speakers. In this

later case, to achieve optimal performance for both speaking styles, the best scoring strategy must

be selected according to the testing recording, i.e., if it is normal speech, then, only normal speech is

used for enrollment, if it is whispered speech, then, a combination of normal and whispered speech

is used for enrollment. In order for such systems to work, however, accurate normal/whispered

speech detection is needed. One such proposed system is described next.

6.6 Normal/Whispered speech classification

According to results presented in previous the section, it is evident the need for a normal/whispered

speech classification system. Even though Figure 6.2 does not make it explicit, Figure 6.3 shows

that such a classification system may need different features specially designed for the task at hand.

This section describes the processing steps involved for normal/whisper speech classification. First,

we explore a classification system in clean conditions using i-vectors extracted from all feature sets

described in previous sections. This is done using a standard classification system depicted by
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Figure 6.3 – Building blocks for a speaker verification system using a normal/whispers classification
system to select the best scoring strategy. In this case, it is assumed that there are whispered speech
recordings from target speakers.

Figure 6.4 – Building blocks for a normal/whispered speech classification system using i-vectors.

Figure 6.4. First, i-vectors are pre-processed by using linear discriminant analysis (LDA), then

labels are assigned to the testing recordings using a linear classification system. The LDA and the

classification system use data from background speakers for parameter estimation and results are

presented in the top row of Table 6.6.

As can be seen, the proposed auditory-inspired amplitude modulation features with or without

feature selection can offer perfect discrimination between the two speaking styles. Hence, the

systems illustrated in Figures 6.2 and 6.3 are completely feasible. However, in practical systems

noisy settings are expected, thus the robustness against noise also needs to be evaluated. To this

end, testing recordings were contaminated using three different types of noise to simulate possible

testing scenarios, namely babble [131], office, and subway [132], at four different signal to noise
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SNR MFCC RMFCC LMFCC AAMF AAMF(FS) FBBNF LRBNF2 LRBNF3 LRBNF4

∞ 97.50 99.55 85.45 100 100 97.95 99.77 99.77 99.32

Babble

15 75.23 80.45 73.64 74.55 88.18 98.64 74.09 85.45 77.73
10 58.18 74.09 68.64 35.45 72.50 94.77 46.82 57.95 65.91
5 40.45 63.18 58.41 27.27 40.45 74.55 29.77 29.32 50.68
0 30.68 47.50 48.41 27.27 28.41 37.95 27.50 27.27 37.73

Office

15 99.09 84.32 85.45 100 100 97.95 99.55 99.77 99.09
10 99.55 79.77 82.50 100 99.77 98.86 99.55 99.77 98.86
5 99.55 75.68 82.27 100 99.55 98.86 99.32 99.55 97.50
0 99.55 70.68 73.86 99.09 99.32 98.64 99.09 99.55 96.36

Subway

15 95.68 88.64 83.64 100 98.64 99.09 95.91 99.32 93.86
10 92.95 86.36 76.59 94.32 93.18 97.50 88.41 93.64 87.95
5 84.09 72.50 65.91 69.09 80.91 94.09 70.68 80.68 79.09
0 72.95 60.00 56.82 35.68 53.86 82.95 53.18 57.27 65.68

Table 6.6 – Accuracy (%) comparison among different i-vector based normal/whispered speech classifi-
cation. Testing recordings have been contaminated with three different kinds of noise at four different
signal to noise ratio (SNR) levels.

ratio (SNR) levels: 15, 10, 5 and 0 dB. As can be seen, from the remainder of Table 6.6, babble

and subway noise can heavily affect the performance of the classification system, while office noise

only affects certain feature sets. Overall, no feature set stood out as being robust against all types

and levels of noise. Babble noise, in fact, showed to be the most detrimental to normal/whispered

speech detection, thus the remainder of this section will focus on this type of noise.

We explored this task in an early publication. A more detailed set of experiments were carried

out using only the CHAINS corpus, as it contains continuous speech recordings long enough that

allows to block the speech recording in several short duration segments and validate the proposed

scheme. We used the speech stimuli generated from reading the first paragraph of the Rainbow

Text for training of the classifiers (average duration: 30 seconds; minimum duration: 23 seconds),

and kept the stimuli generated from reading the Cinderella story for testing (average duration: 55

seconds, minimum duration: 48 seconds). Lastly, in order to generate the noisy speech stimuli,

babble noise was added at three different signal-to-noise ratios (SNR): 0, 5, and 10 dB.

6.6.1 Robust features for Normal/Whispered speech classification

Prior to feature extraction, each speech recording was down-sampled to 16 kHz, normalized to -

26 dBov (dB overload) and pre-emphasized using a first order finite impulse response filter with
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constant a = 0.97. Feature vectors were extracted per speech frame and three feature representations

were explored, we will refer to these feature sets as ‘NWi’ as they are used for Normal/Whispered

speech classification:

RASTA-PLP features: In our experiments, 19 relative spectral perceptual linear prediction

(RASTA-PLP) coefficients were computed using 24 Bark-scale triangular bandpass filters. Delta and

double-delta coefficients were also included to convey temporal dynamics information. Preliminary

experiments showed RASTA-PLP coefficients to be more robust to noise than conventional MFCCs.

A detailed description of RASTA-PLP is beyond the scope of this thesis. This feature set is termed

‘NW1’.

Entropy-based features: In order to compute entropy-based features, the methodology de-

scribed in [129] was used. The feature vector is composed by three spectral information en-

tropy based features, namely he high-to-low entropy ratio (HLER), the low-frequency band en-

tropy within the band B = [300, 4150]Hz and the high-frequency band entropy within the band

B = [4150, 8000]Hz . A fourth feature related to spectral tilt was also included. This feature set is

termed ‘NW2’. When using feature combination for ‘NW1’ and NW2’, the resulting feature set is

termed ‘NW3’, thus yielding a 61-dimensional feature set

Auditory-inspired amplitude modulation features: In a similar setting as the one de-

scribed in Section 5.3.2, the AAMF features were used in these experiments. More specifically, 24

acoustic subbands and eight modulation subbands were used. Features were extracted from the

first six modulation frequency bands, thus corresponding to the 0.1 − 24 Hz modulation frequency

range. The speech modulation spectrum results in a high-dimensional feature representation (e.g.,

24 acoustic bands ×6 modulation bands= 144 dimensions). Next, principal components analy-

sis (PCA) was used to reduce the 144-dimensional feature set to 55 dimensions. Moreover, since

speech-like noise (babble) has also been shown to affect the 0.2 − 20 Hz modulation frequency band

[133], we further calculate a so-called modulation spectral tilt parameter, per modulation frequency

band, based on a minimum mean-squared error linear fitting across the 24 acoustic frequency bands.

Since the majority of the reported spectral differences between naturally-phonated and whispered

speech occur above 1 kHz acoustic frequency [129], the tilt parameter is computed only within

this range. The the modulation spectral tilt parameters alone are termed ‘NW4’, and ‘NW5’ to
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Classifier Type Feature set
NW1 NW2 NW3 NW4 NW5

Linear 70.9 74.8 75.9 75.2 99.2
Quadratic 72.8 73.5 76.8 76.1 99.1

GMM (C=2) 79.8 91.2 92.7 80.3 97.8
GMM (C=5) 86.2 96.8 97.1 86.5 99.7
GMM (C=10) 95.5 98.3 98.2 89.1 99.9
GMM (C=20) 95.9 98.7 98.6 89.3 99.9

SNR level Experiments in Noisy Environment
10 dB 62.0 73.2 67.4 81.3 99.4
5 dB 57.5 69.8 65.6 76.3 88.4
0 dB 54.3 62.5 63.6 76.1 84.8

Table 6.7 – Accuracy results and performance comparison in clean conditions for normal/whispered
speech classification among different classification algorithms (top) and noisy environment with differ-
ent SNR levels and using a GMM based classifier (bottom).

their combination with the PCA-reduced modulation frequency features, thus also resulting in a

61-dimensional feature set.

In order to investigate the performance of each individual feature, our experimental evaluation

used a fixed duration of 23 seconds for clean normal and whispered speech training data; test data

was fixed to one second duration segments. The top part of Table 6.7 presents the obtained results

for the linear and quadratic discriminant function-based classifiers, as well as GMM classifiers with

varying number of components C. As can be seen, for all feature sets the GMM based classifier

outperforms the linear and quadratic classifiers. Relative to only the GMM-based classifiers, it can

also be observed that the performance increases as C increases, with C = 10 (referred to as GMM-10)

showing a tradeoff between accuracy and complexity. Regarding the benchmark features, RASTA-

PLP outperformed entropy-based features across all tested conditions. Moreover, no significant

gains in performance were achieved with NW3, suggesting potential redundancy of information in

RASTA-PLP and entropy features for clean whispered speech. Regarding the proposed features, the

modulation spectrum tilt parameter (NW4) was shown to achieve performance levels in line with

the entropy measures (NW1); when combined with the modulation spectrum based features (NW5),

improved performance was obtained across all tested conditions. It is also important to emphasize

that for NW5, a linear discriminant function classifier for 1-second duration test utterances achieved

comparable performance with a more complex 20-component GMM classifier. This finding suggests

that the obtained performance figures are attributed mostly to the information-bearing advantages

of the modulation spectrum features and not the complexity of the classifier.
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As mentioned previously, the GMM-10 classifier showed to strike a balance between performance

and complexity, thus it is used in our experiments involving ambient noise conditions. In Table 6.7

these results are labeled as “Experiments in Noisy Environment”. As can be seen, detection perfor-

mance in mismatch conditions decreased for all feature representations as the SNR decreased. The

two benchmark feature representations achieved similar performance figures and no improvements

in performance were observed with the combined feature set NW3, thus suggesting the sensitivity of

the benchmark features to ambient noise. The proposed modulation spectral based features, on the

other hand, were shown to be more robust to environment noise. The modulation tilt parameters

alone (NW4) consistently outperformed the more complex RASTA-PLP-based features, as well as

the combined RASTA-PLP-entropy feature set NW3. When combined with the PCA-based modu-

lation spectral features, a gain of approximately 33% could be achieved at an SNR of 0 dB over the

benchmark NW3 feature set, thus showing the noise-robustness properties of the proposed features.

Detailed results of these experiments were published in [60] using test segments of different

duration.

6.7 Speaker verification in noisy conditions

Though the focus of this dissertation is not robustness of speaker verification systems in noisy

environments, in the following experiments we evaluate the robustness of the different feature sets

against environmental noise, thus exploring the potential of the developed tools for everyday usage.

In this case, we compare the fusion schemes by concatenating i-vectors and at the score level of

three feature sets: i) S13 and S14, which were the feature sets that showed to perform better when

only whispered speech recordings from a limited set of background speakers is available and when

recordings from target speakers are included during erollment, respectively, and ii) S9, LMFCC

and AAMF(FS), which, according to our experiments, was the set that showed to be the best

choice in presence of environmental noise. Results are presented in Tables 6.8 and 6.9 for i-vector

concatenation and score level fusion, respectively.

In the Tables, the best results have been highlighted in bold per speaking style, SNR level,

and noise type. As can be seen, when using i-vector concatenation, the fusion of systems based on

LMFCC and AAMF(FS) (S10) seems to be the most robust to varying types and levels of noise,
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SNR Feature set
Level S10 S14 S15

Norm Whsp Norm Whsp Norm Whsp
Babble

15 4.71 6.37 15.96 11.81 12.19 8.83
10 9.06 9.43 26.45 15.31 19.68 12.65
5 17.73 12.50 36.40 19.59 28.51 17.76
0 29.06 15.00 42.04 21.21 36.49 20.83

Office
15 2.19 3.30 3.44 5.19 2.23 2.59
10 2.50 3.23 4.36 5.55 2.44 3.33
5 3.14 3.18 5.69 5.00 2.26 4.17
0 4.44 5.00 7.81 6.03 4.38 5.83

Subway
15 3.04 5.14 6.56 7.50 4.79 6.67
10 5.00 5.83 10.80 8.46 8.75 7.74
5 9.42 8.33 17.81 10.83 14.38 10.00
0 16.88 10.69 26.92 13.88 22.67 10.61

Table 6.8 – EER comparison among three i-vector based speaker verification systems using i-vector
concatenation. Testing recordings have been contaminated with three different kinds of noise at four
different signal to noise ratio (SNR) levels. In the table S10: LMFCC and AAMF(FS), S14: FBBNF
and AAMF, and S15: LRBNF3, LMFCC, RMFCC and AAMF(FS).

SNR Feature set
Level S10 S14 S15

Norm Whsp Norm Whsp Norm Whsp
Babble

15 4.76 5.26 8.52 8.29 5.94 5.37
10 7.65 7.40 18.03 11.54 11.95 8.65
5 13.98 11.67 29.24 16.54 20.31 15.29
0 25.00 14.17 38.35 19.17 29.28 17.63

Office
15 2.42 3.33 2.50 3.92 2.19 4.17
10 2.64 3.20 3.13 4.06 2.26 4.17
5 3.13 3.98 3.75 3.72 2.84 5.00
0 4.69 4.87 5.00 3.97 3.75 5.35

Subway
15 3.31 4.17 4.69 5.58 3.13 4.10
10 4.99 5.83 6.74 6.67 5.09 5.83
5 7.54 7.50 12.50 9.17 9.69 7.78
0 13.36 10.00 20.06 13.33 16.41 10.15

Table 6.9 – EER comparison among three i-vector based speaker verification systems using score level
fusion. Testing recordings have been contaminated with three different kinds of noise at four different
signal to noise ratio (SNR) levels. In the table S108: LMFCC + AAMF(FS), S14: FBBNF and
AAMF, and S15: LRBNF3, LMFCC, RMFCC and AAMF(FS)
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Figure 6.5 – Average power spectrum of the three different types of noise added during testing stage.

thus highlighting their importance for multi vocal effort speaker verification in realistic settings.

S15, in turn, only showed robustness agains office noise in the score-level fusion scheme. To better

explain these results, Figure 6.5 depicts the average power spectrum of the three types of noise.

As can be seen, for all three cases, most of the energy is concentrated at low frequencies, typically

below 1 kHz. Recall from Chapter 5 that the LMFCC and AAMF(FS) feature sets suppress this

frequency band, thus not only introducing cross vocal effort robustness for speaker verification, but

also noise robustness for realistic applications.

6.8 Conclusions

In this chapter, we have addressed the problem of finding invariant speaker dependent information

across vocal efforts using deep neural networks. In addition to this, we continued exploring the

benefits of two fusion schemes (score-level and i-vector level) to overcome existing challenges namely:

i) Short duration utterances (4.5 seconds average), ii) No whispered speech data available during

enrollment from target speakers, and iii) the negative effects seen when adding whispered speech

recordings during enrollment.

In previous works it has been shown that the performance of speaker verification systems are

strongly dependent on the condition of the speech material provided as input [51]. While char-

acterizing the baseline systems (Table 6.1) for normal speech, it became evident that MFCC and

standard BNF features achieved EER figures higher than what is typically reported in the literature

[134, 22, 23]. This is likely due to the short speech duration which limits the phonetic variability
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present in the training set [52, 53]. Notwithstanding, the proposed LRBNFi features seem to reduce

such negative effect, in particular when the bottleneck layer is closer to the input. For whispered

speech, on the other hand, the BNF features outperform all previously studied individual feature

sets by a substantial amount. It is hypothesized that this was due to the superior capabilities of the

DNN to model the invariant information when comparing normal and whispered speech. Overall,

if only a baseline system was to be used, the BNF based one, using as input the combination of

MFCC, residual and limited band log-filterbank outputs, and a bottleneck layer closer to the input

(LRBNF2), resulted in the best overall multi vocal effort performance.

Fusion strategies were shown to clearly have many advantages, as they not only reduced error

rates when there were no whispered speech recordings from target speakers for enrollment, but

also helped to reduce the observed negative impact of adding whispered speech during parameter

estimation. Overall, the proposed AAMF feature set was shown to be the most informative for

both normal speech and whispered speech, to be used in a fusion scheme with bottleneck features

when there is no whispered speech data from target speakers. This configuration, however, does

not show the best results when whispered speech recordings from target speakers were included,

and alternative features such as LRBNF3, LMFCC, RMFCC and AAMF(FS), were shown to be a

better choice in a multi vocal effort speaker verification task. When comparing the fusion schemes,

the i-vector concatenation scheme shows to be the best fusion strategy to be used. This is not only

justified by the attained results, but also by the fact that it is not necessary to train any additional

fusion system, as is the case in score level fusion. Overall, with the proposed fusion scheme, it is

shown that only 4.5 seconds (aprox.) of whispered enrollment data is needed to achieve the same

performance as the baseline system, which in turn, required 22.5 seconds (aprox.) of whispered

enrollment data. Hence, the proposed features are well posed to handle vocal effort variations and

low resource speaker verification tasks.

As was observed, different strategies offered different benefits for each speaking style. In such

cases, dedicated systems per vocal effort offer a promising solution. To this end, a normal/whispered

speech classification system needs to be implemented. This was explored in clean and noisy con-

ditions. It was found that while the features used for cross-vocal effort speaker verification could

provide accurate whispered speech detection in clean conditions, alternate feature representations

were needed for noisy settings. Overall, a system based on FBBNF features was able to achieve clas-
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sification accuracy as high as 98% at an SNR of 15 dB for babble noise, but performance degrades

quickly as SNR diminishes. Similar behavior was observed for AAMF(FS) features.



Chapter 7

Conclusions and Future Research

Directions

In this chapter, a general discussion for this doctoral thesis is presented, moreover some suggestions

for future research directions are also proposed.

7.1 Conclusions

This doctoral thesis has addressed the important, yet not sufficiently explored, problem of speaker

verification in multi vocal effort testing scenarios. In particular, we have centered the attention

on two speaking styles, i.e., normal and whispered speech. We found that whispered speech can

contain as much speaker specific information as normal speech, but standard approaches designed

for normal speech tend to fail for whispered speech. In this regard, we have developed strategies to

incorporate this speaking style into the possible testing scenarios of standard speaker verification

systems. These strategies allow to efficiently use the limited resources available to overcome existing

challenges namely: i) Short duration utterances (4.5 seconds average), ii) No whispered speech data

available during enrollment from target speakers, and iii) the negative effects seen when adding

whispered speech recordings during enrollment. By addressing these problems, the proposed SV

system configurations were shown to achieve high performance levels for whispered speech inline

with the performance obtained for normal speech.
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In Chapter 3 the speaker verification (SV) task based on whispered speech recordings was

addressed in an ideal scenario, using a limited number of speakers, and a closed-set scheme for

speaker verification by using speech recordings from target speakers also for parameter estimation.

For the experimental setup and given the limitations in number of speakers, the performance bounds

of a standard GMM–UBM SV system using MAP adaptation were explored. To this end, the

effectiveness of several strategies, such as frequency warping, sub-band analysis, alternate feature

representations, feature combination, as well as class-dependent modeling (i.e., speaking-style) were

evaluated. According to these preliminary experiments mismatch train/test conditions can highly

affect the performance of a SV system, independent of the feature representation used. As in

previous studies in adjacent areas, it was shown that in order for a SV system to handle both

normal and whispered speech for practical applications, speaker model training had to involve

data of both vocal efforts. Such approach, however, resulted in poorer verification performance

for normal speech. Overall, feature representations evaluated here have been mainly proposed for

normal-voiced speech applications, thus suggesting that alternate feature representations, tuned for

whispered speech speaker verification, are still needed.

In Chapter 4 the issue of speaker verification based on whispered speech was addressed in a more

realistic scenario. Three databases were pooled together in order to increase the number of speakers

and add more flexibility to the experimental evaluation. In addition to this, and following results

presented in Chapter 3, experiments in this chapter were carried out using specific feature represen-

tations such as the classical MFCC and WIF as they showed a good tradeoff between performance

in matched and mismatched conditions for both speaking styles. Overall, we observed that existing

features (e.g. MFCC) do not convey sufficient reliable speaker identity information across different

vocal efforts. Given the lack of sufficient speakers to train independent and dedicated models for

whispered speech, the multi-style modelling approach was explored. The addition of whispered data

during training was shown to not suffice to boost speaker verification performance for whispered

speech. As an alternative, we explored techniques such as feature mapping and complementary

information extracted from WIF and MFCC feature sets via three fusion schemes, namely: i) frame

level, ii) i-vector concatenation, and iii) score level. As a result, feature mapping approaches seem

to be insufficient to improve performance and fusion schemes seem to be more effective. In this

latter scenario, gains as high as 42% and 44% were obtained for whispered and normal speech,

respectively, relative to a baseline system based on i-vectors/PLDA+MFCC with no whispered
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speech in the training set. These findings suggest that innovative features conveying more speaker-

dependent invariant information across different vocal efforts are needed as the mismatch problem is

still present and the gap in performance is still considerable between normal and whispered speech.

In Chapter 5 we centered attention on the extraction of invariant speaker-dependent information

from normal and whispered speech, thus allowing for improved multi-vocal effort speaker verifica-

tion. To this end, three innovative feature sets were described. These feature sets were shown to

provide invariant information across vocal efforts and complementary information to existing fea-

tures for an SV task. More specifically, two variants of the MFCC were proposed, one focused on

just the LP residual, and the other on the 1.2-8 kHz subband shown to be less affected by whisper-

ing. A third feature set was built on evidence from Chapter 4 showing that slowly varying subband

envelopes conveyed useful information for cross vocal effort SV. By using the mutual information

criterion, a binary mask was developed to select acoustic/modulation channels invariant to vocal

effort changes. Prior to SV system evaluation, complementarity of the proposed feature sets was

evaluated by means of the Lawley-Hotelling statistic in the score domain, thus allowing to better

understand the contributions and complementarity of each newly proposed feature set and which

combinations could achieve better performance when testing the SV system. Final results showed

improvements of 66% and 63% over an MFCC-based baseline for normal and whispered speech,

respectively, when all three proposed features sets were combined. While the gap between normal

and whispered speech EER was substantially reduced, the levels attained for whispered speech can

still be considered high at around 10% EER.

In Chapter 6, we continued exploring speaker-dependent invariant information across vocal

efforts using deep learning approaches together with the benefits of fusion schemes. Bottleneck

features were shown to add robustness to the SV system not only when facing vocal effort variations,

but also to reduce previously mentioned negative effects when combining data from two speaking

styles. This is likely due to the superior capabilities of the DNN to model the invariant information

when comparing normal and whispered speech. Overall, if only a baseline system was to be used,

the BNF based one, using as input the combination of MFCC, residual and limited band log-

filterbank outputs, and a bottleneck layer closer to the input, resulted in the best overall multi vocal

effort performance. When combining bottleneck features with feature sets proposed in Chapter 5,

additional gains could be seen, as not only reduced error rates were achieved for both speaking styles,

but also helped to reduce the observed negative impact of adding whispered speech during parameter
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estimation. Overall, the proposed auditory-inspired amplitude modulation features were shown to

be the most informative for both normal speech and whispered speech, to be used in a fusion

scheme with bottleneck features when there is no whispered speech data from target speakers. On

the other hand, fusion of MFCC variants, bottleneck and auditory-inspired amplitude modulation

features was shown to be the best choice when combining normal and whispered speech recordings

from target speakers during enrollment. Finally, when comparing the fusion schemes, the i-vector

concatenation scheme shows to be the best fusion strategy to be used. This is not only justified

by the attained results, but also by the fact that it is not necessary to train any additional fusion

system.

7.2 Future Research Directions

1. Incorporate modulation spectrum based features to DNN approaches: Given the promising re-

sults obtained with modulation spectrum based features, one step forward to take advantage

of this signal representation is to use the capabilities that deep neural networks have shown

to extract highly discriminative features. This is motivated by results obtained with variants

of MFCC extracted using limited band and residual log filterbank outputs, which achieved

improved performance in fusion schemes and it was possible to achieve additional improve-

ments when incorporating bottleneck features extracted with the same information. This

however is not a trivial task, as it is necessary to devise a scheme to synchronize the long

time contexts used for modulation spectrum signal representation with the transcriptions

given by standard automatic speech recognition systems.

2. Extend research in fusion schemes: Fusion schemes have shown to be an efficient and effective

way to incorporate the strengths of different feature representations into one single system.

Fusion schemes explored in this thesis can be considered simple but effective solutions for

the task at hand, that allow us to better interpret our results knowing that the load of the

improvements were not in the machine learning algorithms but in the feature extraction

process. Once the understanding on how we can extract invariant information across vocal

efforts advances, we can also advance in more elaborate techniques to explore how to better

combine complementary information extracted from different feature representations. As

future research direction, more complex data-driven or machine learning based fusion systems
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may be explored, including the use of DNNs to fuse information from multiple features.

However, more whispered speech data will be needed before this can be accomplished.

3. Explore the potential of modulation spectral features in noisy environments: Not only in

this thesis, but also in previous work, it has been shown that modulation spectral based

features can add robustness to speaker recognition systems [43]. In particular, in this work

we have explored a technique to find speaker dependent information invariant across vocal

efforts using mutual information analysis. Resulting features not only showed to be highly

discriminative, but also to make fusion schemes more robust against coloured noise. New

analysis techniques can be incorporated in order to extract information that is not affected

by noise and still highly important for speaker recognition tasks, such as the work reported

in [43] for normal speech speaker identification in reverberant environments.

4. Explore gender dependencies specifically for whispered speech: In our experiments we found a

strong gender dependency. For example, for normal speech the feature representations that

performed best for male speech did not perform at the same level for female speech, thus

corroborating previous findings [56, 57]. When exploring gender and speaking dependent

models, we found that whispered speech speaker verification performance was higher for

female speakers. This suggests that female whispered speech carries more speaker-specific

information that is captured by the investigated features. In fact, most of the recent published

research in the field has been done only with females [26, 37], thus making the improvements

seem more noticeable. Nevertheless, given the lack of sufficient data, we could not perform

additional and more detailed experiments. It is necessary to collect more whispered speech

data from female speakers to allow further advances in this direction.

5. Explore applications to other vocal efforts: Here in, we have focus only on the problem of

speaker verification using whispered speech. However it is important also to explore how to

extract invariant information between normal speech and other vocal efforts such as shouted

speech. There are some preliminary experiments reported in the literature using shouted

speech [13] for speaker identification, but just as whispered speech, there are not enough

studies and additional research into this field is still needed.
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