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Abstract

We are at the dawn of the smart grid era where there is significarease in the demand-side partici-
pation in the grid’s operations. One important smart grekegch topic concerns active demand-side
management which can potentially result in great benefitdifiberent involved grid entities (e.g.,
electricity customers, utility, resource aggregators) @nable to support increasing penetration of dis-
tributed renewable energy resources. However, efficiesigddor different decision making problems
must be conducted to to realize the potential impacts of thigeademand-side management, which
is the focus of this dissertation. Specifically, we studyeéhdecision making problems of the corre-
sponding demand-side smart grid entities consideringiateon of renewable energy sources, which
are smart home energy management, smart load serving @rfdiB) pricing design, and cost alloca-
tion for cooperative demand-side resource aggregatore&\@@Rnder the virtual power plant (VPP)
framework. Our research has resulted in three major catioifrs, which are presented in three main
chapters of this dissertation.

The first contribution is related to the efficient energy stthimg design for smart homes equipped
with solar assisted thermal load. This design is conducteteuthe time-varying dynamic pricing
scheme which can potentially bring great demand responsefitge for home electric consumers.
Specifically, we develop a rolling two-stage stochasticgpamaming based algorithm, which aims
to minimize the electricity cost, guarantee user comfant] efficiently utilize renewable energy re-
sources. We also propose to exploit the solar assisted #héoad for the energy management and
analyze the impacts of different parameters on the smarehemonomic improvements.

The second contribution concerns the development of a dignanicing scheme for a load serving
entity (LSE) that can incentivize electric customers tovate demand response services. The design
can effectively encourage participation of electric castos with flexibilities in energy consumption
while not negatively affecting other electric customerskiag flexibilities in changing their energy
consumption. Moreover, the proposed pricing scheme is aetiyip with the current market structure.
Toward this end, we consider the pricing design as a bilgviérozation problem where the grid oper-
ator is the leader, who determines the demand response gnidé¢he flexible customers are followers,
whose energy consumption is adjusted in response to tleg pignal. We describe how to transform
the proposed bilevel optimization problem, which is diffido be solved directly, into an equivalent
single objective mixed integer linear program (MILP), winizan be solved efficiently by a branch and
cut algorithm. Numerical results show that our proposedipgi design can be beneficial to both grid
operator and electric customers.

The third contribution aims to develop an efficient cost@dlitton scheme for cooperative demand-
side resource aggregators (DRA), which are coordinatednardemerging smart grid concept, namely,



the virtual power plant (VPP). We address this problem bygishe core based cooperative game
theoretic approach. Since the core of the underlying gameaoatain many cost allocation solutions,
our design enables us to choose an appropriate cost atlncailution inside the core that optimizes
both stability and fairness metrics. This core based cdstation problem is formulated as a large-
scale bi-objective optimization problem with an exponantiumber of implicit constraints related
to the core definition. In particular, the parameters of ¢hesnstraints are the function values of
coalitions of DRAs, which are the outcomes of the optimaldig strategies of the corresponding
coalitions of DRAs. To tackle this highly complex bi-objeet optimization problem, we propose
to employ thee-constraint and row constraint generation methods, whigio& the fact that the
number of optimization variables can be much smaller thanntiimber of optimization constraints.
Numerical studies show that the proposed algorithm all@asohstruct the Pareto front with a large
number of Pareto points for a VPP consisting of a large nurob&RAs. Moreover, the proposed
framework enables the VPP to determine a suitable costatitotfor its members considering the
trade-off between stability and fairness.
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Chapter A

Summary

A.1 Research Motivation

The electricity industry has seen the significant transédrom from centralized power systems domi-
nated by big utilities and highly dependent on fossil eneegppurces, to smart grids with high penetra-
tion of eco-friendly distributed renewable energy andwacparticipation of energy consumers under
market deregulatio]. One of the most important changes is probably the widespagloption of ac-
tive demand side management in the smart gi8fisip fact, it was defined in Title XIlIl of the Energy
Independence and Security Act (EISA) in 2007 that the smrattigan electrical grid which integrates
a variety of operational and energy measures includingtsmeters, smart appliances, renewable en-
ergy resources, and energy efficient resources to motivatadtive demand side managemé&htThe
framework for smart grid interoperability standards defibg the National Institute of Standards and
Technology (NIST) is illustrated in Figur&.1 [1].

Research and realization of various smart grid conceptseaahologies have received tremendous
investment from governments worldwide. In particular, @used information and communication
technology (ICT) infrastructure has been significantlynaoigd in many countrieg6] where a mas-
sive number of smart meters has been installed, e.g., ovailiédn smart meters have been deployed
by the Department of Energy (DoE) smart grid investment igfgn Moreover, the deployed commu-
nications networks and data management systems form tlaneely metering infrastructure (AMI),
which enables two-way communication between utilities emstomers§]. The upgraded ICT infras-
tructure has paved the way to the realization of active deisate managemer@f15. Smart decision
making taken by demand-side entities can bring about mamgfite to the smart grid?]. For example,
home energy consumers can exploit dynamic pricing schemsshiedule their energy consumption
SO as to minimize their electricity consumption cost63]. Hence, the main decision making is to
schedule the energy consumption wisely to reduce the emagyent while still maintaining certain
operations, user comfort, privacy requirements.

Thanks to the deployment of the grid’s ICT infrastructureme energy consumers and grid op-
erator are connected and demand response (DR) serviceg adfeled to the grid operator through
changing the energy consumption 48,[14, 24-27], which can enable the grid to operate more effi-
ciently. The grid operator, however, may be interested itivatng their energy customers to actively



4 Summary

participate in the DR program through for example a suitableng policy. A well-known approach
to enable the grid operator to manage DR services from it®oess is to deploy the so-called Load
Serving Entity (LSE) 28]. Finally, small-scale demand-side entities can coopeti@@ct as a single
entity under the coordination of a demand-side resourceeggtpr R9, 30] or a virtual power plant
[31], to purchase energy in the wholesale market since the waldenergy prices tend to be cheaper
than the retail prices3p]. In order to participate in the wholesale market, the desrside entities
have to make several decisions such as coordination desisioform a large cooperation coalition,
energy bidding in the market, and sharing the cooperatioefits with each other.

In general, design of smart decision making frameworks fmand-side entities can be quite
challenging in the smart grid environment with increasiegetration of renewable energy in the dis-
tribution network B, 33]. Although being friendly to the environment, renewablemgy resources
such as solar and wind power can be quite unpredictable hvdaic lead to great difficulties to ensure
efficient and reliable operations for the involved disttibo network P]. In particular, adoption of a
poor energy management strategy can result in low utibradif renewable energyl 9, 34]. In addi-
tion, poor pricing design cannot tackle the fluctuation ofeneable energy sources, which eventually
results in unstable grid operatior&5]. Finally, appropriate design of a bidding strategy canehaos-
itive impacts on the achieved profit/cost of demand-sideiesiparticipating in the electricity market.
This is an important issue because market participants beusisponsible for managing uncertainties
of their renewable energy source9] 36)].

In summary, successful exploitation of active demand sideagement requires addressing sev-
eral decision-making problems for the involved smart gnditees in the distribution network. This
dissertation aims to address some of these problems.

A.2 Research Objectives and Contributions

This thesis aims to address three important challengesibedabove, whose contributions can be
illustrated in FiguréA.2 and summarized as follows.

In Chapter 3, we study the home energy scheduling probleimeimgal-time pricing environment.
Specifically, we propose a comprehensive model conside¢n@gntegration of renewable energy in
the home energy system, i.e., the eco-friendly solar &ssldWV/AC-water heating system. Then, we
propose a real-time Model Predictive Control (MPC) basesigitefor a smart home equipped with
solar assisted HVAC-water heating system and other cdaltdel loads in response to the real-time
pricing signal. We devise a rolling algorithm based on twage stochastic programming for home
energy management so that it can minimize the energy payoosit guarantee system constraints
while exploiting the energy coupling relation of the solartimal storage and HVAC system to improve
the system energy efficiency.

In Chapter 4, we consider the pricing design problem in tiséribution network to motivate the
demand response participation from energy consumers. rticydar, we propose a dynamic pricing
scheme implementable in the distribution network underrnttoelel of Load Serving Entity (LSE),
which is easy to implement and compatible with the currentketastructure. Our design creates an in-
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centive for the flexible load to perform demand responsediwathelp the LSE address the fluctuations
of electricity prices, conventional nonflexible load, anstidbuted renewable energy. Specifically, we
present the formulation of the proposed pricing design igguthe bilevel programming framework.
Given the lower-level sub-problem is linear, we employ tipdiroal KKT conditions to convert the
bilevel problem into the single objective mathematics vetfuilibrium constraints (MPEC), which is
then transformed into an equivalent single objective miréeger linear program (MILP) by using the
Fortuny-Amat formula and strong duality theorem of lineamgramming. The obtained MILP can
be solved efficiently by using available commercial solvédsimerical results are then presented to
illustrate the effectiveness of our design in motivatingyded response integration in the distribution
network.

Chapter 5 studies how to share the cost for the cooperatimeaDd-Side Resource Aggregators
(DRASs), which are based on generic models of active dematedegients. Specifically, these DRAs
are coordinated under the Virtual Power Plant frameworlototly bid in the electricity market and
the corresponding attained cost must be split among membevgard this end, we first present the
comprehensive cost allocation model, which is applicablthé current market structure. Then, the
cost allocation problem is modeled as the solution of a cadpe game where all DRAs act as play-
ers and the value function of coalitions of players are thieamues of their optimal market bidding
strategies which are obtained by solving the correspontogstage stochastic programs. We show
that the core of the studied game, which defines all buddanibad and stable cost allocation vectors,
is nonempty. Then, we propose to determine the cost altotagctor inside the core considering the
trade-off between different criteria through solving aobjective optimization. This bi-objective opti-
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Figure A.2 —Problems addressed in this thesis

mization has an exponential number of constraints with icitgbarameters which are the coalitions’
function values. Since the number of cost shares are onlgléguhe number of DRAs, which is
much smaller than the number of constraints, we proposegamitdm based on the combination of
g-constraint and row constraint generation methods to cocisthe Pareto front within manageable
computation effort.

A.3 Energy Management of Smart Home with Solar Assisted Ther
mal Load Considering Price and Renewable Energy Uncer-
tainties

The contributions of this study was published in the pafd&k.[ In particular, we investigate how
a single smart home equipped with renewable energy basdidrggs can respond to time-varying
price signals in the best economic way.

System Model

We consider a typical household in the RTP environment whieeegy scheduling is performed for the
24-hour scheduling period. The household is equipped wahlar assisted HVAC-water heating sys-
tem and other loads of different types such as electric \@kii€V), washing machine, washing dryer,
television, and water supply pump. The household loadsidkay the joint HVAC-water heating sys-
tem is classified into controllable and non-controllableety B7]. Non-controllable loads are those
whose operations are dependent on the will of users suchmaguter, lighting, and television. The
operations of non-controllable loads are not considerediimoptimization. In contrast, the operation
schedule of controllable loads can be optimized withoutudisng the user life style. We divide the
considered scheduling period imtbscheduling time slots of equal lengttwhere the electricity price
in each time slot is assumed to be constant.
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Figure A.3 — Solar assisted HVAC-water heating system

DenoteA as the set of all controllable appliances adepresents the HVACGA; for interuptible
and deferrable loads\s for noninterruptible and deferrable loads, afglfor noninterruptible and
nondeferrable loads. Then, we have- A; UA UAzU Aa.

The solar assisted HVAC-water heating system representmportant load of the household,
which is described in the following. The typical componeatsi design of this system is illustrated
in Figure A.3[38]. It consists of a solar collector, a water storage tank,taedHVAC system. Solar
energy is collected and transformed into thermal energghwvis stored in the water tank by the solar
collector. Hot water from the tank then supports the domédsgit water demand and heating/cooling
demand of the HVAC system. The operation of HVAC is based erptinciple that energy which is
used to move heat around is often smaller than the energytasgeherate heat. Hence, extra heat
from the water tank can be used to support the necessaryyenbich is used to control the heat cycle
in heating/cooling mode of HVAC. To cover the remaining hé@atmand for the cloudy day or during
night time, the water tank is also equipped with an auxilia@ater. In this paper, we usands to
denote time slot and scenario indices, respectively.

In the solar assisted HVAC and water heating system, sokggtis collected and transformed into
thermal energy which is stored in the water tank by solaectdir. In addition, HVAC transfers heat by
circulating a refrigerant through a cycle of evaporatiod anondensation. The refrigerant is pumped
between two heat exchanger coils named evaporator and regrdiey the compressor pump. In the
evaporator coll, the refrigerant is evaporated at the I@ggure and absorbs heat from its surroundings.
The refrigerant is compressed at high pressure and thesféraed to the condenser coil where it is
condensed at the high pressure and releases the heat ibetbsarlier in the evaporator. The cycle
is fully reversible; hence, the HVAC can provide cooling drehting mode. For cooling, the heat is
extracted from home and released to outside area. For beitmheat extracted from outside is used
to heat the indoor area.

Energy consumption of HVAC lies mostly in the compressor puand condenser, especially to
maintain temperature at the condens&9]| By adding support heat to the condenser, less energy
consumption is needed for the HVAC to operate the heat cyaace the coefficient of operation
(COP) isincreased. For solar assisted HVAC-water hedtivegheat captured in the water tank is used
to support heat for the HVAC. For the conventional models, ibat from water tank is not utilzed
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to support the heat requirement of the HVAC’s condenser Fodeting, we impose the following
constraints for the solar assisted HVAC and water heatistesy.

Energy Management Strategy

We employ the two-stage stochastic programming to formeulaé scheduling problem where the
Monte Carlo simulation technique is used to generate ranstmmarios. In addition, the formulated
problem is solved by using the rolling procedui®|[ Toward this end, we repeatedly solve the under-
lying stochastic optimization problem in each time slotegivthe realization of the random variables
(i.e., electricity price and renewable energy) in the aurtame slottp. In particular, we minimize the
sum of the electricity cost due to energy consumption at thieeat timetg (as electricity price, solar
irradiance, and outdoor temperature at the current timeas® known) and the expected electricity
cost from time slotg+ 1 to the last time sloN. Known information about system uncertainties such
as price, solar irradiance, outdoor temperature, nonrgligible load power consumption are updated
during this rolling process. Therefore, we consider thifaing optimization objective at each tinig

NS N
min ;{pi,toctor"i_ Zps > pﬁtCFT} (A.1)
Pt i€ =1 t=torl

wherep*® denotes the probability of scenaspwhich is used to calculate the expected cost toward the
end of the scheduling period; is the price, ancbﬁt is the power consumption of loadht timet in
scenarics.

This rolling two-stage stochastic programming technigquénbme energy management follows the
tree reduction method where multiple scenarios are gestbtatcapture the uncertainty in electricity
price and weather factord]. This optimization problem is subject to operation coasits of each
type of appliances and the total energy consumption canttravhich can be summarized as follows:

min % {pi,toctor+ NZSPS % pis,tCtST} (A.2)
Pt icA s=1 t=top+1
s.t.  System constraints,

Constraints of solar assisted HVAC-water heating systln,

Constraints of interruptible and deferrable loa&ig,

Constraints of noninterruptible and deferrable loass,

Constraints of noninterruptible and nondeferrable loads, (A.3)

The computation procedure is illustrated in Figé&. This problem is a mixed integer linear
program, which is solved by using the CPLEX solver. We emph@yMonte Carlo simulation method
to generate scenarios to represent various uncertainrgaatduding price forecast error, solar irradi-
ance, outdoor temperature, and power consumption of notraitable load. In general, the number
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Figure A.4 —Rolling stochastic scheduling for Home Energy Managemgstesn

of generated scenarios needs to be sufficiently large toagtee the energy scheduling efficiency.
However, a large number of scenarios may lead to large catipatcomplexity. For a large-scale
problem, a scenario reduction method can be used to elienthatscenario with very low probability,
aggregate scenarios of close distances based on certéabiity metric, reduce the number of sce-
narios, and consequently relax the computation burden. S868AMS/SCENRED softwaret{)] to
generate/reduce the set of scenarios in this paper.

Numerical Results

We consider a typical household with solar assisted HVA@ewheating and 3 different controllable
loads. The power limit of all controllable loads is assum@d2V for simplicity and the threshold for
energy consumption in one hour is 15 KWh. Water demand dadt&kes from P5]. The parameters
for solar assisted HVAC and water heating system are dextal follows. The solar collector has
aperture area aboutrf?, the peak power of auxiliary heater is 5 KW, and the initiadigyy conversion
efficiency '73 = 0.7. The thermal storage tank has volume ofd@a, which is equivalent to 32
m®. The tank can receive energy from the heater and solar toilé2OP of hybrid and stand alone
system are 5 and 3, respectiveBg]. Other parameters of the solar system are taken feih [lfank
temperature is required to be in the range of’{307(°C]. The temperature comfort range is chosen
as [20— AT, 20+ AT] whereAT represents the thermal tolerance, which is set equal 1 sistated
otherwise.

The operations and corresponding costs of the househoidfarenced by different system param-
eters including the thermal comfort tolerance, water tamkgerature constraint, and solar collector
size. We study the variations of energy cost for three difieicases, namely conventional HVAC-
water heating, conventional HVAC-solar water heating, soldr assisted HVAC-water heating. First,
the effect of room temperature tolerance on the energy sosthawn in FiguréA.5(a). This figure
shows that increasing the room temperature tolerance ieselduction of electricity cost as expected.

Figure A.5(b) illustrates the influence of maximum water tank temperatureenergy cost. By
increasing the maximum temperature of water tank, moreggnesin be stored, which allow more
flexibility in scheduling energy consumption to reduce theceicity cost. It is interesting to notice
that the electricity cost decreases before saturatingeanthimum value. This implies that for a given
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Figure A.5 — Effects of system parameters on electricity cost

solar collector size and auxiliary heater, the amount ofwag solar energy and the heater power are
limited; hence, the energy stored in tank is also limitedteNaso that increasing the maximum water
tank temperature can result in better cost-saving, whioWwgver, may effect the equipment life time.
FigureA.5(c) describes the variation of electricity cost with the solaltextor size. For the con-
ventional HVAC and water heating system, solar energy isutibzed so the electricity cost remained
unchanged. For systems integrating solar energy, as weaseithe solar collector size, which means
more solar energy can be captured, the electricity costcesibefore setting down at the minimum
value. The minimum value corresponds to the thermal caphuiit of the water tank. From the re-
sults in FiguredA.5(a), A.5(b), andA.5(c), it can be seen that the solar assisted HVAC-water heating
achieves the largest cost saving. This is indeed thank®totilization of solar energy and the flexible

operation of the water tank, which serves as energy stoeaglty to support both HVAC and water
heating loads.
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FiguresA.6(a)andA.6(b) illustrate the impacts of the solar collector size and maxinwater tank
temperature allowance, which is proportional to the tamrtial capacity, on the energy cost. These
figures show that increasing the maximum water tank temyeratlowance, which would reduce the
life time of the water tank, and increasing solar colleciae sesult in the reduction of energy cost.
However, the energy cost converges asymptotically to itsmmim values. Thus, above a certain value
of solar collector size and maximum temperature allowatieeworking cycle of the auxiliary heater
reaches its minimum to maintain the water tank temperaturermthe solar is not available. This
minimum value corresponds to the water tank capaaif) &nd the heat loss. When the solar collector
size is small, apparently the cost is not effected by thel@anyxiheater. This is because the captured
solar energy is insufficient to support the heat loss andhbenal load. Hence, the tank operates
mainly by relying on its auxiliary heater. The impact of theximum water tank temperature limit is
only significant when the solar collector size is large efo(apove 87) when the amount of solar
energy captured is considerable.

Conclusion

We have proposed unified HEM design to minimize the eletyrimbst that considers users’ comfort
preference and solar assisted thermal load. The developdtematical model captures the joint op-
eration of the solar assisted HVAC and hot water system axtowufor detailed operations of various

types of home appliances and the uncertainty in the solaggrand electricity price. We have pro-

posed to solve the energy problem by using the rolling tvegiststochastic optimization approach.
Finally, numerical results have been presented to showigimfisant energy saving for the system

with solar assisted thermal load in comparison with oth@wveational systems.
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A.4 Dynamic Pricing Design for Demand Response Integratiom
Distribution Networks

System Model

We consider a LSE which can procure energy from various ssurcluding the main grid, DR re-
sources, batteries, and local DERs including RESs (e.qxd\&nd solar energy) and dispatchable
DGs (e.g., diesel generators, microturbines, and fuet)ctl serve its customers, which is shown in
Figure A.7(a). The energy scheduling problem is considered in a one-dagdw/hich is divided
into 24 equal time slots. For simplicity, we assume that tB& [possesses several conventional DGs
such as diesel generators and fuel cells, and it does notriargyefrom privately owned conventional
DGs. Additionally, the LSE does not own any renewable ensmyyces. We assume that the LSE has
take-or-paycontracts 42|, which are also called Power Purchase Agreements (PPA)nesnarkets
[42, 43], with local wind farms and/or solar farms to buy renewabiergy from them. In théake-or-
pay contracts, the LSE buys all available renewable energyrgéete from these wind/solar farms at
a fixed price which is typically lower than the average priaf the main grid42]. Without loss of
generality, we assume that the prices paid to all renewatglegg sources are the santf®). Finally,
the LSE may own some battery storage units.

System loads are assumed to belong to one of the two categoamely flexible and inflexible
loads. Inflexible loads or critical loads are those that tB& has to serve. If the LSE cannot fully serve
the inflexible loads, a portion of the inflexible loads has ¢oshed, which is called involuntary load
curtailment (ILC). A very high penalty cost) is imposed on the LSE for ILC since the main goal
of the LSE is to guarantee electricity supply to its custa@rjé8]. Inflexible loads are charged under
the regular retail pricecf). In contrast, flexible loads are assumed to be aggregatedéypr several
DR aggregators which enjoy a dynamic pricing tariff thatidddoe designed to bring advantages to
the DR aggregators. One practical strategy to encourageggfegators participating in our proposed
operation model is to ensure cost saving for them.

In practice, a flexible load customer might be hesitant tdigipate in a real-time pricing scheme
since electricity prices in this scheme may be greater tharrégular retail price for several hours
of a day. The loads of a flexible load customer include ciitioad which should not be shed or
shifted and flexible load that can be shed or shifted. Theeefbthe flexible load customer has a large
portion of critical load during high price hours, we mighttio@ able to guarantee cost saving for the
customer compared to the case where the customer is chartjezlfxed retail price. Hence, one of
the most practical approaches that the LSE may use to afiigaitile load customers to participate in
the proposed pricing model is to offer DR price (i.e., thaitgirice that the LSE charges flexible loads
or DR aggregators), which is always lower or equal to thelrptae in each hour. In the worst case
when the DR price is equal to the regular retail price, the toposed on participating entities is the
same with the one when they are charged under the reguldmmrta.

This design allows us to prevent individual small flexiblergy customers from interacting directly
with the wholesale market, which would complicate the ofyencof the wholesale market. Moreover,
our design ensures that the number of participating paiiesir model as well as the number of
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Figure A.7 —System Model and Solution Approach

variables in our formulated optimization problem be redlusignificantly. In addition, we assume that
DR aggregators have DR contracts with flexible load custersethat these customers can declare the
characteristics of their loads (e.g., utility functiob4] 42, 44-46] or discomfort function in the case
of load reduction or load shiftindlLD, 43, 44]) to the DR aggregators. Based on the load information
provided by their customers, each DR aggregator can canistrsuitable aggregated utility function,
which is then sent to the LSE.

The underlying optimization problem is formulated as auslegorogram where the LSE is the
leader and each DR aggregator is a follower. The outcomea®ptbblem contains optimal dynamic
DR price series@®R) over the scheduling horizon. Additionally, the outputstu proposed problem
include the hourly energy trading between the LSE and the miadl (Pf), the scheduled generation
of local RESs BRE®) and local DGs R, ;), charging/discharging power of batterié% ( Plgt), amount
of ILC (Df©), and hourly energy consumption of DR aggregatess X

Problem Formulation

The objective of LSE is to maximize its profirofit = Rev— CostwhereRevis the retail revenue
obtained by serving inflexible loads (at pric&) and flexible loads (at pricePR), i.e.,

NT ND
Rev= ZAT cf(Dy — DF°) +(Z cPRPy ¢ (A.4)
t= =1
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whereD; — DFC is the amount of inflexible load that the LSE serves at tim&he operating cost of
the LSE includes the cost of buying/selling electricity gow® from/to the main grid with pricef,
buying renewable energﬂRES’a with price qRES, operation costs of DGs including start-up c6&f
and dispatch costi(P ;) [43], and the penalty cost for involuntary load curtailmehtD-¢. Hence,
we have

NT NG
Cost= 3 AT PECE + cFESRTE> 4 ;<su7t+ci<e,t>)+cLCD%C : (A5)

This objective of LSE is subject to several constraintsudilg power balance constraints, power
trading with main grid constraints, renewable energy aamsts, involuntary load curtailment con-
straints, thermal generator constraints, battery conssravhich are MILP constraints, and DR flex-
ible load constraints, which is modeled as a lower optinzaproblem. In particular, the energy
consumptiorPy; of DR aggregatod depends on the DR pricg’® set by LSE, ¢€°R < cf, Vt)as
follows:

NT

max t; [Udyt(PdJ) _AT cPRPd,t] (A.6)

whereUq;(Pyy) is utility of DR aggregatod when consuming®; and AT ¢PRPy; is the cost DR
aggregatod pays for LSE.

In this paper, the utility functions dfq(Pqt)are modeled by multi-block utility functions, which
are commonly used in the literatud? 44-46]. The marginal utility of a demand block decreases as
the index of demand blocks increases. Figke8 shows the utility function of DR aggregatdrat
timet. As we can observe, this function has four demand blocks Ky = 4). The values at point
A, C, D, EarePy 7y, Pty + Pi'st, Pair tPa 2 tPa st andPyTi+Py i +Py st +Py a1, respectively. If the

scheduled demand of DR aggregadaat timet is OB (i.e.,Pyy = OB), then the utility value for load
consumption of aggregatdrat timet is equal to the shaded area. Generally, we have

NMy
Ugt(Pat) = AT Z Ud mtPd mt (A.7)
m=1
NMy
Pat = Z Pd,mt- (A.8)
=1

Modeling this utility function will result in a linear progm that describes the follower (lower)
optimization problem of DR aggregatdr Since the lower problem is a linear program, we first replace
it by its optimal KKT conditions. The obtained problem is age objective optimization problem with
complementary constraints (MPEC). We then remove the neatiterms in the MPEC by using the
Fortuny-Amat approximatiord]7] and the strong duality theorem of linear programming peabl The
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final equivalent optimization problem is MILP, which can ledved easily with GAMS/CPLEX. These
steps are summarized in Figuke/ (b)

Numerical Results

We assume that the LSE can predict electricity price, infliexdioad, and renewable energy generation
with high accuracy. For simplicity, we use historical datdh@ correspondding system parameters as
their forecast values. Specifically, the penalty cost feolantary load curtailment is set equal to 1000
$/MWh [48]. The renewable energy price that the LSE pays for local ¥gioldr farms is assumed to
be 40 $/MWh. For simplicity, we assume tiRit™® = Perd andc® = c®, vt. The regular retail price
in the base case is $60/MWh and we assume the LSE does nospasgebattery storage unit in the
base case. Further data can be found in Chapter 5.

We consider the two following schemes.

* Scheme 1 (S1)The LSE solves the proposed optimization model. The DReagajors enjoy a

dynamic retail price tariff.

» Scheme 2 (S2) The LSE solves the same optimization problem. Howeverreégelar retail
price is applied to DR aggregators (i.ePR = cR, vt). In this scheme, DR aggregators have no

incentives to modify their loads.
Table A.1 presents the performance comparison between Scheme 1 heth&@ for different

values of the regular retail price. Payoff 1, Payoff 2 repregotal payoffs of DR aggregators; Profit
1, Profit 2 indicate the optimal profit values of the LSE; andlDddd DR2 represent the total energy
consumption of DR aggregators over the scheduling horiao8¢heme 1 and Scheme 2, respectively.
TableA.1 shows that the minimum energy consumption level of all DRregators is 201.6 MWh and
the total payoff of DR aggregators as well as the optimal pobthe LSE in Scheme 1 are significantly
larger than those in Scheme 2. Therefore, we can conclud&theme 1 outperforms Scheme 2 in
terms of DR aggregators’ payoffs and LSE’s profit.

FigureA.9 shows the optimal hourly DR prices over the scheduling loorior different values of
cR andPe"d, We can observe that DR price is very low during time slots @8te low for some period
during time slots 9-16, and very high during time slots 174Pduitively, the LSE would set a low DR
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Table A.1 —Comparison between Scheme 1 and Scheme 2

c?  Payoffl Payoff2 Profitl Proft2 DR1 DR2
$/MWh $ $ $ $ MWh MWh

47 2607.2 2403.2 695.7 146.8 272.0 213.6
50 2061.2 1786.6 2103.9 14769 270.0 201.6
55 1250.2 778.6  4599.9 3942.8 240.0 201.6
60 251.0 -229.4  7191.3 6408.7 201.6 201.6
65 -756.9 -1237.4 9657.2 8874.6 201.6 201.6

price during some time slots to encourage DR aggregatoi@isurne more energy. In addition, it can
set a high DR price (i.e., close or equal to the regular retaik) to discourage DR aggregators from
consuming energy.
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Figure A.9 —DR price

There are several reasons for the LSE to set low DR pricet, kitgen thegrid price is low, the
LSE would be interested in buying more energy from the maid gr serve its customers at a DR
price between the grid price and the regular retail priceco8d, the grid price can vary significantly
over the scheduling horizon, which offers opportunitiestf® LSE to arbitrate between low and high
price periods. Therefore, the LSE sets low DR prices at same $lots and high at some other time
slots to encourage load shifting from DR aggregators inrora@eeduce the importing cost of energy
from the main grid. Also, DR aggregators can reduce thds by shifting their loads to low DR price
hours. Finally, if renewable energy generation is high,ltB& faces the power limit at the PCC (i.e.,
Perid): hence, it would sell as much energy as possible as to itemess at low DR prices rather than
curtailing the renewable energy surplus.
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Conclusion

In this paper, we have proposed a novel operation framewmrk L.SE, which serves both flexible
and inflexible loads. The proposed pricing scheme can belyeaglemented since it is compatible
with the existing pricing structure in the retail market. ténxsive numerical results have shown that
the proposed scheme helps increase the profit of the LSEasermpayoff for DR aggregators, reduce
involuntary load curtailment, and renewable energy chmiznt.

A.5 Cost Allocation for Cooperative Demand-Side Resource g
gregators

In Smart Grid, demand-side resources can be aggregatedimpzge in the electricity marke2f, 29,

30], which can be considered as a short-term decision makiollgm 2]. We will investigate how
the agrgegated demand-side resources bid energy in thenhsard allocate the cost to each member.
The contribution of this chapter was published in the pap8lr [

System Model

We consider a set of cooperative DRA] coordinated by a commercialrtual power plant(VPP)
[31] as shown in FiguréA.10. The commercial VPP50] manages the output of on-site distributed
renewable energy generators, energy consumption of feeldlalds, deploys load reduction services,
and satisfies nonflexible load demands of multiple coopar@RAs R9]. Each DRA can be consid-
ered as a cluster of several types of load, namely nonflelolalé, flexible load, reducible load, and
distributed renewable energy sources such as rooftop gafels and wind turbine29]. Nonflexible
load is the one whose energy consumption cannot be defd@e?ld]. The flexible load is modeled by
a multi-block utility function widely adopted in the litexare [14, 28, 42, 44-46]1. The DRA can em-
ploy various load reduction services including load cumant, back-up generator, and battery which
are captured via “reducible loadl()]. Detailed load reduction modeling is not considered fordic-

ity [10]. All DRAs are coordinated via a commercial VPBQ[, which participates in the short-term
two-settlement electricity market including the wholesdhy-ahead (DA) and the real-time (RT) mar-
kets P4, 29] as a single entity3d1]. The VPP is assumed to act as a price taldj and the bids do
not affect the DA/RT clearing price24, 29, 31]. Unidirectional interaction with the grid is adopted
[24], i.e., we can bid to purchase but cannot sell surplus enterdgiye grid R4, 29, 30]. The uniform
pricing rule and two-settlement system are used to moddirthacial settlement of DA and RT energy
deliveries P4]. In addition, the total cost of VPP or coalitions of DRAs mirglude the penalty cost
of energy bidding deviation2d], the load reduction services’ cost(], and the flexible load utility
[42]. Detailed description of the considered market framewsresented inZ4].

1other flexible load models such as energy aggregafiél) EV aggregator4], HVAC aggregator 16], load elastic
model b1-53] and their uncertainties can be integrated into the modeichwill be considered in our future work.



18 Summary

—— Control Signal VPP
Load .
— —» emaion (COOTrdinator
PEEETIR
Vs ~
/ |

DRA2 J == |DRA NK

Demand Side Resource Aggregator (DRA)

Nonflexible Load  Flexible Load Renewable energy Reducible Load
| sources (Load reduction services,

( DRA1

A Q) - m
' = gl
A tas . (&
Time: Gate Closure
0.00 am (PJM: 12.00 pm)  (PJM: 18.00 pm)  0.00 am
| | | 5
'Evenf.' Through out the
VPP submits its operation day RT
DA bidding DA maHkst cloges price ql each time slot
curves and and ISO (PJM) is posted
compute the svaliates th DA prices
percentage of ax adsb_de’ are posted VPP makes a
expected total recen;? s sequence of actions
cost for each afers to coordinate its
DRA resources given the
realized uncertainties
— D1 »le D >
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Cost Allocation Under Cooperative Game Model

The VPP makes decisions on the joint bidding strategy, ite,DA bidding decisions before the
stochastic scenario materialize9] 31]%, and determines the cost share of each DRA. The resulting
bidding costv(.#") must be split among the participants, i.e., the VPP needBdcate each DRA's
percentage quoteg (%) of total expected bidding cosf.7") before the planning horizon begins:

NK
> Xc=1(100%),%c > 0.
k=1

The cost allocation problem, i.e., the determinatiorxgfis addressed by using the cooperative
game theory$4]. In this study, the bidding strategy is modeled as risk s&dwo-stage stochastic
program R] where Conditional Value at Risk (CVaR) is used as a risk measThe cost function
is modeled as the optimal cost value achieved by a risk a\mdsing optimization in the electricity
market and the percentage quaig%) of the total VPP’s bidding cost(.#¥") is considered as the
solution of the studied cooperative gasie” ,v).

2PJM time line:http://pjm.com/ /media/training/nerc-certification$/B-twosettlement.ashx



A.5 Cost Allocation for Cooperative Demand-Side Resourggr@&gators 19

Cost function

The cost functiorv(S) of a coalitionS of DRAs can be defined as follows:

v(S) = v(es) = min

"~ DDA PRT OF  RF G PR
R RS Dt oDkt sUkits:Pet s Pkt 561

(1-B) 7TsNT APARPAAT 4 ART (RT PA>AT
2,782 N R (PR

NK
#AP[RTPPA|AT+ 5 (NDE AT ~Usss)
k=1

(E +— Z nsns> : (A.9)

s.t.  Constraints of Flexible Load
Constraint of Reducible Load
Constraint of Distributed Generator
Power Balance Constraints
CVaR Constraints (A.10)

The cost function value obtained fro.Q) results from the risk averse expected cost minimization
of a coalitionS consisting of individual DRAK € S participating in the two-settlement electricity
market. It is the weighted sum of the expected cost of markitihg and the CVaR (the last term)
which are multiplied with - 8 and 3, respectively. The expected market bidding’s cost inciute
energy trading costs in DA mark&b*RPAAT, RT marketA(% (BT — RPA) AT, plus penalty cost due
to mismatch between DA bidding and RT dlspato%] PtRT PDA\ AT [24, 29], plus the cost of using

load reduction minus flexible load’s utllltyz (/\&D"ft AT — UkLS) [10, 42]. These cost components
k*l el ’

are calculated oveMT time slots andNS geﬁerated scenarios whemgis the probability of scenaris
Based on the modelings of the constrair&sl(Q), the optimization defining(S) is a linear pro-

gramming problem. In addition, the right-hand side of coaists is a linear transformation of coali-

tion indication vectoeS Whereef =1if ke Sand 0 otherwise. The cooperative game that has this

special cost function form is called a Linear Programmingngawhich is totally balanceép] and has

a nonempty cor&’(v) which contain all budget balanced and stable cost allocagatorx:

€ (v)={ xe Z"K: hkazl, ngkv(,%/gv(S),VSGZNK\{(D} : (A.11)
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Bi-objective Based Cost Allocation

The nonempty core by definitio®\(11) is a polyhedron witiNK—1 dimensions, which can contain
many potential cost allocation vectotsAn arbitrary allocatiorx in the core can correspond taveak
stablesolution since some coalitions attain very small or zerd sasing value and they might not
receive significant benefits to stay in the cooperat. [ It might also beunfair since some DRAs
have larger percentage cost reduction than ottel|s Therefore, an efficient design must address two
main issues mentioned above, namely stability and fairnBsgarticular, the stability and fairness
metrics employed to design an efficient cost allocatiorntetnaare described as follows:

+ Stability metric: captures the minimal satisfaction, i.e., the worst-cast savingd($) among
all coalitionsS.

 Fairness metriccaptures the maximum deviation of the percentage costgawmiong individual
DRAs which is the difference in percentage cost savif¥g) between the DRA that achieves the
highest percentage cost saving and the DRA that achievdtestr@ercentage cost saving for a
given allocation vectox € € (v) [54).

The core cost allocation design aims to find a cost allocatsmtorx € €' (v) that achieves efficient
tradeoff between the fairness and stability metrics, wharihbe modeled as a bi-objective optimization
problem as follows: (PO)

_min vy (A.12)
P, D, 5. %,V
min —o& (A.13)
0%
NK
s.t: Z Xk =1, x>0, (A.14)
K=1
8 <V(S) - Y xV(X), VSe 2NK\ {0, ) (A.15)
kes
0>0 (A.16)
v(x)
D < % <®, vke X (A.17)
v({k})
y= - o, (A.18)

where the optimization of the objective functions.12)-(A.13), which minimizes the valued vector
[y, —9&], aims to achieve the fairness and stability, respectivpreover, constraintA.14) means
that the total cost (in fraction) is distributed among all &Rwhile the auxiliary variabl® in (A.15)
provides the lower bound of the cost saving of all coaliti@wsnder cost allocation solutian The
minimal satisfaction, i.e., the worst-case cost sawi$}) among all coalitionsS is maximized in
(A.13). The constraintA.16) forces the allocation to be in the coxec ¥ (v) while constraint A.17)
provides the lower bound and upper boundb for the ratio between allocated cost under grand
coalition and cost due to the non-cooperative scenariolf@RAs k (i.e., the cost percentage saving).
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The maximum deviatioty of the percentage cost saving of individual DRAs, which & difference
of ® and® as in @A.18), is minimized in A.12).

To obtain Pareto optimal points, we convert problem (P@ &single-objective optimization prob-
lem (P3) using the-constraint methodg6] since problem (PO) is linear. The stability objective func
tion (A.13) is chosen to be optimized while the fairness objectivd ) is converted into a constraint.
Let M + 1 be the number of grid points of the Pareto front amd {0,1,...,M}. Two extremes points,
m=0, andm= M + 1, are determined by solving two following optimization plems respectively:
(P1)

- min y
(D’g’é?xk?y

s.t: constraintsA.14) - (A.18).
(P2)

max o
0, Xk

s.t: constraintsA.14)- (A.15).

Then, them™ point on the Pareto front can be obtained by solving the falig single-objective
optimization problem:
(P3)

~max o
q)79767)(k7 y

s.t: constraintsA.14)-(A.15), (A.17)-(A.18)
y<y", (A.19)

where y" is a parameter defining the™ point on the Pareto front. In particulay™ is chosen as
ymin < M < ymax - ymin gndymax can be obtained from the payoff table when we solve (P1), kwhic
minimizes the maximum deviation of the percentage costhgawT™, and (P2), which finds the nu-
cleolus allocation solution witd™¥, respectively. In this study, the paramegtidentifying mt is
chosen as follows:

ymax _ ymin

Yi=ym e me——. (A.20)

Pareto Front Construction

We solve (P1), (P2), and (P3) to havk+ 1 points that define the Pareto front. All of them are large
scale optimization problem subject t§'2— 2 constraintsA.15) with only NK optimization variables
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Xx. Hence, row constraint generation is a natural approachpatticular, we solve (P1) by solving
iteratively the master problem (MP1), which is a relaxedsiar of (P1) that only considers condition
(A.15) for a subset(S) € 2NK — 2, and the sub problem (SP1) that find the most violated cainstr
with x* obtained from solving (MP1). The sub-problem (SP1) idgimg a unexplored coalitio®*
that achieves the least cost reduction as follows:

(SP1)

min
DA pRT pF G R
qq‘vpt 7PI.S ’Dkt s Dk,bﬁt,S’Ukst-&Pkﬁt,s’DkLs’E7ns

4 =min [v(S)— ’\f exv(A ) | =
k=1
-
(1-B) Zlnszl ADARPAAT 4 ART ( PtDA) AT

_|_A p’H T HZDA’AT+Z (AkatSAT Ukts)

1 Ns NK
+B («E +r g S;nsns) —k;eEXM% ) (A.21)
st 1< Z e <NK—1,e€ {0,1} (A.22)
1 &)+ g ) > 1, VSe 0(9) (A.23)
ConstramtsA.lO) definingv(S) . (A.24)

The sub-problem (SP1) is a mixed integer linear program @jllvith extra binary variableef
acting as first-stage variables. Solving (SP1) enables aistione®”, which giveS* andv(S") simulta-
neously. Constrainty.22), which means e 2VX\ {0, 7", ¢(S)}, and constraint4.23), which means
S¢ 0(S), ensures only unexplored coalitioBsre considered in this optimization problem. All origi-
nal constraints required in computir@S) are given in A.24). If we solve (MP1) and (SP1) iteratively
as summarized in Algorithm 1, we finally reaghsuch thatd > 0 since the core is nonempty. Then,
y is minimized and the obtained € ¥’(v) is the final cost allocation solution for (P1). Similarly, we
can solve (P2) and (P3) optimally using the row constraimegation approach since the number of
constraints are much greater than the number of optimizatoiables. Solving (P1) (P2) amd(P3)
with differenty™ let us haveM + 1 Pareto points that form the Pareto front.

Numerical Results

We consider a VPP that coordinates the cooperatidtkoDRAs. The scheduling horizon is one day,
which is divided intoNT = 24 equal time slots, each lastidgl = 1 hour. We assume that in each
time slott, each DRAK can aggregate 10% of total nonflexible load, which can beaediby using

the load reduction (LR) services with prigé = 100$/ MWh. The power capacity transferred via main
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grid isB"® = 15MW. Finally,v(S) is assumed to be well-defined, i.e., the market bidding dpéition
problem due to coalitiois feasible. Other data can be found in Chapter 5.

FigureA.11(a) A.11(b), A.11(c) show the Pareto fronts for the cost allocation problem when w
vary the risk parametgs, flexible load scaléfcale, and penalty prica P, respectively. Each obtained
Pareto front describes the tradeoffs between the stalbdjyesented by the worst-case cost saving
value & and the fairness captured by the maximum deviation of thegméage cost saving. For
all cases, whery = y™" then we haved = 0 meaning that we reach the minimum valuedoivhile
still guaranteeing to operate in the core whose definitiagivien in (A.11). On the other hand, a%
reaches its maximum value"®*, which corresponds to the nucleolus as the minimum deviatidhe
percentage cost saving among players, we achieves its maxiraluey = yMaX

These two extreme points in the Pareto front correspondetadlses where the cost allocation so-
lution X is either at the fairness core poipf?™", or the lexicographically optimal point, the nucleolus
o™ in the polyhedror¥’(v). These figures show that the proposed design enables usetonites
multiple different Pareto-efficient solutions in the cofdlee underlying cooperative game. Moreover,
one can choose an operation point on the Pareto front withathés stability-fairness tradeoff. Specif-
ically, for a certain desired value of the maximum deviatidrithe cost percentage saviggone can
determine the corresponding cost allocation vector wighetthievable value of the worst-case cost sav-
ing & being maximized. This demonstrates the flexibility and efficy of our proposed cost allocation
design compared to other existing designs such as the husibased cost allocation.

Conclusion

This study presents a computationally efficient cost atiocadesign for cooperative DRAs based on
the cooperative game core concept. We have proposed toitetkiganonempty core property of the
underlying balanced game and develop a bi-objective opétian framework that strikes the balance
between the allocation stability and fairness. We have eygal thes-constraint and row constraint
generation methods to successfully construct the Paretd of the cost allocation solutions with
manageable computation complexity. The proposed desigefGaiently allocate percentage quota of
total bidding cost to individual DRAs while achieving dedite stability-fairness trade-off.
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Chapitre B

Résumé

B.1 Motivation de la recherche

L'industrie électrique a connu une transformation impatgaen passant des systémes d’énergie centra-
lisés dominés par les grandes entreprises de servicespeblires dépendants des ressources énerge-
tiques fossiles, aux réseaux intelligents avec une fonétpdtion en terme d’énergies renouvelables
distribuées qui respectent I'environnement et impliqutitzement des consommateurs d’énergie sur
le marché déréglementatiof]] L'un des changements les plus importants est probablehaeiop-

tion généralisée de la gestion active de la demande danédeaux intelligents3]. En fait, il a été
défini dans le titre XIll de la Loi sur I'acte d'indépendandeale sécurité énergétique (AISE) en 2007
gue le réseau intelligent est un réseau électrique quinatége variété de mesures opérationnelles
et énergétiques, y compris les compteurs intelligentsapgsreils intelligents, les ressources énerge-
tiques renouvelables, et des ressources énergétiquesnotiver la gestion de la demande acti@ [

Le cadre des normes d’interopérabilité pour les réseaedigents définie par I'Institut national des
normes et de la technologie (INNT) est illustrée dans la &gut [1].

La recherche et la réalisation de divers concepts et teobies de réseaux intelligents ont recu des
investissements énormes provenant des gouvernementsedarmde entier. En particulier, I'infra-
structure avancée des technologies de l'information ead®mmmunication (TIC) a été considérable-
ment améliorée dans de nombreux pays ou un nombre massifrggaurs intelligents ont été installés,
par exemple, plus de 45 millions de compteurs intelligent®té déployés par Le ministére de I'éner-
gie dans le cadre des subventions d’investissement duuréstedligent [7]. De plus, les réseaux de
communication déployés et les systémes de gestion des e®forenent l'infrastructure de mesure
avancée (IMA), qui permet une communication bidirectidlenentre les services publics et les clients
[8]. La mise a niveau de l'infrastructure des TIC a ouvert laevaila réalisation d’'une gestion active
de la demande9F-15]. La décision intelligente prise par les entités 'coté ded® peut apporter de
nombreux avantages au réseau intelligéhtlPar exemple, les consommateurs d’énergie résidentielle
peuvent exploiter des systemes de tarification dynamigoespanifier leur consommation d’énergie
afin de minimiser leurs coltsf-23].

Grace au déploiement de l'infrastructure TIC du réseawzdesommateurs d’énergie résidentielle
et 'opérateur de réseau sont connectés et des servicegpimde a la demande’ (RD) peuvent étre
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offerts a 'opérateur du réseau en modifiant la consommaiti&mergie, ce qui peut permettre au réseau
de fonctionner plus efficacemenitdy, 14, 24-27]. L'opérateur du réseau peut cependant étre intéressé a
motiver ses clients (consommateurs d’énergie) a parti@gipgvement au programme RD par le biais,
par exemple, d’'une politique de tarification appropriéee @pproche bien connue pour permettre a
I'opérateur de réseau de gérer les services RD de ses atiemssste a déployer I'entité LSE (Load
Serving Entity) R8]. Enfin, les petites entités du c6té de la demande peuvemEceopour agir en
tant qu’entité unique sous la coordination d’'un agrégaedsaurces de la deman@9[30] ou d’'une
centrale électrique virtuell&[l], pour acheter de I'énergie sur le marché de gros puisqueriesie
I’énergie en gros tendent a étre moins chers que les prixtdd f&2]. Afin de participer au marché de
gros, les entités de la demande doivent prendre plusiecrsialés telles que les décisions de coordi-
nation pour former une grande coalition de coopératiomerecd’énergie dans le marché, et partager
les avantages de la coopération entre eux.

En général, la conception des structures intelligentegide ge décision pour les entités de la de-
mande peut étre tres difficile dans I'environnement du résealligent avec une pénétration croissante
des énergies renouvelables dans le réseau de distrib@tiBB][Bien que respectueux de I'environne-
ment, les ressources énergétiques renouvelables tekebémergie solaire et éolienne peuvent étre
tres imprévisibles, ce qui peut conduire a de grandes difisyour assurer des opérations efficaces
et fiables du réseau de distribution implig@g En particulier, 'adoption d’'une mauvaise stratégie de
gestion de I'énergie peut entrainer une faible utilisaties énergies renouvelabld®]34]. En outre,
la mauvaise paramétrage des prix ne peut pas s’attaquerngtiaatiion des sources d’énergie renou-
velables, ce qui entraine éventuellement des opératistabiles du résead%]. Enfin, la conception
appropriée d’'une stratégie d’appel d'offres peut avoirefésts positifs sur le résultat ainsi que le colt
des entités participant au marché de I'électricité cotéateta. C'est une question importante parce
que les participants au marché doivent étre responsablasgyéstion des incertitudes de leurs sources
d’énergie renouvelablep, 36].

En résumé, I'exploitation réussie de la gestion active diefaande exige la résolution de plusieurs
problemes de prise de décision pour les entités de résetikgi@nts impliqués dans le réseau de
distribution. Cette thése vise a résoudre certains de oddgones.

B.2 Objectifs et contributions de la recherche

Cette these vise a répondre a trois défis importants déedesssus, dont les contributions peuvent étre
illustrées a la figur®.2 et résumeées comme sulit.

Au chapitre 3, nous étudions le probléme d’ordonnancemetitdergie domestique dans I'envi-
ronnement de tarification en temps réel. Plus précisémens proposons un modele complet tenant
compte de l'intégration des énergies renouvelables dasgsi&me énergétique domestique, c’est-a-
dire le systeme de chauffage solaire assisté par I'eau (HMAGSuite, nous proposons une conception
d’'un modéle de contréle prédictif (MCP) en temps réel powr mraison intelligente équipée d’'un sys-
teme de chauffage solaire assisté par I'eau (HVAC) et desutharges contrdlables en réponse a la
tarification en temps réel du signal. Nous concevons un idigoe a horizon glissant pour la gestion
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de I'énergie domestique afin de minimiser son codt, de gadastcontraintes du systéme tout en ex-
ploitant la relation de couplage énergétique du systemédefiage solaire thermique et le systéme
HVAC pour améliorer leur efficacité énergétique.

Au chapitre 4, nous considérons le probleme du paramétegprik dans le réseau de distribution
pour motiver la participation des consommateurs d’éneagiservice de la réponse a la demande’.
En particulier, nous proposons un systéme de tarificatioranyque pouvant étre mis en ceuvre dans
le réseau de distribution sous le modele d’entité de sedéc€harge (LSE), qui est facile a implé-
menter et compatible avec la structure de marché actuedlee donception crée une incitation pour la
charge flexible de répondre a la demande qui peut aider le lsSflapter aux fluctuations des prix de
I'électricité, de la charge conventionnelle non flexibleles énergies renouvelables distribuées. Plus
précisément, nous présentons la formulation de la coraregés prix proposée en utilisant la structure
de programmation a deux niveaux. Etant donné que le solépne de niveau inférieur est linéaire,
nous utilisons les conditions optimales KKT pour convediprobleme de deux niveaux en un seul
objectif mathématique avec des contraintes d’équilibr@@@), qui est ensuite transformé en un pro-
gramme linéaire de nombre entier mixé avec un seul objegiv&lent (MILP) en utilisant la formule
de Fortuny-Amat et le théoreme de la forte dualité de la @Enognation linéaire. Le MILP obtenu peut
étre résolu efficacement en utilisant des solutions commeralisponibles. Des résultats numériques
sont ensuite présentés pour illustrer I'efficacité de nodreception dans la motivation de I'intégration
de la réponse a la demande dans le réseau de distribution.

Le chapitre 5 étudie comment partager le colt des agrégaf®ratifs de ressources a cote la
demande (DRA), qui sont basés sur des modeles génériguEntsaactifs de la demande. Plus préci-



28 Résumé

4 Entities’ Scale Virtual Power Plant

Smart Loadﬁ o @K

Service Entity

e
Smart Home | 4% &

“H 2 \ Dynamic pricing design — o
4,’_“‘%,&, for DR integration that Market bidding and thst sharing in
o supports real-time short-term electricity market
&;‘% operation
—————a
Real-time energy
scheduling under .
dynamic pricing Time Scale

U >

FIGURE B.2 —Problémes traités dans cette thése

sément, ces DRA sont coordonnés dans le cadre de la cernttakdle d’énergie pour soumissionner
conjointement sur le marché de I'électricité et le coltespondant doit étre réparti entre les membres.
A cette fin, nous présentons pour la premiére fois le modeleadid’allocation des codts, applicable &
la structure actuelle du marché. Ensuite, le probléme deplartition des colts est modélisé comme la
solution d’un jeu coopératif dans lequel toutes les DRAss®git en tant que joueurs et la valeur de la
fonction des coalitions des joueurs est le résultat de lewaségies optimales du marché de I'enchere
qui sont obtenues en résolvant les programmes stochastigueespondants en deux étapes. Nous
montrons que le noyau du jeu étudi€, qui définit tous les vestée répartition budgétaire équilibrés
et stables, est non vide. Ensuite, nous proposons de détariaivecteur de répartition des colts a
I'intérieur du noyau, en considérant le compromis entréédihts critéres en résolvant une optimisa-
tion bi-objectif. Cette derniere a un nombre exponentiet@etraintes avec des parametres implicites
qui sont les valeurs de la fonction des coalitions. Etaninéogue le nombre de partage des colts
est seulement égal au nombre de DRAS, qui est beaucoup giugjye le nombre de contraintes,
nous proposons un algorithme basé sur la combinaison dé®desE-constraint et de génération des
contraintes ligne pour construire le front de Pareto dansffomt de calcul facile a gérer.

B.3 Gestionde I'énergie d’'une maison intelligente avec uregharge
thermique et solaire assistée avec considération des inter
tudes des prix et des énergies renouvelables

Les contributions de cette étude ont été publiées dangl&fi9]. En particulier, nous étudions com-
ment une seule maison intelligente équipée d’appareilssa da&nergie renouvelable peut répondre
aux signaux de prix variant dans le temps de la meilleurenfégonomique.

Modéle de systeme

Nous considérons un ménage typigue dans I'environnementdRT ordonnancement énergétique est
effectuée pour une période de 24 heures. Le ménage est élupsystéme de chauffage a eau HVAC
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assisté par I'énergie solaire et d’autres charges de éiftétypes telles qu’un veéhicule électrique (EV),
machine a laver, un seche-linge, une télévision et une patighenentation en eau. Les charges, a
I'exclusion du systeme de chauffage combiné HVAC-eau, stagsées selon les types contrélables
et non contrdlables3[7]. Les charges non contrblables sont celles dont les opésatiépendent de
la volonté des utilisateurs tels que I'ordinateur, I'écgie et la télévision. Les opérations de charges
non contrdlables ne sont pas prises en compte dans notreisgion. En revanche, le programme
d’exploitation des charges contrélables peut étre opérsans perturber le style de vie de I'utilisateur.
Nous divisons la période d’ordonnancement considérdéeintervalles de temps d’ordonnancement de
longueur égale & ou le prix de I'électricité dans chaque intervalle de tengisapposé étre constant.

NotonsA comme I'ensemble de tous les appareils controlable, eeprésentant le HVACA,
pour les charges interruptibles et reportablespour les charges non interruptibles et reportables, et
A4 pour les charges non interruptibles et non reportablegsAtmus avoné = Ay UA, UA3 U Ay.

Le systéme de chauffage solaire assisté par I'eau HVAC septé une charge importante du meé-
nage, qui est décrite dans ce qui suit. Les composants gpigula conception de ce systéme sont
illustrés a Figure B.3[38§]. Il se compose d’'un capteur solaire, d’'un réservoir d’etadi@n systeme
HVAC. L'énergie solaire est collectée et transformée engiaghermique qui est stockée dans le ré-
servoir d’eau par le capteur solaire. L'eau chaude du régesupporte alors la demande d’eau chaude
sanitaire et la demande de chauffage/refroidissementstarag HVAC. Le fonctionnement du HVAC
est basé sur le principe que I'énergie utilisé pour déplicehnaleur autour est souvent plus petite que
I'énergie utilisée pour générer de la chaleur. Par cons#gleechaleur supplémentaire du réservoir
d’eau peut étre utilisé pour supporter I'énergie nécessdilisée pour commander le cycle thermique
en mode chauffage/refroidissement du HVAC. Pour couvridmande de chaleur restante en temps
nuageux ou pendant la nuit, le réservoir d’eau est égaleéugrnpé d’'un chauffage auxiliaire. Dans cet
article, nous utilisons et s pour désigner les indices de créneaux horaires et de sogénagspective-
ment.

Dans le systeme de chauffage solaire assisté HVAC et lersgsie chauffage par I'eau, I'énergie
solaire est collectée et est transformée en énergie theentgi est stockée dans le réservoir d’eau
par le biais du collecteur solaire. De plus, le HVAC transfde la chaleur d’appoint au condenseur.
Le fluide frigorigéne est pompé entre deux serpentins éehangle chaleur appelés évaporateur et
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condenseur par la pompe du compresseur. Dans I'évaparkgeéfrigérant est évaporé a basse pres-
sion et absorbe la chaleur de son environnement. Le fluigierfgéne est comprimé sous haute pression
puis transféré dans la bobine du condenseur ou il est co@@emaute pression et libére la chaleur ab-
sorbée plus tot dans I'évaporateur. Le cycle est entiererggarsible ; Par conséquent, le HVAC peut
fournir le mode de refroidissement et de chauffage. Powfleidissement, la chaleur est extraite de
la maison et libérée a I'extérieur. Pour le chauffage, ldatlvaextraite de I'extérieur est utilisée pour
chauffer la zone intérieure.

La consommation d’énergie du systeme HVAC réside prineipaint dans la pompe du compres-
seur et le condenseur pour maintenir la température du cgede B9]. En ajoutant de la chaleur de
support au condenseur, moins de consommation d’énergiéesssaire pour faire fonctionner le cycle
de la chaleur du HVAC. Le coefficient de fonctionnement (C&)donc augmenté. Pour le chauffage
assisté par I'énergie solaire, la chaleur captée danséewaisd’eau est utilisée comme chaleur d’'ap-
point pour le HVAC. Pour la modélisation, nous imposons tEgi@aintes pour le systeme de chauffage
et de HVAC assisté par I'énergie solaire.

Stratégie de gestion de I'énergie

Nous utilisons la programmation stochastique en deux stpper formuler le probleme d’ordonnan-
cement ou la technique de simulation Monte Carlo est uéilig@éur générer des scénarios aléatoires.
En outre, le probléme formulé est résolu en utilisant la @doce & horizon glissant§]. A cette fin,
nous résolvons a plusieurs reprises le probleme d’opttioisatochastique sous-jacent dans chaque
intervalle de temps compte tenu de la réalisation des Jasaéatoires (c’est-a-dire le prix de I'élec-
tricité et I'énergie renouvelable) dans l'intervalle denfes actuety. En particulier, nous minimisons la
somme du co(t de I'électricité due a la consommation d’éaerdiheure actuellé (étant donné que
le prix de I'électricité, I'éclairement solaire et la termatiire extérieure a I'heure actueligactuel sont
connus) et le colt prévu de I'électricité entre le créneaaihmty + 1 et la derniére tranche horaire
N. Les informations connues sur les incertitudes du systeftestque le prix, I'éclairement solaire,
la température extérieure, la consommation d’énergie degehnon contrélable sont mises a jour au
cours de ce processus a horizon glissant.

Par conséquent, nous considérons I'objectif d’optimisasuivant a chaque instagt

NS N
min EA{pi,toctoH les > pﬁtctsr} (B.1)
Pt i€ S= t=to+1

ou p® indique la probabilité du scénari qui est utilisée pour calculer le colt attendu vers la fin de
la période d’ordonnancement, pftt est la consommation d’énergie de la chargd’instantt dans le
scénarics.

Cette technique de programmation stochastiqgue en deur<faqur la gestion de I'énergie do-
mestique suit la méthode de réduction des arbres, ou depheslBcénarios sont générés pour saisir
I'incertitude des facteurs de prix et de conditions climaés [L6]. Ce probléme d’optimisation est
soumis aux contraintes d’exploitation de chaque type dlegifs et aux contraintes de consommation
totale d’énergie, qui peuvent étre résumées comme suit :
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FIGURE B.4 —Planification Stochastique Roulant pour la Gestion de LifieeDomestique

NS N
min Z PitoCtoT + Zps > PG (B.2)
Pt ic =1 t=to+l
S. C. Contraintes du systéme,

Contraintes du systéme de chauffage solaire assisté parHl¥AC, Al,
Contraintes de charges interruptibles et reportald2s,
Contraintes des charges non interruptibles et reportahdBes

Contraintes de charges non interruptibles et non repasai. (B.3)

La procédure de calcul est illustrée a la FigBrd. Ce probléme est un programme linéaire a va-
riables mixtes (MILP), qui est résolu en utilisant le solv€PLEX. Nous utilisons la méthode de
simulation Monte Carlo pour générer des scénarios afin desepter divers facteurs incertains, y
compris I'erreur de prévision de prix, I'éclairement sodgila température extérieure et la consom-
mation d’énergie de la charge non contrélable. En généralpimbre de scénarios générés doit étre
suffisamment grand pour garantir I'efficacité de I'ordontement énergétique. Cependant, un grand
nombre de scénarios peut conduire a une grande complexdaéldd. Pour un probleme de grande
envergure, on peut utiliser une méthode de réduction deaso&rpour éliminer le scénario ayant une
probabilité trés faible, agréger des scénarios de dissaiaggprochées basés sur une certaine métrique
de probabilité, et réduire le nombre de scénarios et dononisar la charge de calcul. Nous utilisons
le logiciel GAMS/SCENRED40] pour générer/réduire I'ensemble des scénarios de cdltrava

Résultats numériques

Nous considérons un ménage typique avec chauffage a eau ld$®i€té par I'énergie solaire et 3
différentes charges controlables. La limite de la puissatetoutes les charges contrélables est sup-
posée égales a 20 KW pour la simplicité et le seuil pour la @mmsation d’énergie pour une heure
est 15 KWh. Les données sur la demande d’eau sont extrait@bldé.es paramétres pour le chauf-
fage solaire assisté HVAC et le systeme de chauffage par eat décrits comme suit. Le réservoir
de stockage thermique a un volume deg®d, ce qui équivaut &.82 m>. Le réservoir peut recevoir
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I'énergie du chauffage et du collecteur solaire.C@P des systémes hybride et autonome sont 5 et
3, respectivemenBp)]. D’autres parameétres du systéme solaire sont extraitdella température

du réservoir doit étre comprise entre @) 7°C]. L'intervalle de confort de température est choisie
[20— AT, 20+ AT] ou AT représente la tolérance thermique, qui est égale a 1 sacétiwh contraire.

Le fonctionnement et les colts correspondants a la maisalfigente sont influenceés par différents
paramétres du systeme, y compris la tolérance du comfarhthee, la contrainte de température du
réservoir d’eau, et la taille du collecteur solaire. Nousl&ins les variations du colt de I'énergie pour
trois cas différents. Tout d’abord, I'effet de la tolérard® la température ambiante sur le codt de
I'énergie est montré a la Figui.5(a) Cette figure montre que I'augmentation de la tolérance a la
température interne entraine une diminution du coUt dedtétité comme prévu.

La figureB.5(b)illustre I'influence de la température maximale du réserdtdau sur le colt éner-
gétique. En augmentant la température maximale du réseleéaiu, plus d’énergie peut étre stockée,
ce qui permet une plus grande souplesse dans la consomrdatiwrgie d’ordonnancement pour ré-
duire le colt de I'électricité. Il est intéressant de notee ¢g colt de I'électricité diminue avant de
saturer a la valeur minimale. Cela implique que pour undetaié collecteur solaire donnée et un
dispositif de chauffage auxiliaire, la quantité d’énergidaire captée et la puissance de chauffage sont
limitées; par conséquent, I'énergie stockée dans le régsarst également limité. Notez également que
'augmentation de la température maximale du réservoaudjgeut entrainer une meilleure économie,
ce qui peut toutefois affecter la durée de vie de I'équipgmen

La FigureB.5(c) décrit la variation du coQt de I'électricité avec la taille collecteur solaire. Pour
le chauffage conventionnel HVAC et le chauffage par I'egndrgie solaire n’est pas utilisée de sorte
que le colt de I'électricité reste inchangé. Pour les syssamtégrant I'énergie solaire, a mesure que
nous augmentons la taille du capteur solaire, ce qui siggifiene plus grande quantité d’énergie
solaire peut étre captée, le colt de I'électricité diminvemnade s’établir a la valeur minimale. Cette
derniére correspond a la limite de la capacité thermiqueedervoir d’eau. A partir des résultats des
FiguresB.5(a) B.5(b) et B.5(c), on constate que le chauffage a eau HVAC assisté par I'énsodpire
permet d’obtenir la plus grande économie des codts. C’esfffengrace a I'utilisation de I'énergie
solaire et la souplesse de fonctionnement du réservoiud@ai sert au stockage de I'énergie pour
supporter a la fois les charges du HVAC et celles du chauffagéeau.

Les FiguresB.6(a) et B.6(b) illustrent les impacts de la taille du certaine dimensioncdpteur
solaire et de la température maximale du réservoir d’eaapgrtionnelle a la capacité thermique du
réservoir, sur le colt énergétique. Ces chiffres montraetliaugmentation de la température maxi-
male admissible du réservoir d’eau, qui réduirait la duréeid du réservoir d’eau, et 'augmentation
de la taille du capteur solaire entraineraient une rédactincolt énergétique. Cependant, le colt éner-
gétique converge asymptotiguement vers ses valeurs nigsmainsi, au-dela d’'une certaine valeur
de capteur solaire et de température maximale, le cycleaglaitdu chauffage auxiliaire atteint son
minimum pour maintenir la température du réservoir d’easdoe le soleil n’est pas disponible. Cette
valeur minimale correspond a la capacité du réservoir d{@®) et a la perte de chaleur. Lorsque
la taille du collecteur solaire est faible, apparemmentlét ©’est pas affecté par le chauffage auxi-
liaire. En effet, I'énergie solaire captée est insuffisgraar supporter la perte de chaleur et la charge



B.3 Gestion de I'énergie d’'une maison intelligente avecahmrge thermique et solaire assistée avec
considération des incertitudes des prix et des énergiesivetables 33

Electricity Cost ()

eating
—©~ Solar assisted HVAC and water heating

05 1 15 2 25 3
Room Temperature Tolerance ( °C)

(a) Effet de la tolérance a la température intérieure

D 0000000aac s

1 v
teeo60s VVVVIVVVVVVVVY

Electricity Cost ()

al HVAC and water heating
VAC r heating
sisted HVAC-water heating

a5 50 55 60 65 70 75
Water Tank Maximum Temperature ( °C)

(b) Effet de la limite de température du réservoir
d’'eau

17t

Electricity Cost ($)

I
~

0 1 2 3 4 5 6 7 8 9 10
Solar Collector Size (m 2

(c) Effet de la taille du capteur solaire

FIGURE B.5 —Effets des paramétres du systéme sur le colt de I'éleétricit

thermique. Par conséquent, le réservoir opére principaiéen se basant sur son appareil de chauf-
fage auxiliaire. Limpact de la limite maximale de températdu réservoir d’eau n’est significatif que
lorsque la taille du collecteur solaire est suffisammemdesau-dessus derB) et lorsque la quantité
d’énergie solaire captée est considérable.

Conclusion

Nous avons proposé une conception de gestion de la maisgy @HEM) unifiee pour minimiser le
colt de I'électricité qui tient compte des préférences déard des utilisateurs et de la charge ther-
migque assistée par le soleil. Le modele mathématique dg@wéloapture I'opération conjointe de la
HVAC assisté par le soleil et le systeme a eau chaude tounamtteompte des opérations détaillées
de divers types d’appareils ménagers et de I'incertituahs taprix de I'énergie solaire et d’électricite.
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FIGURE B.6 —Codt de I'énergie par rapport a la taille du collecteur selat de la température de la cuve

Nous avons proposé de résoudre le probléme énergétiquéisanit’approche stochastique en deux
étapes. Enfin, des résultats numériques ont été présentémpatrer I'économie d’énergie significa-
tive pour le systeme avec la charge thermique solaire ésstst comparaison avec d’autres systémes
classiques.

B.4 Conception dynamique des prix pour I'Intégration de la re-
ponse a la demande dans les réseaux de distribution

Modéle de systeme

Nous considérons un LSE qui peut prendre I'énergie a pagtiiderses sources, y compris le réseau
principale, les ressources DR, les batteries et les DERdsgacompris les RES (par exemple I'éner-
gie éolienne et solaire) et les DG d’appoint (par exempkegknérateurs diesel, les microturbines et
les piles a combustible) pour servir ses clients, ce quillestié a la FigureB.7. Le probléeme d’or-
donnancement énergétique est considéré dans une périgaejdurnée qui est divisée en 24 tranches
de temps égales. Par souci de simplicité, nous supposors §8& a plusieurs DG conventionnelles
telles que les générateurs diesel et les piles a combystibléachete pas d’énergie des DG tradi-
tionnelles privées. En outre, la LSE n’a pas d’énergies ueelables. Nous supposons que le LSE
a des contrats dake-or-pay[42], également connus sous le nom de Power Purchase Agreements
(PPA) dans certains marchés, avec des fermes éolienndssatéou d’énergie renouvelable. Dans
les contratsake-or-pay la LSE acheéte toute I'énergie renouvelable disponibleg@&mpar ces fermes
éoliennes/solaires a un prix fixe qui est généralementiexfeau prix moyen du réseau principal. Sans
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perte de généralité, nous supposons que les prix payésa testsources d’énergie renouvelables sont
les mémesdRF>). Enfin, le LSE peut avoir quelques batteries de stockage.

On suppose que les charges du systeme appartiennent a Esmgedx catégories, a savoir les
charges flexibles et inflexibles. Les charges inflexibleseswcharges critiques sont celles que le LSE
doit servir. Si le LSE ne peut pas servir pleinement les awaigflexibles, certaines des charges in-
flexibles doivent étre réduites, ce qui est appelé rédua®charge involontaire (ILC). Un codt de
pénalité trés élevéck©) est imposé a la LSE pour la ILC puisque I'objectif principi la LSE est
d’assurer la fourniture d’électricité a ses cliem§][ Des frais inflexibles sont facturés sur la base du
prix de vente régulierdfl). En revanche, on suppose que les charges flexibles soggagrgar un ou
plusieurs agrégats de DR qui bénéficient d’une tarificatiorachique qui devrait étre congu pour offrir
des avantages aux agrégats de DR. Une stratégie pratiquernmurager les agrégats DR a participer
a notre modéle d’exploitation proposé consiste a leur prend’économiser des codts.

Dans la pratique, un client de charge souple peut hésitert@ipar a un systeme de tarification
en temps réel puisque les prix de I'électricité dans ce régiguvent étre supérieurs au prix de détail
régulier pour plusieurs heures de la journée. Les charges dient de charge flexible incluent la
charge critigue qui ne doit pas étre perdue ou déplacée dtaae flexible qui peut étre versé ou
déplacé. Par conséquent, si le client de charge flexible gnamele partie de la charge critique pendant
les heures de prix élevés, nous ne pourrions pas étre enarsgarantir des économies pour le client
par rapport au cas ou le client est facturé au prix fixe. Paségquent, I'une des approches les plus
pratiques que le LSE peut utiliser pour attirer des clieetsitarge flexible a participer au modéle de
tarification proposé est d'offrir le prix DR (c’est-a-dire prix de détail que le LSE facture aux charges
flexibles ou aux agrégats DR) inférieur ou égal au prix deid@&tehaque heure. Dans le pire des cas
ou le prix DR est égal au prix régulier de vente au détail, [ amposé aux entités participantes est le
méme que celui auquel ils sont facturés au prix de détailligrgu

Cette conception nous permet d’empécher les petits consbtenns individuels d’énergie flexibles
d’interagir directement avec le marché de gros, ce qui couefait le fonctionnement du marché de
gros. En outre, notre conception assure que le nombre degpprénantes dans notre modeéle ainsi que
le nombre de variables dans le probleme d’optimisation fdénsoit réduit de maniére significative.
De plus, nous supposons gue les agrégats DR ont des conRatgd2 des clients de charge flexibles
pour que ces clients puissent déclarer les caractéristgiteurs charges ou fonction inconfort dans le
cas de la réduction de la charge ou le transfert de chargegaégats DR. Sur la base des informations
de charge fournies par leurs clients, chaque agrégat DRcpestruire une fonction d’utilité agrégée
appropriée, qui est ensuite envoyée au LSE.

Le probleme d’optimisation sous-jacent est formulé commerogramme a deux niveaux ou
le LSE est le leader et chaque agrégat DR est un suiveur. uéaéde ce probléme contient les
séries de prix DR dynamiques optimale8R) sur I'horizon d’ordonnancement. De plus, les sorties du
probléme proposé inclut les commerces horaires de I'émergie le LSE et le réseau principBfj, la
génération prévue des ressources locales RES eﬂB@)((Ht), respectivement, la charge/décharge
des batteriesF{f’t, Pt LC) et la consommation horaire d’énergie des agregatsmg.(
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Dispatchable Mathematical Program with Equilibrium Constraints (MPEC)
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Formulation du probleme

L'objectif de LSE est de maximiser son prd#ito fit = Rev— CostouRevest le revenu de détail obtenu
en servant des charges inflexibles (au p(?)‘ZR) et des charges flexibles (au pdp?fDR) :

NT ND
Rev— ZAT cf (Dy - Dr©) +dz PPy (B.4)
t= =1

ou D; — DFC est la quantité de charge inflexible que le LSE sert au tenigsco(t d’exploitation de la
LSE inclut le coGt d’achat / vente de I'électricité du réseancipal avec le prixc?, 'achat d’énergie
renouveIabIePtRES’a a prix cRES Les colts d’exploitation de la DG, y compris le colt de déager
SU¢, le colt d’expeditiorC;i (R t) [43], et le colt de pénalité pour la réduction involontaire derarge
c-“DEC. Par conséquent, nous avons

NT NG
Cost=3 AT RECE + BSR4 ;<su,t+ci<ﬂ,t>>+cLCD%C : (B.5)
t= i=

Cet objectif du LSE est soumis a plusieurs contraintes,motant les contraintes de balance de
puissance, les contraintes d’échange d’énergie avecdaugxincipale, les contraintes d’énergie re-
nouvelable, les contraintes involontaires de restrictlercharge, les contraintes de générateur ther-
mique, les contraintes de batterie, qui sont MILP, et ledreamtes de charge flexible DR, qui sont
modélisées comme un probleme d’optimisation plus faiblesgacent.
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En particulier, la consommation d’énerdig; de I'agrégat DRI dépend du prix DRPR fixé par
le LSE, PR < cR, Vt)comme suit:

NT
max t; [Ud7t(Pd7t) —ATqDRPdi] . (B.6)

Pa.t

ouUq¢(Pyt) estl'utilite de 'agrégat DRI en consommarf ¢ etATqDRPd; est le colt que l'agrégat
DR d paie pour le LSE.

Dans cet article, les fonctions d'utilité dg(Pyt) sont modélisées par des fonctions utilitaires
multi-bloc, qui sont couramment utilisées dans la litératf42, 44-46]. L'utilité marginale d’un bloc
de demande diminue dans la mesure que I'indice des blocsndanike augmente. FiguB28 montre
la fonction d'utilité de I'agrégat DRI a l'instantt. Comme nous pouvons l'observer, cette fonction a
guatre blocs de demande (c’est-a-d¥dvly = 4). Les valeurs au point A, C, D, E soRl'TT, Pi't *
PISY, PIS+PTS+PTSY, etPTo+PTS+PTS+P sy, respectivement. Silademande planifiée de 'agré-
gat DRd a l'instantt est OB (c’est-a-direP; = OB), alors la valeur d'utilité pour la consommation
de charge de I'agrégdta I'instantt est égale a la zone ombrée. Généralement, nous avons

NMy
Ugt(Pat) = AT Z Ugd,m.t Pd,myt (B.7)
=1
NMy
Pat = Z Pd,mt- (B.8)
=1

La modélisation de cette fonction d’utilité se traduira parprogramme linéaire qui décrit le pro-
bléme d’optimisation du suiveur (inférieur) de I'agrégaR @. Puisque le probléme inférieur est un
programme linéaire, nous le remplagons en premier par sefitmms optimales KKT. Le probleme
obtenu est un probleme d’'optimisation uni-objectif aves dentraintes complémentaires (MPEC).
Nous supprimons ensuite les termes non linéaires dans leOM#RRutilisant I'approximation Fortuny-
Amat [47] et le théoréme de la dualité forte du probléme de programméhéaire. Le probleme final
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d’optimisation équivalente est MILP, qui peut étre facirthrésolu avec GAMS/CPLEX. Ces étapes
sont résumées dans la FiglB&/ (b).

Résultats numériques

Nous supposons que le LSE peut prédire le prix de I'életgrita charge inflexible, et la production
d’énergie renouvelable avec une grande précision. Poupli§ien, nous utilisons les données histo-
riques des parameétres du systéme correspondant commeadbdeuss de prévision. Plus précisément,
le colt de pénalité pour une réduction involontaire de achagt égale a 1000$/MWHE]. Le prix
de I'énergie renouvelable que le LSE paie pour les fermeg/saaires locales est supposé étre 40
$/MWh. Pour simplifier, nous supposons defe™ = P&d et cf = cR, vt. Le prix de détail courant
dans le cas de base est 60 $/MWh et nous supposons que le L8Esgelp pas de batterie de stockage
dans le cas de base. On trouvera d’autres données au chapitre

Les deux schémas suivants sont consideéres :

* Schéma 1 (S1) Le LSE résout le modéle d’optimisation proposé. Les agetD®& bénéficient

d’un tarif de détail dynamique.

» Schéma 2 (S2) Le LSE résout le méme probléme d’optimisation. Cependamtiix de détail
régulier est appliqué aux agrégats DR (c’est-a-dife = cfX, vt). Dans ce schéma, les agrégats
DR n’ont aucune incitation a modifier leurs charges.

TABLE B.1 —Comparaison entre le Schéma 1 et le Schéma 2

R Payement1l Payement2 Profitl Profit2 DR1 DR?2

$/MWh $ $ $ $ MWh MWh
a7 2607.2 2403.2 695.7 146.8 272.0 213.6
50 2061.2 1786.6 2103.9 1476.9 270.0 201.6
55 1250.2 778.6 4599.9 3942.8 240.0 201.6
60 251.0 -229.4 7191.3 6408.7 201.6 201.6
65 -756.9 -1237.4 9657.2 8874.6 201.6 201.6

Le tableauB.1 montre la comparaison des performances entre le Schéma1Sehéma 2 pour
différentes valeurs du prix de détail régulier. PaiemenPdiement 2 représentent les gains totaux
des agrégats DR; Profit 1, Profit 2 indiquent les valeurs dtitpyptimales du LSE; DR1 et DR2
représentent la consommation d’énergie totale des agr&ftsur I’horizon de planification pour le
Schéma 1 et le Schéma 2, respectivement. Le talBelbonontre que le niveau minimal de consomma-
tion d’énergie de tous les agrégats DR est de 201.6 MWh eegwevantages totaux des agrégats DR et
le bénéfice optimal de la LSE sur la Figure 1 sont nettemestipiportants que ceux du Schéma 2. Par
conséquent, nous pouvons conclure que le Schéma 1 surpaSskdma 2 en termes d’amélioration
des paiements des agrégats DR et du bénéfice de LSE.
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La Figure B.9 montre les prix horaires optimaux du DR sur I'’horizon de pleation pour diffé-
rentes valeurs de et P&d, On peut observer que le prix de DR est trés faible pendaritdeshes
de temps 1-8, assez bas pendant 'intervalle de temps 9tldseatlevé pendant les créneaux de temps
17-24. Intuitivement, le LSE fixerait un prix de DR faible pkamt certains créneaux horaires pour
encourager les agrégats DR a consommer plus d’énergie. tia dyeut fixer un prix de DR élevé
(c’est-a-dire, proche ou égal au prix de détail régulieQrmécourager les agrégats DR a consommer
de I'énergie.

68

63

-©-p919 = 40 MW, R = 60 $/MWh

DR Price ($/MWh)

=h=p9id = 40 Mw, R = 65 $/MWh
=¥ P99 = 20 MW, R = 60 $/MWh

-E-p919 = 20 MW, R = 65 $/MWh
5 18 21 24

9 12 1
Time (h)

FIGURE B.9 —Prix DR

Il'y a plusieurs raisons pour que le LSE fixe un prix de DR basit @abord, lorsque Igrix de
réseauest faible, le LSE serait intéressé a acheter plus d’énargéatir du réseau principal au service
de ses clients a un prix de DR entre le prix de du réseau etXadprdétail régulier. Deuxiemement,
le prix du réseau peut varier de maniére significative surion de la planification, ce qui offre des
possibilités aux le LSE pour arbitrer entre les périodesdsaat basses prix. Par conséquent, le LSE
établit des prix de DR bas pour encourager le transfert dgeltes agrégats DR afin de réduire le colt
d’'importation de I'énergie du réseau principal. En outes,dgrégats DR peuvent réduire leurs factures
en déplacant leurs charges aux heures de faible prix de Dfih, Enla production d’énergie renou-
velable est élevée, le LSE fait face a la limite de puissance@C (a savoirPe"d): par conséquent,

il se vendrait autant d’énergie que possible a ses clienesgdx DR bas plutét que de restreindre
I'excédent d’énergie renouvelable.

Conclusion

Dans cette étude, nous avons proposé un nouveau cadreiapéebpour un LSE, qui sert a la fois
aux charges souples et inflexibles. Le systeme de tarificptimposé peut étre facilement mis en ceuvre
puisqu’il est compatible avec la structure de prix existasur le marché de détail. De nombreux ré-
sultats numériques ont montré que le régime proposé caertdbaccroitre le bénéfice de la LSE et
les retombées pour les agrégats de DR, a réduire la rédudzidam charge involontaire et I'énergie
renouvelable.
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B.5 Reépartition des colts pour les agrégats coopératifs dees-
sources a la demande

Dans le réseau intelligent, les ressources a la demandemigitve agrégées pour participer au marché
de I'électricité P4, 29, 30], qui peut étre considéré comme un probléme de décision i wsme P).
Nous examinerons comment ils achetent de I'énergie sur fehéaet attribuent le colt a chacun de
leur membre. La contribution de ceux-ci chapitre a été gahdians I'article49]

Modéle de systeme

Nous considérons un ensemble de DRA coopérai® doordonné par un€entrale électrique vir-
tuelle commerciale (VPP)3J1] comme le montre la Figur8.10. Le VPP BQ] gére la production
des générateurs d’énergie renouvelable distribués soe pla consommation d’énergie des charges
flexibles, déploie des services de réduction de chargeistasbaux exigences de charge non flexibles
de multiples DRA coopératifs. Chaque DRA peut étre considémme une grappe de plusieurs types
de charge, a savoir la charge non flexible, la charge fleXdleharge réductible, et les sources d’éner-
gie renouvelables distribuées telles que les panneaukesket les éoliennex$]. La charge non
flexible est celle dont la consommation d’énergie ne peetdifférée L6, 29]. La charge flexible est
modélisée par une fonction de multi-bloc d'utilité largerhadoptée dans la littératurg4, 28, 42, 44—

46] 1. Le DRA peut employer divers services de réduction de chgrgempris la raccourcissement de
charge, le générateur de secours et la batterie qui soniréapé la charge réductibld]. La modéli-
sation détaillée de la réduction de charge n’est pas cadsid@ simplification]0]. Toutes les DRAs
sont coordonnées par l'intermédiaire d’'un VP®][commercial, qui participe au marché d’électricité
a court terme a deux réglements, y compris le commerce dedgrgsur-avant (DA) et les marchés
en temps réel (RT)24, 29 comme une entité uniquéj]. Le VPP est supposé agir comme preneur
de prix [31] et les enchéres n'affectent pas les prix DA/RR,[29, 31]. L'interaction unidirectionnelle
avec le réseau est adopt@d]| c’est-a-dire que, nous pouvons enchérir pour achetels naus ne
pouvons pas vendre de I'énergie excédentaire au ré2daRd, 30]. La regle de tarification uniforme
et le systeme a deux réglements sont utilisés pour modé&iseglement financier des livraisons des
énergies de DA et RT24]. En outre, le colt total de VPP ou de coalitions de DRA daiture le colt

charge flexible42]. Une description détaillée du cadre de marché considéésentée dan24).

Allocation de codts dans le modele de jeu coopératif

Le VPP prend des décisions sur la stratégie conjointe dlappires , c’est-a-dire les décisions d’ap-
pel d’offres de la DA avant que le scénario stochastique maatérialise 29, 31] 2, et détermine la
part de colt de chaque DRA. Le colt d’enchéres résultaxit) doit étre réparti entre les participants,

1Autres modeles de charge flexibles tels que I'agrégationedigie P9], agrégat EV 24] et leur incertitude peuvent
étre intégrées dans le modele, ce qui sera considéré daedutot travail
2PJM time line ‘http ://pjm.com/ /media/training/nerc-certification$/B-twosettlement.ashx
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FIGURE B.10 —Schéma des DRA coopératives sous la coordination du VPP

c’est-a-dire que le VPP doit allouer le quota de chaque DiRA6) du colt d’enchéres attend(1#")
avant que I'’horizon de planification commence :

NK
Z Xk = 1 (100%),xi > O.
K=1

Le probleme d’allocation des colts, c’est-a-dire, la déteation dexy, est résolu en utilisant la
théorie des jeux coopératif§4]. Dans cette étude, la stratégie d’appel d’offres est mséélcomme
un programme stochastique en deux étapes a risque &}éoé Ja valeur conditionnelle a risque
(CVaR) est utilisée comme mesure de risque. La fonction de\cest modélisée comme la valeur
optimale de colt obtenue par une enchére d’optimisaticsgaiei avéré dans le marché de I'électricité
et le pourcentage(%) du co(t total d’enchéres de VRR?") est considéré comme la solution étudié
du jeu coopérati/ (7 ,v).
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Fonction co(t

La fonction de coQv(S) d’une coalitionS de DRA peut étre définie comme suit :

v(S) =V <es) = min

" ODAPRT BF  PF G MR
RPMRTS D oDiprsUkits Pt skt g6 51

(1-B) NSnSNT DARDAAT { ART ( PRT_p A)AT
S; t; ; ts (P

NK
oo (ot -
k=1

<E+— Zﬂsns). (B.9)

s.t. Contraintes de charge flexible
Contraintes de la charge redutile
Contraintes du générateur Distributed
Contraintes d’équilibre de puissance
Contraintes CVaR (B.10)

La valeur de la fonction de colt obtenue &9 résulte de la minimisation des codts prévus d'une
coalition S composée d& € SDR participant au marché de I'électricité a deux reglemdhtsagit
de la somme pondérée du colt attendu des encheres de ma@WigRe(le dernier terme), qui sont
multipliées par 1- 3 et 3 respectivement. Le codt de I'offre de marché attendue centples codlts
de négociation d'énergie sur le marché DRARPAAT, le marché DAY (R — RPA) AT, plus
pénalitéA P|RR" — RPA| AT [24, 29, plus le codt d'utilisation de la réduction de charge mdintiité

NK
de la charge flexibley (A& DR, AT — UkLS) [10, 42]. Ces composantes de colt sont calculeeslsur
k=1 ” i

créneaux horaires 8IS scénarios oug est la probabilité du scénars

L'optimisation définissanmt(S) est un probleme de programmation linéaire. En outre, le ax@tié
des contraintes est une transformation linéaire de I'atibe de vecteur de coalitiog® ol 7 = 1 si
k € Set 0 sinon. Le jeu coopératif qui a cette forme de fonctionalé spécial est appelé ensemble de
programmation linéaire, qui est totalement équilits§ et a un noyau non vid® (v) qui contiennent
tout le budget-équilibré et stable allocation des colt$eres :

€ (v)={ xe 72N hka:l, XV( 2 <V(S),¥Se2VK\ {0} 3. (B.11)
ke
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Répartition des colts basé bi-objectif

Le noyau non vide par définitiorB(11) est un polyedre aveNK—1 dimensions, qui peut contenir
de nombreux vecteurs d’allocation potentield$Jne allocatiorx arbitraire dans le noyau peut corres-
pondre a une solutiofaible stablepuisque certaines coalitions atteignent une valeur dgatres
faible ou nulle et peuvent ne pas recevoir d’avantagesfiigtifs pour rester dans la coopérati&d]

Il pourrait également étrimjustepuisque certains DRA ont une réduction de codt plus élevédeagu
autres 54]. Par conséquent, une conception efficace doit aborder gieestions principales mention-
nées ci-dessus, a savoir la stabilité et I'équité. En pai#i; les indicateurs de stabilité et d’équité sont
utilisés pour concevoir une stratégie efficace d’allocaties codlts :

» Métrique de stabilité capture la satisfaction minimale, & savoir, la pire écomotie coltd ($)
parmi toutes les coalitiornS

» Métrique d’équité :capture I'écart maximal du pourcentage de réduction detsaaritre les
DRA individuels, a savoir, la différence en pourcentagedi®dmies de colt(%) entre le DRA
qui réalise le plus grand pourcentage de réduction de colesBRA qui réalise le plus faible
pourcentage d’économies pour un le vecteur d’allocatioméa € ¢ (v) [54].

La conception de la répartition des codts vise a trouver oteve de répartition des colts %' (v)
qui permette un compromis efficace entre les mesures dé&gquie stabilité, qui peut étre modélisé
comme un probleme d’optimisation bi-objectif comme suR0)

_min y (B.12)
¢,9,57xk,y
min —0 (B.13)
5,Xk
NK
s.C: Z Xk =1, Xk > 0, (B.14)
k=1
5 <v(S) - 5 xv(x), vSe 2V \ (0,7} (B.15)
keS
0>0 (B.16)
v(x)
D < x¢ <o, Vkex (B.17)
v({k})
y=o- 0, (B.18)

Ou I'optimisation des fonctions objectiB(12) - (B.13), qui minimisent le vecteur évaldg, —9d], vise

a atteindre I'équité et la stabilité, respectivement. Dgspla contrainteB.14) signifie que le colt
total est réparti entre tous les DRA tandis que la variableliaire é dans B.15) fournit la limite
inférieure de I'économie de colts de toutes les coalit®ssus la solution de répartition des colts
X. La satisfaction minimale, i.e., la pire des économies desad($) parmi toutes les coalitionS est
maximisée dansB.13). La contrainte B.16) force I'allocation & étre dans le noyaus % (v) tandis
que la contrainteR.17) fournit la limite inférieured et la limite supérieur pour le rapport entre le
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colt alloué sous la grande coalition et le colt en raison éinas non coopératif pour toutes les DRA
k. L'écart maximaly de 'économie de co(t en pourcentage des DRA individuelsssfua différence
de® et ® comme dansRg.18) est minimisé dans3.12).

Pour obtenir les points optimaux de Pareto, on convertirdédlgme (P0O) en un probleme d’op-
timisation a un seul objectif (P3) en utilisant la méthodatainte€ [56] puisque le probléeme (P0)
est linéaire. La fonction de stabilité objectiv@.{3) est choisie pour étre optimisée tandis gqB€LQ)
est converti en une contrainte. Soit+ 1 le nombre de points de réseau du front de Pareto et
{0,1,...,M}. Deux points extrémes)= 0 etm= M + 1, sont déterminés en résolvant respectivement
les deux probléemes d’optimisation suivants :

(P1)
_min vy
D,9,5,%Y
s.c: contraintesR.14) - (B.18).
(P2)
max o
5,Xk

s.c: contraintesg.14)- (B.15).

Ensuite, le point™ sur le front de Pareto peut &tre obtenu en résolvant le prebtBoptimisation
a objectif unique suivant :
(P3)

~max o
¢7975’Xk? y

s.c: contraintesB.14)-(B.15), (B.17)-(B.18)
y<y™ (B.19)

Ou y™ est un paramétre définissant le painit sur le front de Pareto. En particuligf™ est choisi
commey™n < yM < ymax_ymin et ymax neyyent étre obtenus aprés avoir résolu (P1) et (P2), rispec
ment. Dans cette étude, le paramaffedentifiantmt" est choisi comme suit

ymax _ ymin

Y=y +me—— . (B.20)

La construction du front de Pareto

On résout (P1), (P2) et (P3) pour avdir+ 1 points qui définissent le front de Pareto. Tous ces pro-
blémes d’optimisation & grande échelle soumis'& 2 2 contraintesB.15) avec seulemeriiK va-
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riables d’optimisation. Par conséquent, la génération de contraintes est unecigpnaturelle. En
particulier, nous résolvons (P1) en résolvant itérativetnie probleme maitre (MP1), qui est une ver-
sion détendue de (P1) qui considére uniquement la condiidkb) pour un sous-ensembig(S) €
2NK _2 et le sous-probléme (SP1) qui trouve la contrainte la ypilige avec* obtenu en résolvant
(MP1). Le sous-probleme (SP1) identifiant une coalitioxpieréeS* qui réalise la réduction la moins
colteuse est présenté comme suit :

(SP1)
NK s,
d=min|v(S)— Y exv(H)|= min
kZ]_ eE7PtDA7PII?ST7D|'(:7tﬁs7DEb7tﬁs7Uk,tﬁS7PﬁﬁsvDE’tﬁyg7”3

NS NT
(1) 3 73 ARRRPAAT 42T (P -RP%)
S= t=

NK
o )
k=1

1 Ns NK .
+B (E‘i‘ms;%rls) _kzleK KV(A) (B.21)
NK
sci 1< S ¢ <NK—1,60€{0,1} (B.22)
K=1
Y (L-g)+ Y (8)>1,vSco(9 (B.23)
keS k¢S
ContraintesB.10) definissant/(S) . (B.24)

Le sous-probléme (SP1) est un programme linéaire a vasiabibges (MILP) avec des variables
binaires supplémentaire$ agissant comme variables de premier niveau. La résolufiBa)nous per-
met d’obtenire®’, qui donnens* etv(S*) simultanément. La contraintB 22), c.-a-d. Sc 2K\ {0,.7", 6(9)},
et la contraintd.23), c.-a-d..S¢ ¢'(S), assurent que les coalitions inexplor&sont considérées dans
ce probleme d’optimisation. Toutes les contraintes oslgis requises dans le cala) sont données
dans B.24). Si nous résolvons (MP1) et (SP1) itérativement, on dtf@ialementx* tel qued > 0
puisque le noyau est non vide. Alongest minimisé ek* € ¢(v) est la solution finale d’allocation
des colts pour (P1). De méme, nous pouvons résoudre (PA)atdPacon optimale en utilisant I'ap-
proche de génération de contraintes en ligne car le nomlsreatdraintes est beaucoup plus grand
que le nombre de variables d’optimisation. En résolvanj (P2) etm (P3) avec différentg™ , nous
auronsM + 1 points de Pareto qui forment le front de Pareto.

Résultats numériques

Nous considérons un VPP qui coordonne la coopératioNKI®RAS. L’horizon d’ordonnancement
est d'un jour, divisé eNT = 24 créneaux horaires égaux, chacun représeft@nt 1 heure. Nous
supposons que dans chaque intervalle de tamgsaque DRAK peut cumuler 10% de la charge non
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flexible totale, ce qui peut étre réduit en utilisant les s@w de réduction de charge (LR) avec le prix
A" =100%MWh. La capacité de puissance transférée via le réseau priresi"*>* = 15MW. Enfin,
V(S) est supposé bien défini. D’autres données se trouvent aitrehayp

Figure B.11(a) B.11(b) B.11(c) montrent les fronts de Pareto pour le probleme de répartitio
des codts quand nous faisons varier le paramétre de riggliéchelle de charge ﬂexibIESFCale et
le prix de pénalité\ P, respectivement. Chaque front de Pareto obtenu décriblepmmis entre la
stabilité représentée par la valeur d’épar@na plus défavorable et I'équité saisie par I'écart maximal
du pourcentage d’économigs Pour tous les cas, lorsque= y™" alors on ad = 0 ce qui signifie
gue nous atteignons la valeur minimale @léout en garantissant de fonctionner dans le noyau dont
la définition est donnée danB.(1). D’'autre part, comm® atteint sa valeur maximal@™?*, ce qui
correspond au nucléole comme écart minimum du pourcentag@&ldction des codts entre les joueurs,
on atteint sa valeur maximaje= y™m#.

Ces deux points extrémes dans le front de Pareto correspiogugbe cas ou la solution d’allocation
de codtsx est soit au point noyau d’équitémin, soit au point optimal lexico-graphiquement , le
nucléoled™?*, dans le polyédr&’(v). Ces chiffres montrent que la conception proposée nousgterm
de déterminer plusieurs solutions efficaces Pareto diftér@ans le noyau du jeu coopératif sous-jacent.
De plus, on peut choisir un point d’opération sur le front @eefo avec un compromis souhaitable
de stabilité-equité. Plus précisément, pour une valewatté&cart maximal du pourcentage de codt
épargnany, on peut déterminer le vecteur d’allocation de codts cpoedant a la valeur réalisable de
la pire économie de col@ maximisée. Cela démontre la souplesse et I'efficacité de moinception
de répartition des codts proposée par rapport a d'autreeptions existantes telles que la répartition
des coUlts basée sur le nucléole.

Conclusion

Cette étude présente une conception de répartition des efficace du point de vue du calcul pour les
DRA coopératives baseées sur le concept de jeu coopératifs B\mns proposeé d’exploiter la propriété
de noyau non vide du jeu équilibré sous-jacent et de dévetopp cadre d’optimisation bi-objectif
qui établit I'équilibre entre la stabilité de I'allocaticet I'équité. Nous avons utilisé les méthodes
contraintee et la génération des contraintes de ligne pour construge succes le front de Pareto des
solutions d’allocation de codts avec une complexité deutalcceptable. La conception proposée peut
allouer de maniére efficace le pourcentage du colt total@anissions aux DRA individuelles tout
en garantissant un compromis souhaitable en matiére dététabd’équité.
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Chapter 1

Introduction

1.1 Research Motivation

The electric industry has seen significant transformatiomfcentralized power systems dominated
by big utilities and highly dependent on fossil energy reses, to smart grids with high penetration
of eco-friendly distributed renewable energy resourcaekautive participation of energy consumers
under market deregulatio]] One important paradigm shift in this transformation is thidespread
adoption of active demand side management in the smart [Bjddn fact, it was defined in Title
Xl of the Energy Independence and Security Act (EISA) irD2Ghat the smart grid is an electri-
cal grid which integrates a variety of operational and epengasures including smart meters, smart
appliances, renewable energy resources, and energy refffresources to support the active demand
side managemen8]. The framework for smart grid interoperability standaddsined by the National
Institute of Standards and Technology (NIST) is illustdateFigurel.1[1].

Research and realization of various smart grid conceptsexithologies have received tremen-
dous investment from governments worldwide. In particudaivanced information and communica-
tion technology (ICT) infrastructure has been significanghgraded in many countrie446] where a
massive number of smart meters has been installed, e.g 45wrillion smart meters was deployed in
2013 with the Department of Energy (DoE) smart grid investiggant [7/]. Moreover, the deployed
communications networks and data management systems lieradivanced metering infrastructure
(AMI), which enables two-way communication between thétigs and customers3]. The upgraded
ICT infrastructure has paved the way for the realizationaive demand side manageme8+15|.
Smart decision making taken by demand-side entities caivebenefits from the smart grid][ For
example, home energy consumers can exploit dynamic preshgmes to minimize their electricity
consumption costs by smartly scheduling their energy aopsion [16-23]. Here, the main decision
making problem is to schedule energy consumption wiseletiuce the energy payment while still
maintaining certain operations, user comfort, privacyuresments.

Thanks to the advanced grid’s ICT infrastructure, homeggneonsumers and the grid operator
are inter-connected and demand response (DR) servicesecaffieled to the grid operator through
changing the energy consumptidr3] 14, 24-27], which can enable the grid to operate more efficiently.
Hence, the grid operator may be interested in motivating #rergy customers to actively participate
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in its DR program by using for example a suitable pricing ppliA well-known approach to enable
the grid operator to manage DR services from its customers deploy the so-called Load Serving
Entity (LSE) model 28]. Finally, small-scale demand-side entities can coopei@tact as a single
entity under the coordination of a demand-side resourceeggtpr R9, 30] or a virtual power plant
[31], to purchase energy in the wholesale market since the waldenergy prices tend to be cheaper
than the retail prices3p]. In order to participate in the wholesale market, demadd-gntities have
to make several decisions such as coordination decisidhesrtoa large cooperation coalition, energy
bidding in the market, and sharing cooperation benefits atth other.

In general, design of smart decision making frameworks fEmand-side entities in the smart
grid environment with increasing penetration of renewaiergy can be quite challenging, [33].
Although being friendly to environment, renewable enegources such as solar and wind power can
be quite unpredictable, which implies great difficultiesrtaintain efficient and reliable operations for
the grid distribution networkd]. In particular, adoption of a poor energy managementesgsatan
result in low utilization of renewable energ$9g, 34]. In addition, inefficient pricing design cannot
tackle the fluctuation of renewable energy sources, whiemtally results in the instability of grid
operations 35]. Finally, appropriate design of a bidding strategy camgprabout positive impacts
on the achieved profit/cost for demand-side entities ppéitg in the electricity market. This is an
important issue because market participants must be retgerior managing uncertainties of their
renewable energy sourcezd 36].

In summary, successful exploitation of active demand-ssd@urces requires to address several
decision making problems for the involved smart grid eesitin the distribution network. This disser-
tation aims to address some of these problems. In the follpwie discuss research challenges related
to these problems, describe the existing literature, aeggnt the key contributions of this dissertation.

1.2 Challenges in Active Demand-Side Management

Figure 1.2illustrates the demand-side domain in the NIST’s smart gratlel, which is a part of the
energy consumer domain shown in Figdrd As recommended by the Federal Energy Regulatory
Commission (FERC), NIST has highlighted the importancecti’a demand-side management in the
smart grid. In general, active participation of demandes&bsources in the electricity market has been
considered efficient and economic means to balance theysapdldemand in smart grids with high
renewable energy integratioh(]. However, several challenges must be addressed to fudlizesthe
benefits of active demand-side management. We discuss gauetochallenges in the following.

1.2.1 Challenges in Smart Home Energy Management

One important topic within the active demand-side manageoh@main concerns the demand response
of residential customers3] 16]. In fact, smart home energy management has received sigmifi
research interests in recent yedk6,[17, 20, 23, 37, 57, 58]. In order to fully exploit the opportunities
brought from the smart grid, various major challenges masiddressed and comprehensive decision
making models for home energy management must be develspmidaussed below.
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The first challenge in smart home energy management is tamppately model and exploit the
time-varying electric pricing schemes. In particular, édvarying or dynamic pricing schemes such
as Time of Use (ToU) or real time pricing (RTP) can be emplaoieceplace the traditional fate rate
scheme to better capture the actual price of energy pramufdt6]. Moreover, the time-varying pricing
scheme can be combined with an inclining block rate to imprhe conservativeness of the electric
price [17]. One major challenge in smart home energy management cenbew electric users can

adaptively adjust their energy consumption in responsleeaitne-varying pricing signals to save their
electricity consumption cosip, 20].
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The second challenge concerns the heterogeneous chestaztesf smart home appliances. In
practice, home appliances can have very different energguwuoption patterns and operation con-
straints [Lg]. In addition, some energy equipments such as electricclehp4, 59, 60], smart water
buffers B1], battery storaged2-64], HVAC and water heating5, 26] can support direct load controls
and change their energy consumptions flexili§]| However, these appliances and equipment require
corresponding models to capture their characteristics.

The third challenge concerns how to efficiently manage rabésvenergy sources integrated in
smart homes. In particular, renewable energy sources sugdoétop solar bars, small wind turbines
integrated in smart home83, 58, 65] produce the amount of energy, which is uncertain and difficu
to predict R]. Toward this end, modeling the renewable energy unceggiis an important and chal-
lenging research topi®&p]. Finally, guaranteeing user comfo@7] and protecting user privacyy]
must be considered in home energy management design. Howdelmand capture these modeling
aspects and constraints in the home energy management @esighallenging research issues.

1.2.2 Challenges in Demand Response Design for DistributidNetworks

Intelligent demand response (DR) presents one of the mgstriant characteristics of active demand-
side managemen2§g] which can lead to various DR benefits in electricity markatd power system
operations, 68]. However, there are many technical and non-technicalehgés related to the DR
design in the distribution network from the grid operataiswpoint [9].

The first challenge concerns the scalability of the DR debegause coordination of DR services
from many households and/or energy consumers is usuallyregbjas discussed in the previous sec-
tion. In general, DR can be realized by either direct or iactiioad control. Under the direct load
control approach, the grid operator must send a large nuofbeessages to individual loads such as
EV charging system<H], HVAC and water heating system24, 26]. Indirect load control is quite
promising because the control can be implemented in a datigett manner using the pricing signals
[2]. However, determining the price is a complicated t&3% b3, 69-72] since it is desirable that the
designed pricing scheme be compatible with the current et@tkucture 2].

The second challenge is related to the development of effioiechanisms to incentivize electric
customers to participate and provide DR servids [n practice, it is not easy or even possible to
obtain permissions from home users to access or controldppliances24-26, 73] due to the privacy
issue p7]. Another reason for which a dynamic pricing scheme mightbewelcomed is that home
owners’ information can be revealed when it adjust its epeansumption in response to changes in
the electricity price’$7]. In addition, only certain electric users who have flextiln changing their
energy consumption can enjoy the DR benefits under curreppged pricing designd ).

Last but not least, guaranteeing stability of the grid iahfitr DR design in the distribution network
since inefficient pricing design can lead to grid instapil@5]. Moreover, the proposed DR should be
compatible with the current market structure to motivate [Rticipation. There are some attempts
to develop market based mechanisms for DR services such Rsexéhange markeflB, 14, 46, 74],

a regulation market4], DR contracts 43|, load reduction servicesl{)]. However, these proposed
frameworks require some modifications of the current mastketture, which may not be desirable.
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1.2.3 Challenges in Electricity Market’'s Decision Makings

Thanks to the market deregulation, smart grid’s entitiesnfthe demand side such as smart homes,
microgrids, and load aggregators, can be aggregated asawbmdinated to participate in the wholesale
electricity market, i.e., the short-term electricity metrfz, 24, 29, 75. The work [32] shows that
wholesale electricity prices are often much lower than étaikprices, which provides opportunities for
demand-side entities to increase profits or reduce costsetty, design of decision making processes
for demand-side entities to participate in the electriniyrket faces many challenges 81.

The first challenge is related to the responsibility of dedhaitle entities to maintain the energy
imbalance between their energy bidding scheduled in theati@ad markets and their actual energy
dispatch , 24, 29, 31, 36, 43, 75-77]. As uncertain renewable energy sources such as solaopoft
bars and small wind turbines are being integrated into timeashel side at an increasing rag9] 33],
demand-side entities must usually rely on a balancing mmeshmprovided by expensive but control-
lable energy resources in the real-time balancing markedtigpensate for their inevitable imbalances
[75, 77]. The prices in this balancing market are also uncer@ih [Hence, their achieved profits/costs
can be negatively affected if uncertainties are not apjaigly addressed[7].

The second challenge concerns the modeling complexity wiade-side entities participating in
the electricity market. These entities can be the aggregati heterogeneous and different resources
in the distribution network29, 31, 32], which have different operation constrainid] 29, 78], or the
aggregation of a large number of similar loa@d,[27, 69, which must be appropriately modeled. In
addition, demand-side entities can participate in sewdealricity markets such as short-term electric-
ity markets including the day ahead (spot) market, reaétalancing market, adjustment market, and
other market frameworks such as the reserve maidgtijegulation market4], and demand response
exchange marketl3, 46]. Co-optimization of demand-side entities in multiple kets is a challeng-
ing task in general. Balancing mechanisms can also varyfierent markets, e.g., the single pricing
scheme in the US marke29, 36] and the dual pricing scheme in the European marké&s77]. In
addition, these entities can be further coordinated unaerging smart grid’s cooperation concepts
such as a virtual power plant (VPP31, 50, which can bring about more benefits but renders the
modeling and coordination tasks more challenging.

The third challenge concerns how to choose appropriatéignlapproaches for underlying deci-
sion making problems. There are two main decisions to be nmathe electricity markets, i.e., how
to bid energy to optimize certain objectives such as maxation/minimization of profit/costq9, 31]
and how to share the profit/cost among cooperating mem8asihe first problem requires choosing
an appropriate optimization model and a suitable solutigor@ach while the other problem can be
addressed with certain solution approaches such as caivpagame theory. These optimization/game
theoretic models are usually complex as mentioned in thensechallenge. In general, development
of solution approaches to solve these problems accuraigtywanageable computation effort is quite
challenging.
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1.3 Literature Review

In this section, we present the literature survey on thesitatimaking issues for active demand-side
management, which is the focus of this PhD dissertation. altiqular, we discuss recent research
works in energy management issues for smart homes. Thenisagsd existing research on demand
response integration in distribution network. Finally, describe some recent literature related to the
market participation of aggregated demand-side resoumtgsr the market liberalization.

1.3.1 Home Energy Management Under Smart Grid

Research in the smart home energy management topic ggnealkses on designing residential de-
mand response solutions through formulating and solving@mization problem. As an example,
such an optimization problem aims to minimize the energynpayt while guaranteeing home appli-
ances’ operations and user comfort constraints.

Various optimization based decision making models for $tm@mne energy management have been
proposed in the literature where they are different in teofmsonsidered electric pricing schemes and
possible consideration of renewable energy integratities€ existing optimization based frameworks
can be classified into deterministic optimization and séstic optimization models. Deterministic op-
timization models typically assume that the home contrdites perfect information about the system
and forecast data over the scheduling horizh 87, 73, 79, e.g., perfect information about the elec-
tricity prices and renewable energy’s generations. Fomge, the work B7] tackles the load power
control problem under the flat-rate pricing model where ttiléyidetermines the thresholds of energy
consumption at different time slots and broadcast theaeesab end users for load scheduling. The
work [73] studies a deterministic residential microgrid schedyjmoblem exploiting the smart meter
data and thermal load and evaluates the impacts of difféogatast parameters such as electricity
price, outdoor temperature, and demand on the achievablgyepayment. In addition, dynamic pro-
gramming and Markov Decision Process (MDP) theory havelzdsm employed to develop an optimal
control policy that allocates power consumption for eagbliapce in a deterministic manned(, 81].
However, the deterministic optimization approach is onpplecable to deterministic model, which
might result in poor performance for smart homes experregnancertainties. The stochastic optimiza-
tion approach, on the other hand, can effectively captunews system uncertaintie$, 17, 57, 82].

In [17], the model predictive control (MPC) based framework fdnestuling home appliances is pro-
posed to minimize the electricity cost. Moreover, resid#@mR algorithms are developed by using the
rolling online stochastic programming approachi16,[57].

Study of the heterogeneous smart home setting has also beéaated where various load models
and load classifications have been proposed in the literabaigeneral, suitable mathematical models
based on physical operations of home appliances must béogedeand they are then integrated into
underlying energy management optimization framework$adt, conventional home appliances have
been well modeled and they are generally classified baseteaindefferablility and interruptibility
characteristics16, 17, 20, 23, 37, 57, 82]. Moreover, their operation constraints can be linear,edix
integer linear or mixed integer nonlinear constraints chifuan be used to formulate classical optimiza-
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tion frameworks for home energy management.88|,[the authors proposeeather dependent loads
whose energy consumptions are assumed to be Markoviannifusl then enables them to develop a
MDP based energy management algorithm.

Integrating renewable energy as well as eco-friendly aretgynefficient home appliances with
automated capabilities into smart homes, especially takappliances such as HVAC and the water
heating system, have received considerable attention.oél gorvey of uncertainty models for renew-
able energy sources can be found6g|[ There has been considerable research interest in camgbini
thermal systems with the solar energy sources to enhanam#ificient of performance (COP) of a
standalone HVAC systen89)]. In particular, the design of a hybrid solar assisted HVA®@ avater
heating system is motivated by the abundant presence oenvental sustainability, and quiet opera-
tion of solar energy and the maturity of thermal engineereggarch38, 39, 64, 84-87]. Since, the
contribution of HVAC and water heating to the electricitynsomption of a typical household (e.g.,
over 50% of the total residential energy consumpti@®l)[is quite large, integrating the new genera-
tion of home appliances and renewable energy facility imtified energy management optimization
frameworks is an important research topic.

Modeling user comfort and privacy in home energy managehmnalso received a lot of attention.
Specifically, different thermal user comfort models haverbeonsidered in home energy management
including the simple temperature deviatid8] 19, 48, 58, 59, 65, 83, 88] and a more complicated
Predicted Mean Vote (PMV) modeB9, 90]. Various constraints on energy management scheduling
are imposed in§7] where the authors observe that data mining methods can peged to extract
information regarding which appliances are equipped irhthesehold based on the residential load ad-
justment in DR services. Hence, appropriate operationtcainss could be added to prevent potential
exploitation of the home’s data from third parti&T].

1.3.2 Demand Response Designs in Distribution Network

Research related to DR integration in the distribution oekwhas received much interests. However,
it is not straightforward to develop an efficient DR stratélggt is compatible with the current market
structure, easy to implement, and receives acceptanceciistomers. Proposed DR frameworks in the
distribution network can be classified as direct or inditeatl control of flexible residential resources.
Direct control of home appliances such as EV chargwj, [water heater25], and HVAC [26] has
been addressed in the literature. However, this centchp@roach might require heavy computation
from the grid operator. To address this issue, some aggoegaibdels are propose@4-26], which
trade computation complexity with the modeling accuracprébver, direct load control also requires
to know the operations of home appliances, which might noldsérable because of privacy issugg|[
The indirect load control, on the other hand, aims to magiveatergy consumers to adjust the energy
consumption by providing incentive through pricing signah fact, the indirect load control approach
has received more attention in the decentralized marketeider, determining the price, which often
requires to solve a gam@9, 88] or an optimization probleng3, 91], is not a straightforward task.
Several existing papers advocate the DR integration by stgois potential benefits and the posi-
tive impacts. Specifically, positive impacts of residein& on reducing the electricity bill for house-
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hold customers are reported ibg]. Different multi-objective optimization based energymagement
frameworks are introduced i67, 92] to minimize the energy cost for a residential household-con
sidering customer thermal comfort preferences. The impBDIR integration on the market clearing
price is investigated in93]. In [94], the authors study the potential of DR resources for priogdhe
frequency regulation service. 149, 42, 44], different optimization models are proposed to maximize
the benefits of large energy customers with DR capabilitytfemmore, a novel load shaping strategy
is presented ing5] exploiting the dynamic pricing and energy storage. Thegstiag works mainly
show that DR can be beneficial to both utilities and custonidérss implemented properly; however,
it is not shown how to coordinate DR resources from severstiocoers.

Pricing design based the indirect load control presentedels a very important research topic
in DR for distribution networks. In general, the price sitpnean be sent from the grid utility to
customers to motivate load adjustments (i.e., changingwoers’ energy consumptions). Popular
dynamic pricing designs such as time-of-use (TOU) and tie@d-pricing (RTP) for retail customers,
however, may not be efficient since they may increase theygmast for some customers with small
flexible loads 16] or lead to the grid instability35]. Moreover, complicated pricing designs would
result in increasing complexity of the residential energgnagementl6, 17, 21, 37, 57, 73, 79-82]
and might not receive widespread acceptance from home.users

Some recent papers propose DR contracts among customeray&BR providers, and utilities or
renewable energy producers, who are DR buyg@s13, 32, 43, 46, 96]. In addition, pricing designs
based on game theorg9, 88 or agent based simulatio®2] have also been conducted. However,
these designs might be not compatible with the current matkecture. Development of a pricing
framework that can utilize flexible loads while maintainiificient operations of the distribution net-
work operator and ensuring cost saving for energy custommershallenging problem. This problem
Is addressed in this dissertation.

1.3.3 Market Bidding and Cost Sharing Design

Demand-side decision making in the deregulated market éas bn active research topic in recent
years. There are two important problems to address: thecfwsterns how to optimize the total
profit/cost of market participants and the second is to stie®@btained profit/cost. Some aforemen-
tioned challenges must be considered in solving theseidaaisaking problems.

As demand-side entities with renewable energy must be nsgpgle for the energy imbalance in
the short-term electricity market, various optimizationdels and cooperation frameworks have been
proposed to address this issue. In particular, the markiglifg problem is often modeled as an op-
timization problem where each market participant aims toimize the cost or maximize the profit
[2]. Given various system uncertainties, stochastic prograng [24, 29, 31, 43, 97] can be employed
to find the optimal bidding quantities in the day ahead maskeh that the expected cost/profit are
minimized/maximized considering the energy imbalance ooshe real-time balancing marke2][
Moreover, risk control29, 31, 43] can be considered as design constraints to adjust thetioariaf
achievable profit/cost after the operation day.
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Many recent works focus on developing an appropriate bgiftamework that can compromise the
strengths and weaknesses of heterogeneous demand-si@és éytallowing cooperation among them
[31]. The work [LO] presents the novel model for an aggregator that aggreddteent DR services to
sell in the DR exchange market. Modeling and bidding desigrgéneric aggregated resources at the
demand side, namely demand-side resource aggregator (D8@tesented in49]. The deployment
of advanced communication and computation technologid¢isersmart grid enables coordination of
multiple resources in the distribution networ&] through the so-called Virtual Power Plant (VPP)
[31, 50, 97]. In fact, these papers have shown that cooperation amoms@Rn lead to cost reduction
or profit improvement by leveraging the strengths and wesdge®of individual members.

The potential of multiple market participation and diffietéalancing mechanisms have also been
well studied. Modeling and bidding strategy of the VPP in to@ventional electricity market and
reserve market is studied i5(]. A bidding strategy for a fleet of electric vehicles coomted by
an aggregator under both the short-term electricity maaket the regulation market is presented in
[24]. The authors also propose an aggregated battery modegbtoreahe charging of a large number
of electric vehicles. The workdf] studies how DR contracts help a microgrid improve its prafid
manage risk due to profit variation when bidding in the shemr electricity market. The single pricing
based balancing market model is considere@# 29, 30, 43] while the dual pricing based balancing
market is studied ind1, 96]. In summary, modeling the joint participation in multip&ectricity
markets has been well addressed in the literature.

Although research on modeling and bidding under differeamhand-side cooperation models has
been conducted by using stochastic programming, it iststdlear how to share the cost/profit among
heterogeneous cooperative demand-side entities. Soretneapers consider pricing design by for-
mulating and solving certain profit/cost allocation prabte In particular, the work32] develops an
electricity payment method to motivate the coordinatiotwaen the EV aggregator and wind power
producer. Moreover, the workZl] presents a ranking based pricing scheme to calculate ttie-pa
ipants’ cost saving/profit increment based on the submitiad profiles’ flexibility. The work 72]
proposes direct energy trading among producers and comsuvhere the internal price is determined
by the Shapley value concept. However, all these proposeaefivorks require market redesign; thus,
they would not be applicable for current market practice.

In general, sharing profit or cost among cooperative estita be theoretically addressed by using
the cooperative game concepd] 55, 98]. In fact, the cooperative game theory has been employed
to address some profit/cost sharing problems in power sgsteich as energy producers’ multilateral
trading P9], energy management, and market desig@ 2, 1040. However, most papers only con-
sider the profit/cost sharing for a small number of coopeeatntities due to the high computational
complexity of this approachlP1-104. Developing an efficient method to solve the profit/costrsha
ing problem for a large number of cooperative demand-sidi¢éiesigiven the notorious computation
burden of applying the cooperative game concepts is a clgatlg task, which is addressed in this
dissertation.
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1.4 Research Objectives and Contributions

This thesis aims to address three important challengesibedabove, whose contributions can be
illustrated in Figurel.3and summarized as follows.

In Chapter 3, we study the home energy scheduling probleimeimdal-time pricing environment.
Specifically, we propose a comprehensive model conside¢n@gntegration of renewable energy in
home energy system, i.e., the eco-friendly solar assisi@&l0-water heating system. Then, we pro-
pose a real-time Model Predictive Control (MPC) based defiga smart home equipped with solar
assisted HVAC-water heating system and other controlleald in response to the real time pricing
signal. We devise a rolling algorithm based on the two-s&tigehastic programming for home energy
management so that it can minimize the energy payment castagtee system constraints while ex-
ploiting the energy coupling relation of the solar thernmtarage and HVAC system to improve the
system energy efficiency.

In Chapter 4, we consider the pricing design problem in tiséribution network to motivate the
demand response participation from energy consumers. rticydar, we propose a dynamic pricing
scheme implementable in the distribution network undernttoelel of Load Serving Entity (LSE),
which is easy to implement and compatible with the currentketastructure. Our design creates an
incentive for flexible load to perform demand response thatlelp the LSE address the fluctuations
of electricity prices, conventional nonflexible load, anstabuted renewable energy. Specifically, we
present the formulation of the proposed pricing design lgguthe bilevel programming framework.
Given the lower-level sub-problem is linear, we employ tipéirnal KKT conditions to convert the
bilevel problem into the single objective mathematicaligpeon with equilibrium constraints (MPEC),
which is then transformed into an equivalent single obyectnhixed integer linear program (MILP)
by using the Fortuny-Amat formula and strong duality theowd linear programming. The obtained
MILP can be solved efficiently by using available commerasialvers. Numerical results are then
presented to illustrate the effectiveness of our designativating demand response integration in the
distribution network.

Chapter 5 studies how to share the cost for the cooperativeaDd-Side Resource Aggregators
(DRAS), which are based on generic models of active dematedagients. Specifically, these DRAS
are coordinated under the Virtual Power Plant frameworloiotly bid in the electricity market and
the corresponding attained cost must be split among membergard this end, we first present the
comprehensive cost allocation model, which is applicablthé current market structure. Then, the
cost allocation problem is modeled as the solution of a cadppe game where all DRAs act as play-
ers and the value function of coalitions of players are thie@ues of their optimal market bidding
strategies which are obtained by solving the correspontvmogstage stochastic programs. We show
that the core of the underlying game, which defines all butigéinced and stable cost allocation
vectors, is nonempty. Then, we propose to determine theatlosation vector inside the core consid-
ering the trade-off between different criteria throughvgad a bi-objective optimization problem. This
bi-objective optimization problem has an exponential nandf constraints with implicit parameters
which are the coalitions’ function values. Since the nundfeost shares are only equal to the number
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of DRASs, which is much smaller than the number of constraiméspropose an algorithm based on the
combination ofe-constraint and row constraint generation methods to cacisthe Pareto front with
manageable computation effort.

1.5 Thesis Outline

The remaining of this thesis is structured as follows. Ceaptpresents some technical background
required to address the decision making problems addrésskis dissertation. Specifically, we will
review fundamental optimization techniques includinghtistic programming, bilevel programming,
and multi-objective programming, and cooperative gamertheChapter 3 discusses the proposed
energy management for smart home equipped with solar ed$i8tAC-water heating in the real-time
pricing environment. Chapter 4 describes the dynamicngidiesign for demand response integration
in the distribution networks. Chapter 5 studies the cosicaliion problem for multiple demand-side
resource aggregators cooperating in the electricity ma@@nclusion remarks are presented followed
by some discussions of future research directions in Chépte






Chapter 2

Mathematical Background

This chapter presents some fundamentals of important (atiran and game theory methods, namely,
stochastic programming, bilevel programming, multi-alijee programming, and cooperative game
theory. These mathematical tools are used to model and gwveecision-making problems in this
thesis.

2.1 Mathematical Optimization

Many practical decision making problems can be modeled &m@ation problems where optimal
decisions must be made to optimize certain objective fonstsubject to a number of constrairi2s [

2.1.1 Basic Concepts

The standard form of an optimization problem can be desgrésefollows L05:

min f(x) (2.1)

X
st g(x)<0,i=1,....m
hx=0,i=1,....p

wherex € R" is a vector of optimization variables ari@x) € R is an objective function. The set &f
that satisfies alin inequality andp equality constraints is the feasible set. If the feasibtessempty,
the problem is infeasible. The optimal value of the problerfi{x) = inf{ f (x)[|gi(x) <0,i=1,...,m,
hix=0,i=1,...,p}. If f*(x) = —oo, the problem is unbounded. ff'(x) = f(x*) € Rthenx" is the
optimal solution.

2.1.2 Linear Programming and Mixed Integer Linear Programming

If the objective function and constraints i2.1) are linear, the problen2() is a linear program which
can be expressed in the following for0s:
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min c'x (2.2)
st AX<b 2.3)
Cx=d (2.4)

whereA, b,C,d are matrices with appropriate sizes. If some variakjeme constrained to be inte-
ger, the problem becomes a mixed integer linear program BYliThere are many methods to solve
LP/MILP problems 2, 105. In practice, the global optimal solution of LP/MILP can fmind by
using available commercial solvers such as CPLEQH.

2.1.3 Stochastic Programming

If the input data and parameters of an optimization modebaterministic, we can find the optimal
decision by solving a deterministic optimization probladowever, unknown input data are common
in many smart grid’s decision making problems where densimust be determined even with the
lack of perfect informationd]. Moreover, if the input data are unknown but bounded inaiantanges,
robust optimization can be used. If the input data are unkrmyt can be described by some probability
functions which can be approximated by a set of scenarids agsociated probability of occurrence,
the stochastic programming technique can be employed.

Uncertainty Characterization

In stochastic programming, uncertain parameters are d@eresl as random variables represented by
a finite set of scenario®]. For example, the future wind generatigv at a given time slot can be
described by a set of scenarld§s) with s=1,... NS, wheresis the index of scenarios aiNb is the
total number of scenarios. Each scenario has a probabildgaurrencent(s) = P(s\W =W(s)) where

y NS 1i(s) = 1. If the value of a random variable evolves over time, it iecha stochastic process. A
stochastic process can be understood as a set of dependeotraariables sequentially arranged in
time, which can also be captured by scenarios. For exantmetomorrow wind generatiow over

24 hour horizon can be captured by a seN6fscenarios, each is a 241 vector that represents one
possible realization of wind generation with a probabitifyoccurrencet(s) andy N>, i(s) = 1.

Since uncertain parameters are described by scenariagsihiéng objective function is a random
variable instead of a real-valued number. In a stochastigramming model, we often aim to optimize
the expected value of the objective function. In additioptiraal decisions are often made over a
decision horizon with a number of stages. Each stage rapgseagooint in time where decisions are
made or where uncertainty is partially or totally realizddepending on the considered number of
stages, we can have two-stage and multistage stochasgiapmming problems7).



2.1 Mathematical Optimization 63

Scenario Generation/Reduction

A popular method that generates scenarios to capture antedarameters in stochastic programming
models is Monte-Carlo simulatiod (7], which is employed in this thesis. In particular, the sces
are generated by sampling from probability distributiondtions of the uncertain parameted7].
Popular sampling methods used in the literature includdoansampling, Latin Hypercube sampling,
and orthogonal sampling. These methods are slightly éiffiein how to preserve the real variability.
These probability distributions are often chosen and coottd from the historical dat&]. Their pa-
rameters can be calculated from historical data by curveditising the maximum likelihood method
[66]. Generally, the chosen distributions are determined bghshg the available dat2]. Some well
known distributions in the literature to describe speciigets of data include Weibull distribution for
wind speeds§6], beta distribution for solar irradiancé§], Cauchy distribution for financial prices
[63, 108 109, normal or truncated normal distribution for forecasioesr[43].

The number of scenarios should be chosen carefully comsglire trade-off between the computa-
tional accuracy and computational burden of the scenasedaptimization method. For a large-scale
problem, scenario reduction methods can be employed taeetthe number of generated scenarios
to reduce computational burdeB4] 31, 65, 75, 107]. The principle of scenario reduction can be
summarized as follows. Initially, the weights, i.e., th@mabilities of occurrence of the generated
scenarios, are adjusted to ensure that the statisticahceaistics of the uncertain data are best rep-
resented. This step can be fulfilled by solving a large s¢agal programming problerhQ7. Then,
the problem of scenario reduction can be understood as icfgparsd adjusting the weights of a subset
of scenarios where the cardinality of the set is a predefinedber. This step can be completed by
solving a combinatorial optimization problerh(7]. Popular methods for solving this problem in the
literature are backward, forward, and fast forward, whiok dynamic programming methods(7].
The problem of scenario generation/reduction can be sdlyagsing available commercial software
such as GAMS/SCENRED{)]. In this thesis, GAMS/SCENRED version 2.0 is used for scena
generation/reduction where the number of generated andteedscenarios are chosen to guarantee
the accuracy by tuning the parameters of the software.

Two-Stage Stochastic Programming

In a two-stage programming problem, decision variabletide a set of first-staghére and now
decisions and another set of second-staget(@nd segdecisions 2]. The first stage decision variables
must be determined before the realizations of uncertaisrpeters at the second stage. Hence, the first-
stage decisions do not depend on future observations. Toadetage decisions are made after the
realization of uncertain parameters. If uncertaintiescaggured by scenarios, second-stage decisions
are scenario dependent, i.e., they are defined for eachrgzetrashort, the solution of a two-stage
program includes a single first-stage policy and a set ofumseodecisions defining which second-
stage action is made for each realized outcome. The gerwralfation of a two-stage stochastic
linear programming problem is given as follovd:[
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min c"x+E[Q(x,9)] (2.5)
st Ax<b,xeX (2.6)

wherex is a vector of first stage decision variables and matrgcAsb represent the known input data.
The termQ(x, ) is the result of the following optimization problem:

Q)= { mina(s)'y(s) @7
s.t.  T(s)x+W(s)y(s) =h(s), (2.8)
y(s) € Y} (2.9)

wherey(s) is a vector of second-stage decision variables and maffic®sW(s), h(s) represent un-
certain input. We callZ.7)-(2.9) a recourse problem since its decision variables are made wai-
certainties are realized, i.€l(s),W(s),h(s) are known. Under the some mild assumptions, problem
(2.9-(2.9) is equivalent to the following deterministic problem:

NS

mgr; c'x+ S 1(s)q(s)Ty(s) (2.10)

X,y(S =

s.t. Ax<b, (2.11)
Xe X, (2.12)
T(s)x+W(s)y(s) = h(s), (2.13)
y(s) €Y. (2.14)

The bidding strategy of a market agent in the short-term setlement electricity market can be
formulated as a two-stage progra@#] 29, 31, 43,48, 65, 77, 78, 102 110-112. The submitted bid-
ding quantities are first-stage decisions, i.e., they ateragened before the realization of day-ahead
prices. The energy exchanges in the balancing market dthrengperation day are second-stage vari-
ables P4]. In many cases, the decision making consists of more tharstages, i.e., bidding in market
with multiple trading floors T4, 75]. In this case, the decision making problem should be malate
a multi-stage stochastic programming probl&h [
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2.1.4 Bilevel Programming

In bilevel programming model, we are interested in solvimgfollowing optimization probleml[13:

min F (XY) (2.15)
s.t.G(x,y) <0, (2.16)
min f(x,y) (2.17)
s.tg(x,y) <0 (2.18)

where problemZ.15-(2.16 is called the upper-level problem and proble2nl()-(2.18 is called the
lower-level problemF (x,y) € Rand f(x,y) € R are upper-level and lower-level objective functions,
x € R4 andy € R9 are upper-level and lower-level optimization variabl@18 and Q.18 are upper-
level and lower-level constraints witB(x,y) € R™ andg(x,y)', respectively.

This bilevel optimization problem cannot be solved dirgsihce it does not follow the standard
form. It should be transformed to the solvable single oljeaiptimization problem. Depending on the
form of the studied problem, several methods are propos#tkifiterature such as the Karush-Kuhn-
Tucker (KKT) equivalent conditions, complementary piwngti and penalty functiorlfl3. Generally,
it is difficult to find the global optimal solution of the bilelproblem. However, in specific cases, we
can transform it to an equivalent problem whose optimaltsmiucan be found.

In particular, if the lower-level problem is a linear prograve can replace it by its KKT conditions.
Hence, the original bilevel problem can be transformed inéofollowing mathematical program with
equilibrium constraints (MPECL[L3

x@)i{]y F(XY) (2.19)
s.t. G(xy) <0, (2.20)
Ai>0i=1,....1, (2.21)
Aigi(x,y)=0,i=1,....1 (2.22)
0y.Z(X,y,A) =0. (2.23)

where @.21)-(2.23 represent the KKT optimal conditions of the lower-leveblplem @.17)-(2.18).
The MPEC has nonlinear sources including the complemermangtraints 2.22 and the bilinear
terms in the formula 0fZ.23. The complementary constrair.22 can be replaced by a set of mixed
integer linear constraints by using the Fortuny-Amat folaxjd7]. The bilinear terms appeared in the
formula of .23 can be eliminated by using the strong duality of the lineagpamming theory]13.
If the upper-level problem2(19-(2.16) is LP or MILP, the obtained equivalent problem is a MILP
which can be solved efficiently by using the branch and cutrétlyn employed in available solvers
such as CPLEX106].

Bilevel programming has been used to study different prabla power systems such as transmis-
sion and generation expansion plannidd4 115, generation maintenancé&16, market equilibria
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[117], and strategic bidding for power producetd §, retailers P1], and distribution companie419.

In [120Q, a bilevel problem model is used to study the interactiotwieen a large central production
unit and an energy service provider (ESP) managing sevecabgnids (MGs). The central production
unit computes and sends an optimal energy price signal te 8 then the ESP decides the optimal
amount of energy purchased from the central generatiorasnitell as schedules its power generation
and consumption accordingly. However, the formulated l@mlis a nonlinear mixed integer problem
which requires nonlinear solvers. Stochastic bilevel faiation was also proposed itZ1] to analyze
the interaction between a distribution network operatdd@) and networked MGs considering the
renewable energy generation uncertainty where each amtity at minimizing its individual operation
cost. Our dissertation employs the bilevel programmingesigh a novel pricing signal for DR in the
distribution network.

2.1.5 Multi-Objective Programming

Multi-objective programming or multi-objective optimitzan is an area of multiple criteria decision
making where there are more than one objective function toptenized simultaneouslylp?. In
general, we must find optimal decisions considering tratiebetween two or more conflicting objec-
tives. Mathematically speaking, the multi-objective aptzation can be formulated a$32

min F(X) (2.24)
whereF (x) = [f1(X),..., fm(X)]", F(X) € R", m> 2 is the vector valued objective function,s a
vector of decision variables, arXl is the feasible region ok. Unfortunately, there are no single
solution for this optimization problem since optimizingeoobjective can result in degradation of the
others. In multi-objective programming, we are intereste®areto optimal solutions where we cannot
improve one objective function without degrading the ashdy set of Pareto optimal solutions is called
the Pareto front. There are many methods to construct tretdaont for a general multi-objective
optimization problem. This thesis considers the applcatf multi-objective linear programming
[56]. There are two main classical optimization methods thastwict the Pareto front for the linear
case, namely the scalar (weighted) method &ednstraint methodgg).

In the e-constraint method, one objective function is chosen to fnozed while the other is

converted into a constrainb§]. For example,f1(x) is chosen to be optimized while oth&(x), i =
2,...,mare converted to constraints with chosen parametexs follows:

min f1(x) (2.25)
st. fix)<g,i=2,....m (2.26)

In the scalar method, the multi-objectives are convertdtéasingle objective problem by consid-
ering the weighted sum of all objective functions as follows
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m
I)’(Tél)l;] i;Wi fi (x) (2.27)
wherew;, i = 1,...,mrepresent the weights.

The g-constraint method has several advantages over the scataodhfor linear problemssp).
Specifically, thee-constraint method alters the original feasible regionttam non-extreme Pareto op-
timal solutions. On the other hand, the scalar method o&sults in a corner solution. Consequently,
there can be many combinations of weights that result in #meesPareto optimal solution. Using
the e-constraint method, we can obtain a different Pareto optpoit by solving the corresponding
g-constraint based single objective problem, which impsave Pareto front’s representation. In the
g-constraint method, it is easier to control the number ofgleerated Pareto optimal points by ad-
justing the number of grid points, which is not easy with tbalar method. Finally, the scalar method
requires the objective functions to be scaled appropyidtefore forming the weighted sum, which is
not necessary in the-constraint methodg6, 122,.

Many smart grid’s decision making problems can be formudla&® multi-objective programming
problems. For example, for an optimal bidding strategy i tiho-settlement electricity market, we
usually aim to maximize the expected profit but limiting itstance. This problem can be formulated
as a multi-objective optimization problem where we musedaine the day-head bidding quantities
such that the expected profit is maximized and the risk measuminimized.

2.2 Cooperative Game Theory

In the decentralized market, several market agents canecai@with each other to gain the bene-
fit. One problem is how to share the benefit of cooperation gnmembers. This decision-making
problem can be addressed by using the cooperative gameg.theor

2.2.1 Basic Concepts

A cooperative game with transferable utili#/(.#",v) is defined by an ordered paice’,v). % =
{1,2,...,NK} is a finite and nonempty set of players which are decision nsaké also denotes the
grand coalition 98]. The transferable utility means the commodity, which cancbst or profit, can

be transferred among the players without any third instébdle Every subseS € 7" of cooperating
players is called a coalitioBrepresented by an indication veceSt=[e3, €5, . .. ,eﬁK}T whereeg = 1 if

ke Sandef = 0, otherwise 98]. The notationv denotes the game characteristic function which maps
each coalitior5to a real numbev(S) [54, 55, 98] as follows:

v: 2V 5 2. v(0) =0 (2.28)

wherev can be interpreted as profit or cost a7, v) is called the cost game or profit game accord-
ingly [54)].
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In a profit game, players prefer more allocated profit to |¢lesated profit. The profit game is
superadditivef v(S1US2) > v(S1) 4+ v(S2) for any disjointSL andS2. In a cost game, players prefer
less cost allocated to more cost allocated. The cost gaméadditivef v(S1US2) < v(S1) 4 v(S2)
for any disjointS1 andS2. These conditions imply that the total profit/cost is maxed/minimized if
all players join the grand coalitiart”.

A balanced map m2NX [0, 1] is a map that satisfiesy m(S)eg =1, vk € % [55, 98.
Sc2NK
A balanced (cost) gamis a game that hasy m(S)v(S) > v(.¥"), for any balanced mam [55,

Sc2NK
9g].
A cooperative gam& (7, V) is calledtotally balancedf for each coalitionSthe sub-gamé (S, v)
is balanced35, 99].

2.2.2 Solution Concepts and The Core

In general, we consider the case when the grand coalitiarisdd and we are interested in dividing
the profit/cost to each member of the grand coalition. A plgiefsion or profit/cost allocation vector
x € ZNK, wherex, is profit/cost allocated to playés is considered as the cooperative game’s solution
concept. A comprehensive literature review of solutionasgts for cooperative games with transfer-
able utility can be found in]23. One important solution concept of cooperative game ikedahe
core.

The core?’(v) is the set of payoff divisions such that no coalition can hastter cost saving than
the sum of the members’ current allocated costs:

NK
(V)= xe ANy x=v(AH,
k=1 ke

x<v(S),vSe2VK\ {0} } (2.29)

A game solutiorx is called a rational allocatiorb] if it lies in the core of the gamgc%’(v). The
core is nonempty if the gamelmlanced 98).

2.2.3 Linear Programming (LP) Game

In many practical smart grid models, the players can beasted in cooperation to maximize/minimize
the total profit/cost and the characteristic funct8) can be modeled as an optimum (maximum/minimum)
of an optimization problem corresponding to the coalitgB5]. In many cases, the optimization prob-
lem is modeled as a linear program.
Consider the following linear program:

(P)
vp(AH,b,d,c) = min c'zs.tt zA<bh.

ZH=d, (2.30)
z>0 (2.31)
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wherez € #™ denotes the optimization variablesg #™ b € #°,d € #", Ais amx p matrix, H
is anmx r matrix, andz’is the optimal solutionc's is the optimum of the linear program P, and
vp(AH,b,d,c)=c'2

The cooperative ganté (.7 ,v) can be constructed from (P) by making all, or some of the right
hand sides in the constraints, depend on the coali&]s®]. This can be done in several ways. One
way is to make the right hand side of constraints in (P) a limeanbination ofeE. In addition,v(S)
is assumed to be well-defined, i.e., problem (P) @ik feasible and the value ofS) obtained from
solving (P) is a real numbeb§.

Definition: A cooperative gamé&/(.#",v) is called a LP game if there exists amx p matrix
A, an mx r matrix H, vectorsb(S) € &, andd(S) € %" for all S 2VK\{0} such thatv(S) =
vp(A,H,b(S),d(S),c) [55].

A LP-game is totally balanced (see Theorem 2.2.3%58])[] That means the core of a LP game is
nonempty. The proof can be found B (page 24, Theorem 2.2.3).

2.3 Computation Setup and Numerical Study

All decision-making problems studied in this dissertatamae modeled in the GAMS environme#d(].

In the first part of this thesis, we model the home energy mamagt problem with solar assisted
thermal load under the real-time pricing scheme as a rotlvgystage stochastic program, which is
converted into MILP by using the scenario based approacthdrsecond part, we model the pricing
design problem of a Load Serving Entity (LSE) as a bilevegpaonming problem which is converted
to a single-objective MILP. In the third part, we model thestcallocation problem of a virtual power
plant consisting multiple demand-side resource aggregaga cooperative LP game. To find the cost
allocation vector inside the core, we consider a multi-otbye programming problem. In addition, the
scenario reduction is performed by using the GAMS/SCENREEkpge. All MILP/LP problems are
solved by CPLEX 106 under GAMS H|Q] in a computer using Windows 8, Intel Core i533GHz
processor, and 8 GB RAM.

2.4 Summary

This chapter discussed several basic concepts of matheinaptimization methods and cooperative
game theory. Firstly, basic concepts of mathematical dpéition are introduced. In particular, we
briefly discussed threes classes of optimization problernigh are used to model the decision making
problems studied in this thesis. They are stochastic progriag, bilevel programming, and multi-
objective programming. Finally, we presented the cooparaglame with transferable utility which
is used to model the profit/cost sharing problem. Specificale presented the concept of the core
which defines how the benefit of cooperation should be divatedithe form of linear programming
game which can capture many cooperation models in smart giidhlly, the computation setup for
numerical studies in the thesis was presented.






Chapter 3

Energy Management of Smart Home with
Solar Assisted Thermal Load Considering
Price and Renewable Energy Uncertainties

This chapter studies DR from residential sector. In paldicuve investigate how a single smart home
equipped with renewable energy based appliances can gptme-varying price signals in the best
economic way. The content of this chapter was published EEIEransactions on Smart Grid in the
following paper:

Hieu Trung Nguyen, Duong Tung Nguyen, and L. B. Le, “Energynisigement for Households
With Solar Assisted Thermal Load Considering Renewabledynend Price Uncertaintyl[EEE Trans-
actions on Smart Grigvol. 6, no. 1, pp. 301-314, Jan. 2015. doi: 10.1109/TSGIZB50831

3.1 Abstract

This chapter investigates the energy scheduling problem fimusehold equipped with a solar assisted
Heating, Ventilation, and Air Conditioning (HVAC) and wateeating system in the real-time pricing
(RTP) environment. Our objective is to minimize the elaxityi cost while maintaining users’ thermal
comfort requirements. We consider different types of loaith different characteristics, detailed
modeling of thermal dynamics, and uncertainty in eledlyiprice and solar energy. The advantage
of the proposed design lies in the exploitation of the sotmisted thermal system that can flexibly
utilize the energy from the solar source or from the grid ngitow-price periods to support the home
hot water demand, user thermal preference while reducieglictricity cost. Obtained numerical
results are presented to illustrate the effectiveness opmposed design. In particular, we show that
the proposed design can achieve significant cost savirayy 8iéxible tradeoff between user comfort
tolerance and electricity cost reduction, and efficientjuat the electricity consumption load profile.
The influence of solar assisted thermal system factors ssitiheawater tank temperature limit, solar
collector size, and weather condition on the achievablearesalso analyzed.
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3.2 Introduction

Household appliance scheduling has been receiving signtfiesearch interest over the past few years
[16-18, 23, 34, 37, 57]. Research works in this topic are very diverse in terms ahematical models
and solution approaches. In particular, some existing svdekermine residential demand response so-
lutions by solving deterministic optimization problemsasing that the scheduler has perfect system
and forecast information over the scheduling horizah B7, 73, 79. In [37], the authors tackle the
load power control problem under the flat-rate pricing madeére the utility is assumed to determine
the thresholds of energy consumption at different timesshoid broadcast these values to end users for
load scheduling. Then, scheduling decisions are made bgritieisers to adapt to the utility control
signal based on the predefined priority levels of differgul@nces. However, uncertainties in the
real-time price, outdoor temperature, and load demandatreamsidered.

More recently, research on residential energy managenasnténsidered more complicated sys-
tems that integrate renewable energy resources, homeyamgamation system and smart appliances,
novel electricity pricing schemes as well as smart grid camications. Facilitated by these technolo-
gies, residential energy users can actively participateaiious demand response (DR) programs to
minimize the electricity payment. The work3] focuses on the scheduling of a residential micro-
grid exploiting smart meter data and thermal load and itueatals the sensitivity of different forecast
parameters such as electricity price, outdoor temperatme demand on the achievable energy cost.
However, it does not consider the uncertainties of thesepeters in the proposed optimization frame-
work. In [79], the scheduling design for households with renewableggnender the Time of Use
(TOU) pricing scheme is conducted assuming that pricingrmftion is known for the whole schedul-
ing horizon. This type of deterministic models may not resulgood performance in practice since
various forms of uncertainties are not captured.

There have been also some existing works showing that Resd Pricing (RTP) can offer better
economic and environmental advantages over flat-rate areddf use (TOU) pricing schemegq). In
fact, RTP reflects the real-time and varying energy produactiost of the power systeni ], which
would better guide the end users to schedule their energgucoption L7]. However, RTP may
lead to certain grid stability issue8Y4] since many users may shift their loads to low-price period
simultaneously. It has been shown that employment of ‘inieg block rate” (IBR) [L7, 82] or optimal
real-time pricing design under suitable criteria consitiedemand response activitielk?d] can help
maintain the grid stability.

Engineering of home energy management algorithms underi&ka@® important and hot research
topic [17],[16],[57],[80]. In [17], an optimization framework for scheduling home applianisepro-
posed to minimize the electricity cost. In addition, the kgf80], [81] propose to employ dynamic
programming in conjunction with Markov Decision ProcessO(R) theory to determine an optimal
control policy that allocates power consumption for eacpliapce. In [L6, 57, the authors develop
Demand Response (DR) algorithms for a household with varigpes of residential appliances and
price uncertainty by using the rolling online stochastioggamming approach. The authors 82]
model the scheduling delay as a penalty term in the objeftimetion of the scheduling problem,
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which is solved by using genetic algorithms. All these woltkswever, focus on conventional types
of home appliances, model the uncertainty of only real-tprieing where integration of renewable
energy is not considered.

In general, thermal loads such as HVAC and the water heayistgisi make considerable contribu-
tion to the electricity consumption of a typical househ@d(, over 50% of the total residential energy
consumption25]). Research on optimal scheduling for thermal loads andbéipg them for various
smart-grid services are also very active research areas.works [L6, 57] consider HVAC and the
water heating system in their scheduling problem formategj which, however, rely on very simple
thermal dynamic models. The authors 86f27] study the possibility of employing the water heater
and HVAC for load regulation services; however, energy ngangent for other loads is not considered.
In addition, exploiting building thermal mass§, 48, 59 or water heating bufferdl] as energy stor-
age for DR are also studied. The worl8[65] suggest that proper cooperation of various electricity,
renewable energy resources, and energy storage facddaresmprove the building energy efficiency
and DR ability. These papers, however, consider a largdibgibpplication with a Combined Cooling
Heat and Power (CCHP) system, which may not be applicablenfiall household scenarios. Overall,
these existing works consider the HVAC and water heatintegysn separation where the potential
benefit of the combined hybrid HVAC and water heating systenot studied.

Recently, design of the HVAC and water heating system faebenergy efficiency has attracted a
lot of attention. In particular, there is considerable iast in combining the thermal system with the
solar energy source. In fact, the coefficient of performd@e@P) of a standalone HVAC system, which
is about 2—-3, can be improved significantly when being coetbinith solar energy source39. The
development of the hybrid solar assisted HVAC and waterihgaiystem is motivated by the abundant
presence, environmental sustainability, and quiet operatf solar energy38, 39, 64, 84-87]. The
key component of this hybrid system is the solar hot watek,tamich stores the energy from solar
collector for supporting both HVAC and hot water dema8d |

In the hybrid solar assisted HVAC and water heating systerat fiom the solar water tank can be
used to increase the enthalpy for refrigerant after coretgm®cess, thus reducing the working cycle
and energy usage of the HVAC compress@®]] For the design in3§], a solar cooling system is
connected to the conventional air conditioner to reducectimelensing temperature, which improves
the COP of the hybrid system. I8T], it is proposed that water from the solar tank is delivered t
support the water heating demand and for the heat-pump posiigVAC. The work B6] investigates
the system coefficient of operation and empirical modelorghlybrid solar HVAC and water heating
system. In 64, 86|, optimal control algorithms, empirical modeling, and t&ya identification of
hybrid solar HVAC and water heating system are investigatBde papersg4, 85| review various
mathematical models of solar assisted thermal loads. Thie[®] focuses on modeling and designing
the control interface for the water storage tank.

None of the previous works have considered exploiting theebts of the hybrid solar assisted
HVAC-water heating system in home energy management. $nstiady, we investigate the home en-
ergy scheduling considering solar assisted HVAC and watatiig system and other types of house-
hold appliances. We propose to exploit the thermal solaemiank as a dynamic storage facility to
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support thermal demand of water heating and the HVAC systdra.main contributions of this study
can be summarized as follows:

1. We propose a comprehensive model for home energy managé@mskiding hybrid solar as-
sisted thermal loads and various types of controllableiappés, which aims to minimize the
electricity cost and maintain user comfort. Our model actedor detailed modeling of the
hybrid solar assisted HVAC and water heating system, clkexiatics of other loads, users’ com-
fort preference, and thermal dynamics. We also consideutivertainty of solar energy and
electricity price.

2. We describe how to solve the underlying energy scheduylinglem by using rolling stochas-
tic optimization approach. We investigate the potenti@neenic benefits achieved by smartly
scheduling the solar assisted HVAC and water heating syateinother household loads. In
particular, we show that the solar assisted thermal systenmelp reduce the energy cost signif-
icantly.

3. We study the impacts of different parameters on the totaigy cost including solar collector
size, tank temperature level, thermal comfort tolerancd vaeather condition.

The remaining of this chapter is organized as follows. Thatmans used in this study are presented
in Section 3.3. The system model is presented in SectionBd& proposed energy management design
is presented in Section 3.5. Section 3.6 presents numeemalts and Section 3.7 concludes this study.

3.3 Notations

Notation Explanation

Sets and Indices

t,] Timeslotindext =1, 2,..., N

S scenarioss=1, 2,..., NS

A Set of loads

[ Load index

Parameters

a1 1.505 (WHPK) APSE-10 solar collector parameter
a 0.0111 (WmPK?) APSE-10 solar collector parameter
G 800(W#?) APSE-10 Solar collector parameter

pﬁt Power consumption atfor loadi scenarics (kW)

’7§|,t Solar collector energy conversion efficiencyt atenarics
N Number of time slots

NS Number of scenarios

a, b Beta distribution parameters

AT Room (indoor) thermal comfort toleranc¥®C)

a,, b, Cauchy distribution parameters

Tot Ambient (outdoor) temperature ascenarics (°C)
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o Heating (1) or cooling mode (-1)
Ry Room equivalent thermal resistan@kW)
c Electricity price at scenarics ($/kWh)
T Duration of time slots (hours)
Ay Solar collector sizen?)
COR HVAC coefficient of performance at stand alone mode
COR HVAC coefficient of performance at combination with renelealbnergy
mode
C Room thermal capacity (KW?PZ)
TS Room (indoor) temperature gtscenarics
Ay Room effective windowr(®)
18 Solar irradiance &t scenarics (KW/n?)
pS Probability of scenaris
Cut Thermal capacity of water tank storad&\(h/°C)
At Surrounding area associated with tank heat o83 (
Uunt Tank heat loss factor due to radiation
Variables
p§h7t Heat support HVAC from water tank storage atenarics (kW)
p§|7t Power captured from solar collectortatcenarics (kW)
p§vd’t Water demand atscenarics (kW)
Pt Heat transfer at scenarics (kW)
Phvac.t Power consumption of HVAC dtscenarics
pﬁ\f‘aqt Power consumption of HVAC in standalone modé¢ stenarics (kW)
pﬁ’fac’t Power consumption of HVAC in combination mode acenarics (kW)
pﬁ‘i Power consumption of back up auxiliary heatet stenarics (kW)
Tt Tank temperature atscenarics (°C)
uﬁt binary operation status afor loadi scenarics (0-off, 1-on)
Tt “Turn-on” status at for loadi, scenarics
z, “Shut-down” status at for loadi, scenarics

3.4 System Model

We consider a typical household in the RTP environment wheeegy scheduling is performed for the
24-hour scheduling period. The household is equipped wablar assisted HVAC-water heating sys-
tem and other loads of different types such as electric \ekitV), washing machine, washing dryer,
television, and water supply pump. The household loadsidkay the joint HVAC-water heating sys-
tem is classified into controllable and non-controllablpety B7]. Non-controllable loads are those
whose operations are dependent on the will of users suchnaguter, lighting, and television. The
operations of non-controllable loads are not considerediiroptimization. In contrast, the operation
schedule of controllable loads can be optimized withoutudisng the user life style. We divide the
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Figure 3.1 —Solar assisted HVAC-water heating system

considered scheduling period imtbscheduling time slots of equal lengttwhere the electricity price
in each time slot is assumed to be constant.

DenoteA as the set of all controllable appliances aadepresents the HVAGA; for interuptible
and deferrable load#\z for noninterruptible and deferrable loads, afgfor noninterruptible and
nondeferrable loads. Then, we have- A; UA UAz U As.

The solar assisted HVAC-water heating system representsmportant load of the household,
which is described in the following. The typical componeans! design of this system is illustrated
in Figure3.1[3§]. It consists of a solar collector, a water storage tank, taedHVAC system. Solar
energy is collected and transformed into thermal energghwvis stored in the water tank by the solar
collector. Hot water from the tank then supports the dorésit water demand and heating/cooling
demand of the HVAC system. The operation of HVAC is based erptinciple that energy which is
used to move heat around is often smaller than the energytasgeherate heat. Hence, extra heat
from the water tank can be used to support the necessaryyanmbith is used to control the heat cycle
in heating/cooling mode of HVAC. To cover the remaining hdatand for the cloudy day or during
night time, the water tank is also equipped with an auxilia@gter. In this chapter, we usandsto
denote time slot and scenario indices, respectively.

3.5 Energy Management Design

3.5.1 Design Objective and Solution Approach

In this study, we explicitly consider the uncertaintiestia electricity price and renewable energy in our
energy management problem. Our design objective is to naeitie electricity cost (i.e., payment
of the home owner). In fact, there is quite rich literaturehmme energy management considering
various system uncertainties and using different solutemmniques. In§0], [81], the scheduling
problem is modeled as a Markov Decision Process (MDP), wiicdolved by using the dynamic
programming approach. In general, if the system uncerésinio not depend on the taken decisions at
each time interval, which is the case for our model, then tbdMvould not be a useful approad?h.

In [82], the energy management problem is solved by using genlgticigdoms. However, genetic



3.5 Energy Management Design 77

€ One Day >

B R R R R R R ey
B 8 3 X o A P X X A e 8 a2
S S S e e e

|
|
| |
| |
| I
| I
| I
L |
1 2

3 N=96
) Tllnlm slot: d T“'[‘]“ slot: Duration
+)Uncertainties are reveale +) Uncertainties are of time slots

) +)Immediate Decision Making "’ not vet revealed

Figure 3.2 —Rolling stochastic scheduling for Home Energy Mangemestesy

algorithms may not scale well with the system size, whichliegthat only suboptimal solutions can
be obtained in practice. Rolling online stochastic prograng is another efficient tool to deal with
uncertainties, which has been employed in several existorgs [16],[57],[125. It is indeed suitable
for our problem formulation since the system uncertaingiesexogenous and do not depend on the
taken decisionsg7],[125. In addition, this method enables us to determine an optimaediate
decision given the revealed information of uncertaintigh@ beginning of each time slot.

In this study, we employ the two-stage stochastic progrargrto formulate the scheduling prob-
lem where the Monte Carlo simulation technique is used tegga random scenarios. In addition,
the formulated problem is solved by using the rolling praged16]. Toward this end, we repeatedly
solve the underlying stochastic optimization problem ioreame slot given the realization of the ran-
dom variables (i.e., electricity price and renewable eyeirgthe current time sldp. In particular, we
minimize the sum of the electricity cost due to energy corion at the current timg) (as electricity
price, solar irradiance, and outdoor temperature at theegtitime slot are known) and the expected
electricity cost from time slaty + 1 to the last time sloN. Known information about system uncer-
tainties such as price, solar irradiance, outdoor temperanon-controllable load power consumption
are updated during this rolling process. Therefore, weidenshe following optimization objective at
each timdg

NS N
min PiteCoT+ Y P° PCT (3.1)

wherep*® denotes the probability of scenaspwhich is used to calculate the expected cost toward the
end of the scheduling period.

This rolling two-stage stochastic programming technigquénbme energy management follows the
tree reduction method where multiple scenarios are gesgbtatcapture the uncertainty in electricity
price and weather factord§]. The underlying optimization in each time slot can be sdliag using
the GAMS/CPLEX solver. This optimization problem is sulbjéx various constraints, which are
described in the following.
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3.5.2 Solar Assisted HVAC and Water Heating System

In the solar assisted HVAC and water heating system, soknggris collected and transformed into
thermal energy which is stored in the water tank by solaectdir. In addition, HVAC transfers heat by
circulating a refrigerant through a cycle of evaporatiod anondensation. The refrigerant is pumped
between two heat exchanger coils named evaporator and eerdiey the compressor pump. In the
evaporator colil, the refrigerant is evaporated at the l@ggure and absorbs heat from its surroundings.
The refrigerant is compressed at high pressure and thesféraed to the condenser coil where it is
condensed at the high pressure and releases the heat ibetbs@rlier in the evaporator. The cycle
is fully reversible; hence, the HVAC can provide cooling drehting mode. For cooling, the heat is
extracted from home and released to outside area. For gettamheat extracted from outside is used
to heat the indoor area.

Energy consumption of HVAC lies mostly in the compressor puand condenser, especially to
maintain temperature at the condens&d|[ By adding support heat to the condenser, less energy
consumption is needed for the HVAC to operate the heat cydace the coefficient of operation
(COP) is increased. For solar assisted HVAC, the heat caghiarthe water tank is used to support
heat for the HVAC. For modeling, we impose the following coamts for the solar assisted HVAC
and water heating system.

Solar Collector

The solar energy collected by the solar collector is tramséal into thermal energy of the water tank.
This solar energy can be calculated as

Pi. = N3AIle (3.2)

where the conversion efficiency, is generally not a fixed value but it depends on the outdoopé&zm
ature and solar parameters as

a1 az 2
Nsi = ’73 -G (Tsit - Tos,t> G (Tsit - Tos:t> . (3.3)

The curve representing the relationship betwggrand related parameteas, ay, G is often provided
in the product manual. This second-order curve can be appadad in the linearized form as

ns =nd-a(Ti-Ts.)- (3.4)

. . . N— ﬂ
Since we typically hava, << aj;, we can approximate~ 2.
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Water Storage

Since the thermal stratification technology is usually usetthe storage tank to improve its thermal
capacity, the tank can be modeled to consist of a number oédanivater layersql, 64, 85]. This
model, however, is complicated and may not be valid for theglome scale of minutes. Instead,
the first-order and one layered model is sufficient for désagi the heat dynamics of the tank2g|.
This is indeed based on the energy balance equation whetankean receive energy from the solar
collector, back-up auxiliary heater and dispatch energgufgport hot water demand and HVAC.

Tw
thd—tt = ph+ Pst — UwtAut (Twe — Tr) — Psh — Pud- (3.5)

This equation can be converted into the discrete form owareie intervals of as

TUW AW UW AW T
Totts1 = (1— C\fvt t) Toee + Ctlwt : T+
T
e (Pre+ P8 = PR — P (3.6)

To counteract the randomness in the output solar energyydber tank employs an electric auxil-
iary heater as a backup heat source. The power consumptistramt of this auxiliary heater can be
written as

PR"Uh . < Phe < PRUL. (3.7)
Finally, we need to impose the following constraint on theéevéemperature
T < T < T (3.8)

HVAC Load

The energy scheduling for the HVAC system must be performeslich a way that the indoor tem-
perature is maintained in a predetermined rariff@M, T™*] during the scheduling time window
[auvac, Buvac] when the household is occupied, i.e.,

Trmin < Tr,St < Trmax7t S [ahvaoBhvac] : (3-9)

There is an inherent relationship between indoor tempexdiun consecutive time slots that depends
on the energy supplied to the HVAC, outdoor temperafigresolar irradiance, and other building
parameters. This relationship is captured in a thermal mlyceamodel expressed as follows9[ 127:

dT, To—T;

AFTa Ra + NwAwl + OhPu. (3.10)
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wherep, denotes the heat that the HVAC transfers. This thermal dycsaocan be transformed into the
discrete form for scenari®as

r’WAWT
TS, =(1- TS+ TS
rt+1 < Racr) RaC Ot+ Cl’
putT
. 3.11
rord 3.11)

In order to transfepy, the HVAC needs to consume the poweipgf,.. The ratio between the amount
of heat transfepy and the amount of electricity consumption represents the 6fahe HVAC, i.e.,
COP= pu,t/phvac-

By using the thermal storage to support the HVAC, the syst&@® €Can be improved significantly
[86]. DenoteCOR, andCOR. as the COP of the system as it operates in the standalone mddesa
it is supported by thermal storage, respectively. When t®aEworks at standalone mode, we have
pu = CORphvac- When the HVAC operates in the combined mode, a portion oedsired energy is
provided by the water thermal storage, which can be written a

Pu= Copé(phvac + psh) - COI%phvac- (312)

Hence, we have the following constraints for the HVAC system

Pit = COPapyy,c . + CORPLL ¢ (3.13)
Unvac T Unac =1 (3.14)
uhvac tphmvlgc < phvact < uhvac ¢ Phvac (3.15)
Unvac £ Phvac < Phvac .t < Upvac ¢ Phue- (3.16)

Here, the constraint8(13), (3.14) capture the fact that the HVAC can operate in the standalooeop-
erated mode with extra heat support (its control variabieait@f‘a anduhvac  respectively); however,
only one mode can be chosen at any time interval. Also, thet[mnts 8.19, (3.16 represent the
max and min power limits of the HVAC.

Also, the electricity consumption of HVAC system can be egsed as

phvac t phvac it + phvac t° (3-17)

And the support power from thermal storage is

s _ COR—-COR

pSh,t = COPa hvac7t' (318)

Finally, the total electricity consumption of solar asstsHVAC and water heating in one time
slot is due to the total electricity consumption of back-@ater of the water tank and the HVAC, i.e.,

— nS S
pAlyt - psh,t + phvac,t'
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Thermal Load With Non-continuously Modulated Power Consunption

In the previous presented formulation, the power conswnptof HVAC and auxiliary heater are
assumed to be continuously modulated. That means theirrpavsumption can be adjusted in a
continuous range{Pmi”,Pmax] when these systems are turned on. This assumption for HVAIC an
water heating system would only be valid when these systeesquipped with variable frequency
drives (VFD). This may not be the case in reality where cdrictions can be simply ON-OFF. In this
case the power consumption constrains of water auxiliaagdneand HVAC 8.7), (3.15), (3.16) can be
replaced by 3.19, (3.20, and @.21) respectively as follows:

s __ Rated, s

Pht=Pn™ Unt (3.19)
S,a _ Rated, Sa

phvac,t = Phvac uhvac7t (3.20)
S,C __ Rated, SC

phvac,t = Phvac uhvac7t' (3.21)

Therefore, the scheduling solution can be obtained aaaghdin the case considering these new con-
straints.

3.5.3 System Constraints

In general, total power consumption of all controllabledsas limited due to the power limit that can
be transferred from the distribution grid to the home gricthpof common coupling23]. Suppose that
power consumption of other non-controllable loads can Iaeted from historical data then we have
to impose the following constraint

; Pt + PhcLt < Pord: (3.22)
IS

whereR{ . is total power consumption of non-controllable load.

We further impose energy consumption limig2* (kwh) for each hou [17]. This means the
total energy consumption during all time slots of one patéic hour must be upper bounded by the
corresponding limit. This is required to avoid being ovheaged by the utility. We can write this
constraint as follows:

Ko
; Z pﬁtr <EF,0=12,...,24 (3.23)
icAt=K(0-1)+1

whereK denotes the number of scheduling slots per hour.

3.5.4 Constraints for Different Controllable Loads

Suppose each controllable loads required to operate in the time winddw;, 8] then we need to
impose the following constraint
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pit =0t & [ai,Bi]. (3.24)
Constraints of Deferrable Load

For a deferrable load with the maximum tolerable delay @; time slots, we have the following
constraint

uy > 1. (3.25)
=3
If load i is nondeferable then we can simply 8gt= 0.
We may also want to impose additional constraints on the muittimes that a particular load can
be turned on and shut down in the scheduling interval. Thigagally required to maintain desirable
lifetime of the underlying appliances. These constraiatsioe written as

U — Ut 1—Yit+2¢=0 (3.26)
Vii+ze<1 (3.27)
Bi
> Vitt+zg< L (3.28)
t=q;

whereL; denotes the maximum number of times that loadn change its state.

Constraints of Interruptible and Deferrable Loads (Type I)

We will consider electric vehicle (EV) as an example of tliad in the study. For this load, we have
the following constraints

Ei g > Eid (3.29)
Eis,t+1 = Eis,t + Ney pis,tT (3.30)
EM" < EP < B (3.31)

where ney represents the charging efficiency coefficiefitg is the energy stored in the EV #,
Eimi”(max) is the EV minimum (maximum) levels of energy (kWIE, is energy stored in EV (kWh)
at timet, scenarics, andE;y describes the charging demand. In reality, some EV bastear perform
both charging and discharging operations. Other EVs cap drdw energy from the grid in one
direction without being able to send energy back to the ghidthis study, since our objective is to
focus on the control of the solar assisted HVAC and waterihgatystem, we only consider EV as
a conventional energy consumption appliance whose cliatgsk can be deferrable and interuptible

[16].
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Constraints of Noninteruptible and Deferrable Loads (Typell)

This load requires the following constraint:

t+H;

> > Hi(u g —uly), telai Bl (3.32)
f=t+1

whereD; denotes the delay tolerance anddrepresents the number of operation time slots required by
the load.

Constraints of Noninteruptible and Nondeferrable Loads (Type III)

For this type of load, we only need to impose the operatioe tionstraint as
ai+Hi—1
Z Uy = Hi. (3.33)

t=q;

3.5.5 Uncertainty Modeling

We consider the uncertainty in the RTP where the pridgecah be modeled as
& =G +Aq (3.34)

wherec; denotes the value of DAP or estimated price, which is assumbd provided by aggregator
or obtained by certain price estimation algorithm embedddtie home energy management system.
Also, A, represents the price forecast error with known probahilégsity function. In this study, we
assume the price forecast error follows the Cauchy digtaby109 whose the probability density
function (pdf) is

b)
| (A —ay )+ b2

fAq (Ac) = (3.35)

The parametera, andb, in this pdf can be obtained from historical data by curvenfgtusing
the maximum likelihood method. Note that the Cauchy distidn has been also used to represent
electricity price uncertainty in the literatur@Qg, [109, [63]. The solar irradiance is also subject to
uncertainty, which depends on the weather condition. Itettainty is assumed to follow the beta
distribution as follows:

M (a)r (br) \lo o

IThis type of loads does not allow flexible scheduling contvid simply need to maintain their operation constraints.

f (1) = @) <'t)a1 (1 't)b'l (3.36)




Energy Management of Smart Home with Solar Assisted Thebwadl Considering Price and
84 Renewable Energy Uncertainties

where the values @ andb, can be calculated from historical data by curve fitting usiregmaximum
likelihood method §6]. Outdoor temperature can be modeled as

Ty = Tot + A1, (3.37)

where'FQt denotes forecast outdoor temperature angd denotes the outdoor temperature uncertainty
factor which is assumed to follow Gaussian distribution.

3.5.6 Energy Scheduling Optimization Problem

In summary, the energy scheduling optimization problem lwarapplied for a household with any
combination of the considered load types. Considering the stheme with uncertainty, we propose
to repeatedly solve the following rolling optimization ptems for each time sldg in the scheduling
interval

NS N
min Z{pi,toctoHZpS > p?,tctsr} (3.38)

ieA s=1 t=tp+1

s.t.  Solar HVAC-water heating constraing32), (3.4),
(3.6) — (3.9),(3.11),(3.13) — (3.18)
System constraint8(22-(3.23
Remaining load constraint8.24-(3.33.

This problem is a MILP, which is solved by using the CPLEX solunder GAMS. We assume
that this problem is feasible, which is the case if the exgedmpower and energy limits with the grid
(i.e., Pg"r‘ifjx andEx®) are sufficiently large. In addition, CPLEX can typicallydithe optimal solution
of this problem within affordable time. We will illustratggical computation time of this problem in
Section IV.

We employ the Monte Carlo simulation method to generateago@nto represent various uncertain
factors including price forecast error, solar irradianmetdoor temperature, and power consumption
of non-controllable load. In general, the number of gemelacenarios needs to be sufficiently large
to guarantee the energy scheduling efficiency. Howeverrge laumber of scenarios may lead to
large computation complexity. For a large-scale problers¢cenario reduction method can be used
to eliminate the scenario with very low probability, agcgaeg scenarios of close distances based on
certain probability metric, reduce the number of scenarosl consequently relax the computation
burden. We use GAMS/SCENRED softwad®] to generate/reduce the set of scenarios in this study.

3.5.7 Grid Stability under RTP

In this study, we consider the energy scheduling problemsifigle house and assume that its impact
on the grid is negligible. In reality, the large number of ngsparticipating in DR activities under
real-time pricing could cause volatility to the gri@q). The utility can employ théconservation rate
model with inclining block rate (IBR)to discourage many users to draw energy from the grid during
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low-price periods, which, therefore, helps maintain thiel gtability [17]. In general, the design of
pricing schemes that can exploit the DR benefits while maiimg the grid stability is an important
research area, which is beyond the scope of the current. at¥elyould like to address these research
issues in our future works.

3.6 Numerical Results

3.6.1 Simulation Data

We consider a typical household with solar assisted HVA@wheating and 3 different controllable
loads whose parameters are given in Téb® The power limit of all controllable loads is assumed 20
KW for simplicity and the threshold for energy consumptiarone hour is 15 KWh. Water demand
data is taken fromdb]. The parameters for solar assisted HVAC and water heayistgs are described
as follows. The solar collector has aperture area abaut,3he peak power of auxiliary heater is 5
KW, and the initial energy conversion efficienqﬁ = 0.7. The solar efficiency curve is shown in Fig
3.4(e) The thermal storage tank has volume ofgd4, which is equivalent to 32 m®. The tank can
receive energy from the heater and solar collecd®@P of hybrid and stand alone system are 5 and
3, respectively 39]. Other parameters of the solar system are taken fbth [Tank temperature is
required to be in the range of [20, 70°C]%. The temperature comfort range is chosen as{AT,
20+ AT] where AT represents the thermal tolerance, which is set equal 1 sistased otherwise.
Details on the parameter setting for the base case are givEabie 3.3and Table3.4.

We divide one hour int& = 4 equal scheduling time slots, each of which is 15 mins. Thdamr
temperature, solar irradiation, and electricity priceadate taken from National Oceanic and Atmo-
spheric Administration (NOAA) and ISO New England (ISO-N&bsites on July 17th, 2012, which
are shown in Figur&@.4. We employ the neural network technique for electricitycgrestimation in
RTP [128. The uncertainty factors for electricity price and solaadiation are obtained from the
historical data by curve fitting using the maximum likelildomethod 66], [109. The number of sce-
narios generated is 1000 and the number of reduced scemafifgo solve the underlying stochastic
optimization problem. The average computation time in déanb slot is about 150as shown in Fig-
ure 3.3, which suggests that real-time implementation can beze@kince the length of one time slot
is 15 mins.

3.6.2 Energy Management Performance

We consider two case studies, namely using solar assiseéethdh load (case 1) and conventional
thermal load (case 2), respectively. FiguBesand3.6show the energy consumption of different loads
in the two cases. Figur@5(a)illustrates the thermal energy stored in the water tanls dtivious that
more energy is charged to the tank in the thermal form dutegdw-price period and/or when the
solar energy is abundant (from 6am to 19pm). When the sokggns abundant, the auxiliary heater

2The water is typically required to be stored at sufficienityrhtemperature to eliminate Legionella (most active at 30-
35°C) and is used at lower temperature to prevent skin burn. Mariily activities can require quite different temperatur
levels. Also, anti-scald mixing valves installed at eacinpof use can automatically adjust the output temperatyre b
mixing hot and cold water with a suitable ratio for the difat purposes.
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Figure 3.3 —Computation time of proposed scheduling algorithm

Table 3.2 —Parameters for Different Loads

Loads EV  Washing Machine Clothes Dryer
Type I Il 1]

Power (kW) 3.3 0.5 2.5
Starting Time  17:00 11:30 17:00
Ending Time 8:00 17:30 18:00
Required Slots  N/A 10 4

remains off since solar energy is utilized to charge the mtatg, which is shown in Figurg.5(d) In
the conventional system (case 2), the auxiliary heatere®tty energy source, hence it must operate
through out the day, which increases the electricity conion as shown in Figurg.6(d) In addition,
due to the limit power of the heater, the maximum tank tentpeean the conventional system (case
2) is smaller than that in the new system (case 1) where bettrlity and solar energy are used. This
implies the better utilization of water tank thermal capacirhe new system also has shorter HVAC
working cycle compared with the conventional HVAC systenhjah is confirmed by Figure3.5(c)
and3.6(c) Furthermore, Figure3.5(b)and3.6(b)show that the indoor temperature falls in the range
of interest[19,21]°C.

Figure3.7 shows the water tank temperature when solar energy is usagfer heating only. Due
to the page constraint, we do not show the detailed powerucopton of other loads since they are
quite similar to the conventional HVAC and water heatingeca# is interesting to notice that the
maximum temperature in this figure is higher than those iriteecases above. This is due to the fact
that tank thermal energy only supports water demand witbousidering HVAC consumption. In fact,
the temperature evolution shows that, due to the heat lokss,energy stored in the tank can be wasted
if it is not utilized during the day. Figur8.8 presents the energy consumption of other controllable
loads, which are the same for the three considered caseslditioa, Figure3.9 shows total energy

Table 3.3 —Solar assisted HVAC-water heating for based case

n3 a a Ay G P
(W/mPK)  (W/nmPK2)  (m?)  (W/mP) (kW)
0.7 1505 00111 5 800 5
Cut Ant Uat Phe COP, COR;
(kwhy°C) () (kw)

177 362 01 4 3 5
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Figure 3.4 —Simulation data for numerical results

consumption of all scheduled loads, which illustrates tgriBcant energy consumption reduction for
the household using the solar assisted HVAC and water lgesystem.
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Table 3.4 —House Thermal Parameters

C Ay Ra
(KWHC)  (mP)  (°C/kw)
8.188 20203 47984

Figure3.10and3.11illustrate the electricity consumption and system dynanfic the solar as-
sisted HVAC-water heating and conventional HVAC-watertimeawhen the power consumption is
non-continuously modulated (i.e., the control action aheiime slot is On-Off only). In general, the
results are quite similar to the case where power consumpfithermal system is continuously modu-
lated. The exploitation of solar energy and the joint camation of HVAC and water heating can help
reduce the working cycle of HVAC and the auxiliary heaterled water tank significantly. Similar to
Figure3.5(a)and3.6(a) water temperature in the solar assisted system is alsetigéan conventional
system, which is demonstrated in Fig@.&¢0(a)and3.11(a) This is because the water tank in the solar
assisted case can exploit both solar energy and electatiyxiliary heater, while electricity is the
only energy source in the conventional system. This imphasthe solar assisted thermal system can
achieve better energy and cost saving than the convenboeal

It is worth to mention that, due to the only On-Off operatitine room temperature and water
temperature are not as smooth as in the continuously meduaiver case. However, the temperature
still falls in the requirement range even through it flucasamore over time. Figur®.12 presents
the energy cost comparison for continuously and non-caatisly modulated power based thermal
system. The figure shows that system with only On-Off cordition achieves slightly higher cost
than that with continuously modulated power consumptiorotelN however, the later may require
higher investment cost, which should be considered in @alystem design.

3.6.3 Parameter Sensitivities Analysis

The operations and corresponding costs of the househoidfluenced by different system parameters
including the thermal comfort tolerance, water tank terafpge constraint, and solar collector size. We
study the variations of energy cost for three different sasamely conventional HVAC-water heating,
conventional HVAC-solar water heating, and solar assistédC-water heating. First, the effect of
room temperature tolerance on the energy cost is shown iwrég13(a) This figure shows that
increasing the room temperature tolerance result in reatuof electricity cost as expected.

Figure 3.13(b)illustrates the influence of maximum water tank temperatureenergy cost. By
increasing the maximum temperature of water tank, moreggnesn be stored, which allow more
flexibility in scheduling energy consumption to reduce thecticity cost. It is interesting to notice
that the electricity cost decreases before saturatingeanithimum value. This implies that for a given
solar collector size and auxiliary heater, the amount ofw&g solar energy and the heater power are
limited; hence, the energy stored in tank is also limitedté\aso that increasing the maximum water
tank temperature can result in better cost-saving, whioWeler, may affect the equipment life time.

Figure3.13(c)describes the variation of electricity cost with the solaltexctor size. For the con-
ventional HVAC and water heating system, solar energy isutiized so the electricity cost remained
unchanged. For systems integrating solar energy, as weaserthe solar collector size, which means
more solar energy can be captured, the electricity costcesibefore setting down at the minimum
value. The minimum value corresponds to the thermal caphuiit of the water tank. From the re-
sults in Figures3.13(a) 3.13(b) and3.13(c) it can be seen that the solar assisted HVAC-water heating
achieves the largest cost saving. This is indeed thank®totilization of solar energy and the flexible
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Figure 3.5 —Energy management with solar assisted HVAC-water heating

operation of the water tank, which serves as energy stoegly to support both HVAC and water
heating loads.

Figures3.14(a)and 3.14(b)illustrate the impacts of the solar collector size and maxmwater
tank temperature allowance, which is proportional to thek tdnermal capacity, on the energy cost.
These figures show that increasing the maximum water tankdgature allowance, which would
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Figure 3.6 —Energy management with conventional HVAC and water heating

reduce the life time of the water tank, and increasing saddlector size result in the reduction of
energy cost. However, the energy cost converges asymgtgtio its minimum values. Thus, above
a certain value of solar collector size and maximum tempegadllowance, the working cycle of the
auxiliary heater reaches its minimum to maintain the waaek ttemperature when the solar is not
available. This minimum value corresponds to the water tapacity (°) and the heat loss. When
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Figure 3.8 —Energy consumptions of other controllable loads

the solar collector size is small, apparently the cost isefigicted by the auxiliary heater. This is
because the captured solar energy is insufficient to supp®tieat loss and the thermal load. Hence,
the tank operates mainly by relying on its auxiliary heafBne impact of the maximum water tank
temperature limit is only significant when the solar cokedize is large enough (above® when

the amount of solar energy captured is considerable.

Similarly, Figures3.15(a)and 3.15(b)show the impacts of other parameters on the energy cost.
The presented results demonstrate that relaxing room aied taak temperature constraints as well as
increasing solar collector size can reduce the energy 8pstifically, increasing the room temperature
tolerance can reduce the cost significantly but this coshgavould compromise the user comfort. In
these figures, we consider the maximum room temperaturatitaviof C, which corresponds to the
worst case of building class C with over 30% level of dissatison according to the ISO 7730 : 2005
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Figure 3.9 —Total energy consumption of scheduled loads.

standard. Water temperature also affects user comfort sugous daily activities may need different
water temperature. However, this requirement can be aethieasily since the water temperature at
end-user points can be adjusted automatically by usingdimld water mixing valves. Hence, the
water tank temperature can vary in a large range, for exadple70°C, 43— 65°C [61], due to its
high thermal insulatioh However, increasing the water temperature limits as weiaar collector
size only helps reduce the cost up to a certain value due tattkethermal capacity limit.

In general, the amount of solar energy varies over diffeseasons, which is typically high in the
summer and low in the winter. Figufe4(a)illustrates the differences in the solar energy between
summer and winter seasons. In addition, energy consumiatisapport heating or cooling demands
also depends on the seasons. We compare the electricigyicabtferent months corresponding to the
four seasons, i.e., spring, summer, autumn, and wintergareB.16 In the summer, the strong solar
intensity can provide more energy to the system but it may edquire large cooling demand. In the
winter, the solar irradiance is low while the outdoor tengbere can fall below zero, which is also far
from the preferred indoor temperature. This implies thatl#iger HVAC load demand is required to
meet users’ comfort requirement. Another factor contrifto the larger electricity cost in the winter
is the low energy coefficiency of the solar system as can beisdggure3.4(e) It can be seen that the

3According to the Apricus solar hot water system owner marthellarge-size Caleffi solar storage tank can reach the
maximum temperature 180 under high pressure. Hot water is mixed with cold water famdstic usage by anti-scald
mixing valves.
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Figure 3.10 —Energy management with solar assisted HVAC-water heallog¢ontiously Modulated Power)

system with solar assisted thermal load achieve the lovesstic comparison with the two remaining
systems, which confirms the advantages of our proposedrdesig

The results in Figur8.16can be used to calculate the cost saving per year, which earbéhused
to calculate the Return of Investment on the capital costesnmhomics of the solar assisted thermal
load system for the given investment cost (of solar colleatal thermal storage).

3.7 Conclusion and Future Works

We have proposed unified HEM design to minimize the eletyriopst that considers users’ comfort
preference and solar assisted thermal load. The developdtematical model captures the joint op-
eration of the solar assisted HVAC and hot water system atocaufor detailed operations of various
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Figure 3.11 —Energy management conventional HVAC and water heating ¢biatiously Modulated Power)

types of home appliances and the uncertainty in the solaggrand electricity price. We have pro-
posed to solve the energy problem by using the rolling tvegeststochastic optimization approach.
Finally, numerical results have been presented to showigmfisant energy saving for the system
with solar assisted thermal load in comparison with othereational systems.

It is worth to mention that the solar thermal tank is an exangblshort-term solar storage facility
since the energy cannot be stored for a long time due to hesat ldousehold energy management
using long-term solar storage facility such as seasonamhlestorage, which can capture and store
solar energy for several months, is an interesting diradbofurther research. In general, solar energy
technologies have been under rapid development and tharaak area of research, which explores
how various solar storage technologies can be exploiteddtive DR and energy management. This
indeed offers many open research problems for our futudiestu
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Chapter 4

Dynamic Pricing Design for Demand
Response Integration in Distribution
Networks

In this chapter, we discuss how to design that price signatativate the customers to adjust their
energy consumption such that the total system’s economecsrgroved. The content of this chapter
was published in IEEE Transactions on Power Systems in tleniog paper:

Duong Tung Nguyen, Hieu Trung Nguyen, and L. B. Le, “DynamiiciAg Design for Demand
Response Integration in Power Distribution NetworkEEE Transactions on Power Systemwal. 31,
no. 5, pp. 3457-3472, Sept. 2016. doi: 10.1109/TPWRS.2619612

4.1 Abstract

This chapter presents optimal pricing design for demangplorese (DR) integration in the distribution
network. In particular, we study the energy scheduling fgobfor a load serving entity (LSE) that
serves two types of loads, namely inflexible and flexible $oathflexible loads are charged under
a regular pricing tariff while flexible loads enjoy a dynangrcing tariff that ensures cost saving
for them. Moreover, flexible loads are assumed to be aggddat several DR aggregators. The
interaction between the LSE and its customers is formulasea bilevel optimization problem where
the LSE is the leader and DR aggregators are the followerg optimal solution of this problem
corresponds to the optimal pricing tariff for flexible load$he key advantage of the proposed model
is that it can be readily implemented thanks to its complétbivith existing pricing structures in
the retail market. Extensive numerical results show thatpgtoposed approach provides a win-win
solution for both the LSE and its customers.

4.2 Introduction

Demand response have been studied at higher system legklassatochastic security constrained unit
commitment of system operators29, DR aggregator in DR exchange mark&@], market clearing
optimization P3|, ancillary services24, 27, 94], large energy customers with DR capabilitié$,[42,

44], and DR exchange market operat@B]. In previous chapter, we also discussed a rich literature
review on demand response of residential sectbés1]9, 67, 82, 92, 95]. A question arises: how
entities at system levels can aggregate or motivate sneikities at lower levels, i.e., smart homes,
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provide demand response services? This question can besaddrby efficient pricing designs, which
is the main concentration of this chapter.

This chapter presents a novel pricing design for DR in theidigion network by using the bilevel
programming approach. In fact, bilevel programming hashhesed to study different problems in
power systems such as transmission and generation expgiaimning 14, 115, generation main-
tenance 31], market equilibria 117], and strategic bidding for power producefd §, retailers P1],
and distribution companied19. Recently, there have been some research works on theyemeury
agement design for smart grids using bilevel programmingparticular, Asimakopouloat al. [120]
formulated a bilevel problem to study the interaction betwea large central production unit and an
energy service provider (ESP) managing several microgkidads). The central production unit com-
putes and sends an optimal energy price signal to the ESPib&=SP decides the optimal amount of
energy purchased from the central generation unit as waltlsdules its power generation and con-
sumption accordingly. However, renewable energy soulR&SE) and the interaction with the main
grid (utility grid) were not considered in this chapter. Mover, the formulated problem id2Q is a
nonlinear mixed integer problem which requires nonlinedvess.

Stochastic bilevel formulation was also proposedi]] to analyze the interaction between a
distribution network operator (DNO) and networked MGs ¢desng the renewable energy genera-
tion uncertainty where each entity aims at minimizing itdivdual operation cost. The information
exchanged between the DNO and MGs includes the generatbdeanand of MGs while the price
of energy exchange between the DNO and MGs is fixed. In bb2Q, [121], the authors studied
single-period optimization problems. In contrast, we ¢deisa multi-period optimization problem
which is able to capture time-coupling constraints suchaasing limit of dispatchable DGs, charg-
ing/discharging constraints of batteries, especiallyphiee arbitrage potential in electricity markets.

In this work, the retail price that the LSE charges flexiblads is set dynamically, which depends
on actual operation conditions of the system (e.g., renaaiergy generation, grid electricity price,
status of batteries and DGs). The key optimization variabthis design is the DR price which is de-
fined as the retail price that the LSE charges flexible loatbousrs. Hence, it is expected that the DR
capability of flexible loads can be exploited more efficigiitd maximize the benefits of both the LSE
and energy customers. Talllel describes a few state-of-the-art designs related to DRarelsewhich
help demonstrate the novelty of our proposed design cordfarthe existing literature. In particular,
our proposed system is suitable for exploiting DR capaédibf small and medium-sized customers in
the distribution network while it does not require signifitehanges to the existing market structure.
Furthermore, the proposed pricing design considers the-tianying nature of the operation condi-
tions of system components under the control of the LSE aaavitingness of changing loads from
customers so that the optimal DR price will maximize the liiemef both the LSE and its customers.
Finally, our pricing design takes some practical aspecezohomic design in the distribution network
to attract flexible load customers to participate in our soleas will be explained in the following.

Different from prevailing time-varying pricing schemeschuas time-of-use (TOU) and real-time
pricing (RTP) for retail customer4d.§], which may increase the energy cost for some customers with
small flexible loads, the proposed scheme does not haveivegapacts on inflexible customers.
Our proposed model aims at exploiting flexible loads to achiefficient operations of a LSE via a
smart pricing scheme which ensures cost saving for enegipiers of the LSE. Indeed, there can be
various uncertainty factors in the system such as renevesiglg)y generation and grid electricity price.
However, uncertainty modeling is not considered in thiglgtsince our main design objective is to
demonstrate the benefits of smart pricing for facilitating Ddtegration into the distribution network.
It is possible to extend our model to integrate system uac#res, for example, by using stochastic
optimization frameworks as considered 9] 43, 48] and other popular optimization techniques such
as robust optimizationlp]. Our main contributions can be summarized as follows.
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Table 4.1 —Summary of discussed DR methodologies

o %
(72}

Paper Solution approach | Pros Cons
[43 Stochastic -Optimal day-ahead bidding design -DR prices are fixed
programming -Risk measure is considered and do not depend on the
-Economic contracts between actual system operation
MG aggregator vs DR resources conditions
[1Q MILP -DR services from -DR aggregators interact directly
small/medium-sized customers with the wholesale market.
including load curtailment, load shifting, -Requires significant changes
utilizing on-site generation, and utilizing in the wholesale market
energy storage
[19 Rolling -Maximize energy customers’ utility -Customers are passive, i.e,
robust (households/small businesses) receiving prices from
optimization considering price uncertainty system operators
-Pricing design is not addressed
[42 Rolling -Maximize energy customers’ utilizes | -Customers are passive entitidS|
robust considering price and -Pricing design between system controlle
optimization renewable energy uncertainties and flexible loads is not considered
[44) Stochastic -Optimize the bidding curve -The model targets large customers
bilevel of a large customer in pool market
programming in the pool market -Does not consider DR integration
considering uncertainties in the distribution networks
(16 Rolling stochastic | -Motivates residential load shifting -Pricing signal design is not mentioned
programming and | by real time pricing signal -Negative impact on less flexible custome
robust optimization| -Detailed modeling of home appliances -Applicable for small scale residential loa
[67,92] Multi-objective -Comfort and lifestyle -Pricing signal design
optimization are addressed is not mentioned
[99 Distributed -Maximize customer’s utility -Applicable for small scale residential loa
optimization -Minimize grid fluctuation
-Dynamic pricing design for households
[120 Bilevel -Pricing design between -The final problem is a MINLP
programming microgrids and a LSE - Single period optimization
-Does not consider renewable energy
and main grid
[127] Stochastic p -Uncertainties are captured -Pricing design among MGs
bilevel -minimize MG'’s cost is not considered
programming -Applicable for networked MGs
Our study | Bilevel -A novel and practical -Uncertainties are not considered
programming pricing scheme between a and will be the subject
LSE and energy customers of our future work
-Compatible with existing
retail market structures




100

Dynamic Pricing Design for Demand Response Integrationigtribution Networks

* We present a comprehensive decision-making frameworkHort-term operation of a LSE in

the future smart grids where distributed energy resould&RRg), renewable energy, DR, and
other important system parameters are considered. Waduteoa novel and practical pricing
model for DR loads in the distribution network. The proposextiel can be readily implemented
since it does not require any significant changes to theiegisttail market structure.

We model the interaction between the LSE and its custonseadadlevel programming problem
where the LSE is the leader and each DR aggregator is a falldwe nonlinear bilevel mixed-
integer program is transformed into a single mixed integezar program (MILP) using some
transformation techniques such as the Karush-Kuhn-Tu@€m) optimality conditions and
strong duality theorem. The outcome of this problem comstére optimal hourly retail prices
for flexible (DR) loads. Extensive numerical results showatttihe proposed scheme provides
a win-win solution for both the LSE and its customers. In jeatar, it can help improve the
optimal profit for the LSE, increase the payoffs for DR aggtegs, and decrease the amount of
potential involuntary load curtailment as well as renewabiergy curtailment.

The remaining of this chapter is organized as follows. Inti®ac4.3, we present the notations
used in this study. In Section 4.4, we describe the propoggérm model. Section 4.5 formulates the
problem and Section 4.6 presents the solution approach.eNcah results are shown in Section 4.7
followed by conclusion in Section 4.8.

4.3 Notations

Notation Explanation

Abbrevations

RES Renewable energy source

DER Distributed energy resource

DR Demand response

DG Dispatchable distributed generator

LSE Load serving entity

PCC Point of common coupling

ILC Involuntary load curtailment

RESSF RES scaling factor

Indices

[ Index of DGs

k Index of batteries

t Index of time slots

Parameters

NT Number of time slots

NG,NB Number of DGs/batteries

ND Number of DR aggregators

d Index of DR aggregators

m Index of demand blocks of DR aggregators

N My Number of demand blocks of DR aggregador

Ud,myt Marginal utility of demand blockn of DR aggregatod at timet ($/MWh)

Ud(.) Utility function of DR aggregatod at timet

Eq Minimum total energy consumption of DR aggregadaover the scheduling
horizon (MWh)
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R([j’ Ramping down limit of DR aggregator(MW)
Rg Ramping up limit of DR aggregatat (MW)
Pa.t Scheduled load for DR aggregath({MW)
Pg}i” Minimum power consumption of DR aggregatbat timet (MW)
ngr;xt Maximum load of demand bloak of DR aggregatod at timet (MW)
F}REé’a Available renewable generation at tinégVw)
pe/max Power limit at point of common coupling (MW)
AT Length of time slot
Ny, nfj Charging/discharging efficiency of batteky
Pe Maximum charging power of batteky(MW)
pd Maximum discharging power of battek(MW)
Ex Capacity of batterk (MWh)
D¢ Inflexible load at timdé (MW)
cR Regular retail price at time($/MWh)
Grid electricity price ($/MWh)

cRES Renewable energy cost at tirhé&/MWh)
ct¢ Cost of involuntary load curtailment ($/MWh)
Pimi”, pmax Minimum/maximum power generation of DIGMW)
CUi; Start-up offer cost of DG ($)
DT;,,UT, Minimum down/up time of DG (h)
DR,UR Ramping-down/up rate limit of DG(MW)
Variables
Pa,mit Scheduled load for demand blookof DR aggregatod (MW)
PRES Scheduled renewable generation at tinf&1\W)
pe Power exchange with the main grid at titn@V\W)
cPR Retail price for DR aggregators ($/MWh)
DFC Involuntary load curtailment at time(MW)
RS Charging power of battery at timet (MW)
Pﬁ{t Discharging power of batteryat timet (MW)

Kt> bﬁ.t Binary variable, “1” if charging/discharging
SOG State of charge of batteky
li ¢ Commitment status of DGat timet {0, 1}
Ci(.) Production cost of DG ($)
SU; Start-up cost of DG ($)
Yit,Zit Start-up and shutdown indicators {0, 1}
Pt Power generation of DGat timet (MW)

4.4 System Model

The energy scheduling problem is considered in a one-dagdgetich is divided into 24 equal time
slots. We consider a LSE which can procure energy from varsowrces including the main grid, DR
resources, batteries, and local DERs including RESs (@igd and solar energy) and dispatchable
DGs (e.g., diesel generators, microturbines, and fuedcliserve its customers. Figudelillustrates
the considered system model.

The LSE itself may possess some DERs and it can also buy efrergyprivately owned DERs
(e.g., from third party companies, households). If the L8Ecpases electricity from third party com-
panies or households, it must pay these entities for theypedenergy. The price paid to each privately
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Figure 4.1 —System Model

owned DER can be different, which depends on specific agnetsnoe contracts between the LSE and
those sources. If a third party company or a household owme $2ERS, the company or the house-
hold is responsible for the operation cost of those energeging sources; however, it can receive
the revenue from selling energy to the LSE. On the other hérde LSE operates some DERs by
itself, the operation cost of those DERSs is imposed diremtlyhe LSE.

For simplicity, we assume that the LSE possesses sevenabonal DGs such as diesel genera-
tors and fuel cells, and it does not buy energy from privateiyped conventional DGs. Additionally,
the LSE does not own any renewable energy sources. We ashatrté¢ LSE hasake-or-paycon-
tracts @2, which are also called Power Purchase Agreements (PPA)nresnarkets42, 43], with
local wind farms and/or solar farms to buy renewable enemgyfthem. In theake-or-paycontracts,
the LSE buys all available renewable energy generated frm®et wind/solar farms at a fixed price
which is typically lower than the average price from the ngiid [42]. Without loss of generality, we
assume that the prices paid to all renewable energy soure:dtueasamec(*Es)l. Finally, the LSE may
own some battery storage units.

1The LSE must pay for all available renewable enelP&ﬁs’a (i.e., it does not just pay for the amount of scheduled
renewable energy<Es ).
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System loads are assumed to belong to one of the two categoemely flexible and inflexible
loads. Inflexible loads or critical loads are those that tB&lhas to serve. If the LSE cannot fully serve
the inflexible loads, a portion of the inflexible loads has ¢osbed, which is called involuntary load
curtailment (ILC). A very high penalty cost'() is imposed on the LSE for ILC since the main goal
of the LSE is to guarantee electricity supply to its cust@1j48]. Inflexible loads are charged under
the regular retail pricecf). In contrast, flexible loads are assumed to be aggregatedédpr several
DR aggregators which enjoy a dynamic pricing tariff thatidddoe designed to bring advantages to
the DR aggregators. One practical strategy to encourageggfegators participating in our proposed
operation model is to ensure cost saving for them.

In practice, a flexible load customer might be hesitant tdigipate in a real-time pricing scheme
since electricity prices in this scheme may be greater tharrégular retail price for several hours
of a day. The loads of a flexible load customer include ciiticad which should not be shed or
shifted and flexible load that can be shed or shifted. Thesefbthe flexible load customer has a large
portion of critical load during high price hours, we mightii@ able to guarantee cost saving for the
customer compared to the case where the customer is charterifexed retail price. Hence, one of
the most practical approaches that the LSE may use to dfigaitile load customers to participate in
the proposed pricing model is to offer DR price (i.e., thaitgirice that the LSE charges flexible loads
or DR aggregators), which is always lower or equal to thelrptace in each hour. In the worst case
when the DR price is equal to the regular retail price, the toposed on participating entities is the
same with the one when they are charged under the reguldpete.

The proposed system model can be applied to the practidaig®there a LSE provides energy
services to a certain geographical area. In particularetban be several DR aggregators in the area
which aggregate flexible loads from energy users and eachggfRegator serves a given set of flexible
loads. A DR aggregator can be a company which is interestéiteiiddR market (e.g., EnerNO@&).
This design allows us to prevent individual small flexibleeryy customers from interacting directly
with the wholesale market, which would complicate the opencof the wholesale market. Moreover,
our design ensures that the number of participating paitiesir model as well as the number of
variables in our formulated optimization problem be redlusignificantly. In addition, we assume that
DR aggregators have DR contracts with flexible load custersethat these customers can declare the
characteristics of their loads (e.g., utility functiob4] 42, 44-46] or discomfort function in the case
of load reduction or load shiftindLD, 43, 44]) to the DR aggregators. Based on the load information
provided by their customers, each DR aggregator can canistrsuitable aggregated utility function,
as described in Sectioh5.9 which is then sent to the LSE. Detailed study on how DR aggmeg
interact with their customers and construct their aggesyatility function is out of scope of this study.

The underlying optimization problem is formulated as ausleorogram where the LSE is the
leader and each DR aggregator is a follower. The outcome®ptbblem contains optimal dynamic
DR price seriesd@PR) over the scheduling horizon. Additionally, the outputstu proposed problem
include the hourly energy trading between the LSE and the miadl (Pf), the scheduled generation
of local RESs %) and local DGsR), charging/discharging power of batterid ( P,), amount

of ILC (DF®), and hourly energy consumption of DR aggregatess X

2 http://www.enernoc.com/
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4.5 Problem Formulation

4.5.1 Objective Function of the LSE

We are interested in maximizing the profit of the LSE whichiigg as follows:
Profit = Rev—Cost (4.1)

whereRevis the retail revenue obtained by serving inflexible loadp(ae cf) and flexible loads (at
pricecPR), i.e.,

ND
LC DR
)+ )y &R, ] (4.2)
(gl .t

NT
Rev= ZAT cR(Dy —
t=

whereD; — D} is the amount of inflexible load that the LSE serves at time
The operating cost of the LSE includes the cost of buyintigpélectricity from/to the main grid
¢t P2, renewable energy procurement cq%‘fSRRES’a, operation costs of DGs including start-up cost
and dispatch cosz (Sut-i-C.( t)) [43], and the penalty cost for involuntary load curtailment
c-“DEC. For simplicity, the battery operation cost is not consadiein this study. Hence, we have

Cost= Z AT | ERE +FEoRTE>2 4 Nf(Su,t +Gi(Ry)+C-DF | . (4.3)
i=1
From these expressions, the design objective becomes
- PREE‘%{C — ZAT [ (Dt —Df©) +dz cPRpy t_
- ZAT PECE + cRESR™>2 Z(Sw +Ci(Ry)) + cLCDtLC- (4.4)
t= i= |

subject to the following constraints.

4.5.2 Power Balance Constraints

At any time slot, the total power generation including power exchanged thighmain gridP®, power
generated by DG;NG R.t, power generated by renewable energy resolRBEY, power dispatched of
batteriesy N (Plf't PS,), and load curtailmer}© must be equal to the total power consumption of

nonflexible loadD; and flexible Ioaoz’g'fl Pat- This condition is described by the following constraint:

NG NB ND
PE -+ Zlﬂ,t+F>tRES+ S (R — R +DrC = Dt+dz Pat, V. (4.5)
i= k=1 =
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4.5.3 Power Trading with Main Grid

The power exchanged with the main grid is constraine®bY**, which is described as follows:

—REM<RE<PET, Vi (4.6)

4.5.4 Renewable Energy Constraints

The scheduled renewable energy generation must be smiadiqual to the available renewable energy
generation. Hence,

0<PBRES <B*™2 vt (4.7)

4.5.5 Involuntary Load Curtailment

The amount of involuntary load curtailment is always smadileequal to the total inflexible load, i.e.,
we have

0<D“ <D, Vt. (4.8)

45.6 DR Price

As explained in Sectiod.4, the DR price is set to be smaller or equal to the regularlnetiae at every
time slott to attract the participation of DR aggregators in the prepd3R pricing scheme, i.e., we
have

cf <, vt (4.9)

4.5.7 Operation Constraints of DGs

In this study, a widely used piecewise linear cost functi®h B3, 130 is employed to model ap-
proximately the production co&k(.) of DG i wheren andN; are the segment indices and number of
segments in the cost function of DiGrespectively. Parametadr , ($/MWh) denotes the marginal cost
associated with segmentin the cost function of DG@. The cost of operating DGat its minimum
power generationl3q is a;. Finally, we definéR , (MW) as the upper limit of power generation from
then-th segment in the cost function of D@ndR j is scheduled power generation of D@om the
n-th segment at time We have 81, 43, 13Q

N;
Ci(Rt) =alit +AT Z AinP nt (4.10)
n=1

N

O0<Pnt<Rni PRe=P™lit+ Y Pnt (4.11)
n=1

where constraints4(10—(4.11) describe the generation cost and power output ofiD&dditionally,
the following constraints are imposed on the operation ofiD&]:
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P™iy <Rt <P™iy;  SU;=CUyiy (4.12)
Rt—PRi-1<UR (4.13)
Rt-1—PR:<DR, (4.14)
t+UTi—-1
lin>UTyit (4.15)
=
t+DTi—1
(1—1lin) > DTiz (4.16)
=
Vit—Zt=lig—lit—1, VYit+z:<1Ll (4.17)

Power generation limits and start-up cost are described.t? The remaining constraints capture
ramping up/down limits, limits on minimum ON/OFF duratiand relationship between binary vari-
ables B1, 43, 130.

4.5.8 Battery Constraints

The following constraints are imposed on the operation gk for vt [131]:

0< RS <byP; 0< Pﬁt < bgtplf (4.18)
SO < SOG; < SOG™ (4.19)
nepe P
— AT t_ K 4.2
SOG¢t+1 = SOG + ( E. ndEx (4.20)
bR <1 bg,, by € {0, 1}. (4.21)

Limits on the charging and discharging power of batteare presented ird(18. Constraint 4.19
imposes limits on State of Charge (SOC) of batteriMote that SOC** and SO(};‘"‘ are the maximum
SOC and minimum SOC of batteky respectively. Battery energy dynamics model is giveri2@.
Finally, conditions on binary variables representingdrgttharging/discharging status are captured in
(4.2]) so that batterk cannot be charged and discharged simultaneously.

45.9 Follower Problems

In addition to the above operation constraints, the optwinn of the leader problem is subjectNd
follower problems each of which corresponds to an optinonaproblem of DR aggregatat. The
lower-level problem for DR aggregatadris presented in the following. First, we define the payoff
function for each DR aggregator as the utility (benefit) nsithe cost due to energy consumption over
the scheduling horizon. We assume that each DR aggregabegito maximize its payoff function as

follows:
NT

Ugt(Pyt) — ATEPRPy | 4.22
fgdﬁx tZ\[ dt(Pat) o dJ} (4.22)
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Figure 4.2 —DR utility function

In this study, the utility functions of DR aggregators ared@led by multi-block utility function¥
which are commonly used in the literatud2[ 44-46]. The marginal utility of a demand block de-
creases as the index of demand blocks increases. Fg@rghows the utility function of DR aggrega-
tord at timet. As we can observe, this function has four demand blocks My = 4). The values at
point A, C, D, E arePy'jY, P + Pyt Poii+PySi+Psy, andPy P +P S +P St +P 4, respectively.
If the scheduled demand of DR aggregatat timet is OB (i.e.,Py; = OB), then the utility value for
load consumption of aggregatdmt timet is equal to the shaded area. Generally, we have

NMg
Ugt(Pat) = AT Z Ugd,m.t Pd,myt (4.23)
=1
NMg
Pae=Y Pame (4.24)
m=1

Therefore, the follower (lower) optimization problem of 2iggregatod can be written as follows:

NT DR N Mgy
min AT Pyt — Ug.mtP 4.25
Fats Pd,tﬁm t;[ct dt n'gl d,mt d7m7t] ( )

3In the literature, there exist other models for flexible lpalBor example, price elasticity of the load model is congide

in [51-53]. However, we choose the multi-block utility function mdédince it is suitable for the proposed solution approach
and current practice in the electricity market.
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subject to
NMy
Pig= > Pumt, Wt (Adt) (4.26)
m=1
Pd,m7t < ngranfb vm, t (“&,m,t) (4.27)
Pamt =0, Ym t  (Ufme) (4.28)
NT
AT 3 Pur > Eg (b3) (4.29)
tf
Par 2 PI" Wt (MG (4.30)
Pat—Pii1 <Ry, Yt (U3, (4.31)
Pit—1— Pyt <R, Wt (Ilg,t)- (4.32)

The power constraints for each demand blatfor the flexible load of DR aggregatdrare cap-
tured in @.27)-(4.28. Constraint 4.29 describes the minimum energy consumption for the load of
DR aggregatod over the scheduling horizon. The constraint on the minimomegy consumption for
DR aggregatod at each time slot is expressed in4(.30 while maximum power consumption con-
straints for DR aggregatat are described in4(26)-(4.27). Finally, (4.31)-(4.32 impose the ramping
up and ramping down constraints for the Ioad of DR aggreghmlnerePd o is the initial load of DR
aggregatod. In addition,Aqy, ud mt,ud mt,ud,udt,udt, anduOlt are the Lagrange multipliers which
associated with these constraints.

45.10 Extension with Power Flow Constraints

For ease of exposition, in the problem formulation desdriflove, we have implicitly assumed that
all entities are located at one bus, which is valid for a sfeedlle system (e.g., a LSE manages loads
in a small town or a village). However, a general distribatieetwork model can also be integrated
into our optimization framework. The power flow constraiate described as follows. We defipgg
as the indices of two buseBy q is the susceptance of lineq, Fy§™ is the transmission capacity of
line p-q, andBp; is the voltage angle of bysat timet. Additionally, we defineAp as the set of buses
connected to bup, Bp as the set of batteries located at imI€,, is the set of DGs located at bpsand
Dp as the set of DR aggregators located atjpusloreoverDy; is the total inflexible Ioad at bysand
timet while D ; Is the amount of involuntary load curtailment at huand timet (D < Dpt,p, 1).
In addition PRFS is the amount of scheduled renewable energy generatlorsalduud timet; andPS}t
Is the amount of energy exchange with the main grid atgasd timet. Note thatPﬁt =0, Vtif bus
p is not connected to the main grid.

For simplicity, reactive power is not considered in thisdstand the lossless DC power flow model
is used to model the distribution networkd, which imposes the following constraints:

P+ 3 RatRES+ 5 (AL —PL) + DR —Dpet 3 Pur= 3 Bpg(Bpu— o), Wpit
1€Cp keBp deDp acAp

(4.33)

—Fpg < Bpq(Bpt —6qt) <Fpg"s Vi, p. @ (4.34)

where constraint4.33 enforces the power balance at each bus in the system whiktramt @.34)
presents power flow limits of each line. All operation coastts of the LSE as well as the follower
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problem remain the same as in Sectébf However, the power balance constrathf] is replaced by
the set of power flow constraints presented above.

We are aware of the fact that the lossless DC power flow modglmoabe the most suitable for
the distribution network. Integration of a full power flow oh&l and reactive power management into
the proposed optimization framework is a subject of ourreitwork. In particular, the adoption of
DC power flow model enables the tractability of solving thelemying bilevel optimization problem.
This approach is also used iiig where the DC power flow is used in the distribution company’s
optimization model. To accurately capture reactive powawdl and voltage stability’s constraints, a
full model of AC power flow can be adopted, which results in &UP. In this case, various heuristic
evolutionary algorithms such as genetic algorithm or pkrtswarm can be used, which is the subject
of our future work. A recent linearized power flow model fostribution network is proposed il]]
where the accuracy of the approximation model is well jiestifiConsideration of this linearized model,
which results in the MILP, will also be the subject of our fitgwesearch.

4.6 Solution Approach

We propose to convert the optimization problem of the LSE ar equivalent MILP problem. Note
that optimization variables in each follower problem ir®#P; ,; andPy;:. Moreover, the variable
cPR in the upper-level (leader) problem is a parameter in easkerdevel (follower) problem. Also,
for a given vectocPR, each follower problem is simply a linear program. Therefave can replace
each follower problem with its corresponding KKT optimgldonditions P1]. Toward this end, the
Lagrangian of each lower-level probled25-(4.32 for DR aggregatod can be expressed as

NT N Mg NMg
Ly =AT Z[CtDRPd,t_ > UdmtPame] + Zl)\dt Pat — Z Pa.mt)
t= m=1

NT NMy L NT NMgy ) 3 NT
+ Zl Z Ha mt (Pamt — Pimt) — Z\ Z UG mitPa,mt — Hg (AT led,t —Eq)
t=

NT
— Zudt Pyt —PIY™) + Zudt Pat—Par1—RY) + Zug,t<Pd,t_1—Pd,t—R5> (4.35)
t=

whereAqy, ud mts ud mts ud,ud t ud o andu denote the Lagrange multipliers associated with the con-
straints in the corresponding follower problem The KKT essary optimality conditions of the lower-
level problem of DR aggregatat include the primal feasibility constraint 26 and the following



110 Dynamic Pricing Design for Demand Response Integrationigtribution Networks

constraints

dlq
B = AT PR+ Aqy — DTG — pde + 13— B3 11
+u§ i — 1§ =0, Vt<NT (4.36)
dlq
B = AT PR+ Mgy — AT — pd + 13,
—p§ =0, ift=NT (4.37)
dlq
5 = —ATUd7m7t —)‘d,t + “&,m,t - “g,m,t =0
d,mt
, vm, t (4.38)
0< U meLPIS —Pame >0, Vm, t (4.39)
0< pfmiLPame >0, Vm,t (4.40)
NT
0< U3 LAT led’t —E4 >0, (4.41)
t=
0< ug LPy —P" >0, Wt (4.42)
0< “g,tJ—Rg — Pyt +Pyt-1>0, Wt (4.43)
0< ug,tJ-Rc? —Pyt—1+Pyt >0, Wt (4.44)

Complementarity conditions associated with the inequalinstraints 4.27)-(4.32 are given in
(4.39-(4.44). Note that a complementarity conditionOu_LP >0 (i.e., P> 0; u"P=0; u > 0)
can be transformed into the following set of mixed-integengtraints based on the Fortuny-Amat
transformation44, 47, 115:

u>0;P>0 (4.45)
U<(1-uM (4.46)
P<uM (4.47)
ue{0,1} (4.48)

where M is a sufficiently large constant. Note that the valull avill affect the effectiveness of the
proposed solution. In particular, we should seMcappropriately to avoid numerical ill-conditioning
[132. Several guideline on how to select a suitable valugl@lan be found in47, 132 133. We need
to select a sufficiently large value bf so as not to make the optimal solution outside the feasilaeesp
of (4.46 [132. On the other hand, a too large valueMfmay result in computational inefficiencies
for the solution of the resulting mixed-integer optiminstiproblems132. A general principle to find
a reasonable constant is based on thé&rial and error approach 133. However, in some cases, a
suitable value oM can be found based on specific characteristics of the stpdaddems 133.
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Therefore, the set of constrains 89-(4.44) can be rewritten as follows:

Hime > 05 PI —Pime >0 (4.49)
lld mt < (1—Vg, mt)l\/|1 Pamt — Pamt < Véthl (4.50)
Hime>0; Pyme>0 (4.51)
G me < (1=VimoMZ Pamt < V3 M2 (4.52)
13> 0; Epdt—apo (4.53)
NT
Mg < (1-viM3 AT 3 Pu—Ea< vim® (4.54)
iy >0; Pyg—Pfi">0 (4.55)
uc‘it < (1_\/3;)'\/'4; Pat — Pat n < \/4 M? (4.56)
M3 >0; RY—Pyi+Py;1>0 (4.57)
Hge < (1= )M R =Pyt +Pyr_1 < V3 M° (4.58)
H$ >0; RY—Py+Py;1>0 (4.59)
Ug,t < (1_Vg,t)M6; RG — Pyt 1+ Pyt < VgtMG (4.60)
Vé,m,b Vg,m,t Vg V4t7 Vsta th €40, 1} (4.61)

whereM?®, M2, M3, M*, M, andM® are sufficiently large numbers. After the follower probleans
replaced by the sets of mixed-integer linear constraingsesented above, the upper level optimization
problem is still a mixed-integer nonlinear (MINLP) problaince the termAT Zt 1Zd 1 Gt RPdt inthe
objective function 4.4), WhICh is the sum of several bilinear product of varlath%Pdl, is nonlinear.
However, each termaT Zt 1q RPd,t of the sum can be equivalently replaced by linear expression
by using the strong duality theorem4, 91]. Please refer]34 for more details. The strong duality
theorem renders

R NT NMy
AT ZLCt F’dt—ATZl Ud mt Pd,mt
m=1

NT NMg

+Z Z — K mt P + M PIY"] + HGEq

NT
5 U 6 pD

— ) HgtRa — ) H4Ry- (4.62)

S 3
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Substitute the results i (62 into the objective function in4.4), we arrive at

ND NT NMy
Profit = ; AT Z\ Z Ud,m.tPd,myt
-1 t=1m=1

NT  NMg g 5
+ Z[— > HamtPdmt + HdtPdt"] + HoEa
=1 m=1

NT . U NT 6 b NT C[R LC
= HgiRa — ) HgtRi+ ) ATG (Dt —Dr™)

PR 2 HeRat )

< [ 8CE | CRES RES,a
— Y AT |FPee+¢ R

2

NG
+Z(su,t+ci<9,t>>+cLCDtLC : (4.63)
=

Finally, the original nonlinear bilevel optimization piem can be recast by the following MILP

min Profit (4.64)

Pd,t7Pd,t.m7CtDRaPtgthRESvD{_CvPIEUPI?_t
subject to
(4.5) —(4.9), (4.26), (4.36) —(4.38), (4.49) — (4.61), (4.62), (4.63).

Figure 4.3 summarizes the proposed solution technique. The propgsetiipation model is
indeed a bilevel optimization problem, which is transfodre a single level optimization problem
by replacing the lower problem with its equilibrium KKT catidns since the lower problem is linear
and convex. The obtained mathematical problem with equuiib constraints (MPEC) is, however,
still difficult to solve, due to the bi-linear term and complentary constraints. Hence, strong duality
theorem and big M approximation are utilized to transform given MPEC to an equilibrium mixed
integer linear programming (MILP), which can be solved @fitly by branch and bound algorithm
implemented in commercial software such as CPLES{.

In practice, the proposed system can be implemented asvilleirst, each DR aggregator collects
load preference information from flexible load customerd eonstructs aggregated utility functions
for each hour in the operating day. Then, DR aggregators &g constructed utility functions to
the LSE. Based on data supplied by the forecasting entdets, related to specifications and status
of batteries, DGs, and operation constraints (e.g., maxippower exchange with the main grid), and
flexible load data, the LSE solves the optimization probl&8).( The outcome of this problem is the
optimal DR price and scheduled decisions of flexible loadkesE results are sent back to the DR
aggregators to implement corresponding load schedulitigrescand to be utilized for quantification
of cost and revenue.

4.7 Numerical Results

4.7.1 Simulation Data

Simulation data in the base case is given in Tabh Specifically, the penalty cost for involuntary
load curtailment is set equal to 1000 $/MWAE]. The renewable energy price that the LSE pays
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Figure 4.3 —Summary of the proposed solution algorithm

for local wind/solar farms is assumed to be 40 $/MWh. For dicitg, we assume thaP®™*" =
pPerd andcf = ¢k, vt. The regular retail price in the base case is $60/MWh and wenas the LSE
does not possess any battery storage unit in the base cagmat@iable DG data is taken froddg].
Moreover, we assume that the LSE can predict electricitgepinflexible load, and renewable energy
generation with high accuracy. For simplicity, we use histd data of the correspondding system
parameters as their forecast values. Electricity prica dataken from PJM websitel§]. Hourly
inflexible load data is retrieved fron135. Renewable energy generation data is constructed from
data in A8]. Figs.4.4(a) 4.4(b)shows forecast data of electricity price, inflexible loaa @newable

energy generation.

Table 4.3 —System Parameters in Base Case

ctC cRES perid cR Battery DG
($/MWh) ($/MWh) (MW) ($/MWh)

1000 40 40 60 No No

We assume that flexible loads are aggregated by three DRgaigrs. The modeling method
in [42, 44] is employed to construct flexible load data. The data oflthse-case multi-block utility
functionsfor DR aggregators is given in Tabded. To obtain the utility functions for DR aggregators
over the scheduling horizon, we multiply the base-caséybly 0.8, 1.0, and 1.2 in periods (1-8),
(9-16), and (17-24), respectivel¥?]. For simplicity, the amount of flexible load (i.e., demariddks)
is assumed to be the same for all time slots. The minimum gn@ygsumption EEy) of each DR
aggregatod over the considering day is set equal to 60% of its maximunnggneonsumption level
(e.g.,E3 = 0.6x(1+1+2+2)x24 = 86.4 MWh). For simplicity, the minimurourly power consumption
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Figure 4.4 —Forecast data

of every DR aggregator is set to be zero (il@."t‘” =0, Vd,t). Without loss of generality, limits on
load ramping up and ramping down are assumed to be suffigiange.

Table 4.4 —Data for DR aggregators

d Load blocks (MW) Marginal utility ($MWh) E4 (MWh)

1 1,1,1,1 56, 52, 51, 46 57.6

2 1,1,1,1 61, 56, 52, 46 57.6

3 1,1,2,2 99, 56, 52, 47 86.4
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4.7.2 Sensitivity Analysis

We consider the two following schemes.
* Scheme 1 (S1)The LSE solves the proposed optimization model. The DReagajors enjoy a
dynamic retail price tariff.

» Scheme 2 (S2) The LSE solves the same optimization problem. Howeverreégelar retail
price is applied to DR aggregators (i.62R = ¢, vt). In this scheme, DR aggregators have no
incentives to modify their loads.

Table 4.5 —Comparison between Scheme 1 and Scheme 2

cR Payoff1 Payoff2 Profitl Proft2 DR1 DR?2
$/MWh $ $ $ $ MWh MWh

47 2607.2 2403.2 695.7 146.8 272.0 213.6
50 2061.2 1786.6 21039 1476.9 270.0 201.6
55 1250.2 778.6  4599.9 3942.8 240.0 201.6
60 251.0 -229.4 7191.3 6408.7 201.6 201.6
65 -756.9 -1237.4 9657.2 8874.6 201.6 201.6

Table 4.5 presents the performance comparison between Scheme 1 Aeth&@ for different
values of the regular retail price. Payoff 1, Payoff 2 repregotal payoffs of DR aggregators; Profit
1, Profit 2 indicate the optimal profit values of the LSE; and1lCddd DR2 represent the total energy
consumption of DR aggregators over the scheduling horiao&¢heme 1 and Scheme 2, respectively.
We can see from Tabk.5that the minimum energy consumption level of all DR aggregsis 201.6
MWh. Table4.5 also shows that the total payoff of DR aggregators as welhaptimal profit of
the LSE in Scheme 1 are significantly larger than those ini@etiz Therefore, we can conclude that
Scheme 1 outperforms Scheme 2 in terms of DR aggregatorsfigand LSE’s profit.

Furthermore, we can observe that the total energy consampitiDR aggregators over the schedul-
ing horizon in Scheme 1 is greater than the minimum energguwoption requirement (i.e., 60% of the
total flexible loads or 201.6 MWh) for regular retail pricdAd@ $/MWh, 50 $/MWh, and 55 $/MWh,
and is equal to the minimum level for regular retail price$0f$/MWh and 65 $/MWh. Similar ob-
servation can be drawn for Scheme 2. Additionally, for theesaalue of regular retail price, DR1 is
greater than DR2 since DR prices in Scheme 1 are always smalégual to the regular retail price
while DR prices in Scheme 2 are equal to the regular retaikpri

Figure4.5shows the optimal hourly DR prices over the scheduling loorior different values of
cR andPe"d. We can observe that DR price is very low during time slots dfte low for some period
during time slots 9-16, and very high during time slots 174Puitively, the LSE would set a low DR
price during some time slots to encourage DR aggregatoi@isumne more energy. In addition, it can
set a high DR price (i.e., close or equal to the regular retaik) to discourage DR aggregators from
consuming energy.

There are several reasons for the LSE to set low DR pricet, itgen thegrid price is low, the
LSE would be interested in buying more energy from the maid gr serve its customers at a DR
price between the grid price and the regular retail priceco8d, the grid price can vary significantly
over the scheduling horizon, which offers opportunitiesth® LSE to arbitrate between low and high
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Figure 4.5 —DR price

price periods. Therefore, the LSE sets low DR prices at some $lots and high at some other time
slots to encourage load shifting from DR aggregators inroimleeduce the importing cost of energy
from the main grid. Also, DR aggregators can reduce thes by shifting their loads to low DR price
hours. Finally, if renewable energy generation is high,ltB& faces the power limit at the PCC (i.e.,
Perid): hence, it would sell as much energy as possible as to itemess at low DR prices rather than
curtailing the renewable energy surplus.

During hours 1-8, the marginal utility (benefit) of consugninad for DR aggregators is relatively
low (i.e., 0.8 times the base-case marginal utility in Tab#, and the grid price is low. Therefore, the
optimal DR price is low during this period to encourage DRrag@tors to consume more energy and
to shift load to this period. During hours 9-16, althoughtierginal utility is the same as the base-case
marginal utility, the grid price is high; therefore, onlyrfeome first hours in this period, DR prices are
lower than the regular retail prices. During hours 17-24,dhd prices include both high price hours
and low price hours; however, the marginal utilities of aoméng energy achieved by DR aggregators
are high, which are equal to 1.2 times the base-case WiliDR prices are high during this period even
during low price hours. This is because the benefits of comsgiemergy for DR aggregators outweigh
the energy costs. Furthermore, we can observe that W&ris 20 MW, DR prices during hours 1-8
tend to be lower than DR prices whe# is 40 MW. As will be illustrated in Figs4.6(a) 4.6(b) 4.7,
and 4.8, involuntary load curtailment occurs for some hours in tstats 17-24 whePe" is 20 MW.
This explains why the DR prices are lower during hours 1-8ssim@&ncourage DR aggregators to shift
their load to this period.

Figs.4.6(a)and4.6(b)present the total hourly load of DR aggregators over thedidirey horizon
with the regular retail prices of 60 $/MWh and 65 $/MWh, restpeely. For Scheme 2 the total
DR load is low during hours 1-8, higher during hours 9-16, Aighest during hours 17-24. This is
because the marginal utility prices of DR aggregators axes$d during hours 1-8, and highest during
hours 17-24. Furthermore, the DR price in Scheme 2 is equdletoegular retail price (i.e., fixed);
hence, DR aggregators have no incentive to shift their lo@dghe other hand, DR load in Scheme 1 is
significantly higher than that in Scheme 2 during hours 1r8,[@R load in Scheme 1 is generally lower
than DR load in Scheme 2 during time slots 9-24. This dematesithe effectiveness of the proposed
scheme in shifting load in favor of the LSE. Moreover, we chsayve that more load shifting occurs
whenPgid js 20 MW than wherPg"d is 40 MW. This is to reduce load curtailment wheg' is 20
MW since renewable energy generation during time slots4.&2ow. When the regular retail price

“Note that results for Scheme 2 are independent of the gritl R
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Figure 4.6 —DR load

is 60 $/MWh, utility due to energy consumption tends to ougluehe energy cost; therefore, even
if the LSE sets lower DR price during hours 1-8, DR aggregasbitl consume a significant amount
of energy during hours 17-24. On the other hand, when thelaegetail price is 65 $/MWh, DR
aggregators have more incentive to shift their loads to |&Rvddice hours.

The results in Figurd.7 can be explained by the results in Figs6(a)and4.6(b) Renewable
energy generation is generally low during hours 18-24 aedtdkel load of DR aggregators is very
high during hours 17-24. For Scheme 1, more load shiftingicavhen the regular retail price is
65 $/MWh than that when the regular retail price is 60 $/MWts &result, Scheme 1 outperforms
Scheme 2 in terms of involuntary load curtailment. The hopdwer trading between the LSE and
main grid is shown in Figuré.8. As we can observe, in Scheme 2, the LSE has to sell elegtiicihe
main grid during hours 1-8 when the grid prices are low, améé to import a large amount of energy
during high price hours to serve load. However, in Schem&el| SE imports electricity during low
price hours 1-8; hence, it can reduce the amount of impoteadresity during high price hours.

Figs.4.9(a) 4.9(b)illustrate the impact of the minimum energy consumptioruregment of DR
aggregators on the optimal solution. ParametgrDRis the ratio between the minimum energy con-
sumptionEg and the maximum total load of each DR aggregatoAs we can observe, the optimal
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profit of the LSE tends to increase msnDRincreases. This is because DR aggregators are forced to
consume more energy agnDRincreases. Furthermore, the total payoff of DR aggregademds to
decrease asiinDRincreases. WheminDRis equal to 100%, the loads of DR aggregators become
inflexible since DR aggregators have to consume the maximmergg level. Also, wheminDRis
smaller than 100%, Scheme 1 outperforms Scheme 2 in termgtiofia LSE profit as well as total
payoff of DR aggregators.

In Figs.4.10(a) 4.10(b) 4.11, and4.12 we show the impact of renewable energy generation on the
optimal solution wherd&"d is 20 MW. ParameteRESSHRenewable Energy Source Scaling Factor)
Is a scaling factor to scale the base-case renewable enengyagion profile in Figurd.4(b) As we
can observe in Figel.10(a) 4.10(b) Scheme 1 outperforms Scheme 2 in reducing renewable energy
curtailment. The results in Figu#10(a)can be explained by those in Figudell Compared to
Scheme 2, DR aggregators consume a significantly larger ainodenergy in Scheme 1 during hours
with high renewable energy generation and lower during $iauith low renewable energy generation.
Furthermore, DR aggregators consume much more eneRR8SHs 3 than wherRESSHs 2.5. This
is because DR prices are very lowRESSHs 3, and DR aggregators consume more energy to increase
their utilities. Utility due to energy consumption outwkgthe energy cost in this case. Hourly DR
prices are shown in Figure12
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Figure 4.9 —Impact of min DR on the optimal revenue

Finally, in Figure4.13 we consider the case whelR€" is equal to 20 MW and there is no re-
newable energy (i.eP,‘tRES’a =0, Vt). Hourly power trading between the LSE and the main g#g) (
total hourly DR load of DR aggregators, and total hourly iovdary load curtailment in Scheme 1 and
Scheme 2 are presented in Figdr&é3 Due to load shifting from DR aggregators in Scheme 1, we
can observe that the power exchange with the main grid inrBetfeis higher than that in Scheme 2
during low grid price hours 1-8, and it tends to be lower thaat in Scheme 2 during high grid price
hours 9-17. Furthermore, involuntary load curtailment am&@ne 1 is significantly lower than that in
Scheme 2.

4.7.3 Complexity of Proposed Approach

In this study, the proposed pricing model is formulated agewv® program which can be recast as a
single level MILP by using appropriate approximation methioThe global optimal solution of MILP
can be obtained efficiently by using branch and cut algotembedded in available commercial
solvers B1]. The optimization problem4(.64) is solved by CPLEX 12.41[06 under GAMS K0] on

a laptop with 3.5 GHz Intel Core i7-3370 CPU and 8 GB RAM. Thdiropl solution is obtained
with an optimality gap of 0.1%. The computation time withpest to number of DR aggregators
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is summarized in Tabld.6. For fairness, the power limit at PCE®{™) is set to be 500 MW to
ensure that the LSE’s load can be served when the number ofgDfe@ators increases. Obviously,
as the number of aggregators increases, the number of binagaples, and number of columns and
rows in the reduced MILP obtained by GAMS/CPLEX increasdsictvresults in the increase in the
computation time. However, the computation time with 7 DRRragators is only about 28s, which is
acceptable.

The computation burden of the MILP, however, depends onrakfectors, especially the num-
ber of binary variables and constraints. The computatime f our model depends on many factors
such as number of DGs, number of batteries, and the numbeGadgregators since these elements
determine the number of binary variables and constrairisekample, operational constraints of con-
ventional DGs such as ramping rate, minimum ON/OFF timetthrrancrease the number of binaries
and constraints, which consequently increase the comgutatirden. However, in this chapter, we
focus on a small-scale LSE that provides electricity to amaomity or a small network located at one
single node or at a few nodes. The number of generators amaithber of DR aggregators are, there-
fore, expected to be small. Hence, the underlying MILP casdbeed efficiently using GAMS/CPLEX
within reasonable computation time.
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Table 4.6 —Impact of number of DR aggregators on computation time

Number Binaries| Columns| Rows | Computation
DR aggregators Time
3 499 1293 | 1283 12.387s
4 676 1736 | 1739 19773
5 837 2141 | 2148 21.126s
6 998 2564 | 2570 25237
7 1159 2964 | 2981 28453
Main Grid
‘:a BES .. é@
|
Bus 1 Bus 2 | bus 3
Bus 4 Bus 5 Bus 6

®

Figure 4.14 —IEEE 6-bus system

For a larger-scale application (e.g., a LSE serving a largiloution network with a significant
number of generators and loads), it can be very challengirgplve the resulted large scale MILP.
In this case, state-of-the-art decomposition techniqoesflarge scale MILP or the application of
evolutionary algorithms such as particle swarm optim@atfiPSO) can be employed to reduce the
computational time. However, these issues will be the stilofeour future work.

4.7.4 Constraints of Distribution Network, Batteries, andDGs

For the simulation, the network of LSE is modeled using a Widsed IEEE 6-bus system as it].
For simplicity, the network flow limits at each line are seffisiently large (i.e. 15 MW) to avoid
congestion. Furthermore, we assume that the LSE owns tHesealdd one battery. The data of these
components are available id§. The minimum power outputs of DGs aR™" = 0.5 MW, both
ramping up and ramping down are set t&6 MW, minimum ON/OFF duration is 2 h. DR aggregators
1, 2, and 3 are located at bus 3, 4, and 5, respectively. DGH gaheration capacity of 2 MW is
located at bus 6. The 1 MWh battei$@QC"" = 0.2, SOC" = 0.9, SOG = 0.5, P° = P4 = 0.1 MW)
and two DGs 2 and 3 each of which has generation capacity of 1 M®&/located at bus 2. Other
system data is the same as in the base case. The inflexiblenl&aglre4.4(b)is allocated evenly to
buses 3, 4, and 5. The network’s line susceptance data is fedk@® MatPower softwarel3g. The
considered system topology is presented in Figdi4
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Figure 4.15(a)presents the outputs of DGs, which increases significantthe period between
time slots 14 and 21, which is associated with high grid elgtt price and peak load period. In
particular, during on-peak time with high grid price the L&#Hds to increase its energy generated
from DGs to reduce the energy drawn from the grid and to comsgaerfor the increase of customers’
demand and the deficit of renewable energy generation.

The difference of power dispatch schedules of DGs in the &ges with and without consideration
of ramp rate and minimum ON/OFF time constraints are shoviigare 4.15(a)and Figure4.15(b)
respectively. It is revealed that without these technicalstraints, the LSE has more flexibilities to
adjust its on-site DGs’ power generation. When ramp rateraimimum ON/OFF time constraints
are more relaxed, the outputs of DGs exhibit larger vamatidhe LSE tends to turn on all units all
the time (the minimum power of each unitR&"" = 0.5 MW) to reduce the energy drawn from the
grid. Consequently, the profit of LSE is slightly better,.eigis equal to 10216$ with ramp rate and
minimum ON/OFF duration constraints and equal to 10518%whese inter-temporal constraints are
ignored. Batteries and DGs add additional flexibility to tiperation of the LSE. The increasing LSE’s
generation’s flexibility enables the LSE to exploit the atteges of time-varying grid electricity price,
which is illustrated in Figuret.16 For example, it can buy less energy from the grid or sell more
energy to the main grid during periods with high grid pricénprove its profit.

The computation time of the optimization problem considgrdistribution network constraints
(IEEE 6-bus system), batteries, and ramp rate and minimunOBN time constraints of DGs is
18.627s, which is slightly higher than the computation timeorégd in Table4.6 (with 3 DR aggre-
gators). This is due to the additional constraints inclgdhre network flow constraints and operation
constraints of batteries and DGs, which increase the caatipatburden of the problem.
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Our design in this chapter aims at developing an efficient B&mg scheme which is suitable for
a LSE deployed over a small area. Hence, the number of nodés iIbSE’s network is assumed to
be small, and in many cases, all entities in the system caondagdd at just one node (e.g., a LSE
supplies electricity to a small town or a village). In fadietcomputation burden of the proposed
LSE optimization model depends mainly on the number of DReggfors, DGs, and batteries since
these added elements introduce more binary variables. ip@ged optimization can be extended to
a stochastic bilevel programming problem, which can beléacky using the scenario-based optimiza-
tion approach. Due to the space constraint, study of thdastic problem is reserved for our future
works. In the stochastic case, the computation burden o$tihehastic mathematical programs with
equilibrium constraints (MPECSs) depends highly on the neindf scenarios. However, the complex-
ity of the stochastic MPEC problem can be reduced by using/elmoordinate decent algorithm4]
to decompose the stochastic problem by scenario, or by B@nger decomposition as suggested in
[110, or heuristic evolutionary algorithm4387.

4.8 Conclusion and Future Directions

In this chapter, we have proposed a novel operation framefoora LSE, which serves both flexible
and inflexible loads. The proposed pricing scheme can belyaagplemented since it is compatible
with the existing pricing structure in the retail market. téxsive numerical results have shown that
the proposed scheme helps increase the profit of the LSEasermpayoff for DR aggregators, reduce
involuntary load curtailment, and renewable energy chmtzmt.

There are several directions that the proposed optimiz&taamework can be further extended.

« First, there are various uncertain system parametersiodhsidered model such as renewable
energy generation and grid electricity price. Addressimg tincertainty issue by using popu-
lar optimization techniques such as robust optimizati®}, [stochastic optimizationl[e], and
model predictive controll3§ is an interesting research topic for further works. The M&¥Ged
design, however, must consider the feasibility and stslwli the closed loop system.

» Reactive power management is an important technical issthe distribution network. Our fu-
ture work will consider how the reactive power management@integrated into the proposed
optimization framework.

* The complexity of the proposed model increases as the nuofl@R aggregators increases.
Additionally, the computational burden of the model in@ea significantly if we consider a
scenario-based stochastic model to tackle the systemtamders. The proposed model is com-
putationally tractable when the number of DR aggregatotdaarthe number of scenarios is
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moderate, which is a reasonable assumption for the settiegenthe LSE serves a small area. It
is interesting to study how one can reduce the computattonalof the proposed model.

» There could be several LSEs operating in one (large) gpbgral area, and DR aggregators can
choose the best LSE based on the offered DR prices. TheréfSies need to determine an
optimal DR pricing offer to attract more DR loads while makimg their profits. The problem
then becomes a multi-leader multi-follower game, whicH & considered in the future.






Chapter 5

Cost Allocation for Cooperative Demand-Side
Resource Aggregators

Previous chapters discussed the decision making problédenmand-side entities in real-time opera-
tion [2], i.e., how smart homes respond to time-varying price dgyaad how Load Serving Entities
(LSE) determine the price signals. In smart grid, demadd-sesources can be aggregated to partici-
pate in the electricity markegf, 29, 30], which can be considered as a short-term time scale decisio
making problem2]. We will investigate how the aggregate demand-side ressubid energy in the
market and allocate the cost to each member. The contenisothiapter was published in IEEE
Transactions on Smart Grid in the following paper:

Hieu Trung Nguyen and Long Bao Le, “Bi-Objective Based Co#b@ation for Cooperative
Demand-Side Resource Aggregatol§EE Transactions on Smart Gridol.PP, no.99, pp.1-1, doi:
10.1109/TSG.2017.2653060

5.1 Abstract

This chapter presents a cooperative game theoretic agptosackle the cost allocation problem for a
virtual power plant (VPP) which consists of multiple demssidie resource aggregators (DRAS) partic-
ipating in the short-term two settlement electricity mark&iven the considered game is balanced, we
propose to employ the cooperative game theory’s core dosidion concept to efficiently allocate the
bidding cost to the DRASs. Since the non-empty core contaiasynpotential solutions, a bi-objective
optimization framework is used to determine the core cdgtation solution that can achieve efficient
tradeoff between stability and fairness. To solve this @b we jointly employ the-constraint and
row constraint generation methods to construct the Parei, foased on which we can specify a de-
sired operation point with reasonable computation effdiimerical studies show that our proposed
design can efficiently exploit the non-empty core to find & etlecation for the participants, achieve
the desirable tradeoff between stability and fairness,camdaddress the practical DRAS’ large-scale
cooperation design.

5.2 Introduction

5.2.1 Background and Motivation

Active participation of demand-side resources in the @ldtt market has been considered efficient
and economic means to balance the supply and demand in snostwgth high renewable energy
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integration LO]. Demand-side resource aggregators (DRA), which can coatelvarious demand-side
resources and bid in the Day-ahead (DA) and real-time (RAgtetity market with certain objectives
(e.g., minimization of energy payment cost, maximizatioatotal utilities) will play an important role
in the electricity market24, 29]. However, participation in the electricity market can alenging
for DRAs due to the uncertainty of renewable energy res@ineenflexible load consumption, and
market price volatility B1].

Cooperation among different market participants has beesidered as an efficient approach to
address the uncertainties and reduce the bidding risk ieldwtricity market 24, 29-32, 43, 50, 71,
72,97,100, 102 139. Thanks to the reconstruction of the electricity marketjtiple DRAs [30] can
be coordinated under an emerging smart grid cooperatioty,emmely virtual power plant (VPP), to
further exploit the aforementioned resourcds, [50]. Although cooperation among different DRAs
which might belong to different stakeholdeB2] can result in benefits such as total cost reduction or
profit improvement, how to efficiently share the cooperatenefits, e.g., determine the cost shares,
among participants is an important and open research issue.

5.2.2 Aims and Approach

This chapter aims at developing an efficient cost allocasidmeme for a VPP consisting of multiple
DRAs [29, 3(] that participate in the two settlement short-term eledirimarket P4, 29, 30.. We
consider a generic DRA model which includes distributeceveable energy resources, aggregated
flexible load, aggregated nonflexible load, and reducildel [29]. We assume that a large number of
DRAs can be coordinated and jointly bids in the electricitgrket througha commercial VPH50Q.
The bidding strategy is modeled as a risk averse two-stagbastic optimization problen24, 31, 43].
Given the uncertainties of renewable energy generatioas, temands, and market prices, the VPP
cannot allocate a fixed cost to each participant. Instead\V#P can allocate a percentage quota of
expected total bidding cost to each DRA, which must be deterdbefore the planning horizon.

The cost allocation problem is modeled as a cooperative gdmaee each DRA acts as a player and
the value of the cost function is the outcome of the markedibigl optimization. Given the considered
cooperative game is a linear programming gast, [which is totally balanced, we propose a cost
allocation scheme based on the game core coné#§]. Because a nonempty core can contain many
allocation vectors, choosing an arbitrary cost allocaitithe core can lead to very small cost reduction
for certain coalitions of DRAs making the cooperatless stableor high deviation in percentage cost
reduction among DRAs making the cooperatiorfair [54] (i.e., some DRAs may have significantly
smaller percentage cost reduction than others). To adtress issues, we formulate the cost allocation
problem as a bi-objective optimization problem which airhdetermining an efficient solution in the
core of the game with desirable tradeoff between stabihtyfairness.

5.2.3 Literature Review, Contributions, and Chapter Organzation

Modeling and bidding of DRA in the electricity market areiaetresearch topics. In particular, mod-
eling and bidding design for a single aggregator is presemgl10, 24, 29, 43] while coordination

of multiple DRAs in a VPP framework is studied i8], 50, 97]. These papers show that coopera-
tion among DRAs can lead to cost reduction or profit improveniy leveraging the strengths and
weaknesses of individual aggregators. However, they dadrtess how to share the cooperation gain
among the participants. The wor8Z] develops an electricity payment method to motivate thedieo
nation between the EV aggregator and wind power produces.widrk [71] presents a ranking based
pricing scheme to calculate participants’ cost savindfpirccrement based on submitted load profiles’
flexibility. The work [72] proposes direct energy trading among producers and carsunhere the
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internal price is determined by the Shapley value conceptweaver, all these proposed frameworks
require market redesign; thus, they would not be applictdvleurrent market practice.

Cooperative game theory has been employed to address vaesign problems in power systems
such as energy producers’ multilateral tradi®g][ energy management, and market desigd 2,
100. It is also used to study the cooperation’s profit sharingarncurrent market practicel 12
where the nucleolus based allocation is used to split profihwltiple renewable energy producers
which jointly bid in the forward market. Although the nucles is unique and lies in the core, other
core cost allocation vectors, which can have advantagestbgenucleolus, are ignored. Moreover,
none of aforementioned papers considers the cooperationgiimeterogeneous participahtdviore
importantly, none of them explores the core, which containarge number of potential allocation
solutions, for flexible and efficient cost allocation desigbur current study addresses these major
issues where we make the following contributions.

1. We present a cooperative game model for the cost allotptablem for a VPP that consists of
multiple DRAS participating in the two settlement shontrteslectricity market. The framework
can be applied to the current market structure considererbgeneous characteristics of the
participants.

2. We study a bi-objective optimization based core costation design that can achieve efficient
tradeoff between stability, i.e., the minimal cost savimgoag all coalitions, and fairness, i.e.,
the deviation of percentage cost saving among individuaABR

3. We develop a computationally efficient procedure to campudesirable Pareto optimal cost
allocation vector and construct the Pareto front, which loarapplied to practical large-scale
settings.

4. Extensive numerical results are presented. We demomshra advantages and efficacy of the
proposed design framework where a desirable cost allotagtution on the Pareto front can be
achieved and we also study the computation complexity opoaposed design.

The remainder of this chapter is organized as follows. 8pdh.3 explains the notations used
in this study. Section 5.4 presents the system model anargdgguns of the cost allocation problem
for cooperative DRAs. Section 5.5 presents the coopergavee formulation of the cost allocation
problem. The proposed bi-objective core cost allocatiosigteare described in Section 5.6. The
proposed solution approach is presented in Section 5.Tio8éc8 presents numerical results, Section
5.9 discusses extensions and future work, and Section briduzles the chapter.

5.3 Notations

Notation Explanation

Sets and Indices

t,s Time intervals, scenarios

k Demand-side resource aggregators (DRAF 1,2,...,NK

b Block b in multi-utility block function of DRAK's flexible load modelb € %
m Pareto front’s pointn=0,1....M

i1,i,i3 Iterations in Pareto front’s construction

S e’ CoalitionSand its indicate vectce®

H Grand coalitions of DRAs

IHeterogeneous participants are those having various tffFesources with different operation constraints.
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v(.) Cost function of the gam# (.7, v)

€ (V) Core set of the gan€ (7", v)

Parameters

NI Total number of iterations in Pareto font’s construction
NK Number of demand side resource aggregators (DRAS)
NS Number of scenarios

NT Number of time slots (24)

AT Length of one time slot,i

& Probability of scenaris

AL AR Day ahead (DA)/Real-time (RT) electricity price/(@Wh)
AP Penalty cost of energy mismatch between DA and RM®¥/h)
A Load reduction (LR) cost of DRA ($/MWh)

Egts Load reduction capacity of DRR, (MWh)

Ek': Flexible load minimum requirement of DRK (MWh)

Ui bt Marginal utility of demand blocl of DRA k, ($/MWh)
DE”{,TX Maximum load of demand blodkof DRA k, (MW)

R/, RY Ramping Up/Down limits of flexible load of DRK, (MW)
D||<,t,s Inflexible load of aggregatdq, (MW)

Pﬁ”’;‘ax Maximum aggregated renewable DG power of DRAMW)
Plf‘ax Maximum power bidding of DRA, (15MW)

Variables

PPA DA power bidding, 1W)

PRT RT power dispatch W)

DELS Flexible load power consumption of DR&A (MW)

DEQLS Flexible load power consumption at bloblof DRA k, (MW)
Ukts Utility of flexible load of DRAK, ($)

Pes Renewable DG power of DRR, (MW)

DR, Reducible load of DRA, (MW)

&, Ns Auxiliary variables used to calculate CVaR

5.4 System Model

5.4.1 Cooperative Demand-Side Resource Aggregator undeitttal Power Plant

We consider a set of cooperative DRA] coordinated by a commercialrtual power plant(VPP)
[31] as shown in Figur&.1. The commercial VPPH0] manages the output of on-site distributed re-
newable energy generators, energy consumption of flexabléd, deploys load reduction services, and
satisfies nonflexible load demands of multiple cooperatiRAB[29]. Each DRA can be considered as
a cluster of several types of load, namely nonflexible lo&jlfle load, reducible load, and distributed
renewable energy sources such as rooftop solar panels addwvbines 29]. Nonflexible load is the
one whose energy consumption cannot be defet6d20]. The flexible load is modeled by a multi-
block utility function widely adopted in the literaturd4, 28, 42, 44-46]2. The DRA can employ
various load reduction services including load curtailpéack-up generator, and battery which are
captured via “reducible load”1)]. Detailed load reduction modeling is not considered fandicity
[10].

20ther flexible load models such as energy aggregaflél) EV aggregator?4], HVAC aggregator 16], load elastic
model p1-53] and their uncertainties can be integrated into the modeichwvill be considered in our future work.
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Figure 5.1 —Schematic of cooperative DRAs under the VPP’s coordination

5.4.2 Market Framework

All DRAs are coordinated via a commercial VPBQ[, which participates in the short-term two-
settlement electricity market including the wholesale-dagad (DA) and the real-time (RT) markets
[24, 29] as a single entity31]. The VPP is assumed to act as a price tald} pnd the bids do not
affect the DA/RT clearing price®f, 29, 31]. Unidirectional interaction with the grid is adoptez¥],
i.e., we can bid to purchase but cannot sell surplus enerthyetgrid R4, 29, 30]. The uniform pric-
ing rule and two-settlement system are used to model thedialagettiement of DA and RT energy
deliveries R4]. In particular, the market participant pay®4 29):

ATARRPA 4 ATART (RET — ROA).

whereAT (RRY —RP*) represents the energy deviation between DA bidding and Bfatth. In ad-
dition, the total cost of VPP or coalitions of DRAs must indtuthe penalty cost of energy bidding
deviation P4], the load reduction services’ cost(], and the flexible load utility42], which will be
presented in Section IV. Detailed description of the comi®d market framework is presented 24

5.4.3 Cost Allocation Procedure

Previous days’ data including market prices and each DRd&{dlaxible energy consumption, renew-
able energy are available. Each DRA also needs to aggregdtsudomit its load reduction services’
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capacity and price, and flexible load parameters to the \@P42]. The VPP makes decisions on
the joint bidding strategy, i.e., the DA bidding decisiorefdye the stochastic scenario materializes
[29, 31]%, and determines the cost share of each DRA.

In this study, the bidding strategy is modeled as risk avexsestage stochastic program widely
used in electricity market bidding strate@}:[

V(o) =min (1— B)E(Cost + SCVaR, (Cost,

whereE (Cosy is the expected cost and CVaRCos} is its Conditional Value at Risk (CVaR) at
confidence levelg often takes value from.0 to 099 [76]. CVaR is employed as a risk measure since
it has been widely used in the literatu@ P9, 43, 75, 76] to control the tradeoff between the expected
cost and the cost variation given its advantages over oglenreasures (e.g., variance, shortfall prob-
ability, expected shortage, value-at-risk).[When uncertainties are captured by scenarios, GMaR
defined approximately as the expected cost ovefihea) x 100% worst scenario®]. The weight
B represents the tradeoff between the expected cost and CVaR.

The resulting bidding cost(.#") must be split among the participants, i.e., the VPP needst to a
locate each DRA's percentage quatd%o) of total expected bidding cost.#") before the planning
horizon begins:

NK
> X=1(100%),% > O.
k=1

Hence, the expected cost that is allocated to each DRA isl ¢égugv(.#"). The cost allocation
problem, i.e., the determination gy, is addressed by using the cooperative game théally [

5.4.4 Uncertainties Modeling

Uncertainties of renewable energy, nonflexible load, aedtgtity prices are captured via scenarios,
which are generated by using the Monte Carlo simulation@ggr [L0O7. The VPP employs appro-
priate forecasting tools to forecast renewable energyflexhle load, and market prices based on
available historical datasets with high accuracy. Thik tas be achieved by employing certain fore-
casting methods such as time series prediction, artifielatal networks, and support vector machines
[2], whose detailed design is outside the scope of this th8gise any forecasting technique can suffer
from inevitable forecasting errorg]| an efficient model for forecasting errors should be basethe
studied datasets. We assume that the VPP can achieve der@tiatieling of uncertainties by fitting
the forecasting error data into appropriate distributionsme series based on the historical data and
forecast data over a sufficiently long pericj 43].

Modeling forecasting errors, which is an important rese&opic [2], is not the focus of this study.
In this study, for simplicity, the forecast errors of DA, RTiges, renewable energy, and nonflexible
load are assumed to follow zero-mean normal distributionese standard deviations are 10%, 10%,
15%, and 10% of the forecast values, respectivé8].[ Note that the assumption that forecasting er-
rors of system loadgb, 140, renewable energyep, 139-142), and electricity prices]40, 142 follow
normal distributions is widely adopted in the literaturee Wirther assume the system uncertainties
are independentlB9, 147. This assumption is also adopted Mp] where the authors conduct their
study on the same datas&#[3 used in this chapter. Note, however, that consideratidosher distri-
butions (e.g., Weibull distribution for wind speed) or tlegrelation among different uncertaintiegg]

3PJM time line:http://pjm.com/ /media/training/nerc-certifications/B-twosettlement.ashx
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can be easily integrated into our proposed cost allocateméwork by applying a suitable sampling
technique in the scenario generation procedRré41].

5.5 Problem Formulation

In this study, we model the cost allocation for a VPP that ®isa®fNK DRAS as a cooperative game
with transferable utility (. ,v). The cost functiorv is modeled as the optimal cost value achieved
by a risk averse bidding optimization in the electricity ketrand the percentage quoig%) of the
total VPP’s bidding cost(.#") is considered as the solution of the studied cooperativeegam

5.5.1 Cost Function

The cost functiorv(S) of a coalitionS of DRAs can be defined as follows:
S NS ONT (O
vS:v(e): min 1- T A< P7OAT
S PPARYT.DR PG oD o€ 7’7$< B)s; t; et

F
s ‘PitsPiptsYkts

NK NS
1
AR (RET-RPY) TP |RRT-RPA AT+ 5 (MDR, AT ~ Ukys) } +B <E+— ersns> .
k=1 =

1-a
(5.1)

The cost function value obtained frof.{) results from the risk averse expected cost minimization
of a coalitionS consisting of individual DRA& € Sparticipating in the two-settlement electricity mar-
ket. It is the weighted sum of the expected cost of marketibgldnd the CVaR (the last term) which
are multiplied with coefficients 4 B and3, respectively. The expected market bidding’s cost incdude
the energy trading costs in DA markgt, PPAAT, RT market\Y! (BY' — BP*) AT, plus penalty cost
due to mismatch between DA bidding and RT dispatéfR’ — BPA| AT [24, 29], plus the cost of

NK
using load reduction minus flexible load’s utilil'iz1 (A&D"ZLSAT —Uk,t,s> [10, 42]. These cost com-

ponents are calculated ovliT time slots and\S generated scenarios whemgis the probability of
scenarics. Note that although this formulation can be applied to aitoalSwith up NK aggregators,
only the values of individual DRAEk € Sare activated based on the valueggfi.e.,eg=0if k¢ S,
as will be explained later. This optimization is subjecttte following constraints.

Constraints of Flexible Load

Each DRAK can aggregate various flexible load, which can be modeled&yntulti-block utility
function [14, 28, 42, 4446, as follows:

NB,
Ukts=AT 5 UpiDipys (5.2)
b=1
S F F F.max .S
,max
Diis= Z Dikbts O0<Dipts<Dyps & (5.3)
b=1
F F F F DS
Dk,t,s - Dk,tfl,s < RE? Dk,tfl,s - Dk,t,s < Rk S (5-4)

NT
AT ZDE,t,s > E 6. (5.5)
t=
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Constraint §.2) calculates the flexible load’s utility of DRA at each time slot and scenario
s. The constraint corresponding to each demand bloak given in 6.3). Ramping up and down
constraints are captured i6.4). The temporal constrainb(5) means that the energy consumption of
the total flexible load over the scheduling horizon must keatgr than a predefined minimum value
Ef . Detailed description and how to construct the consideesdbfle load model can be found iaZ.

Note that for any DRAK¢S, we haveeg=0, then the condition & Df,, ¢ < Dy e in (5.3) is

satisfied becausBkbts_O which results |erts Z Dkbts_o Consequently, we havgy; =0

according to %.2), which means its value is not counted in the objective fiomc{5.1). Moreover,
constraints$.4) and 6.5) for k ¢ Sare always satisfied and they will not affect the feasibléoregf
the underlying optimization problem. In other words, theMRs flexible load constraint$(2)-(5.5)
for k ¢ Sare not activated since they do not affect the objectivetfand5.1) and the power balance
constraint $.8) given later. That means we exclude the flexible load comérb.2)-(5.5) for DRAS

k ¢ Sand only consider the constraintsloE Sin computingv(S).

Constraint of Reducible Load

Each DRA can utilize several load reduction services whigh be considered as a negative load
behind the meterdlD]. We assume that in each time slot, the amount of energy copison reduction

of DRA k can be upper-bounded by a certain aggregated load redumatitmEkt e which is charged
at the price);. In particular, we have

0< DE’LSAT < EELSeE. (5.6)

Similarly, for DRAk ¢ S.eg =0 thenDE, = 0 and it does not affect the power balance constraint
(5.8). It can be interpreted that only constralﬁta) for DRA k € Sis considered for the computation
of v(S) while constraint%.6) for DRA k ¢ Sis not activated.

Constraint of DGs

Renewable energy resources can be aggregated by the 2RIASSimilar to the reducible load, ag-
gregated renewable DGs can be considered as a negative dbatilihe meters. We assume that
renewable energy is free of charge (the price of renewaldeggnis 0). Moreover, the time-varying
maximum generation profile of DRA's total renewable enevgyich can be forecast and captured by
scenarios, is denoted Egtmax Then, the actual output of distributed generators in stesaan be

controlled by the DRA ranging from 0 ﬂqg";‘ax as follows R9:

0<RGs<PoT™e. (5.7)

Again, for DRAK ¢ Sef 0 thenPS kts=0 and it does not affect power balance constrag)( It
can be interpreted equivalently as DRA constraint §.7) is not activated, i.el?ﬁ < Is not considered
in the computation 0¥(S).
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Power Balance Constraints

These constraints can be expressed as

NK
PtRsT: Z (DL,I,SQ§+D|EI,S_D||§LS_ PI?,t,s) (5-8)
k=1

NK
0<PRPA RY < 5 A6 (5.9)
k=1

Constraint $.8) describes the power balance constraint in real time dibpahile constraintg.9)
represents the unidirectional power constrainB8f andPRT [24, 29]. Similarly, constraint.8) only

considerk € Ssinceey =0 fork ¢ S 7

CVaR Constraints

The CVaR constraints can be written according to the Rodkafend Uryasev formula as follows
[2, 29, 43:

NT NK
Ns>AT ;{At%ARDA+At?J (RET—RPA)+AP[RET—RPA[+ 5 (MR, s~Ukes) }—E (5.10)
t= k=1

ns > 0. (5.11)

5.5.2 Bi-objective Optimization Based Core Cost Allocatin

In this study, the form of the cost functiongS) = v(e>) is defined as the optimum of a linear program
where the entire right-hand-side vector due to all constsais a linear transformation of coalition
indication vectoe® [112. This is a LP game, which is totally balanced and has a noteogse [B5).
The nonempty core by definitior2 29 is a polyhedron witiNK—1 dimensions, which can contain
many potential cost allocation vectaxs In particular, different allocation vectossmight result in
different allocation performance with respect to somecatmn metrics$4]. An arbitrary allocatiorx
in the core can correspond taveak stablesolution since some coalitions attain very small or zera cos
saving value and they might not receive significant beneditstay in the cooperatiorbfl]. It might
also beunfair since some DRASs have larger percentage cost reduction tharsdb4).

Therefore, an efficient design must address two main isseesomed above, namely stability and
fairness. In particular, the stability and fairness mstamployed to design an efficient cost allocation
strategy are described as follows:

« Stability metric: captures the minimal satisfaction, i.e., the worst-cas savingd($) among
all coalitionsS. Although a cost allocation vectorin the core%’(v) guarantees non-negative
cost saving among, i.e., V(S) — SkesX(S)V(#") > 0, some coalition$ have less cost saving
than others and the worst coalition will have very small a@sting, which is denoted a¥$).

In particular, different values of result in different values od, which implies different levels
of stability [54]

 Fairness metriccaptures the maximum deviation of the percentage costgawmrong individual
DRAs which is the difference in percentage cost sawitip) between the DRA that achieves
the highest percentage cost saving and the DRA that achéenaliest percentage cost saving
for a given allocation vectox € € (v) [54]. Obviously, differentx result in different values of,
which implies different levels of fairness4]
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In summary, to achieve goalability, the worst-case cost savidgamong all coalition$ should
be maximized and to achieve go&alirnessfor the cost allocation, the maximum deviation for the
percentage cost saving of individual DRgshould be minimized simultaneously. Moreover, the cost
allocation solution must lie in the core of the game. The cost allocation design aims to find a cost
allocation vectox € ¢ (v) that achieves efficient tradeoff between the fairness aatuilgy metrics,
which can be modeled as a bi-objective optimization prokdsrfollows:

(PO)
_min y (5.12)
RN B IRY
min —o (5.13)
0. %
NK
s.t: Z x=1 x>0, (5.14)
K=1
5 <V(S) — Y xv(H), vSe 2V \ (0,7} (5.15)
kes
0>0 (5.16)
V() —
D < x¢ <O, Vke (5.17)
v({k})
y==>0—-®, (5.18)

where the optimization of the objective functiorsX2-(5.13, which minimizes the valued vector
[y, —9&], aims to achieve the fairness and stability, respectivéipreover, constrainty.14 means
that the total cost (in fraction) is distributed among all &Rwhile the auxiliary variablé® in (5.15
provides the lower bound of the cost saving of all coaliti@snder cost allocation solution The
minimal satisfaction, i.e., the worst-case cost savi(f) among all coalition§is maximized in $.13).
The constraintg.16) forces the allocation to be in the cote %’(v) while constraint$.17) provides the
lower bound® and upper boune for the ratio between allocated cost under grand coalitrmhapst
due to the non-cooperative scenario for all DRAG.e., the cost percentage saving). The maximum
deviationy of the percentage cost saving of individual DRAs, which &sdifference ofp and® as in
(5.18, is minimized in 6.12.

Fairness Core Allocation

We define problem (P1) as the one with objectiel® and the core constraints.14-(5.18. Itis
indeed the percentage fairness core allocation prob&fn [Without constraints§.19-(5.16), the
fairness core allocation becomes gireportional allocation[54] where the optimuny* =0, i.e., each
DRA k is allocatedk, = v({k})/ SN, v({K'}) fraction ofv(.#"), and the cost saving in percentage is
distributed equally to each DRA. In contrast, simply maimteg the core characteristic2.@9 can
cause some deviation in percentage cost saving among DRAg,* 0. In short, the problem (P1) is
defined as follows:
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(P1)

_min y
¢79767Xk7y

s.t: constraintsg.14) - (5.18.

Nucleolus Allocation

We denote problem (P2) as the one with objecttvd® and constraintsy(14)-(5.15. It is indeed the
nucleolus allocation problem which aims at maximizing tbemeration’s stability by maximizing the
minimal satisfaction, i.e., the worst case cost sav@ragnong all coalitionsg4, 98]. Constraint 5.16)

is unnecessary since the non-empty core contains the rnusld]. The problem (P2) can be defined
as follows:

(P2)

max o
0, Xk

s.t: constraintsg.14- (5.15.

It is worth to mention that stability and fairness cannot beieved at the same time, which moti-
vates the bi-objective optimization framework in this tise3 he nucleolus aims to maximize the worst
case cost saving(S') among all coalition$ by reducing the cost allocated to members belon§to
This results in the increase of cost saving in percentag®RA k € S, which results in the deteri-
oration of fairness, i.e., the increaseyof On the other hand, improving fairness, i.e., minimizing
only requires the positive value éfas shown in constrainb(16). This results in a very small positive
value ofd in the fairness core allocation. Mathematically speakiihg fairness core and the nucleolus
are different points located in the cor&(v). In general, solving the cost allocation problems with
different designed objectives will result in differentadhtion vectors since the core is a polyhedron
with dimensionrNK — 1.

5.6 Solution Approach

5.6.1 Thee-Constraint Approach

The core cost allocation problem (P0), which is a bi-objectinear program, has no single optimal
solution optimizing both objective functionS.(2 and 6.13 simultaneously. Intuitively, to maximize
the worst case cost savirdgg(minimize —9) as in 6.13, we need to allocate less cost share to the
DRAs belonging to the coalitio that has the least cost saving, which results in higher tdewnia
among the percentage cost saving of individual DRAs. Matteally speaking, the allocation vector
that maximizes the stability metric (the nucleolus) anddhecation vector that has the best fairness
performance are two different points in the polyhed#iv). Hence, it is desirable to determine Pareto
optimal solutions where for each of such solutions one cammprove the value of one objective
function without deteriorating the value of the other olipeefunction (6).

To obtain Pareto optimal points, we propose to convert @mklPO0) into a single-objective opti-
mization problem (P3) using theconstraint methodd6] since problem (PO) is linear. In particular,
there are two main methods to solve the multi-objectivediraptimization, namely, the-constraint
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and scalar (weighted) methods. Térxeonstraint method has several advantages over the soatlhodh
for linear problems122. Hence, thee-constraint method is adopted.

In the e-constraint method, one objective function is chosen to f@mzed while the other is
converted into a constrainb§]. It can be observed thatinvolves onlyNK fairness constraint$(17)
wherev({k}) andv(.#") can be pre-computed easily. On the other hanivolves X — 2 values
of v(S) in (5.19. Hence, the stability objective functiob.@(3 is chosen to be optimized while the
fairness objectiveq.12) is converted into a constraint. L&t + 1 be the number of grid points of the
Pareto front andnc {0,1,...,M}. Then, them™" point on the Pareto front can be obtained by solving
the following single-objective optimization problem:

(P3)

_max o
PD.9,5. %Y

s.t: constraintsg.14)-(5.15), (5.17)-(5.18
y<y™, (5.19)

wherey™ is a parameter defining thet" point on the Pareto front. In particulay™ is chosen as
ymin < M < ymax - ymin gndymax can be obtained from the payoff table when we solve (P1), kvhic
minimizes the maximum deviation of the percentage coshggf'", and (P2), which finds the nucle-
olus allocation solution witl®™2*, respectively. The payoff table contains tH& point, (™", 6™"),
and theMt point, (y"2%, ™). In this study, the parametgf” identifying mt" is chosen as follows:

. ax __y/min
y" = ym'"+m%. (5.20)
Note that constraint(16) is unnecessary and ignored in (P3) since constrau2( implies the

intersection of its feasible region and the core is hon-gmpt

5.6.2 The Row Constraint Generation Approach

In order to construct the Pareto front, we need to solve (Pt (®2) to obtain the payoff table
first, which indicates the®d and Mt points. Then, we solve problem (P3) multiple times, each
corresponding to one value of to obtain the remainind/l — 1 points (i.e., points y(m), d(m)),
m=12....,M—1). All three problems (P1), (P2), and P(3) daege-scale LPssubject to stabil-
ity constraints §.15). The full set of stability constraint& (15 requires the pre-calculation ol®—2
values ofv(S) for all coalitionsS which are results of the corresponding stochastic prograviesy
constraints in%.15 are indeed unnecessary, i.e., we do not need all tH¥§e 2 constraints to deter-
mine onlyNK variablesx.

To reduce the complexity, we employ the row constraint gatiem method to solve problems (P1),
(P2), and (P3) without imposing all aforementionét‘2 2 constraints in%.15. This is realized by
decomposing each problem into a master problem, whichveddab find the allocation vectai*, and
a sub-problem, which is solved to find the coalit®nthat can violate the stability constraint with the
obtainedx* the most. Then, the stability constraint corresponding tis added to the master problem.
The problem is solved iteratively until no coalition’s silélp constraint is found to be violated.
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Solving Problem (P1)

The master problem (MP1) is a relaxed version of the origopmablem (P1). Let/(S) be the set
of coalitions considered in the current iteration and tlvaluesv(S) are already known (in the first
iteration, we initializer (S) = {{1},{2},...,{NK}}), problem (MP1) can be cast as the following LP:
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(MP1)

_ min
D,9,0,%,Y

s.t: constraintsg.14), (5. 16) (5.17,(5.18:

relaxed 6.19: 0<v(S Z XV(H ), NSO (S). (5.21)
keS

Constraint .15 is replaced by its relaxed versiob.21), which only consider§ € 0(S) instead
of VSin the set of all 2K — 2 coalitions. Hence, for a giveti obtained from solving (MP1), there are
many coalitionsSthat can violate the stability constrairi.15 of problem (P1). In additiorv(S) is
implicit since it is the optimal value of the objective fuiwst of the stochastic prograrb.{), which has
not been solved yet. We need to design sub-problems, whacttifg a uniques® and its corresponding
valuev(S¥) [144. We define a sub-problem (SP1) identifying a unexploredittoa S* that achieves
the least cost reduction as follows:

(SP1)

min
DA PRT DF
e, PPA P DktsDkbtsUktS’Pkts’DktsE Ns

d =min [v(S)—'\%< expv( ) | =

NK
Zm;{APApDAATH&T (PRT—PPA) AT+2P|RET—PPA|AT+ 3 (MDE, AT —Uys) }
k=1

NK
(E +— errsns> —k;eixi;v(% ) (5.22)
st 1< l\fq( <NK-1,ef € {0,1} (5.23)
1 &) +§ ) > 1, VSe 0(9) (5.24)
constralnts5.2) (5.11. (5.25)

The sub-problem (SP1) is a mixed integer linear program @JNvith extra binary variableef acting
as first-stage variables. Solving (SP1) enables us to otgiwhich giveS* andv(S*) simultaneously.

The purpose of solving problem (SP1) isidentify the unexplored*St ¢(S) that can potentially
violate the core stability constraint the most for a giverstcallocation vector X (i.e., S has least
cost reduction). Constraing(23, which means & 2K\ {0,NK, ¢(S)}, and constraintg.24), which
meansS¢ ¢'(S), ensures only unexplored coalitioBare considered in this optimization problem. All
original constraints required in computirgS) are given in $.25).

If we solve (MP1) and (SP1) iteratively as summarized in Aidpon 1, we finally reachx* such
thatd > 0 since the core is nonempty. Theris minimized and the obtained € ¢’(v) is the final cost
allocation solution for (P1). We provide the proof of coryemce for Algorithm 1 in the following.

Proof. The proof is based on the result ib44], which is summarized as follows. As (MP1) is the
relaxed version of (P1), its obtained solutiwncan be infeasible for (P1). However xf is feasible
for (P1), it will be the optimal solution of (P1).
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Algorithm 1 SOLVING PROBLEM P1

1: Initialization: iterationi; = 0, computev(.#") andv({k}), 0(S) = UNK {k}
: while d < 0do

Solve (MP1) to obtaix* to feed it to (SP1)

Solve (SP1) to obtaif*, v(S"),

Updated'(S) .= 0(S)US', i1=i1+1
end while

o akrwnN

Suppose at iteration, we have/'(S) and obtaink* after solving (MP1). Le&* denote the optimal
solution of (SP1). If we have

5=v(S)— S xv(#) <0, 5.26
d=Vv(S) k;XkV( ) < (5.26)

then the following condition of (P1) is not satisfied Xy

0<3<VS)— § xv(H),
SSV()kG;XKV()

which means the obtained solution is not in the core,X’eZ % (v). To move the obtained allocation
solutionx* towards the feasible region of (P1) in future iterationsga ronstraint corresponding to
S' is added to constrainb(21) of (MP1), i.e.,S* is added ta7/(S) as follows:

0 < V(S —k;xkv(%). (5.27)

In the next iteration, solving (MP1) will generate a ngivand solving (SP1) will generate a new
S'. Since the size of/(S) increases, the number of coalitioBg ¢'(S) considered by (SP1) is reduced
after each iteration. Hence, the maximum number of itenatie bounded by — 2 — NK. Since the
core is nonempty, we can ultimately fint that satisfies constrainb(l5and constraint§.16) of (P1)
for VS. Hence, Algorithm 1 converges. ]

Solving Problem (P2)

Similarly, the master problem (MP2) which is a relaxed va@nsof the original problem (P2) can be
defined as the following LP:
(MP2)

max o
Xk,5

s.t: constraints§.14 and 6.21).

We define a new sub-problem (SP2) identifying a coalithat achieves the least cost reduction
as follows:
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Algorithm 2 SoLvING PROBLEM P2/P3
1: Initialization: iterationi, = Ofiz = 0, initialize &'(S) (andy™ for P3)

2: while |0* — 8| < g5 do
3: Solve (MP2)/(MP3) to obtaix* andd*, feedx* to (SP2)
4:  Solve (SP2)/(SP3) to obtalsf, v(S*), andd
5:  Updated'(S):= 0(S)US', ir=ir+1 fiz=iz+1
6: end while
(SP2-3)

k=1

NK
5 =min [ (9-% eKSX’QV(%/)]

NK
st 1<y e <NK—1,e7 e {0,1}
K=1
constraints%.2)-(5.11). (5.28)

Sub-problem (SP2) is the same with sub-problem (SP1) exkbapthe constrainty;24) has been
removed. Problem (SP2) is solvedited S that can potentially violate the core stability constrétiné
most for a given cost allocation vectar ¢S has the least cost reductiay) over the seRN¥\ {0, NK}
Problem (P2) is solved by Algorithm 2. Due to numerical psem of commercial solvers, the stop-
ping conditions are relaxed a8* — d| < €5 whereg; is a tolerance threshold and the obtained cost
allocation vectox* is the final cost allocation solution of (P2), i.e., the nodlsx™.

The convergence proof for this algorithm is also based onasglt in [L44], which is similar to the
proof of Algorithm 1 presented above. In particular, thdetégnce between (SP1) and (SP2) is due to
the removal of%.24). However, it is easy to show that the (SP2) never regerseeadgloredS € 0'(S)
except at convergence, which means the maximum numberatides is also bounded and Algorithm
2 must converge. Detailed convergence proof of Algorithre @mitted due to page limitation.

Solving Problem (P3)

Similarly, the master problem (MP3) which is a relaxed v@msof the original problem (P3) can be
defined as the following LP:
(MP3)

max o
X 0,Y,®,®

s.t: constraints§.14), (5.17), and 6.18
constraint $.19 of m™ grid point
constraint 5.21).
Constraint $.15 is replaced by%.21), which is updated by addin§* obtained by solving the

sub-problem (SP3) to the set of explored coalitians) in each iteration. (SP3) is the same with
(SP2). Similarly, if we solve (MP3) and (SP3) iterativelys®wn in Algorithm 2, we finally reach
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Algorithm 3 PARETO-FRONT CONSTRUCTION

1: Run scenario generation/reduction algorithms to obtlanNS scenarioss, Computev(.#") andv({k}), O(S) =
Ui (K}

: Sél\lle P1 using Algorithm 1 to obtay", 5(0) := &, x(0) := x*. The 0" point is then determined. Keef(S)

. Solve P2 using Algorithm 2 to obtaé, 5(0) := J, x(0) := x*. TheM®" point is then determined. Keef(S)

form=12,..M-1do

Solve P3 using Algorithm 2 with™ defined in 6.20) to obtainx*, 5*. Keepd'(S)

Updatex™:= x*, ™ := &*, andm™ point is defined.

NI = Card(0(S)) — NK

. end for

. Construct the Pareto-front from the obtairidd- 1 points.

©ONOUAWN

|0 — 8] < g5 and the obtained cost allocation vectdris the final cost allocation solution of (P3)
corresponding to™.

The sub-problems (SP1), (SP2), (SP3) st@chastic programs where the uncertainties are cap-
tured via scenarios To manage the computation complexity, the scenario remluchethod can be
employed 107. Discussion on scenario based stochastic optimizatiarbeafound in 81, 43]. The
resulting MILP with a reduced number of scenarios can beesbéfficiently by using available MILP
solvers such as CPLEX.

Pareto Front Construction

The complete procedure to construct the Pareto front of dihe cost allocation problem (PO) is
summarized in Algorithm 3. Specifically, we first calculdte ¥PP’s bidding cost(.#") and initialize
0(S) = UK {k}, i.e., computeNK individual bidding cost/(k), NI. The fairess core cost allocation
problem (P1) is solved by iteratively solving (MP1) and ($B& shown in Algorithm 1. Then the
nucleolus allocation problem (P2) is solved by solving (MRRd (SP2-3) iteratively as shown in
Algorithm 2. Then, the payoff table with thé"0and Mt points is obtained. We then compue— 1
remaining points on the Pareto front by solving problem (f8)the corresponding values ai
{1,2...M —1}. Each corresponding problem (P3) is solved by iterativelying (MP3) and (SP2-3).
Finally, we count the total number of iteratiohs, which is equal to the number of new explored
coalitions added t@’(S). We useNl for analyzing the computation performance.

5.7 Numerical Results

5.7.1 Simulation Data

We consider a VPP that coordinates the cooperatiocfkoDRAs. The scheduling horizon is one day,
which is divided intoNT = 24 equal time slots, each lastidglr = 1 hour. The electricity prices are
taken from the PJM market#t]. The penalty price\ P varies fromAP = 5$/MWh (PJM market) to
AP = 150$/MWh (Greek market)2d]. Moreover, 20 profiles of hourly inflexible loads, which are
scaled to the range of-010 MW, and the aggregated renewable DG, which is scaled h@t@ange
of 0— 8 MW, are taken fromJ49 and [143, respectively. Figur®.2 presents simulation data for the
electricity pricing and the first 10 DRA load/renewable gyeprofiles. We assume that in each time
slott, each DRAKk can aggregate 10% of total nonflexible load, which can beaedily using the
load reduction (LR) services with price = 100$/ MWh. The power capacity transferred via main
grid isB"® = 15MW. Finally,v(S) is assumed to be well-defined, i.e., the market bidding dpéition
problem due to coalitioS is feasible.
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Table 5.2 —Flexible Load Data

Load blocks (MW)  Marginal utility ($/MWh) EkF (MWh)

1,1,2,2 20, 18, 13, 11 86.4

The parameters of the multi-block utility function for DRA&se given in Tablé.2 We employ
the modeling method idR, 44] to construct flexible load data. In particular, we multiphe base
utility by 0.8, 1.0, and 1.2 in time periods [1-8], [9-16],d{lL7-24], respectively42], to obtain the
utility functions for DRAS’ flexible loads over the schedudihorizon. The amount of flexible load (i.e.,
demand blocks) is assumed to be the same for all time sl@snihimum hourly power consumption
Is set to be zero, and the limits on load ramping up/down asarasd to be sufficiently large. The
minimum energy consumptioE{) of each DRAk over the scheduling horizon is set equaEfQale =
60% of its maximum energy consumption level (E@ =06x(14+1+2+2) x24=86.4 MWh)
[42].

We employ the GAMS/SCENRED to reduce scenarios by usingpdlckwardmethod [L07]. Con-
sidering the tradeoff between computation demand and nmadatcuracy, we choose 30 from 2000
generated scenarios, which results in sufficiently smaiatian of the objective functiom(.#"). This
is done by conducting some sensitivity analysis which atgresented in this study due to the space
constraint. All the MILPs are solved by using the GAMS/CPLEXa computer using Windows 8, In-
tel Core i5 33 GHz Processor, and 8 GB RAM. For the base case, wielset 10, the risk parameters
B anda are set equal to.@ and 09, respectively.

5.7.2 Numerical Performance Analysis

Figs.5.3(a) 5.3(b) 5.3(c)show the Pareto fronts for the cost allocation problem whewavy the risk
parameteg, flexible load scaléfcale, and penalty pric@ P, respectively. Each obtained Pareto front
describes the tradeoffs between the stability represdngatie worst-case cost saving valdeand

the fairness captured by the maximum deviation of the péagencost saving. For all cases, when

y = y™" then we havéd = 0 meaning that we reach the minimum valuedoihile still guaranteeing

to operate in the core whose definition is givef2r29). On the other hand, asreaches its maximum
valued™?*, which corresponds to the nucleolus as the minimum deviatithe percentage cost saving
among players, we achieves its maximum value ym?X,

These two extreme points in the Pareto front correspondetadlses where the cost allocation so-
lution x is either at the fairness core poigpf?", or the lexicographically optimal point, the nucleolus
0™, in the polyhedror¥’(v). These figures show that the proposed design enables useronies
multiple different Pareto-efficient solutions in the cofdlee underlying cooperative game. Moreover,
one can choose an operation point on the Pareto front withatiés stability-fairness tradeoff. Specif-
ically, for a certain desired value of the maximum deviatidrihe cost percentage saviggone can
determine the corresponding cost allocation vector wigheithievable value of the worst-case cost sav-
ing & being maximized. This demonstrates the flexibility and efficy of our proposed cost allocation
design compared to other existing designs such as the tusibased cost allocation.

Figure 5.4 illustrates the difference of the obtained allocation gextin the two extreme points.
Figure5.4(a)shows the performance of two allocation schemes in termtseofst savingostsaying (K)
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Figure 5.2 —Simulation data

for the base case, which is calculated as follows:

XV(A)

COStsaving (K) = 100%— i

(5.29)

wherex (%) is the expected cost that the DR#eceives in grand cooperation awn) is its indi-
vidual bidding cost. Figur&.4(a)shows that the gap between the maximum and minimum costgavin
in percentage among DRAs is minimized by the fairness cosealtcation vector while it is not op-
timized in the nucleolus cost allocation. Although botloedition schemes lie in the cor&(v) (both
haved > 0), they achieve different performances in terms of faisreasd stability metrics. In particu-
lar, the nucleolus allocatiom{= M) aims to maximize the worst case cost saving among all coadit
(the minimal satisfactionp™ by allocating less cost shares among DRAs in the worst-casiétion,
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which results in high deviation of cost saving in percentag®ng DRAsyM. On the other hand, the
fairness core allocation(= 0) aims to minimize the gap between the maximum and minimush co
saving in percentage among DRAs while ensuring the coreittonds just satisfied, i.e., it requires
the minimum satisfactiod > 0. This results in the minimized gg@"" with the low value o3, i.e.,
0 = 0, which is just enough to satisfy the core condition.

Figure 5.4(b) presents the cost shares among DRAs, i.e., the cost alocatictorx. It can be
observed that a small changexpcan result in a significant change dbsts,ying (K) Shown in Figure

5.4(a)sincev(.#) > v(k) and equationg.29 implies d°°5t;‘;zk‘"g(k) = —V\(,‘)lg). It also explains another
observation that for similar change in the cost shagethe DRAk with smallerv(k) has higher change

in the obtained cost saving. Figused(c)shows the individual bidding costs of DRAS, i.¢(k). There

are correlations between the evolutionsin both fairness core scheme and nucleolus scheme shown
in Figure5.4(b)and the individual bidding cost of each DRAK) shown in Figurés.4(c) In particular,

the DRA which has higher individual bidding cogk) tends to get more allocated cost valye

We now discuss the impacts of different parameters on twree points on the Pareto front,
namely the fairness cost allocation point (tH& Point) achievingy™" and the nucleolus cost alloca-
tion point (theMt point) achievingd™*. It can be observed that as any parame/fiarEcha,e, orAP
increasesy™" becomes larger, which shifts the Pareto front to the righte @ichieved™?* corre-
sponding to nucleolus cost allocation solution, howevaries differently as we vary these parameters.
Specifically, ag3, ES':cale, andA P increase, the decision making problems faced by the VPPtmHtid-
ding and cost allocation become more difficult. In particweith increasingB the bidding becomes
more risk conservative in utilizing available resourcesdanter uncertainties. Moreover, increasing
E" . tightens constraint5(5) which reduces the flexibility of flexible load and increasies amount
of load required to serve while increasiAd§j will stress the VPP’s bidding deviation between DA and
RT market.

In general, the shape and size of the c6i@) as well as the values ¢f"™ and 6™ are compli-
cated functions of different system and design parametuseover, different coalitionS, depending
on their available resources, can have different levelspiicts on the cost saving achieved via coop
eration. When the cooperation plays a significant role, uld¢te harder to distribute the cost saving
fairly for the DRAs while satisfying the core constraint. rdar bidding environment can also affect
the cooperation’s stability, which is captured 8Y#* where the larger value a¥™®* implies greater
cooperation benefits for the DRAS.

Figure5.5 compares the costs under cooperation and noncooperagoarses for the DRAs as
we vary different parameteiss, E;a,e, AP, andB*. In all cases, the cooperative bidding strategy
of DRAs results in smaller total cost than that due to the poperative bidding strategy taken by
each DRA. This cost reduction due to cooperation can be equdy thesubadditiveproperty of the
underlying cooperative cost gam®4]. By cooperation, DRAs can utilize available resourcesemor
efficiently to counter the uncertainties in electricityqariand renewable energy, and to reduce energy
imbalance between DA and RT dispatch, which leads to costctemh.

Adding new DRAs to an existing group of cooperative DRAs clzo affect the cooperation gain
significantly, which is illustrated in Figur&.6. Since newly added DRAs may have different profiles
of resources, they can have positive or negative impacth@mstability and fairness of the existing
cooperative DRAs, e.g., decreasing or increasf§ and ™. Mathematically speaking, adding a
new DRA will double the number of stability constraints tklafine the cor&’(v). It also illustrates
the main characteristic of the LP game, i.e., totally badahevhich means the core is always nonempty
when adding or removing DRAs to/from the VPP. Since the pseddramework enables us to com-
pletely characterize the Pareto fronts under differeréssiaf DRAs coordinated by the same VPP,
admission control decisions for DRAs, which are interegtgdining an existing group of cooperative
DRAs, can be made to achieve the best desirable performémparticular, if one wishes to operate
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the VPP at a specific value gfthen the achievable values &fon the Pareto fronts corresponding
different values oK can be determined. This can be used to optimize the numbeyapfecative
DRAs to achieve the maximum value &f

The market model considered in this study is unidirectid2d] 29]. However, some markets
allow bidirectional power constraint, which grant DRAs thygportunities to sell their surplus energy
to further reduce the costs. To study the impact of bidios@l constraints on power exchange, we
relax the flexible load constrains6) by reducingESfCale from 60% to 0%, which reduces the total
load demands of each DRA, and multiply the forecast valudgbenbase case WitRES,,. by 1.1
and 14 respectively, which increases the generated renewaklgiof all DRAs. This results in
increasing the chance that DRAs have surplus energy at sora¢ in scenarios to sell back to the
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market. Three case studies are conducted, i.e., case Eggﬂp: 60% RES..,. = 1.1, case 2 with
el = 0%, RES¢.;e = 1.1, and case 3 WitlESfCale = 0%, RESs.ae = 1.4. Figure5.7 shows the gap

bsecti/lSeen the bidirectional and unidirectional market baséividual bidding cost of DRAs and Figure
5.8 shows the obtained Pareto fronts in three case studies. ahefdgwo Pareto fronts is larger when
there are more chances of surplus energy scenarios. In casdiréctional power constraint has no
impact there is no energy surplus scenarios, the gap showigime 5.7 is 0 and both Pareto fronts
in Figure5.8(a)overlap. In case 2, participating in the bidirectional neditkas a little positive impact
on cost reduction as shown in Figuser, which results in slight difference between two Pareto tson
shown in Figureb.8(b) In case 3, the benefit of participating in the bidirectiomalrket is significant
as shown in Figur®.7, which results in the bigger gap between two Pareto frontsvehn Figure
5.8(c)
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Figure 5.5 —Cost saving due to cooperation

n Analysis

We study the impact of several modeling aspects on the catipntperformance such as the number
of scenariosi{S), the number of DRAsNK), the number of Pareto pointsi(+ 1), and the complexity

of DRA's model.

Table5.3illustrates the impacts of number of scenafisand number of DRASIK on the com-
putation time. Part A shows that as the number of scenarasases, the computation time increases
significantly due to the increasing size of the MILP basedudblem while the number of iterations
remains stable. In fact, since uncertainties can be capiwedi with NS=30 scenarios, computation
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accuracy of sub-problem can be guaranteed while we can anaithie reasonable computational com-
plexity with the relatively small size of the MILP. Part B denstrates that as the number of DRMS
increases, the number of iterations and computation ticrease significantly. This is because of the
increasing size of the underlying MILP sub-problem and tieeéasing number of binary variable3
We also present the number of iterations required by oulgdesmnd the original number of stability
constraints ¥X—2 (without using the row constraint method), which demaaiss the huge computa-
tion reduction. In particular, we calculate the ratio bezwéhe number of iterations, which equals the
number of coalition$Sto be explored (the number of sub-problems (SP1, SP2, anpt&B8 solved)
over the original number of stability constrainf$2-2 as follows:

ratio = % (5.30)

It can be observed that this ratio can be reduced significéfnidm 0.044 to 129x10~* for the
studied cases). This confirms computation efficiency of tlop@sed design in dealing with larger-
scale VPP settings in term obmputation reduction.e., the number of MILP sub-problems we need
to solve will not increase as exponentially as the originahber of stability constraints¥%—2.

Beside the increasing number of binary variatﬂ%sthere are two other factors significantly af-
fecting the computation time in the larger-scale VPP sgttir., the chosen number of Pareto points
and the DRA's model. Tablb.4 shows that when we relax these settings, the computatian ¢an
be reduced. In practice, we only need to determine a singdeatipg point on the Pareto front so we
only need to find three cost allocation solutions (i.e., #ieness core, the nucleolus, and the desired
allocation solutions). In particular, after solving preyis (P1) and (P2), the VPP can obtgif), Vmax.
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anddmax. The VPP can then choose an appropriate valug'oh (5.20, which specifies the problem
(P3) to be solved to determine the final cost allocation gmiut
As mentioned above, whelK increases, the dimension @f(v) increases, and the number of
core stability constraint®b(15 increases exponentially. This results in larger numbéeoétions, i.e.,
more MILP based sub-problems to be computed. Moreoverjrapthe MILP sub-problem at each
iteration takes longer time for larger valueMiK. Hence, it is more time consuming to compute a large
number of points on the Pareto front whiK is large. Note, however, that we have computed many
points on the Pareto front (e.dV1+1=11 points) to illustrate the stability-fairness traded¥br most
practical applications, we might not need to obtain too mRareto points to make a final decision on

the desirable operating point.
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Table 5.3 —Computation Report

Part A: Impact of number of scenaritd$ (NK = 10)

NS 30 50 100
lterations X -2 |41 1G | 42 16 41 1C
Total computation 665 10759 47628

time (s)
Average computation 60 266 4330
time per point (s) | (0.017h) (0.063h) (1.2h)

Part B: Impact of numbe

r of DRANK (NS = 30)

NK 10 15 20
lterations K2 |41 16 |74 327x10*| 136 16
Total computation 665 32135 54346

time (s)
Average computation 60 2921 4941
time per point (s) | (0.017h) (0.81h) (1.37h)
lteration reduction | 0.044 0.0038 1.29%x 1074

ratio

Table 5.4 —Impact of number of Pareto points and complexity()

Cases Number of iterationg Computation time (s
Smaller number (3 57 7327
of Pareto points
Remove flexible 82 1077

load constraints

The computation time of the sub-problem also depends on #rkanbidding problem that defines
v(S), which in turns depends on the complexity of the DRA's modelparticular, the modeling and
consideration of each DRA's component will affect the nunmdfeconstraints and variables considered
in the MILP-based sub-problend.@5. In this study, to illustrate the applicability of the paged
cost allocation in several potential applications, we hawesidered the heterogeneous setting where
individual DRAs can have different models of nonflexibledp#exible load, renewable energy, and
load reduction. This results in increasing complexity fog formulation ofv(S) and the MILP based
sub-problems. The proposed algorithm can be applied fositihler setting when some of these
components are excluded, e.g., profit sharing for renewaiegy portfolio 75|, cost allocation for
load aggregators such as EV clusters in an EV aggrega#pr ¢r considering a simplified energy
aggregation model to reduce complexiB8]. In particular, Table5.4 shows that the computation
time with NK = 20 andM = 10 can be reduced significantly when the constraints of flexdde are
removed.

5.8 Extensions and Future Work

5.8.1 \Verifying The Existence of The Core

There are several smart grid applications to be consideredr future work, which can be modeled
as a LP-game such as cooperation of wind power produzérd 12, the aggregation of several EV
clusters that form an EV aggregat@4]. For these applications, the market bidding optimization
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problems are also modeled as two-stage stochastic linegrggnming problems24, 75]. In these
cases, the state of the art modeling of uncertainties (taioées of wind generation, arrival time of
EV) or new market frameworks (multiple trading flooi&9], regulation market integratior2fl]) can

be incorporated into these designs. In some applicatig8scan be modeled by a nonlinear program
(NLP). Extension of LP-games considering some nonlineastaints and objective functions, which
is still balanced, is reported by P. Dubey and L.S. Shaplg¥4&]. In addition,v(S) can be modeled
by an MILP. For example, the consideration of demand respaostracts43], thermal generators
[31, 43], battery energy storag8]], detailed demand response strategi3,[can introduce binary
variables, which turns the formulation efS) into an MILP. For design scenarios where we cannot
conclude the balance of the underlying game based on thedr(®) [55], we can verify the existence
of the core by simply solving the following LFB4):

(P4)
raT)l!(D () (5.31)
s.t: ngkv(%/) <V(S)+w, VS (5.32)
KE
NK
Z X =1,X>0,00>0. (5.33)
K=1

If we have w* = 0 after solving (P4),%(v) is nonempty. Otherwiseu{* > 0), the condition
S xV(%£) < Vv(S) cannot be satisfiedS and ¢’ (v) = 0 [54]. Problem (P4) can be solved by using
keS

a similar iterative computation procedure based on the mwsitaint generation approach. Detailed
discussions on how to solve (P4) and to verify the core’sterie can be found irbf].

If the core is nonempty, we can apply the proposed cost dltwtdirectly. If the core is empty, we
can use the relaxed versions of the core suckresre and minmax core concep&4[ 98]. The new
solution concepts still define polyhedron of payoff vectarhich implies certain tradeoff in the cost
allocation design proposed in this study is still importaAihother potential approach is to stabilize
the game via taxation as players or subset of players arel f@omperation fee), which has been
investigated in the literatur®5b, 147, 148. As mentioned above, sinagS) can be modeled as MILP
or mixed integer nonlinear program (MINLP) and the game canitbalanced, designing an efficient
taxing scheme to ensure the existence of the core is challgagd it will be studied in our future
work.

5.8.2 Computation Improvement

The sub-problems studied in this study aim to identify thalition S* that potentially violates the core
condition the most. However solving these MILP based suipms (SP1-3) can be time consuming.
The sub-problems can also be MINLP depending on specific hmgdand application requirements.
One approach to reduce the computation burden is to solge the-problems by using evolutionary
algorithms such as particle swarm optimization with faghpatation time. Another approach is to find
the suboptima8 instead of optima$&*. Intuitively, because the set of coalitions is limited, weaght
just need to find aiolated coalition Sto move the allocation vector towards the feasible region of
the original problems instead of identifyinige most violated onéTlhis approach may require a larger
number of iterations but the computation time for each itenais reduced, which can significantly
reduce the total computation tim&49. We would like to consider these research directions in the
future work.
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5.9 Conclusion

In this study, we have presented a computationally efficomst allocation design for cooperative
DRAs based on the cooperative game core concept. We havesawpo exploit the nonempty core
property of the underlying balanced game and develop a jectibe optimization framework that
strikes the balance between the allocation stability airddas. We have employed tlgeconstraint
and row constraint generation methods to successfullytagighe Pareto front of the cost alloca-
tion solutions with manageable computation complexitye phoposed design can efficiently allocate
percentage quota of total bidding cost to individual DRASIevAchieving desirable stability-fairness
trade-off.



Chapter 6

Conclusions and Future Works

Active demand-side management is an important researat itoghe smart grid domain which can
help improve operation efficiency and to enable increagsitegration of renewable energy in the power
grid. Our research in this dissertation aims at tacklingeonajor challenges related to the demand-
side management where we focus on the design, analysisegatbgment of concrete solution frame-
works to solve decision making problems concerning sedadand-side smart grid entities ranging
from the small-scale residential level to the large-scglgregator level. This chapter summarizes our
key research contributions and draws some potential fuas®arch directions.

6.1 Major Contributions

In this dissertation, we have studied three important datimaking problems in smart grid’s demand-
side management. Our research has resulted in three jopmbétations 19, 28, 49] and several
corresponding conference papet8,[34, 96, 150-152.

In the first research problem, we address the energy managefrzesmall-scale smart grid’s entity,
namely, the smart homd9]. Specifically, the energy scheduling design of the smanmiéequipped
with solar assisted thermal load is conducted considehegeal-time pricing scheme. Toward this
end, the energy scheduling problem is formulated as a goiliro-stage stochastic programming prob-
lem where the optimal control actions at each time slot aygemented in the rolling manner. The
propose framework can minimize the energy payment costagtee system constraints while exploit-
ing the positive gain of the energy coupling of the solartarstorage and HVAC system to improve
the system energy efficiency considering the uncertaimtiesnewable energy and electricity price.
Numerical studies show that a significant energy cost gamare than 100% can be achieved by the
proposed design compared to the conventional water heaitt ¢ VAC system.

In the second research problem, we study the pricing desitireidistribution network which mo-
tivates demand-side entities such as smart homes to patgdn the demand response program under
the Load Serving Entity (LSE) mode2§]. In particular, we formulate the proposed pricing design
problem as a bilevel program where the LSE determines tlee pnd the demand response aggrega-
tors respond to that price signal. Given the lower-levebpgm is linear, we propose to transform
the underlying bilevel optimization problem into an eqléra single-objective mixed integer linear
program (MILP) by using the optimal KKT conditions, the Rory-Amat formula, and the strong du-
ality theorem of linear programming. The obtained MILP camsblved efficiently by using available
commercial solvers. Numerical studies show that our pregaesign can provide a win-win solution
for both LSE and flexible load aggregators.

In the last research problem, we study the cost sharing gmolidr cooperative demand-side re-
source aggregators (DRASs), each of which aggregates reutgépources including distributed renew-
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able energy, demand responses services, non-flexible doadflexible load49]. Specifically, these
DRAs are coordinated by a Virtual Power Plant (VPP) to jeitiid in the short-term two settlement
electricity market where the problem is addressed by usiagbre concept in the cooperative game
theory. Since the core can contain many cost sharing sokjtise need to choose an appropriate so-
lution inside the core that balances between stability airdéss. Solving the underlying bi-objective
optimization problem is highly complex because of the exgmiial number of implicit constraints re-
lated to the core definition. We develop a computation-efficalgorithm based on the combination of
g-constraint and row constraint generation methods to cocithe Pareto front without calculating all
coalitions’ function values. Numerical studies confirm #ignificant reduction of computation time
compared to direct computation approach and a great costigihi respect to the conventional system
with non-cooperative DRAs due to the proposed design.

6.2 Future Research Directions

6.2.1 Multi-Agent System Approach for Smart Grid Energy Management

One potential direction is related to efficient cooperati@signs for emerging smart grid entities in
the deregulated electricity market. This potential redeavill aim to answer some importation ques-
tions: how to ensure that different smart grid entities avafe efficiently, what should be the good
mechanism design for their coordination, how to divide tti@@ved payoff, how each entity can learn
to coordinate efficiently in a decentralized manner. Thés#lenging research issues can be addressed
by employing the Multi-Agent Systems (MAS) approach. Intf&d¢AS in conjunction with machine
learning (ML) techniques provide efficient approaches tdanstand various interesting and complex
interactions in the smart grid under the deregulated andrdeadized electricity market.

There are several sub-topics and possible research isshedurther considered in this direction.
In the short term, | will complete my ongoing work on the prafiist allocation in power systems
where the notorious complexity of the cooperative gamdigtsm concepts (the core, nucleolus, Shap-
ley values) will be addressed. In the longer term, | woulé li investigate how efficient coalitions
among cooperative entities should be formed in the genemgaration game model where the super-
additive property may not hold, e.g., there is the non-igggle computation and communication cost
for forming a large coalition. Dynamic programming, reirdement learning, mechanism design, and
other methods will be explored to address these reseanebsisEurthermore, decentralized coordina-
tion design of multiple smart grid entities will be invesitgd by employing the agent based simulation
and Bayesian game theory.

6.2.2 Machine Learning for Decision Making Problems in Smat Grids

In the past research, we have employed the optimization@oyecative game theory to solve decision
making problems for various smart grid entities. Howevensderation of different system uncertain-
ties such as renewable energy generation and electriongnitays an important role in efficient smart
grid’s decision making. Here, employment of machine leagrtechniques to process certain input
data of decision making problems is a good research direcfidoreover, machine learning can be
employed to address the power system security assessrseat iBoward this end, complex network
and physical models of the power system dynamics should ii&dered in the design of the machine
learning based security assessment instead of using nedelaiming in a black box approach.

Using ML for reducing computational complexity can be cdesed in my future research. For
example, the game theory or bilevel optimization methodftsroused to model the cyber-physical
attack in the smart grid. As discussed in chapter 4, the dileptimization can be used for dynamic
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pricing design even though design of fast algorithms toesatwderlying bilevel optimization problems

can be challenging. Toward this end, the neurodynamic agaition approach can be employed to
transform the game or optimization theoretic model of thieetyphysical attack and pricing design
problems into the dynamics of neural networks, which caemimlly tackle these underlying problems
with manageable computation complexity. Development skerble learning methods for smart grid
decision making problems is another interesting reseastleifor which we have obtained some initial
results L51].

6.3 Publications

Journals

[J1] Hieu Trung Nguyen and Long Bao Le, “Bi-objective cosibehtion for cooperative
demand-side resource aggregataiSEE Trans. Smart Grid(to appear).

[J2] Duong Tung Nguyen, Hieu Trung Nguyen, and Long Bao Leyri@mic pricing design
for demand response integration in power distribution oet®,” IEEE Trans. Power
Syst.vol. 31, no. 5, pp. 3457 — 3472, Jan. 2016.

[J3] Hieu Trung Nguyen, Duong Tung Nguyen, and Long Bao Lenelgy Management for
Households With Solar Assisted Thermal Load ConsideringeR@ble Energy and Price
Uncertainty, ” IEEE Transactions on Smart Grid, vol. 6, nopd. 301-314, Jan. 2015.

Conferences

[C1] Hieu Trung Nguyen and Long Bao Le, “Bidding Strategy Yartual Power Plant With
Intraday Demand Response Exchange Market Using StochHstgzamming,” inProc.
IEEE ICSET 2016Hanoi, Vietnam, Nov. 201&8est Paper Award).

[C2] Hieu Trung Nguyen and Long Bao Le, “Minmax profit sharisgheme for cooperative
wind power producers ,” iRroc. IEEE ICSET 201,64anoi, Vietham, Nov. 2018rgvited
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