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Abstract 

The clustering of catchments has been important for prediction in ungauged basins, model 

parameterization and watershed development and management. The aim of this study is to 

explore a new measure of similarity among catchments, using a data depth function and 

comparing it with catchment clustering indices based on flow and physical characteristics. A 

cluster analysis was performed for each similarity measure using the affinity propagation 

clustering algorithm. We evaluated the similarity measure based on depth-depth plots (DD-

plots) as a basis for transferring parameter sets of a hydrological model between catchments. 

A case study was developed with 21 catchments in a diverse New Zealand region. Results 

show that clustering based on the depth-depth measure is dissimilar to clustering on 

catchment characteristics, flow, or flow indices. A hydrological model was calibrated for 21 

catchments and the transferability of model parameters among similar catchments was tested 

within and between clusters defined by each clustering method. The mean model 

performance for parameters transferred within group always outperformed those from outside 

the group. The DD-plot based method was found to produce the best in-group performance 

and second-highest difference between in-group and out-group performance.  
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1 Introduction 

The organization and clustering of catchments has been important for prediction in ungauged 

basins, model parameterization and watershed development and management. If we could 

transfer parameters from one catchment to other similar catchments, this would avoid the 

need to calibrate the model everywhere, saving time and computer resources and enable 

model use in ungauged catchments. However, even if precipitation, vegetation or other 

catchment characteristics are similar, the hydrological response of catchments can be very 

different (Beven 2004). The hydrological response depends on various known and unknown 

physical and climatic characteristics of the catchment. Hence, defining the similarity between 

two catchments is a complex multivariate problem. In higher dimension data, many attributes 

may be irrelevant; hence grouping of similar catchments based on many signatures can be a 

very difficult task. Even today there is no robust definition for similarity between two 

catchments, due to our limited knowledge about very complex nonlinear hydrological 

phenomenon (Wagener et al. 2007, Ali et al. 2012).  

Using a similarity measure, we can primarily cluster catchments. This is important for many 

reasons, for example, for prediction in ungauged catchments, model parameterization and 

regulation or management of watershed development. Catchment clustering into groups 

based on hydrological response or catchment characteristics is the first step toward 

regionalization of flow characteristics. In addition, policies for watershed development in one 

catchment might be transferable to other catchments in that group. McDonnell and Woods 

(2004) defined the basic needs of any catchment clustering scheme. They advocated that “a 

catchment hydrology clustering system would provide an important organising principle, 

complementing the concept of the hydrological cycle and principle of mass conservation”. 

Clustering can also help in choosing appropriate models for poorly understood hydrological 
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systems. There continue to be many studies (Ali et al. 2012, Cheng et al. 2012, He et al. 

2011, Ley et al. 2011, Post and Jakeman, 1999, Samaniego et al. 2010, Wagener et al. 2007, 

Sawicz et al. (2011)) on catchment clustering, but no silver bullet exists to specify relevant 

measures of catchment similarity. Catchments can be clustered based on their characteristics, 

fluxes or signatures.  

1.1 Methods for catchments clustering 
Despite many studies in the field of catchment clustering, hydrology does not yet possess a 

generally agreed upon catchment clustering system (Wagener et al. 2007). Recent examples 

include a catchment clustering scheme based on a local variance reduction method (He et al. 

2011).  Ley et al. (2011) used a self-organizing map (SOM) to define catchment similarity 

based on catchment response behaviour and characteristics. They found that similarity based 

on flow characteristics overlapped 67 % with similarity defined by catchment characteristics. 

In another study by Thod (2013) where a catchment clustering was conducted based on 

characterisation of streamflow and precipitation series using SOM. The study found that 

inclusion of information on the properties of the fine time-scale streamflow and precipitation 

time series may be a promising way for better representation of the hydrologic and climatic 

character of a catchment. Samaniego et al. (2010) proposed a dissimilarity measure that is 

estimated from pairwise empirical copula densities of runoff and applied for streamflow 

prediction in ungauged catchments. Sawicz et al. (2011), conducted an empirical analysis of 

hydrologic similarity based on catchment function in the eastern USA for catchment 

clustering. They defined six signatures from precipitation-temperature-streamflow and used a 

Bayesian clustering scheme to separate the catchments into nine homogeneous clusters. They 

found that most of the clusters exhibited some degree of connectivity suggesting that spatial 

proximity is a good indicator of similarity. In a series of three papers about comparative 

assessment of prediction in ungauged basins, in part 1 and 2, Parajka et al. (2013) and Salinas 
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et al. (2013) assessed the regionalisation performance of hydrographs and hydrological 

extremes on the basis of a comprehensive literature review of thousands of case studies 

around the world. In a continuation, Viglione et al. (2013) assessed prediction performance of 

a range of runoff signatures for a consistent and rich dataset by rationalised rainfall-runoff 

model and Top-kriging methods in Austria. Their comparative assessment showed that, in 

Austria, the predictive performance increases with catchment area for both methods and for 

most signatures, it tends to increase with elevation for the regionalised rainfall–runoff model, 

while the dependence on climate characteristics is weaker. More details about prediction in 

ungauged basin can be found in the review paper of Hrachowitz et al. (2013). 

1.2 Catchment clustering for regionalisation 
The aim of catchment clustering is to define hydrologically homogeneous groups so that 

information can be transferred between catchments of the group and the parameters of 

hydrological models from one catchment can be transferred to other catchments.   

1.2.1 Examples of methods 
The example to define homogeneous hydrological groups and transfer the model parameters 

within the group can be seen in many studies. e.g. He et al. (2011) presented a catchment 

clustering scheme based on a local variance reduction method with model performance as a 

similarity measure. In a study covering 90 natural watersheds across the Province of Ontario, 

Canada, Razavi and Coulibaly (2013) found that  nonlinear clustering methods like Self 

Organizing Maps (SOMs), standard Non-Linear Principal Component Analysis (NLPCA) 

and Compact Non-Linear Principal Component Analysis (Compact-NLPCA) can be robust 

tools for the clustering of ungauged catchments prior to regionalization. Merz and Blöschl 

(2004) examined eight regionalization methodologies in 308 catchments in Austria. They 

found that the best regionalization methods are those that rely on spatial proximity: either 

using the average parameters of immediate upstream and downstream neighbours or 
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regionalization by kriging. In a similar study, Parajka et al. (2005) found that the kriging and 

similarity approaches where parameters from immediate neighbours are transferred to 

catchment of interest performed best. A comprehensive overview of regionalization 

methodologies and different approaches can be found in Blöschl (2005), Vogel (2006) and 

Wagener et al. (2004). 

1.3 Contribution of this paper 
In this paper, we propose a new non-parametric similarity measure for catchment clustering, 

based on the concept of data depth function. The data depth function is a robust tool to rank 

multivariate datasets (Dutta and Ghosh 2012). We use Depth-Depth plots (DD-plots; 

described in Section 2.2) to define catchment similarity based on catchment response 

behaviour. The major advantage of a DD-plot based catchment similarity measure is that it 

uses the full time series instead of statistics of the series, where the latter loses information 

through the averaging effect. Our proposed method uses the whole dynamics of the series. 

For comparison, we also identify hydrologically similar catchments based on physical 

catchment characteristics and flow indices. We then use each similarity measure to identify 

groups of similar catchments using the recently developed clustering algorithm called affinity 

propagation (AP) (Frey and Dueck  2007). The advantage of AP clustering is that in addition 

to partition of the objects of a dataset into groups of similar objects, it also identifies a single 

object that is most representative of each group. In hydrological model parameter transfer 

applications, this property is particularly useful as we can calibrate the model for this 

representative catchment, and then transfer the model parameters to other catchments in that 

group. We compare the catchment grouping as well as the success of parameter transfer 

within group, using the data-depth similarity measure vs. similarity measures based on 

physical catchment characteristics or flow indices.   

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
5:

51
 1

2 
A

pr
il 

20
16

 



6           
 

Twenty-one catchments from the Bay of Plenty region in the North Island of New Zealand 

were used in this study. The reason for choosing this region is that the catchments have a 

wide range of different topographic properties, response behaviour and geology; in particular 

part of the region has highly damped flow behaviour due to pumice-rich volcanic soils.  

This paper is organized as follows: After the introduction, the methodology is presented in 

Section 2. The case study and model calibration are introduced in Section 3. The results are 

discussed in Section 4. In the final section conclusions are drawn. 

2 Methodology 

In this section, we first define the data depth function and then show how it can be used to 

define catchment similarity via a DD-plot. We then describe the affinity propagation (AP) 

clustering method for catchment clustering.  

2.1 Data Depth Function  

Data depth is a quantitative measure expressing how central (or deep) a point is with respect 

to a dataset or a distribution. This gives us a central outward ordering of multivariate data 

points and gives rise to simple new ways to quantify the many complex multivariate features 

of the underlying multivariate distribution (Li et al. 2012, Liu et al. 1999). A depth function 

was first introduced by (Tukey 1975) to identify the centre (a generalized median) of a 

multivariate dataset. Several generalizations of this concept have been defined (Barnett 1976,  

Liu 1976,  Liu et al. 2006, Rousseeuw and Struyf 1998, Zuo and Serfling 2000). Data depth 

functions have been applied in several fields of non-parametric multivariate analysis (Andrew 

et al. 2000, Hamurkaroglu et al. 2006, Liu, 1995, Liu and Singh 1993, Messaoud et al. 2004, 

Serfling 2002, Stoumbos et al. 2001).  Application of the data depth function is relatively new 

in the field of water resources. It has been used in the field of regional flood frequency 

analysis (Chebana and Ouarda 2008, Wazneh et al. 2013a, Wazneh et al. 2013b), depth-based 
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multivariate descriptive statistics in hydrology (Chebana and Ouarda 2011b), regionalization 

of hydrological model parameters (Bardossy and Singh 2011) and robust estimation of 

hydrological model parameters (Bárdossy and Singh 2008), defining predictive uncertainty of 

a model (Singh et al. 2013), and in selection of critical events for model calibration (Singh 

and Bárdossy 2012).  For more detailed information about the data depth function and its 

uses in field of water resources, please refer to Chebana and Ouarda (2011a), Chebana and 

Ouarda (2011c), Guerrero et al. (2013), Krauße and Cullmann (2009) and Singh and 

Bárdossy (2012).  

 Several types of data depth functions have been developed, e.g. half-space, L1 and 

Mahalanobis depth functions. The half-space data depth function was used in this study 

because it is a non-parametric, satisfies all the properties of the data depth function and it is 

robust in calculation.  

Formally, the half-space depth of a point p with respect to the finite set X in the d 

dimensional space is defined as the minimum number of points of the set X lying on one side 

of a hyperplane through the point p. The minimum is calculated over all possible 

hyperplanes. Formally, the half-space depth of the point p with respect to set X is: 

   (1) 

Here  is the scalar product of the d dimensional vectors, and nh is an arbitrary unit 

vector in the d dimensional space representing the normal vector of a selected hyperplane. If 

the point p is outside the convex hull of X then its depth is 0. The convex hull of a set of 

points S is the smallest convex set (e.g. convex polygon in 2D) which encloses S. An 

example of a convex hull is given in Figure 1. Points on and near the boundary have low 

depth while points deep inside have high depth. One advantage of this depth function is that it 

is invariant to affine transformations of the space. This means that the different ranges of the 

( )|)}0,{(||),}0,{min(|min)( <−∈>−∈= pxnXxpxnXxpD hh
n
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variables have no influence on the calculated depth. In this study, we normalised the data 

depth between 0 and 1 by dividing the depth with half the number of total points in the 

convex hull. 

  Discharge, Antecedent Precipitation Index (API) or discharge derived indices could be used 

to define catchment similarity: all of these help to define the range of dynamic behaviour of a 

catchment. For simplicity, denote the selected series (discharge or indices) as X (t).  

Considering all sets of d consecutive time steps leads to a d-dimensional set which is defined 

by the following equation 

𝑋𝑑(𝑡) = {(𝑋(𝑡 − 𝑑 + 1),𝑋(𝑡 − 𝑑 + 2), … … .𝑋(𝑡)) 𝑡 = 𝑑… … . .𝑇                          (2) 

where T is the total number of observation time steps available. For our case, data in hourly 

resolution were available.  After testing different values of d, we selected d=4 hrs to reflect 

the dynamics and memory of the catchment. The value of d can be selected depending on the 

catchment (sensitive to catchment area, shape and flashiness) and it can only be found on trial 

based method. Based on the authors experience in different catchments, d=4 (up to 4 time 

step) is a typical recommendation.   The following section describes how the data depth 

function can be used to define the catchment similarity based on catchment response 

behaviour. 

2.2 DD-plots and its application for catchment clustering using catchment 

response behaviours 

Many useful tools in nonparametric multivariate data analysis have been developed based on 

the concept of the data depth function (Li et al. 2012).  Figure 2 shows how the data depth 

function and the convex hull can be used for defining similarity between catchments. If the 

convex hulls of two catchments characteristics are similar, it suggests that they have a similar 
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range of dynamic behaviour. This does not take into account the range of the variable, so it is 

only appropriate for normalised flow indices.   

To visualise the similarity of the datasets and their convex hulls in high-dimensional space 

(4D in our case), we use the depth-depth-plot (Liu et al. 1999). The DD-plot is a simple 

graphical tool for comparing two given multivariate samples or distributions. A d-

dimensional dataset D± (Eq. 2) corresponding to catchment ± is taken, and the depth of each 

element of D±   is calculated with respect to D± and also to the convex hull of dataset D²  

from catchment ² . The data depth of D²  with respect to D± is also calculated. The DD-plot is 

then created by plotting, for each data point, the depth with respect to D± against the depth 

with respect to D² .  

Let x be any point in the d-dimensional space. The depth of the point is calculated with 

respect to the set D± and D² . This pair of depths is then plotted in a simple two dimensional 

graph. 

𝐷𝛼(𝑥) ,𝐷𝛽(𝑥)                           (3) 

 The calculations are restricted to x axis which are in either D± or D² . If the two set are very 

different than a point which is deep in one set is not deep in the other. Thus DD-plot is 

expressing to what extent D sets overlaps.     

Formally, let ± and ²  be two distributions on Rd and D (.) the depth function defined in Eq. 1. 

Then the Depth-Depth plot for two distributions can be defined as   

𝐷𝐷(𝛼,𝛽) = {𝐷𝛼(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝛼 }𝑈 �𝐷𝛽(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝛽�                               (4) 

A DD-plot is a simple graph on the plane regardless of how high the dimension of the data is 

(Li et al. 2012, Liu et al. 1999). Differences in location, scale, skewness or kurtosis between 

the two distributions will give different patterns of the DD-plots (Liu et al. 1999). Our 

clustering approach based on DD-plots is nonparametric as we do not fit any distribution to 

the data series. If the two given sets are identical, then the DD-plot is a segment of the 1:1 
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line, whereas deviations from this diagonal line indicate differences between the two sets. 

Hence, if the DD-plot of two catchments is close to the diagonal line, we assume the 

catchments have similar response behaviour. A Q (t) vs Q (t-1) (d=2) plots for two sample 

catchments ± and ²  is shown in Figure 3(a), while the corresponding Q (t), Q (t-1) and Q (t-2) 

(d=3) plots for the same catchments are shown in Figure 3(b). A DD-plot where d=4 is given 

in Figure 3(c). Figure 3(a) and Figure 3(b) summarise the flow dynamics of the catchment in 

2 and 3 dimensions where we can see that catchments ± and ²  have quite similar behaviour. 

In Figure 3(c), the DD-plot summarises the 4 dimensional relationship between flow 

dynamics of catchment ± and ² . To summarise the flow dynamics of catchments, most of the 

time we need to visualise higher dimensions. A DD-plot can be used for plotting any data 

dimension in the two dimensional plane. In this study, we made the DD-plot using 4 

dimensional flow data.  

To make an objective clustering using DD-plot, we plotted DD-plots pair wise for all possible 

combinations of catchments. We chose to calculate the area of the convex hull of the DD-plot 

as an indicator of similarity, i.e. a smaller convex hull implies that the points are closer to the 

diagonal and thus the catchments are more similar. Based on this indicator, we can rank pairs 

of catchments from most similar to least similar. To make a systematic clustering we then 

used the area of the convex hull of DD-plots as the similarity matrix for a clustering 

algorithm. DD-plot based clustering has advantages over other clustering based on flow 

indices, as it can use high dimensional series of flow values and hence better represent the 

dynamics across multiple time steps.  

To illustrate the method we took a sample from two bivariate distributions: bivariate normal 

and bivariate Cauchy. We then made two DD-plots: The first using two random samples of 

500 points from the same distribution (bivariate normal) and the second using random 

samples from two different distributions (bivariate normal and bivariate Cauchy)(Figure 4). It 
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is clear from the figure that the divergence from the diagonal line is greater for the second 

DD-plot. To quantify this we calculate the area of the convex hull of the points. The area of 

convex hull from same distribution (Figure 4(a)) is 0.043 whereas the area of the convex hull 

from two different distributions (Figure 4(b)) is 0.082 indicating greater dissimilarity. The 

same concept applies for two hydrologically similar or dissimilar catchments. The area of 

convex hulls from DD-plots used as a similarity measure with a clustering algorithm is 

described in the next section.  

2.3 Catchment grouping using clustering  

2.3.1 Catchment clustering 

Clustering is the process of classifying objects into different groups based on their similarity. 

Many clustering methods are agglomerative, i.e. they start by defining small groups. Then 

they proceed based on a fusion technique, by combining objects with objects or with groups, 

or groups with groups. The technique can be displayed by a dendogram where the vertical 

axis shows the level of fusion. There are many agglomerative clustering methods available. 

In this study we used AP clustering (Frey and Dueck 2007). An advantage of AP clustering is 

that it both partitions the objects of a dataset into groups of similar objects, and identifies a 

single object (the “exemplar”) that is most representative for each group. Exemplar-based AP 

clustering provides an additional advantage for finding automatically the right number of 

clusters (Bodenhofer et al. 2012).  In hydrological model parameter transfer, the exemplar 

can play an important role. We can calibrate the model for the most representative catchment 

of the group (the exemplar), and then transfer the parameters to other members of the group.  

AP clustering does not need the user to define the number of clusters prior to the clustering. 

The designers describe the method as follows: “Each object in a dataset is considered as a 

node in a network; real-value messages are recursively transmitted along the edges of the 

network until a good set of exemplars gradually emerges. At each iteration, the magnitude of 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
5:

51
 1

2 
A

pr
il 

20
16

 



12           
 

each message reflects the current affinity that one object has for choosing another object as 

its exemplar, hence the term affinity propagation” (Ali et al. 2012, Frey and Dueck 2007).  

AP simultaneously considers all the data points as possible exemplars, exchanging real-

values message between them until a high-quality set of exemplars and cross ponding cluster 

emerged. AP finds clusters on the basis of maximising the total similarities between data 

points and their exemplar (Dueck 2009).  The R package “apcluster” (Bodenhofer et al. 2012) 

was used in this study. The square similarity matrices of mutual pairwise similarities of data 

vectors  were computed using negative square distance, i.e. given distance d, the resulting 

similarity is computed as S = -dr. we used r=2 to obtain the negative square distance as 

described in (Frey and Dueck 2007). A valid distance measure should be symmetrical and 

obtain its minimum value, usually zero, in case of exact similarity. They used Euclidean 

distance as the distance between two data samples. 

In this study we classified the catchments based on the following variables: (1) DD-plots 

based on discharge, (2) flow duration curve indices, (3) flow indices, (4) and catchment 

properties. To classify based on flow duration curve, we fit a two parameter (shape and rate) 

Gamma distribution (using Equation 5, where ± and 𝛿 are shape and rate parameters) as used 

by Cheng et al. (2012) and used AP clustering on these two parameters.  In this study, the 

mean and (0, 5, 50, 95,100) percentiles of flow are used as flow indices as suggested by Ali et 

al. (2012). Catchment properties used in this study are described in Section 3.1. 

𝑓(𝑥;𝛼, 𝛿) = 𝛿𝛼𝑥𝛼−1 𝑒−𝑥𝛿

Γ(𝛼)
       𝑓𝑜𝑟 𝑥 ≥ 0 𝑎𝑛𝑑 𝛼, 𝛿 > 0                                         (5) 

2.4 Catchment cluster comparison  

To measure the similarity or the agreement between two clustering results we used the 

Adjusted Rand Index (ARI) following Ali et al. (2012). The ARI can yield a value between -1 

and +1.  ARI equal to 1 means complete agreement between two clustering results whereas 
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ARI equal to -1 mean a no agreement between two clustering results. The formulation of ARI 

(Hubert and Arabie 1985, Rand 1971) is given by: 

𝐴𝑅𝐼 =
∑ �𝑛𝑖𝑗2 � − �∑ �𝑎𝑖2 �∑ �𝑏𝑗2 �𝑗𝑖 � �𝑛𝑖𝑗2 ��𝑖𝑗   

1
2�∑ �𝑎𝑖2 � + ∑ �𝑏𝑗2 �𝑗𝑖 � − �∑ �𝑎𝑖2 �∑ �𝑏𝑗2 �𝑗𝑖 � �𝑛𝑖𝑗2 ��

                                                        (6) 

where  𝑛𝑖𝑗 ,𝑎𝑖 , 𝑏𝑗  are values from the contingency table. If we have two groups, G1 = 

{C1,C2,…, Cr} and G2= {D1, D2,..., Ds}, the overlap between G1 and G2 can be given by 

contingency table [𝑛𝑖𝑗] where each entry 𝑛𝑖𝑗 denotes the number of objects in common 

between G1 and G2. In term of hydrology, G1 and G2 are two cluster sets obtained by two 

different methods based on the same set of catchments. Hence, the Contingency table show 

how many catchments are in common between the different clustering techniques. A more 

detailed example can be seen in Hubert and Arabie, (1985). The value of  𝑎𝑖 , 𝑏𝑗 can be 

obtained from table as follow:  𝑎𝑖 = ∑ 𝑛𝑖𝑗𝑠
𝑗=1   and  𝑏𝑗 = ∑ 𝑛𝑖𝑗𝑟

𝑖=1 . If the clustering based on 

two or more descriptor types is similar, that will improve our confidence in the methods to 

provide a hydrologically consistent region delineation. 

2.5 Use of clustering to transfer model parameters 

Once the hydrological grouping was defined, a physically based hydrological model 

(TopNet) was set up for all the catchments, and model parameters were individually 

calibrated using the Robust Parameter Estimation (ROPE) algorithm (Bárdossy and Singh 

2008). To compare the transferred model parameter performance with optimal calibrated NS 

of the catchment, the calibrated model parameters of exemplars were transferred to the other 

catchments within the group. To test the usefulness of our proposed clustering measure in 

parameter regionalisation, we compared model performance for parameters transferred within 

the group versus outside the group. This represents a fair comparison because parameters for 

in-group and out-group catchments are both tested in validation rather than calibration model. 
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If our method is successful, we expect in-group performance to exceed out-group 

performance. 

3 Case Study 

The proposed methods of catchment clustering were tested in the Bay of Plenty (BOP) region 

which is located in the North Island of New Zealand.  

3.1 Study Area 

The study area consists of small to medium sized catchments in the BOP region (Figure 5). 

We selected 21 catchments for which flow data are available. Catchment area varies from 2 

to 2883 km2. Each catchment is a collection of sub-basins, defined by third orders stream in 

the Strahler classification. Table 1 gives the details of the 21 catchments and their properties 

(average over all sub-basins). These catchments are characterised by different topography, 

geology, soil type and land use. All catchments are rural with only minor urbanised areas. 

The main land uses are agriculture, dairy and sheep farming. Hourly runoff and precipitation 

data from the period 1990 to 2000 were obtained from the National Institute of Water and 

Atmospheric Research (NIWA) and BOP Regional Council. The catchment physical and 

hydrological properties are derived from a variety of sources including a digital river network 

(Snelder and Biggs 2002), 30m Digital Elevation Model, and land cover and soils databases 

(Newsome et al. 2000). A summary of flow indices for all the catchments are given in Table 

2. 

3.2 Hydrological Model  

TopNet is a semi-distributed hydrological model which simulates catchment water balance 

and river flow. It was developed using TOPMODEL (Beven and Kirkby 1979) concepts for 

parameterization of soil moisture deficit using a topographic index to model the dynamics of 
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variable source areas contributing to saturation excess runoff (Bandaragoda et al. 2004, 

Beven and Kirkby 1979). TopNet models a catchment as a collection of sub-watersheds, 

linked by a branched river network (Clark et al. 2008). Flow is routed through the river 

network using kinematic waves using the shock-fitting technique of Goring (1994). Modelled 

streamflow is generated in 3 ways:  

• rain falls on a location where soil water storage equals its capacity (Saturation excess 

runoff')  

• rain rate exceeds infiltration rate ('Hortonian runoff')  

• saturated zone discharge into stream (baseflow) 

TopNet assumes that available soil water storage can vary within a sub-watershed because of 

topographic effects - valley bottoms and flat places are wetter than ridges.   

TopNet can be used for a variety of applications including operational flood forecasting, 

water resources modelling, and climate and land-use change studies (McMillan et al. 2013). It 

provides a prediction of flow in each modelled reach within a catchment (Ibbitt et al. 2000). 

The model inputs are rainfall and temperature time series (e.g at hourly time steps, with rain 

from one or more locations), relative humidity, solar radiation, and maps of elevation, 

vegetation type, soil type and rainfall patterns. These map data are used with tables of model 

parameters for each soil and vegetation type, to produce initial estimates of the model 

parameters. A schematic representation of the model is given in Figure 6. TopNet has 31 

parameters to define the hydrological processes of a catchment. Where possible, parameter 

values are determined from physical catchment properties; however 12 parameters typically 

require calibration. During calibration, TopNet model uses a spatially constant multiplier for 

each parameter, to adjust the parameters while retaining the relative spatial pattern obtained 

from the soil and vegetation data (Bandaragoda et al. 2004). This procedure is necessary in 

order to reduce the dimensionality of the calibration problem. In this study, we transferred the 
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calibrated multiplier from one catchment to others. The model parameters to be calibrated 

and their physical meaning and ranges are given in Table 3. 

4 Results  

4.1 Similarity Measure  

The use of flow indices and descriptions of flow dynamics requires that runoff is normalised 

to remove the influence of runoff magnitude before similarity measures are calculated. 

Following the suggestion of Ley et al. (2011), runoff is normalised by its median value to 

eliminate most of the influence of mean precipitation and catchment area. Normalised Flow 

Duration Curves (FDC) for all catchments are given in Figure 7. From this figure we can see 

a wide range of runoff distributions. In order to summarise and compare FDCs we fitted 

gamma distributions (Cheng et al. 2012) with two parameters (shape and rate) for each FDC. 

Based on the parameters, we used the AP clustering to group the catchments. As a result of 

cluster analysis we obtained 6 clusters (Table 4). Groups 2, 3, 4 and 5 have only one member, 

which can occur when flow exceedance probabilities of these catchments are significantly 

different from the others (Figure 7).  

DD-plots were prepared for all possible pairs of catchments. Example of DD-plots for 

dissimilar catchments and similar catchment are given in Figure 8. We calculated the area of 

the convex hull of the DD-plots and used the area to define the similarity matrix for AP 

clustering. Based on the DD-plots we found 6 clusters (Table 4), where group 2, 4, 5 and 6 

have only one member. We calculated the flow indices for all catchments (Table 2). AP 

cluster analysis gave 6 clusters, four of these clusters have only one member. Catchments 

were also classified using a similarity measure based on catchment characteristics (as given 

in Table 1; the results are given in Table 4. We obtained 4 clusters, in contrast to the other 

similarity measures which give 6 clusters.   
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Figure 9 shows the cluster dendrogram resulting from DD-plots, FDC, flow indices and 

catchment properties. A dendrogram is a tree-like diagram that records the sequences of 

merges or splits of the clusters.  The vertical axis on the dendrogram shows the level of 

fusion of different clusters. The heights of the merges in the dendrogram correspond to the 

merging objective: the higher the vertical bar of a merge, the less similar the two clusters 

were (Bodenhofer et al. 2012).  From these figure we can see how clusters are grouped and 

how distinct the groups are from each other. Clustering based on flow indices gave several 

groups with single members. This may indicate a lack of discriminatory power in the flow 

indices selected. The height of the merges in the dendrogram in Figure 9 varies according to 

the variable used for clustering. In the case of the clustering based on DD-plots, clusters 3 

and 4 as well as cluster 1 and 5 are relatively similar to each other. But clusters 2 and 6 are 

outliers which are dissimilar to the other four.  The dendrogram based on FDC clustering 

show that, clusters 1 and 2 and cluster 3, 4 and 6 are relatively similar to each other, whereas 

cluster 5 is very dissimilar to the other five.  For of clustering based on flow indices, the 

cluster 1, 3, 4 as well as cluster 2, 6 are very similar to each other but cluster 5 is dissimilar. 

For clustering based on catchment characteristics, clusters 1 and 3 are similar to each other, 

cluster 4 is very dissimilar to the other three. Based on each cluster we can define one 

hydrological parameter set. 

Figure 10 shows maps of the hydrogeological permeability class along with groups derived 

from each of the four similarity measures. There is a clear distinction between Eastern and 

Western catchments in term of permeability which experience shows is a key determinant of 

hydrological response. Eastern catchments have low permeability compared to Western 

catchments. Even though some of Eastern and Western catchments are in same group, 

clustering based on DD-plot similarity has largely classified the Eastern and Western 

catchments in to different groups. Similarly, grouping of catchment based on flow statistics 
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have also grouped the Eastern and Western catchments differently. But grouping based on 

FDC or catchment characteristics fails to do so.  

To measure the similarity or agreement between clusters based on different similarity metrics 

we calculated the ARI (Table 5). All four clustering methods produce dissimilar clusters as 

shown by low ARI values in all cases. The most similar clusters are those of the FDC and 

physical catchment characteristics.  This contrasts with results from the previous study by Ali 

et al. (2012) which found that clustering based on physical catchment descriptors and flow-

based indices are different.  The most dissimilar clusters are those between DD-plot and 

physical catchment characteristics or flow-based indices. In later case, this may be due to the 

fact that DD-plot-based clustering uses the whole time series whereas flow indices are a 

summary measure.    

The major advantage of using DD-plots for defining similarity of catchment over other 

techniques is that DD-plots enable us to use the whole time series instead of using statistics of 

the series. This captures the whole dynamics of the series, while allowing us to visualize the 

results in 2D.  However, there is still a requirement to compress this information to a single 

value (i.e. the area of convex hull) before use as similarity measure.  

In the next section, we test DD-plot based clustering for defining groups to guide model 

parameter transfer.  

4.2 Similarity measure to guide model parameter transfer 

The TopNet model was set up for all the 21 catchments. The model was calibrated for each 

catchment using the ROPE algorithm (Bárdossy and Singh 2008) with the Nash-Sutcliffe 

(NS) coefficient (Nash and Sutcliffe 1970) as the objective function with an hourly time step. 

The model was calibrated on one year of data with one year of warm up period. Selection of 

the calibration period required continuous data availability including high and low flow 
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periods. The major advantage of the ROPE algorithm based calibration is that instead of a 

single best parameter set it gives the convex hull of the optimal parameter space, which can 

account for uncertainty associated with parameter estimation. The deepest parameters in the 

convex hull are optimal. The resulting optimal performance score (NS) from the deepest 

parameter set, varied from 0.41 to 0.89 (Table 4) across different catchments. Some of the 

catchments have poor performance even after calibration: we hypothesise that this is due to 

geological characteristics of the catchments which are not properly represented by the model. 

Figure 11 shows model performance along with the hydrogeological classes of each 

catchment. From the figure, we can see that neighbouring catchments may have very 

different hydrogeological classes, meaning different permeability. In general the best results 

were obtained in larger catchments and in the East of the region, while poorer performance 

was obtained in small catchments draining into Tauranga Harbour in the West of the region. 

An hourly observed and model hydrograph and flow duration curve for the calibration time 

period for catchment number (station No). 13805 is given in Figure 12 and 13 resepectively, 

where model performance score (NS) is an average (0.71). From the figure one can see that 

both the hydrographs have very similar dynamics. Timing and magnitude are very similar in 

the observed and model hydrographs but a few very high floods were missed by the model.   

To see the behaviours of the model parameters in all the catchments, we made scatter plots of 

the two most sensitive parameters of TopNet model, topmodf (TOPMODEL f parameter) and 

hydcon0 (saturated hydraulic conductivity), marked according to the groups obtained by each 

clustering measure (Figure 14). Parameters of the TopNet model for catchments in the same 

group are clustered together only for a few cases, suggesting that model behaviour is 

governed by the whole parameter set rather than individual parameters.  

The calibrated model parameters were transferred (1) to other catchments within the same 

cluster and (2) to catchments outside the cluster. The transferred parameter results were 
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compared with the performance obtained during the calibration of the catchment. To see an 

overview of transfer of parameters from within group and outside the group, we plotted a 

performance matrix of parameters transferred from each catchment to each other catchment 

(Figure 15). This performance matrix gives a visual indication that parameter transfer within 

the group typically out-performed parameter outside the group. To quantify this difference, 

performance statistics for transfer of parameters within and outside the group are given in 

Table 6 (with exemplar catchments highlighted). When using exemplar catchment 

parameters, mean in-group performance (NS score of -0.03) is significantly higher than out-

of-group performance (NS score of -20.8). Table 6 also shows that exemplars give better 

parameter transfer performance than other group members, demonstrating their usefulness as 

representative catchments.  However, we note that transfer of complete parameter sets even 

within groups often results in poor performance. This is because these catchments are 

grouped together but still they may have very diverse behaviours.  

We tested the transferability of parameters between in-group and out-group catchments for 

the other clustering schemes, and results are given in Table 7. Results from this table again 

shows consistently that inside group results are better than outside group results.  When using 

exemplar catchment parameters, mean in-group performance in term of NS score are -0.36, -

1.27, and -5.86 respectively for FDC, flow indices and catchment characteristics based 

clustering. Whereas out-of-group performance in term of NS score are -6.73, -42.80, and -

16.53 respectively for FDC, flow indices and catchment characteristics based clustering.  The 

results show that the DD-plot method gives the highest in-group performance scores. This 

demonstrates a greater hydrological consistency and more representative exemplar than other 

methods. The DD-plot method also gives the second-highest difference between in-group and 

out-group mean scores (flow indices give the highest). This demonstrates good differentiation 

of hydrological behaviour between clusters.  
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Figure 16 shows one example of observed and model hydrographs when parameters from 

catchment with station No. 15412 transferred to an out-of-group dissimilar catchment with 

station reach No.15514 against an in-group similar catchment with station No. 15410. From 

this figure one can see that in this case, within-group parameter transfer performed better than 

without-group transfer. However larger datasets would be need in order to generalise these 

results. 

5 Discussion 

We propose in this article a new non-parametric measure of similarity among catchments, 

using a data depth function which uses the whole observed time series. This new DD-Plot 

based approach has major advantage that there is not decision process aside from the initial 

parameter of data dimension (d=4).  In this study we tested catchment clustering based on the 

following variables: (1) DD-plots based on discharge, (2) flow duration curve indices, (3) 

flow indices, (4) and catchment properties. The comparison among the clustering based on 

different methods suggest that they produce different number and members of clusters.  The 

ARI based analysis shows that the DD-plot method produces clusters that are most dissimilar 

to the other methods, whereas the FDC based method and the catchment properties method 

produce the most similar cluster. Whereas in a previous study, Ali et al. (2012) found a clear 

distinction between the clustering based on physical catchment descriptors and flow-based 

indices.  Difference in clustering based on our proposed depth-depth measure, catchment 

characteristics, flow, and flow indices may be due to fact that catchment characteristics used 

in this present study may not be very appropriate to represent all the process in the 

catchments. At the same time DD-plot is using the whole time series which was not used in 

Ali et al. (2012) studies.   
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Model performance during transfer of parameters from one catchment to other can vary 

widely based on both the method of regionalisation and the number of catchments used in the 

study (Parajka et al. (2013)). Hence, it is hard to generalise or compare the results of the 

various clustering technique present in this study, as the numbers of clusters and the numbers 

of catchments in each cluster varies from one clustering technique to other. The clustering 

analyses completed with the flow indices or the physical characteristics is dependent on the 

selection of those characteristics. Conclusions can be made on the comparison between these 

physical and flow characteristics, but it should be noted that comparisons between physical 

and flow characteristics should not be generalized to all flow and physical characteristics. 

One of the benefits of using the DD-Plot approach is that there is not decision process aside 

from the initial parameter (d=4).   

 Based on the current study, when exemplar catchment parameters are transferred to other 

catchments, the mean in-group performance in term of NS score is significantly higher than 

out-of-group performance in all the four clustering techniques. But the DD-plot based 

clustering outperform (highest in-group performance scores and second-highest difference 

between in-group and out-group mean scores) the other clustering methods. The second best 

results are from the FDC based clustering, followed by Flow indices and catchment 

characteristics based clustering. This suggest flow based clustering is more representative of 

the rainfall-runoff response of the catchments then the catchment characteristics.  The reason 

that DD-plot based clustering outperformed the other methods may be that it takes into 

account the whole time series and may better present the processes of the catchments.  Even 

though DD-plot based, transferred parameters have outperformed the other methods, the 

performance in term of NS is still poor. Several reasons may account for this especially that 

these model performance tests are in “validation” rather than “calibration” mode.  The 

uncertainty in the locally estimated model parameters is a function of their importance in 
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representing the response of a given catchment, but the model structural error hinders 

identification of a parameter to represent a certain process and therefore hinders the 

regionalization (Wagener and Wheater 2006).   Model calibration can lead to non-unique sets 

of parameters and therefore it can be difficult to associate parameter values with catchment 

characteristics, and hence to transfer them to ungauged catchments (Bárdossy 2007). Hence, 

there is chain of uncertainty that propagates when we transfer the parameters between 

catchments.  

6 Conclusion 

 The aim of this study was to explore a new measure of similarity among catchments, using 

the data depth function. This is a new, non-parametric method of catchment clustering based 

on a measurement of the centrality of an observation within a distribution of points. We 

compare this new measure with existing catchment clustering metrics, i.e. flow duration 

curves, flow indexes and physical catchment characteristics. A cluster analysis was 

performed with each of these similarity measures, using the AP clustering algorithm, and the 

results were compared.  We evaluated whether a similarity measure based on data depth-

depth plot provides a better basis for transferring parameter sets of a hydrological model 

between catchments. In this study, we focused on 21 catchments located in the Bay of Plenty 

region in the North Island of New Zealand. The catchments have a wide range of topographic 

properties, response behaviours and geological features. Results show that clustering based 

on our proposed depth-depth measure is dissimilar to clustering based on catchment 

characteristics, flow, or flow indices. The TopNet model was calibrated for all the catchments 

and transferability of model parameters among the similar catchments was tested by 

transferring the parameters from within each cluster group to catchments inside and outside 

the group. We found that on an average, parameter transfer within the group performed 
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significantly better than outside the group. Average performance (in term of NS score) from 

the parameters of exemplars catchments transferred within the group have better performance 

than non-exemplar catchments demonstrating the usefulness of the exemplars as 

representation of the catchment group. The DD-plots based method was found to be a better 

basis for the transfer of parameter sets as compared to the other methods, bacuse it gave the 

best model performance for in-group catchments. This results suggest that DD-plot similarity 

measure outperform the other measures we tested in creating clusters of catchments with 

similar rainfall-runoff responses. 
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Table 1 Catchment properties (averaged over sub-basins). The minimum and maximum elevation 
is in metres above mean sea level (m a.m.s.l.). Permeability, 1: very low, 2: low, 3: medium, 
4: high medium, 5: high, 6: medium high, 7:  very high. 

 

Station      
no. 

Area 
(km2) 

Average 
length of 
stream 
reach (m) 

Average 
width of 
stream 
reach (m) 

Average 
ln(a/tan(² )
) 

Minimum 
elevation of 
stream reach 
(m a.m.s.l.) 

Maximum 
elevation of 
stream reach 
(m a.m.s.l.) 

Average 
gradient 
of 
stream 
reach (-) 

Catchment 
averaged 
permeability 

17101 348.8 3906.8 10.1 7.4 6.2 717.7 0.0294 1 

13805 9.5 3999.0 4.6 9.1 220.7 300.3 0.0198 5 

13310 37.9 1880.0 6.1 7.2 39.1 284.3 0.0192 5 

14410 59.7 4280.6 7.1 8.7 19.1 284.0 0.0176 6 

15341 186.9 2244.4 6.2 8.0 298.6 557.6 0.0275 7 

14130 295.2 2742.8 7.9 8.1 20.0 500.7 0.0258 6 

15410 507.4 2582.5 10.0 7.8 199.6 827.6 0.0216 6 

15412 2882.9 3060.1 16.7 8.5 5.0 827.6 0.0174 6 

15450 154.2 2820.0 7.9 8.3 203.5 498.8 0.0311 5 

16502 294.2 2691.2 9.7 7.8 427.0 632.2 0.0121 3 

15901 660.4 3041.9 10.9 7.5 63.5 801.9 0.0335 4 

1114651 51.9 3226.6 7.0 8.4 4.6 177.7 0.0113 6 

15605 67.6 2401.8 6.8 8.4 21.9 59.3 0.0046 5 

15544 214.4 3175.1 8.7 7.6 120.9 644.1 0.0359 5 

16002 239.8 3486.6 9.2 7.7 26.7 457.8 0.0230 2 

15302 700.9 2649.1 10.7 8.4 0.1 557.6 0.0220 7 

15408 1149.7 3146.9 12.1 8.9 184.0 820.0 0.0121 7 

16501 1377.1 3280.6 13.3 7.5 12.9 826.9 0.0266 3 

15514 1485.0 1793.0 2.3 7.1 12.0 16.8 0.0026 5 

13901 2.9 1164.0 2.5 9.3 19.0 34.5 0.0134 7 

15472 110.2 2604.8 7.8 8.4 301.8 498.8 0.0171 6 
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Table 2 Summary of flow indices (mm) used in this study 
 

 Flow index (mm)          Min      median        mean        max 

Minimum discharge (Qmin)    0.0002       0.0273 1.0760    18.2561 
Median  discharge (Qmedian) 0.0011 0.0639 1.7153 21.3780 
Mean discharge (Qmean) 0.0026 0.1433 2.2671 22.1063 
Maximum discharge (Qmax) 0.1708 2.8970 43.6860 677.1825 
5 percentile discharge (Q5) 0.0004 0.0410 1.2231 19.2561 
95 percentile  discharge (Q95) 0.0083 0.3799 4.8794 53.3351 
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Table 3 Model parameters of the TopNet which need calibration, description and allowed range for the 
parameter multiplier 

 
Parameter 

  

Description 

  

Initial 

Min Max 

topmodf TOPMODEL f parameter (m-1) 0.001 2 

hydcon0 Saturated hydraulic conductivity (m s-1) 0.01 9999 

swater1 Drainable water (m) 0.05 20 

swater2 Plant-available water (m) 0.05 20 

dthetat Soil water content (m) 0.1 10 

overvel Overland flow velocity (m s-1) 0.1 10 

gucatch Gauge under-catch for snowfall (-) 0.5 1.5 

th_accm Threshold for snow accumulation (K) 272.16 275.16 

th_melt Threshold for snowmelt (K) 272.16 275.16 

snowddf 
Mean degree-day factor for snowmelt (mm K-1 d-1 = kg m-2 
K-1 d-1) 0.1 7.5 

minddfd Minimum degree-day-factor day (Julian day: 1 to 366) 1 366 

maxddfd Maximum degree-day-factor day (Julian day: 1 to 366) 1 366 

snowamp 
Seasonal amplitude of degree-day factor for snowmelt (mm 
K-1 d-1 = kg m-2 K-1 d-1) 0 7.5 

cv_snow Coefficient of variation in sub-grid SWE (-) 0.5 1.5 

r_man_n Manning’s n (-) 0.1 10 
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Table 4 Calibration results for all the catchments and catchments group based on clustering on flow and 
catchment characteristics (bold number are exemplars) 
 

Station Station  
DD plot FDC Flow 

indices 
Catchment 

characteristics 
 no. name NS 

     
17101 Raukokore at SH35 Br 0.69 1 6 3 3 
13805 Waipapa at Goodall Rd 0.71 1 6 3 3 
13310 Tuapiro at Woodlands Rd 0.65 1 6 1 3 
14410 Waimapu at McCarrolls 0.77 1 6 4 3 
15341 Tarawera at Lake Outlet Recorder 0.79 1 2 4 3 
14130 Wairoa at Above Ruahihi 0.64 1 6 2 3 
15410 Whirinaki at Galatea 0.7 1 6 3 1 
15412 Rangitaiki at Te Teko 0.81 1 4 3 4 
15450 Pokairoa at Railway Culvert 0.41 2 1 3 3 
16502 Motu at Waitangirua 0.8 3 6 3 3 
15901 Waioeka at Gorge Cableway 0.86 3 6 3 1 

1114651 Raparapahoe at Above Drop Structure 0.63 3 6 4 3 
15605 Nukuhou at Old Quarry 0.89 3 6 3 3 
15544 Waimana at Ranger Station 0.63 3 6 4 3 
16002 Otara at Browns Br 0.8 3 6 3 3 
15302 Tarawera at Awakaponga 0.79 3 1 4 1 
15408 Rangitaiki at Murupara 0.88 3 3 4 2 
16501 Motu at Houpoto 0.73 3 6 4 2 
15514 Whakatane at Whakatane 0.84 4 6 3 2 
13901 Mangawhai at Omokoroa 0.69 5 6 5 3 
15472 Mangaharakeke at Parapara Rd 0.58 6 5 6 3 
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Table 5 Adjusted rand index (ARI) for different clustering (ARI = –1: worse, ARI =  1: best agreement between 
two clusters). 
 

  DD-plot FDC 
Flow 
indices 

Catchment 
characteristics 

DD-plot 1 
   

FDC 0.070 1 
  

Flow indices -0.025 0.012 1 
 

Catchment characteristics -0.050 0.153 0.056 1 
 
 
 
 
 
 
 
 
 
Table 6 Statistics (in term of NS) of transfer of parameters of all catchments within the group and outside the 
group based on DD-plot based clustering (bold number are exemplars) 
 

 
Station Within group (NS) 

 
Outside group(NS) 

 
 

no. Min Median Mean Max Min Median Mean Max 
Group 1 17101 -18.68 -0.09 -2.73 0.35 -559.31 -1.62 -73.33 0.83 

 
13805 -80.98 -2.49 -13.49 0.65 -1694.40 -3.48 -237.57 0.40 

 
13310 -78.39 -2.09 -12.74 0.36 -2094.09 -2.66 -252.68 0.63 

 
14410 -8.63 0.21 -1.01 0.64 -182.82 0.45 -26.04 0.77 

 
15341 -0.06 -0.03 0 0.14 -51.58 0.00 -7.00 0.79 

 
14130 -25.67 0.31 -3.76 0.58 -243.37 0.22 -35.48 0.71 

 
15410 -0.92 -0.01 -0.05 0.39 -98.18 0.27 -14.56 0.88 

 
15412 -15.06 0.1 -2 0.7 -73.86 0.15 -12.46 0.32 

Group 2 15450 0.41 0.41 0.41 0.41 -5.07 -0.03 -0.30 0.81 
Group 3 16502 -536.67 -5.07 -74.49 0.73 -3147.35 -6.91 -443.67 0.43 

 
15901 -45.25 0.32 -5.76 0.89 -483.27 -0.16 -62.09 0.67 

 
1114651 -18.22 0.65 -2.04 0.78 -67.27 0.05 -9.80 0.72 

 
15605 -210.39 0.36 -28.1 0.77 -1113.43 -1.92 -160.44 0.36 

 
15544 -55.31 -0.56 -8.02 0.58 -165.67 -0.08 -25.26 0.84 

 
16002 -107.71 0.42 -14.71 0.86 -1467.26 -0.29 -199.86 0.67 

 
15302 -0.21 0.02 0.11 0.58 -28.33 0.16 -3.96 0.77 

 
15408 -0.37 0.09 0.04 0.16 -39.61 0.03 -5.80 0.79 

 
16501 -24.12 -0.94 -3.81 0.8 -113.02 0.15 -16.16 0.74 

Group 4 15514 0.84 0.84 0.84 0.84 -11.23 -0.02 -0.68 0.79 
Group 5 13901 0.68 0.68 0.68 0.68 -436.10 -0.48 -43.19 0.71 
Group 6 15472 0.58 0.58 0.58 0.58 -20.12 -0.11 -1.66 0.41 
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Table 7 Statistics (in term of mean NS) of transfer of parameters of all catchments within the group and outside 
the group based on different clustering techniques 
 
 

 
DD-plot FDC Flow indices 

Catchment 
characteristics 

In-group -0.03 -0.36 -1.27 -5.86 
Out-group -20.80 -6.73 -42.80 -16.53 
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Figure 1 Example of a convex hull using hydrological variable discharge.  The convex hull of a set of 
points is the smallest convex set which encloses all the points. A hyperplane is a plane passing through a 

point or points. Depth measures the centrality of a point with respect to the median. 
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Figure 2 Systematic representations of similarity and dissimilarity between catchments based on convex 
hull of the discharge from two catchments  
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Figure 3 Example of a DD-plot (c) using 4-D (flow with lag 3) and comparison with 2-D plot (a) (flow with 
lag 1) and 3-D plots (b) (flow with lag 2). Flow was normalised with the median flow 
 
 
 
 
 

 

(a) 

(b) 

(c) 
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Figure 4 Example of DD-plots (d=2) Left: using two sets of random samples from the same distribution 
(convex hull area: 0.043), Right: using sets of random samples from two different distributions (convex 
hull area: 0.082).   
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Figure 5 Study Area: Bay of Plenty region, located in North island of New Zealand 
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Figure 6 Systematic Representation of TopNet model structure 
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Figure 7 Flow duration curves for each catchment in our study. Flow was normalised by its median in 
each catchment 
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Figure 8 Example of DD-plots for dissimilar catchments (left) and similar catchment (right) 
 

 

 

 

 

 

 

 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
5:

51
 1

2 
A

pr
il 

20
16

 



43           
 

 

 

 
Figure 9 (a) Clustering based on flow series using area under DD-plots as similarity matrix, (b) 
Clustering based on flow duration curve and parameters of gamma distribution fitted for FDC, (c) 
Clustering based on flow indices, and (d) Clustering based on catchment characteristics 
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Figure 10 (a) groups from DD_plots clustering, (b) groups from FDC distribution parameter clustering, 
(c) groups from clustering from flow statistics and (d) groups from clustering based on catchment 
characteristics 
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Figure 11 Model performance along with different hydrogeological classes in the catchments 
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Figure 12 Hourly calibrated Observed and model hydrograph along with hyetograph for catchment with 
station No. 13805 
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Figure 13 Hourly calibrated Observed and model flow duration curve for catchment with station No. 
13805 
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Figure 13 Plot of two important parameters of TopNet- topmodf and hydcon0 and grouped mark based 
on different clustering, (Top left: from DD-plot, Top right: from FDC, Bottom left: from flow indices, 
Bottom right: from catchment characteristics) 
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Figure 14 Performance Matrix of parameters transferred to catchment within the group and outside the 
group. The x axis is marked with a different box for each group. Circle show the exemplar catchment 
from each group. Groups where obtained from DD-plot based clustering  
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Figure 15 Observed and model hydrograph when parameter from catchment with station No. 
15412 transferred to dissimilar catchment with station No. 15514 (top) and similar catchment with 
station No. 15410 (bottom)  
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